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This paper investigates the compaction of pharmaceutical powders using different shapes of punches. We in-
troduce a model of mechanical behaviour Drucker–Prager Cap (DPC), using the approach of compressible
continuous media. The model parameters that are depending on the material density, were identified from
experimental data and a calibration process was applied on Microcrystalline Cellulose (MCC) powder. In ad-
dition, the mathematical formulation of the boundary problem of compaction in rigid tools brings back to an
optimization problem with constraint, which is solved by finite element method. The Drucker–Prager Cap
model, which is implemented in Abaqus/Standard software, was employed using a user subroutine, USDFLD.
Three kinds of typical pharmaceutical tablets are considered: flat-face tablet and concave face tablet with two
different depths. Results of simulations of die compaction cycle as compression, decompression and ejection,
reproduce the powder compaction process for the studied shaped punches. The effects of the punch's shape
on the compaction process were observed on the distribution and the maximum of stress and density in the
compact. Examination of the density gradient according to the shape, suggests a capping tendency, which in-
creases with the punch depth. This study illustrates the potentiality of the FEM method, which could be used
as an efficient tool to predict the density and the stress distributions into shaped compacts and to provide a
diagnostic of the capping problems.

1. Introduction

The pharmaceutical industry has invested vast amounts of time
and money in the study of the powder compaction. This expenditure
is quite reasonable because the tablet can be self-administered by the
patient; it can be manufactured with several forms and different col-
ours and introduces a constant dose of active ingredient. The tablet is
obviously more profitable to manufacture than parenteral dosage
forms that must be administered, in most cases by trained personnel.
So, more than 80% of the drugs in USA are formulated to produce
oral dosage forms. Compared to oral dosage forms, tablets are the
manufacturer's dosage form of choice because of their relatively low
cost of manufacture, package and increased stability [1]. Contrary to
the metallic powders, the compression of pharmaceutical powders
has no difficulties linked to the complicacy of the tablet shape. We
find simple forms in general (flat, concave…). As a result, the difficul-
ty of the flow of material for complex forms does not meet (or little)
in the pharmaceutical tablets. However, several phenomena may lead
to non-conformity of tablets. The friction between powder and die
during the compaction process leads to heterogeneity of the density
distribution into the tablet. This heterogeneity continues during
the decompression and ejection phases and leads to a dispersion of

mechanical characteristics and sometimes to heterogeneity of the ac-
tive ingredient for the scored tablets. Because of the powder proper-
ties and the parameters of compaction process, the tablet expansion
during decompression and ejection phases is well known in the phar-
maceutical industry as a redoubtable phenomenon for production.
Thus, the interest to control the compaction process parameters and
to analyse the fundamental properties of powders is very important.

The aim of the pharmaceutical powder compaction is to produce a
good tablet without capping, with a sufficient mechanical strength,
with uniformweight andwith other properties. However, considering
the powder (or powder mix) properties, which are very sensitive to
handling, to provenance, or to manipulation, the success of the com-
paction process and the manufacturing of a good tablet need an un-
derstanding of the fundamental properties. These properties, which
can be physicochemical and/or mechanical, allow explaining how a
formulation could act during compaction.

Moreover, unsuccessful tablets are not always due to formulation.
The process parameters as speed of compaction, punch shape, lubrica-
tion [2], temperature [3] and humidity changes, and state of mainte-
nance of punches and die are often responsible of disturbance during
production.

Considering the fact that about 70% of pharmaceutical tablets are
biconvex, we are interested in this work by the effect of the punch
shape on the powder behaviour during compaction.

