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Abstract

The goal of this study is to describe accurately how the directional information given by support inclinations affects the ant
Lasius niger motion in terms of a behavioral decision. To this end, we have tracked the spontaneous motion of 345 ants
walking on a 0.560.5 m plane canvas, which was tilted with 5 various inclinations by (0,p=9,p=6,p=4,p=3) rad (w845000
data points). At the population scale, support inclination favors dispersal along uphill and downhill directions. An ant’s
decision making process is modeled using a version of the Boltzmann Walker model, which describes an ant’s random walk
as a series of straight segments separated by reorientation events, and was extended to take directional influence into
account. From the data segmented accordingly (w73000 segments), this extension allows us to test separately how average
speed, segments lengths and reorientation decisions are affected by support inclination and current walking direction of
the ant. We found that support inclination had a major effect on average speed, which appeared approximately three times
slower on the p=3 incline. However, we found no effect of the walking direction on speed. Contrastingly, we found that ants
tend to walk longer in the same direction when they move uphill or downhill, and also that they preferentially adopt new
uphill or downhill headings at turning points. We conclude that ants continuously adapt their decision making about where
to go, and how long to persist in the same direction, depending on how they are aligned with the line of maximum declivity
gradient. Hence, their behavioral decision process appears to combine klinokinesis with geomenotaxis. The extended
Boltzmann Walker model parameterized by these effects gives a fair account of the directional dispersal of ants on inclines.
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Introduction

The goal of the present study is to describe accurately the effect

of support inclination on the ants Lasius niger’s motion in terms of

their behavioral decisions, namely how the directional information

given by the graviception continuously affects their decision

process about where to go. To address this question, we have

gathered high-quality movement data by tracking the spontaneous

motion of 345 ants walking on a 0.560.5 m plane canvas, which

was tilted with various inclinations c by (0,p=9,p=6,p=4,p=3) rad.

This study fits in a series of works devoted to the modeling of

collective building processes in social insects [1,2]. Such processes

require that individuals (ants, termites) transport tiny loads of

material from one place to another. In such a description, an

individual picks up a load of material at some place, walks for a

while, and ends up dropping its load some distance away from the

picking site. Following the stigmergy principles defined by Grassé

in the context of nest building in termites [3], the regulation of the

final structure is achieved through amplification mechanisms [4,5].

For instance, in corpse aggregation [1], ants pick and carry corpses

around and are more prone to drop their load in places where

many corpses were dropped before, so that the more corpses there

are at some place, the more additional corpses will be dropped

there. In the end, this amplification process leads to the formation

of corpse aggregates. More generally, the building of social insect

nests, such as ants and termites, emerge from the accumulation of

numerous individual transports. Hence, a full description of the

individual transports requires the identification of the local

decision of picking/dropping a load of material, as well as a

detailed description of the paths taken by individuals.

A methodology for modeling this kind of processes has been

thoroughly reviewed in a previous article [6], especially for the

identification of the behavioral rules governing the individual

dropping/picking rates depending on the local conditions. In these

studies, building behavior happened on the two-dimensional

plane, and ants’ motion has so far been modeled using the classical
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model of diffusion. Diffusion refers to the dynamics of the density

of ants as a function of location and time, so it is a macroscopic

description of what happens at the population scale. At the

individual scale, various random walk models have been proposed in

biology to describe the movements of animals [7,8]. For instance,

in an experiment reported by [9], Lasius niger ants distributed their

search efforts over all parts of the experimental area, in the

absence of food. Hence, on the level ground and in a pure

exploratory context, Lasius niger ants’ motion is likely to be well

described using a random walk. Most terrestrial ants display search

behavior based on some kind of random walk, with significant

inter-specific differences likely linked to functional concerns with

food spotting efficiency [10]. Searching behavior is also known to

be affected by internal and/or external factors, from locomotory

patterns to external guidelines [11], which can have large scale

consequences through colonial amplification in the presence of

food [12]. Random walk models can be seen as algorithms which

describe the decision making process of a given animal all along its

path and produce individual trajectories. Since the term random

walk refers to different models of the decision process, we restate in

the Methods the full details of the version that has been most often

used in ants: the Boltzmann Walker model. In this description, the

path of an animal is approximated in a series of straight moves of

various lengths, separated by turning angles. This stochastic model

describes how long an animal will move straight ahead, and the

choice of the new direction it takes when turning. In every study

on a horizontal plane, its parameters measured at the individual

scale were shown to yield predictions compatible with typical

measures of the diffusive behavior of ants (esp. the diffusion

coefficient) [1,6,13–17].