The computational modelling of powder compaction has typically
been carried out by two different approaches: the discrete method
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and the continuummethod. In this work, the continuummodel meth-
od was used. The compaction behaviour of pharmaceutical powders
can be studied using the principles of continuummechanics at macro-
scopic level, i.e. phenomenological models. A variety of continuum
models from the soil mechanics literature have been developed from
experiments on different geo-materials as described by Drucker et
al. [4], Schofield and Wroth [5], Di Maggio and Sandler [6], Gurson
[7] and Green [8]. Most of these models are governed primarily by el-
liptical caps that determine the densification yield loci during the
compaction process. However, elliptical caps fail to capture the shear-
ing phenomenon in powders, which is extremely important during
the decompression and the ejection phases of powder compaction.
Only the Drucker Prager/Cap (DPC) model is able to capture these
phenomena because of the presence of a shear yield surface in addi-
tion to an elliptical cap. Hence, the DPC model has gained wide accep-
tance as a good constitutive model for modelling powder compaction.
DPC models have been used for the analysis of compaction of phar-
maceutical powders. These models can represent the densification
and hardening of the powder, as well as the interparticle friction.
DPCmodel have been used for pharmaceutical powders by A.Michrafy
et al. [2], S. Kadiri et al. [9,10], J.C. Cunningham et al. [11], C.-Y. Wu
et al. [12], G. Frenning [13], and recently by L.H. Han et al. [14] and
T. Sinha et al. [15,16].

This work investigates the pharmaceutical powder compaction
in cylindrical flat and curved punches. The approach is based on the
detailed calibration of the powder behaviour in flat punch using DPC
model and the analysis of punch curvature effects on the density dis-
tribution during the compaction cycle. The material parameters of
the model were identified by an experimental procedure. Numerical
simulation of the compaction process using finite element method,
gives us access to displacement, strain and stress fields in the tablet.
The unloading and ejection phases are often neglected or the reso-
lution method is not specified. Because the structure must release
strain energy to remain in equilibrium, it is important to use adequate
methods to avoid unstable response. In this study, the unloading step
was simulated successfully using the Riks method, implemented in
Abaqus. Results of the distribution of density gradients according to
the punch deep curvature and tendency to the capping of tablets
were discussed.

This paper is organized as follows: Section 2 presents the mate-
rials and methods; results are introduced in Section 3, where we
present the experimental results of parameter identification and the
numerical simulations. Finally, Section 4 summarizes the conclusions.

2. Materials and methods

2.1. Materials

The microcrystalline cellulose Vivapur® 102 (MCC 102) is often
used as a pharmaceutical excipient. Characteristics of the powder
MCC 102 provided by JRS (J. Rettenmaier and Sohne) is shown in
Table 1. This powder having good flowability, compressibility and
compactability, was used to identify the model parameters. A scan-
ning electron microscopy image of the powder MCC 102 is presented
in Fig. 1.

The bulk density which is defined as the ratio of the mass over the
volume of powder, is determined by measuring the volume of a
known mass of powder sample, that may have been passed through
a sieve into a graduated cylinder, or a measuring vessel, or by measur-
ing the mass of a known volume of powder that has been passed

through a volumeter into a cup. The bulk properties of powders de-
pend on preparation, treatment and storage of the sample, i.e. how
it was handled. In this work, various masses were filled in a graduated
cylinder with a known diameter. The obtained bulk density of MCC
102 is approximately 0.31 ± 0.01 g/cm3.

In addition, the relative density is expressed as:

Relative density ¼ Bulk density=True density: ð1Þ

Thus, the initial relative density ρ0 is equal to 0.195.

2.2. Drucker–Prager Cap model

A short presentation of the DPC model is made here. For more de-
tails, this model was described in several papers [9,12,14–16]. The
Drucker–Prager Cap model is implemented in the Abaqus Software.
The yield function is defined with three surfaces represented in
Fig. 2: the shear failure surface Fs defining the correlation between
the cohesion d and the internal friction angle β, the elliptical surface
(or cap surface) Fc which can expand or contract according to the vol-
umetric strain and the transition surface Ft between Fs and Fc. The
evolution of the cap surface is described with the hardening function
pb which is the position of the cap on hydrostatic pressure axis for
each density state.

p = 1/3(σx + σy + σz) hydrostatic (compressive) stress; q = {(1/2)
[(σx − σy)2 + (σy − σz)2 + (σx − σz)2]}1/2 Mises equivalent shear
stress; where σx, σy, and σz represent the principal directions of stress.

Six parameters are required to define the yield surface of the mod-
ified DPC model: β, d, pa, R, pb and α and two elastic parameters,
Young's modulus E and Poisson's ratio ν, are required for describing
the elastic behaviour of powders. In order to identify these parame-
ters, we use experimental tests with instrumented die, shear cell
and diametrical crushing.

The powder is characterized by mechanical properties (d, β, E)
which evolve with the relative density of the powder, a constant

Table 1
Properties of MCC Vivapur® from J. Rettenmaier and Sohn.

Powder Mean particle size True density Bulk density

MCC Vivapur 102 90 mm 1.59 ± 0.002 g/cm3 0.31 ± 0.02 g/cm3

Fig. 1. Scanning electron microscopy image of powder MCC (Vivapur® 102).

Fig. 2. Drucker–Prager/Cap model presented in the (p,q) plane.



Poisson's ratio and an evolution of the hardening function pb with vol-
umetric plastic strain during compression.

For a cylindrical and homogeneous compact (state of the powder
bed during compression in a cylindrical die well lubricated for in-
stance), the hydrostatic pressure stress is expressed as:

p ¼ 1=3 σ z þ 2σ rð Þ

and the Mises equivalent stress is expressed as:

q ¼ σ z−σ rj j

where σz and σr are the axial and radial stresses, respectively.

2.3. Material parameter identification for the DPC model

2.3.1. Cohesion and internal friction angle
Cohesion and internal friction angle have been characterized by

measurement of tensile strength by axial and diametrical crushing
under the hypothesis that the behaviour of the tensile strength is de-
scribed by Drucker–Prager model (linearity between applied hydro-
static pressure and maximal shear).

The diametrical crushing load was measured with the Erweka®
TBH 30 apparatus (Fig. 3a). The axial crushing load was measured
by an Instron® press (Fig. 3b). These tests were performed on tablets
of MCC Vivapur 102 prepared with a cylindrical die with section of
1 cm2.

In order to use these tests with the DPC model, we have to write
them in the p-q plane.

For diametral test, the coordinates of the point A of the failure line
(Fig. 4) are:

p ¼ 2σD=3 and q ¼ 13ð Þ1=2σD ð2Þ

where σD = 2F/πDt is the tensile strength, F is applied load, t thick-
ness of the tablet, D diameter of the tablet. In diametral crushing
test, the principal directions of stress are σx = −σD and σy = 3σD.
For more details, an analysis of the diametral test is published by
Procopio et al. [17] and for more theoretical study [18,19].

For uniaxial test, the coordinates of the point B of the failure line
(Fig. 4) are:

p ¼ σ z=3 and q ¼ σ z ð3Þ

where σz is the axial failure stress, and principal directions of stress
σx = σy = 0.

Fig. 4 introduces a graph locating axial and diametral tests in DPC
model.

We note in Fig. 4 that both parameters d and β can be absolutely
identified from diametral and uniaxial tests. Indeed, we can determine
both points A and B corresponding respectively to tensile strength and
axial failure stress. For every state of density, we have a unique failure
line which passes by both points A and B. Thus, the cohesion d and the
angle of internal friction β will be identified.

2.3.2. Cap shape parameter R and hardening function pb
The position of the cap shape is determined by the cap shape pa-

rameter R and hydrostatic compression yield stress (hardening func-
tion) pb. The parameter R is the eccentricity of the ellipse, which
defines the cap. In Fig. 5, the point B(p,q) corresponds to the end of
compression. This point is on the surface Fc and proves the following
equation [20,21]:

p−pað Þ2 þ Rq= 1þ η−η= cos βð Þð Þ2
h i1=2

–R dþ pa tan βð Þ ¼ 0 ð4Þ

where η is a small number (typically 0.01–0.05) used to define a
smooth transition surface between the shear failure surface Fs and

Fig. 3. (a) Diametrical crushing with the Erweka® TBH 30 apparatus; (b) Axial crushing
test with Instron® Press.