Now, motivated by the need to progress towards an explanation

of 3-dimensional structure construction (termites mounds, ants

nests), we need to consider the major difference between motion

on a horizontal plane and motion on a tilted surface developing in

3 dimensions, that is, the local inclination of the surface. In the

building phase, the tilted and curved surfaces of the structure in

progress are expected to modify the ants moving decisions and

might thus have in turn an effect on the nest architecture itself

[18]. If ants react to support inclination by preferentially adopting

some paths, the diffusive model would no longer hold, the whole

process of material displacement would be affected, and may

produce in turn a different final structure. For instance, Robinson

et al. found a slope-based decision in Pheidole ambigua dropping

their excavated load of soil near the nest entrance, driven by

changes of direction preferentially downhill than to uphill. As a

consequence, dropping sites are more often located where the

slope is the least steeply uphill from the nest entrance, which

affects in turn the shape of the ring-shaped pile around the nest

entrance [19].

Numerous studies in insects show that the inclination of the

support has indeed a strong effect on individual locomotion

behavior. For instance, the speed of adult beetles decreased with

an increase in the slope of the substrate as a reaction to the

increased gravitational force vector opposing uphill movement

[20]. In ants, Weihmann & Blickhan advocate that proprioceptive

sensing mechanisms, such as graviception, are in regular demand

for ants’ navigation inside the nest, since sensory stimuli used for

foraging outside are lacking [21] and the pheromone-based

navigation may be of poor directionality since the inner walls

are only passively coated by cuticles’ hydrocarbons [22]. In

termites Hospitalitermes rufus, H. sharpi, and Macrotermes carbonarius,

Jander et al. [23] have found that the orientation angle between

the slope direction upward or downward and the direction of

walking decreases with increasing slope inclination (geomenotaxis).

They suggest that body weight mediates much, if not all, of the

gravity perception. The studies dealing with ants on inclines

mainly focused on the slope-detection mechanisms, that is how

they detect a slope from a biomechanical point of view [24–26] or

how sensitive this detection is in the context of learning and path

integration, especially in the desert ant Cataglyphis fortis [27]

because path integration along an undulating terrain requires ants

to compute the ground projection of their path with sufficient

accuracy [28]. Wintergest et al. reported that desert ants are able

to discriminate a steeper test slope that differed from the training

slope by 12:5 0 for moderate slopes below 60 0 inclination [27]. In

those previous studies, the effect of the inclination was measured in

set-ups in which the ants were constrained to move along one

dimension, either uphill or downhill. To our knowledge, no

proposition has been made so far of a full 2-dimensional

algorithmic model of the decision-making process in ants moving

on an inclined surface without constraints, thereby allowing

movement in any directions.

The first step of our analysis was to check that the trajectories of

Lasius niger are indeed affected when the support is inclined. The

section Experimental Results report some measures showing this

global effect on the statistics of locations, headings and speeds of

the ants at the population scale.

To understand this global effect in terms of individual decision

processes along the trajectory, we then proceed with the

Boltzmann Walker framework. First, we check that this model is

still relevant in the present context when ants move on the

horizontal plane with no orientation field, and allows the

quantitative correspondence between the individual parameters

estimated from the trajectories and the population dispersal. We

take this level plane condition as the reference case to test for

inclination effects.

Then, we consider how precisely the inclination should affect

the decision process. Organisms orient themselves to the effect of

stimuli (such as heat, light, humidity, gravity etc.) in two ways. One

is by a directed orientation reaction (taxis), in which the direction

of motion of the organism is influenced by the stimulus. The other

method of orientation is an undirected locomotory reaction

(kinesis) in which the average speed or the average rate of turning

of the organism, but not the direction in which it moves, are

dependent on the stimulus [8,29,30]. In the diffusive version, there

is no directional information that would orient the trajectories of

the animals, and the standard BW model takes accordingly for

granted that speed, turning rates and reorientation decisions are

constant parameters over the field (or at least that they are

isotropic since they do not depend on the heading of the animal).

Hence, we propose an extended version of the BW model in which

the three parameters are allowed to depend on the orientation

field or, equivalently, on the heading of the animal with respect to

the global direction given by the inclination. This extended

Boltzmann Walker model is presented in the section Analysis. It

allows us to examine separately the effect of the inclination on the

three parameters. We validate that these effects quantified at an

individual scale yield back population statistics which are

compatible with those observed.