Fig. 4. Axial and diametral tests in Drucker–Prager Cap model.



the cap Fc. To simplify the calculations, we took 1 + η − η/cos β ≈ 1.
The equation of Fc becomes:

p−pað Þ2 þ Rqð Þ2−R2 dþ pa tan βð Þ2 ¼ 0 ð5Þ

where pa is the centre of the ellipse (see Fig. 2). The pressure pa is de-
termined by:

pa ¼ pb−Rdð Þ= 1þ R tan βð Þ: ð6Þ

First, we identify both parameters R and pa. In addition to Eq. (5),
it is necessary to introduce a second equation that will be deduced as
follows.

Considering the associated flow rule in the cap region Fc, the incre-
ment vector of inelastic strain dεin is normal to the cap Fc. The strain
increment vector dεin can be decomposed in a volumetric component
dεp = dεvol and a deviatoric component dεq:

dεp ¼ dεvol ¼ 2dεr þ dεz dεq ¼ 2=3ð Þ dεz−dεrð Þ ð7Þ

where dεr is the radial strain increment and dεz is the axial strain
increment.

By neglecting the radial strain to the strain deformation in die
compaction, we can write:

dεp=dεq ¼ 2=3: ð8Þ

Eq. (8) shows that the slope of the normal to the cap Fc in the point
B(p,q) is equal to 2/3. Therefore, the slope of the tangent to the cap on
B is equal to −3/2, thus:

dq=dp ¼ − p−pað Þ= R2q
! "

¼ −3=2: ð9Þ

Combining Eqs. (5) and (9), we obtain the following polynomial:

2 tan2 βð Þ= 3qð Þ
h i

pa
2 þ 4d tan βð Þ= 3qð Þ þ 1½ &pa þ 2d2

! "
= 3qð Þ− 2=3ð Þq−p

h i
¼ 0:

ð10Þ

Solving Eq. (10) determines the parameter pa. The eccentricity R is
deduced from Eq. (9) and consequently the hardening function pp is
calculated from Eq. (6).

It is also possible to determine the parameters R and pb through
measurements from a triaxial compression test commonly used in
metal powders.

2.3.3. Elastic parameters (Poisson's ratio and Young's modulus)

2.3.3.1. Poisson's ratio ν. The die is supposed to be rigid and conse-
quently the radial strain is null. Hooke's law states that:

σ r−v σ zþσ r
# $

¼ 0

where ν is the Poisson's ratio.
We measured the transfer ratio (ratio of the radial stress to the

axial stress) of MCC Avicel PH102 for different temperatures (from
elastic range to plastic deformation) [3]. The compaction was made
in a cylindrical die of 11.28 mm in diameter and at ambient temper-
ature (T = 20 °C), with an aspect ratio equal to 0.22 (H = 2.5 mm,
D = 11.28 mm) that gave a transfer ratio α approximately constant

Fig. 5. Decomposition of the strain increment vector.

Fig. 6. Axial crushing test.

Fig. 7. Two cycles loading–unloading by compression of MCC Vivapur 102 tablet.

Fig. 8. Strengths of MCC Vivapur 102 tablets: (a) diametral tensile strength σD; (b) axial
failure stress σa.



in the range 0.4–0.45, which is similar to the values given in the liter-
ature [10,24]. So, if we write:

σ r ¼ ασ z

and with the Hooke's law [22,23]:

ασ z−v σ z þ ασ zð Þ ¼ 0

then;α= 1þ αð Þ ¼ v:

It follows that, during the loading phase, the evolution of the ratio
α/(1 + α) varies slightly from 0.29 in the elastic step to the value
0.31 for the plastic behaviour. In the following, we assumed the
value 0.29 for the elastic Poisson's ratio and the value 0.31 for the
plastic Poisson's ratio. This last value reaches 0.5 for metallic powders
at full density.

2.3.3.2. Young's modulus. The axial compression (without die) is used to
estimate the Young's modulus E (Fig. 3b). We use the macroscopic re-
sponse of tablet that is given by the stress–strain curve. A cylindrical
tablet of MCC Vivapur 102 is placed between two punches (Fig. 6).
The upper and lower punches were lubricated with a magnesium stea-
rate to reduce the role of friction that leads generally to a non-uniform
stress state. Tablets was prepared with a cylindrical die (Height =
90 mm) and (Section = l cm2), with respect to the condition Height/
diameter > 2. These tablets were made by application of a force be-
tween 1 and 11 kN on a powder bed of 2.5 g of MCC Vivapur 102 pow-
der. These forces correspond to axial stresses between 10 and 110 MPa.
For reproducibility, two cycles loading–unloading were realized for
every test. For each force level (corresponding to a given relative
density), we evaluate the Young's modulus E by:

σ z ¼ Eεz ð12Þ

where σz is the applied stress and εz is the axial strain of tablet.

Young's modulus E is the slope of the curve of the applied stress–
strain. We chose to make the Young's modulus equal to the slope of
the linear portion where curves of load and unload coincide (portion
surrounded in Fig. 7). The axial strain is equal to d/Hwhere d is the dis-
placement of the upper punch and H is the initial height of the com-
pact. The elasticity of the frame was measured and was taken into
account in the calculation of the strain of the compact. The obtained
Young's modulus is a macroscopic response from the real behaviour
of the compact.

2.3.4. Powder-die wall friction
During compaction, the powder friction at the die wall induces

non-uniform axial stress and produces density gradients within the
compact. The friction effect could be quantified by the wall friction co-
efficient during compaction. The friction coefficient was determined
by an indirect method based on Janssen–Walker theory [25]. This ap-
proach was applied by Michrafy et al. [2] to three pharmaceutical

Fig. 9. Cohesion (a) and friction angle (b) of MCC Vivapur 102 estimated by axial and
diametral tests with Drucker–Prager Cap model (fitted to zero porosity).

Fig. 10. (a) Cap eccentricity parameter R; (b) hydrostatic compression yield stress pb.

Fig. 11. Young's modulus E plotted as function of relative density.



powders, and recently by Han et al. [14]. The friction coefficient μwas
calculated as:

μ ¼ ln σ low=σupp

! "
= −4αH=Dð Þ ð13Þ

where D and H are the diameter of the die and the height of the pow-
der in the die respectively. σupp represents the upper punch stress,
σlow the lower punch stress and α the radial–axial transfer ratio.

3. Results

3.1. Cohesion and angle of internal friction

We used diametral and uniaxial compression tests to identify the
cohesion and the internal friction. The obtained results are presented
in Fig. 8; the denser tablet has a higher strength. The evolutions of co-
hesion and friction angle are shown in Fig. 9. These results are similar
to results obtained by Han et al. [14] for MCC Avicel PH101 having
similar properties (mean particle size and true density) as MCC
Vivapur 102. The results of the friction angle are rare and sometimes
contradictory in literature. Stanley et al. [26] estimated the angle of
internal friction of titanium dioxide using a shear cell. His results
show that with increasing pressure, friction angle decreases.

Nevertheless, another result of Sinka et al. [27] shows rather a
growth of the angle of internal friction and an exponential evolution
of cohesion. However, our results are similar to those obtained by
Han et al. [14] for Avicel PH101. Recently, Diarra et al. [28] obtained
results comparable to ours for a cosmetic powder.

3.2. Parameters for defining cap surface

The parameters to define the cap surface are the eccentricity R and
the hardening function pb. These parameters are determined from the
stress strain curve during compression of the powder and the resolu-
tion of Eq. (10) introduced before. The hardening behaviour in the

Fig. 12. Friction coefficient μ plotted as function of relative density.

Fig. 13. Finite element model of die compaction using flat-face punches.

Fig. 14. Finite element model of die compaction using concave face punches R20.