Finally, we discuss how this extended Boltzmann Walker model

can be used in contexts of more natural landscapes with

heterogeneous inclinations.

Results

Data set
For experiments, a 0:5|0:5 m virgin painting canvas was set up

under HD video camera recording (1920|1080 pixels), and tilted

Lasius niger Trajectories on Various Inclines
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with various inclinations c by (0,p=9,p=6,p=4,p=3) rad. Since we

know that ant motion can be greatly affected by temperature

[31,32], the experiments were performed within a climatic room

in order to control precisely the temperature (26 0C) and relative

humidity (50%). For each inclination and each of 3 colonies, 23

ants were collected from their housing container and placed within

a Fluon-coated bowl, with a tuft of cotton soaked with sugar water.

Then, each ant was gently picked up in turn using a small pig hair

paintbrush, and the brush head was lowered to touch the canvas at

the center point, where the ant could spontaneously walk down

from the brush onto the canvas (see Movie S1 illustrating such an

event). Ants could take up to seven minutes to walk down from the

brush, but they usually made it in approximately one minute. This

careful procedure ensured that the ants displayed a spontaneous

behavior and not an escape response. Note that the ant Lasius niger

is known for not displaying active trail-laying behavior in an

exploratory context, and that the passage rate on the canvas

excludes effects from passive pheromone deposition (area marking

by footprint hydrocarbons laid passively by walking ants) [33]. The

ants were then filmed until they exited from the canvas frame.

From the 50 Hz interlaced video recordings, a custom tracking

software extracted the position of the ant at each frame with sub-

millimeter precision (see Movie S2 illustrating a short sequence of

tracking). These tracked points were finally sub-sampled at 25 Hz.

To avoid taking into account the very first moments of ants

experiencing a new surface, we have discarded the early part of the

trajectory up to the time when the ant had walked at least 1 cm

away from its dropping site. To avoid the geometrical bias due to

the square shape of the canvas, we defined the end of a trajectory

as the point where the ant exited the 0.2 m radius circle centered

on the starting position. Overall, we obtained 69 trajectories for

each inclination c, yielding a total of 345 trajectories, representing

845263 data points (Min = 127, Median = 1798, Max = 14434

data points per trajectory).

We believe that this experimental data set benefits from being

well controlled for factors affecting the ants’ motion (temperature,

humidity, stress), and uses high tracking precision to determine

ants’ positions. As we do not claim that the modeling framework

we use below is exhaustive by nature, we made the whole data set

available as supplementary information so as to offer the

community an opportunity to analyze the ants’ trajectories from

a complementary point of view (e.g. with potential field

approaches [34,35], continuous time analysis [36,37]) or further

analytical account of the observed directional persistence due to

support inclinations (e.g. [38]).

Effect of inclination on the time-averaged statistics of
ants’ motion

Examples of ant trajectories on the inclines are illustrated in

Fig. 1A. Typically, for higher inclination c, trajectories are more

and more elongated along the line of maximum declivity gradient

(hereafter, steepest line). The inclination-averaged time-averaged

statistics of headings, shown in Fig. 1B, consider all ants’ headings

estimated every second. They confirm that ants were found more

and more often aligned with the steepest line as the inclination was

higher. A circular test, relevant for bimodal distributions [39,40]

shows that the distributions are significantly different from uniform

even for the smallest inclination (c~0 : P~0:692; c~p=9 :

P~0:013; c~p=6 :P~0:011; c~p=4 : P%10{3; c~p=3 :

P%10{3). Over time, these orientation effects consistently bias the

positions of ants towards locations uphill or downhill and translate

into a change of space occupancy, as the ants spread more in the

direction of the steepest line, namely more vertically than

horizontally. To illustrate this effect, we have used the absolute

values of horizontal versus vertical coordinates of ant positions

averaged over time as proxies (Fig. 1C). The higher values along

the steepest line are an indication that here the ants are found on

average further away from the center along the steepest line than

along the horizontal line, meaning that ants are more dispersed on

the steepest line direction (Two-sample Kolmogorov-Smirnov

testing the homogeneity of the distributions along the steepest line

versus along horizontal line : c~0 : Pw0:05; cw0 : P%10{3).

In a second step, using the noisy tracked positions, we recovered

a representation of the ants’ trajectories compatible with the

Boltzmann Walker description. For this, the time series of detected

locations were converted into a series of straight segments

separated by reorientation events. A full description of this

segmentation procedure is given in the Methods section, and a

typical result is illustrated in Fig. 2. As a result, we obtained for

each ant a on inclination c a series of Na,c segments of various

length La,c,i with headings aa,c,i and (Na,c{1) reorientations

events quantified by the corresponding smallest signed deviations

ha,c,i recovered following:

ha,c,i ~S arccos cos aa,c,iz1 cos aa,c,izsin aa,c,iz1 sin aa,c,i

� �
With S ~sgn arcsin sin aa,c,iz1 cos aa,c,i{cos aa,c,iz1 sin aa,c,i

� �� �
ð1Þ

Overall, we obtained 345 trajectories (69 per inclination value)

containing from 3 to 2246 segments. The numbers of segments per

trajectory for each inclination were (min–median–max) 0 : 11–

228–2246 ; p=9 : 11–243–1816 ; p=6 : 11–110–1334; p=4 : 9–84–

573 and p=3 : 3–70–400. The total numbers of segments for each

inclination were: 0 : 24456 ; p=9 : 23801; p=6 : 11663; p=4 : 7318

and p=3 : 5985, with the total number of segments being 73223.

From these trajectories, we derived individual time-averaged

statistics such as the time needed to reach the border of the outer

circle of radius 0:2 m, and the walked distance and the

corresponding average motion speed within this area. The

inclination was found to have a major effect on the motion speed

of the ants; the steeper the inclination, the slower the ants (Fig. 3A,

H4~170:96, P%10{3). This lower speed consistently induced a

longer time to reach the edge (Fig. 3B, H4~20:59, Pv10{3).

However, we observe that on the highest inclination ants display

straighter trajectories, mostly aligned with the steepest line. As a

consequence, their average trajectory length is approximately half

as short as in the reference case (Fig. 3C, H4~59:81, P%10{3).

Thus far, these time-averaged statistics confirm that inclination

has a major effect on speed, but also that ants adapt locally their

decision making about where to go, and/or how long to persist in

the same direction, depending on how they are aligned with the

steepest line. To give a full account of how the support inclination

affects the ants’ trajectories, we propose a behavioral model which

accounts for this effect at the individual scale, as a stochastic

decision process all along the trajectory. This model is developed

by extending the standard BW model.

Analysis of trajectories using the Extended BW model
The Extended Boltzmann Walker model. The classical

Boltzmann Walker model is summarized in the Methods as a

reference. In short, the BW model describes the behavior of

diffusive walkers with two main components: straight paths

separated by instantaneous reorientations events. In the purely

diffusive version, homogeneous in space and time, and at constant

speed, the memory-less nature of the process entails an exponen-

Lasius niger Trajectories on Various Inclines
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tial distribution of the lengths of the paths, with a characteristic

length l (or a corresponding spatial frequency m, in m{1). The

reorientation events are governed by a probability density function

Pa(a’Da) choosing a new direction a’, which is symmetric around

the incoming direction a, and can be more or less concentrated

around it. For most forms of Pa (e.g. elliptical), this concentration

can be quantified by g, the mean cosine of the orientation

deviation, which indicates the heading persistence (from g~0 for a

complete reorientation process, or null persistence, to g~1 for null

deviations, or complete persistence).

Being memory-less, the stochastic behavior of the Boltzmann

Walker can furthermore be translated with no approximation into

partial differential equations describing the time evolution of the

probability density f (x,a,t) finding the walker at location x, in the

direction a at time t. This yields the well-known Boltzmann

equation (see Methods). When this model is used to describe linear

transport systems in a homogeneous medium, e.g. photons

scattering in a cloud, it is usually taken for granted that speed c,

the mean free path l~ 1
m and phase function Pa(a’Da) are

independent of the incoming direction a. Moreover, external

influences such as gravity (e.g. acting on molecules described as

random walkers when analyzing gas diffusion) would be described

by an additional term to account for forces.

In contrast, the effect of support inclination c on an ant’s

decision making process will be studied by analyzing how those

three parameters are affected by a so that ants are found more

often aligned with the steepest line, depending on inclination c (we

exclude a direct action of gravity, so the inclination effect is purely

mediated by the behavioral decision).