Fig. 15. Finite element model of die compaction using concave face punches R10.



model and the variation of the relative density are defined in terms of
the volumetric plastic strain:

εpv ¼ ln ρ=ρ0ð Þ ð14Þ

where ρ is the current relative density, and ρ0 is the initial relative
density on filling of die. The eccentricity R is approximately constant
(little variation between 0.557 and 0.613) (Fig. 10a). Fig. 10b shows
an increasing of the compression yield stress pb with the volumetric
plastic strain. The trends are comparable with those published in
the literature. Recently, Diarra et al. found similar trend of R and pb
[28]. Han et al. found the same trend for pb, but the eccentricity R in-
creases with relative density [14].

3.3. Young's modulus

Fig. 11 shows the evolution of Young'smodulus E obtained by uniax-
ial compression plotted as function of relative density. There is a grow-
ing trend of Young'smoduluswith densification of tablets. These results
are similar to results obtained by Han et al. [14] for MCC Avicel PH101,
for low stresses (b105 MPa).

3.4. Powder-die wall friction

The friction coefficient was determined using the approach de-
scribed before.

The result is presented in Fig. 12 for MCC Vivapur 102 (unlubricated
powder). This result is comparable to those found in the literature

Fig. 16. Density distribution of powder compacted by flat-face punches: (a) at maximum compaction; (b) after decompression.

Fig. 17. Density distribution of powder compacted by concave-face R20 punches: (a) at maximum compaction; (b) after decompression.



[2,9,14,27]. As shown in Fig. 12, the friction coefficient decreases in the
first stage of densification (relative density b 0.55), and tends towards
an asymptotic value approximately equal to 0.4. As a comparison,
Sinka et al. found a value around 0.5 formicrocrystalline cellulosewith-
out lubrication [27]. Han et al. found a value around 0.21 forMCC Avicel
PH101 [14]. For the simulation, a mean constant value of 0.4 was taken.

3.5. Finite element simulation

The commercial software Abaqus® (Simulia) was used to simulate
the uniaxial single-ended die compaction process of MCC Vivapur®
powder. In this simulation, we used the visual Fortran compiler to

implement subroutine. The user subroutine (USDFLD) enabled to up-
date the elastic parameters and the parameters of the failure curves
when the relative density changed. The powder was modelled as a
deformable continuum, while the punches and die were modelled
as analytical rigid bodies without any deformation. The wall friction
effect was considered by adopting a Coulombic boundary condition
on the interfaces powder/wall and powder/punch. A constant friction
coefficient equal to 0.4 was taken.

The numerical simulations correspond to three different geometries.
A first case with flat-face punches and two concave face punches scored
R10 and R20 having a certain curvature. The curvatures of punches R10
and R20 are arcs of circles with radius 10 mm and 20 mm respectively.

Fig. 18. Density distribution of powder compacted by concave-face R10 punches: (a) at maximum compaction; (b) after decompression.

Fig. 19. Stress distribution of powders compacted by flat-face punches: (a) after decompression; (b) during ejection.



Due to the axial symmetry, half of the powder bedwasmeshedwith el-
ements of type “CAX4R” four-node axisymmetric elements as plotted in
Fig. 13 for flat-face punches, Figs. 14 and 15 for concave face punches.

One of the ideas that we want to investigate is to understand how
the applied load, on the flat and curved punches, will be transmitted
to the powder during the compaction. For the comparison of the
effect of the three shapes on the density distribution, the same dis-
placement of 7 mm was assumed in the simulation. At the end of
compaction, the height of the flat tablet is 3 mm, which corresponds
to 0.8 of the relative density.

The model was validated, by observing a good agreement between
finite element prediction and experimental measurement of loading
and unloading curves, and by a comparison between predicted density
distribution and experimental axial density presented in [10].