Introducing the full dependencies of these parameters, the

extended version requires:

c:c(c; a), m:m(c; a) and Pa:Pa(a’Da; c; a) ð2Þ

There are three main predictions compatible with the higher

probability of finding ants aligned with the steepest line:

N a – When ants are aligned with the steepest line, they become

slower

N b – When ants are aligned with the steepest line, they increase

their path lengths on average

N c – When ants take new directions, they favor uphill or

downhill directions

The first two predictions are a type of ortho-kinesis and klino-

kinesis respectively, the third being a kind of taxis. Note that we

assumed here that speed fluctuations (among and/or within

individuals) are governed by a process uncorrelated with the

reorientation and persistence decisions, and remain to be studied

separately, if relevant. Hence speed, the mean free path and phase

function are treated in this context as independent parameters.

Accordingly, in the next part, the three predictions will be tested

independently, and for each inclination c separately. For

prediction (a), we will test whether the average speed depends

on the current walking direction a. For predictions (b) and (c), we

will test whether the geometrical properties of the trajectories

(mean segment length, angular deviation between consecutive

segments) also depend on direction a.

Analysis. First, using the Mean Square Displacement, we

checked that L. niger displayed diffusive behavior in the horizontal

condition of the present setup, as expected from previous studies.

Since motion speed can vary among ants, even for the same

inclination, we report it as a function of the number of

reorientation events, which is insensitive to speed variations

(Fig. 4). The observed pattern is clearly consistent with a diffusive

motion at the statistical scale. This is a strong indication that the

BW model is relevant and, importantly, it validates the segmen-

tation procedure which yields the correct measures of the mean

free path and phase function consistent with the observed

dispersion rate.

Then, using the segmented series, we computed for each

inclination the frequency distributions Ha(c) of the ants’ headings

aa,c,i. To examine the influence of the current heading a, we split

the set of segments into 8 heading sectors as, and computed the

corresponding average speed c(c,as), mean free path (average

segment length) l(c,as)~v La,c,i

�� ��wc,as
, and heading persistence

Figure 1. Effect of the support inclination on A — typical trajectories of ants, B — statistics of headings and C — statistics of
positions. Slopes are indicated by labels c, and illustrated by the (arbitrarily) increased length of the vectors on the left, heading uphill. Trajectories
are 8.95, 2.28, 1.86, 2.30 and 0.67 meters long respectively. The statistics of headings, shown in B, compiles all ants’ headings over time estimated
every second. They show that ants are more and more often aligned with the steepest line as the inclination becomes steeper. Over time, this
consistently biases the positions of ants towards locations uphill or downhill (up or down on the graphs A). This bias is summarized in C, using as
proxies the absolute values of horizontal vDX Dw versus vertical vDY Dw coordinates of ant locations averaged over time for each ant (one dot per
ant) for each inclination (red dot: X and Y locations averaged over time and ants, red line: X~Y ). The higher values in Y indicate that the ants are
on average further away from the center along the steepest line (Y axis) than along the horizontal line (X axis), meaning that ants are more dispersed
in the Y direction. Both types of distributions are significantly different from homogeneity even for the smallest incline c~p=9.
doi:10.1371/journal.pone.0076531.g001

Figure 2. Typical example of a segmented trajectory. A portion
of a trajectory is shown in dots (same ant as in Fig. 1A for the null
inclination). The segments resulting from algorithm 1 are shown as red
lines.
doi:10.1371/journal.pone.0076531.g002
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associated to the asymmetry coefficient of the phase function

g(c,as)~vcos ha,c,iwc,as
, where v wc,as

denotes averaging over

sector as and inclination c. The results are shown in Fig. 5.

For the null inclination, the distribution of the headings is flat

(Fig. 5A, c~0), and the distributions of the speed, mean free path

and heading persistence are all isotropic (Fig. 5B,C,D for c~0),

which confirms that the ants are well described by the isotropic

BW model on the horizontal plane. As the inclination increases,

the distributions of the headings are skewed towards directions

aligned with the steepest line (Fig. 5A), in agreement with the

distributions of 1 s-step sampling of headings shown in Fig. 1B.

Using the sector splitting of the parameters, we can now test

each prediction in turn.

Prediction a – When ants are aligned with the steepest

line, they become slower. Regarding the average speed

c(c; as) (Fig. 5B), beyond the global reduction found above

(Fig. 3A), we found no indication that the average speed would be

affected by the current alignment of the ant with the steepest line,

for any support inclination.