In the three cases, numerical simulation produces a gradient of
density distribution throughout the height of the tablet. This hetero-
geneity of the density distribution is principally owed to the friction
imposed between tools and powder. So, the load of compression im-
posed by the upper punch is not completely transmitted within the
tablet. These results are similar to those obtained by Aydin et al. [20]
andMichrafy et al. [21] in sensewhere the upper edges are the densest

and the lower edges are the least dense. Also, similar results are ob-
tained by Han et al. [14] for MCC powder and recently by Diarra
et al. [28] for cosmetic powder. The friction prevents the powder
from sliding along the interfaces of punches and die. As a result, very
dense regions are developed on the upper edges of the tablet. During
decompression, we can see an elastic relaxation and a decrease of rel-
ative density (Fig. 16b).

Figs. 17 and 18 show the density distribution at maximum com-
paction using flat-face punches, the upper edges are the densest in
the case of concave-face punches. But, we have a less dense core
near to the symmetry axis. This result is qualitatively similar to
X-ray tomography measurements obtained by Sinka et al. [27]. We
also note that with decreasing the punch depth, the least dense zone
at the lower edges increases. Furthermore, the important densification
in the upper edges is owed to the maximum values of axial stress. The
upper punch and the die are subjected on the upper edges to repeated
stresses, which lead to a localized attrition or to shipping of punch
coating, and decrease their shelf life. This shelf life is strongly reduced
by the powder stick on the punch head.

For flat-face punches, the stress distributions after decompression
and during ejection are illustrated in Fig. 19. The Von Mises stress dis-
tribution introduces a contour of maximum shearing in about 45°. If
the powder has a tendency to capping, it is in these areas where
the crack initiation is possible. We can see in Fig. 20 a tablet of lac-
tose with capping at approximately 45°. For concave face punches
(Figs. 21 and 22), we see that the maximum values of Von Mises
stresses are in the upper edges of the tablet. On the contrary, the min-
imal values are close of symmetry axis. We note that there is an effect
of the punch form on the stress distribution in the tablet. Indeed, as
the punch depth increases, Von Mises stress increases. The stress dis-
tribution changes during ejection where a part of the tablet is free to
dilate and a part is compelled by the die wall. This situation could fa-
cilitate cracks propagation and capping after ejection.

The obtained results in this study are in general agreement with
the results of [13,29]. Indeed, whether for lactose powder or cellulose
powder, the DPC model predicts a shear band at 45° indicating a po-
tential capping (as a conical shape) in the middle of the compact. This
explains two things: (i) the presented simulations in various works

Fig. 20. Capping of a tablet of lactose after ejection.

Fig. 21. Stress distribution of powders compacted by concave-face punches R20: (a) after decompression; (b) during ejection.



(including ours) cannot differentiate a plastic powder (cellulose)
from fragmentary one (lactose), (ii) for some powders such as calcium
carbonate CaCO3, more localized bands may occur (Fig. 23) and cannot
be predicted by these simulations. Significant progress in improving
these predictions should be developed.

4. Conclusions

The simulation of the compaction powder process allowed to re-
produce the density and the stress distribution into the tablet and to
calculate maximum efforts during compaction process. The obtained
results show heterogeneity of the density distribution and the stresses
in the tablet. Density distribution in the tablet is a result of the stress
transmission that depends on the internal friction, aswell as boundary
conditions, contact powder/tools and lubrication. The heterogeneity
of the density distribution has effects on mechanical resistance of
the tablet and on its use properties. Indeed, the less dense parts are

subjected to damaging during manipulations, transport, or stocking
and can have fast dissolution also. Moreover, this heterogeneity con-
tinues developing during the decompression and the ejection phases.
During decompression, the tablet could be subjected to an elastic
relaxation which would lead to its capping. The tablet is subjected to
stresses in tension, which can separate interparticle surfaces. More-
over, in all cases, obtained results show very dense regionswith strong
shear stresses on the upper edgeswhere the tabletmayhave a tendency
to capping or crack initiation during decompression and ejection.

There is also an effect of the punch form on the density and stress
distributions.

A powder that behaves well with a flat-face punches, may lead to
non-compliant tablet with other shape of punches. However, these
simulations are insufficient to predict the capping phenomenon. De-
velopment efforts are required to improve their predictions.
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