Figure 3. Effect of the support inclination on A — the average
motion speed, B — the average residence time and C — the
average trajectory lengths. These quantities are computed over 69
trajectories for each inclination. The inclination has a major impact on
the motion speed, which in turn induces longer residence times.
However, since ants move straighter towards the upper or lower edges
when the inclination is steeper, their total trajectory length within the
disks is lowered.
doi:10.1371/journal.pone.0076531.g003

Figure 4. Mean Square Displacement of ants on the horizontal
plane (c~0). The MSD (m2) is shown as a function of the number of
reorientation events along the trajectory. Points and dotted lines report
the observed values (mean, 95% CI). The square-curve ‘‘ballistic’’ shape
for few events are a trace of the direction persistence of ants, which
disappears after some direction changes, yielding then a linear
dependence of the MSD to the number of reorientation events, a
well-known indication of diffusive behavior. For even larger numbers of
reorientation events, the censoring effect of the domain frontier
becomes dominant. The red line reports the MSD predicted by
simulating the isotropic BW with the parameters estimated from the
segmented trajectories for the null inclination.
doi:10.1371/journal.pone.0076531.g004
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Prediction b – When ants are aligned with the steepest

line, they increase their path lengths on average. We

observe that the mean free path l(c,as) (Fig. 5C), remains the

same magnitude on average for all inclinations. However, there is

a strong indication that the angular distributions of l(c,as) show a

shift from the isotropic shape found for c~0 towards an

anisotropic shape for steeper inclinations, with a skew in favor of

segments aligned with the steepest line. This means that ants

would walk longer when they are aligned with the steepest line

(Figs. 5C and 6). Importantly, when segments are aligned with the

steepest line, the increased length is almost the same either uphill

or downhill, while it remains close to the value found for the null

inclination when the ants are moving horizontally.

Prediction c – When ants take new directions, they favor

uphill or downhill directions. The concentration of direc-

tional deviations, or heading persistence g(l,as) also seem to be

affected by the inclination (Fig. 5D) with ants losing some

persistence as the inclination is steeper. In addition they seem to

be affected very little by the current walking direction as.

However, we found that the very shape of the phase function

was actually affected by the incoming direction a, we therefore

reported the phase function separately for each sector (Fig. 7).

We found a major effect of a such that the shape of the phase

function appeared to depend both on the inclination and the

incoming direction. Obviously, and here again in accordance with

the isotropic BW model, the phase function is the same for every

incoming direction in the case of the null inclination. However it

appears more and more skewed towards uphill and downhill

directions as the inclination increases. Significantly, the phase

functions still display mirror symmetry for pairs of opposite

incoming directions (a, azp), albeit with different shapes when

heading horizontally (right/left) or vertically (up/down). When the

incoming direction is vertical, either up or down, the ants tend to

persist in their direction in the same way as when they walk on the

null inclination. When the incoming direction is horizontal, the

phase function becomes less concentrated to small deviations,

especially for the steeper inclination for which it becomes poorly

persistent: at reorientation events, ants tend to depart directly from

the horizontal line in either uphill or downhill directions, with a

likely preference towards downhill directions. For intermediate

incoming directions, the phase function becomes even more

asymmetric, with a higher concentration when turning towards the

closest vertical heading, especially when it is downhill, and is less

concentrated otherwise.

As a final check that these observed effects of support inclination

on the extended BW model features and parameters are fairly

consistent with the observations at the population scale, we have

generated numerically trajectories using the parameterized model

(see Methods). We report the observed and predicted distributions

of exit headings in Fig. 8. The predictions recover well the general

trends of the ants’ statistics, as they capture both the higher

probability to exit uphill or downhill, and also the downhill exit

preference.

Figure 5. A — Distribution of headings Ha(c), B — corresponding motion speed c(c,as), C — mean free path l(c,as), and D — g(l,as),
the asymmetry coefficient of the phase function. The heading domain has been split into 16 sectors (each centered on the corresponding as).
The upper row shows for inclinations c increasing from left to right the proportion of segments headings falling in each sector, and the lower rows
show the average quantities computed over the corresponding segments sets. Std. err. for B, C, D are in the order twice the thickness of the line.
doi:10.1371/journal.pone.0076531.g005
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Figure 6. Segment length survival functions depending on the incoming direction and support inclination. The orientation domain has
been split in 8 sectors. Segments were partitioned in sectors according to ai , the incoming direction of the ant. Graphs represent the corresponding
survival distributions of the segments’ length. The corresponding phase functions are shown in Fig. 7.
doi:10.1371/journal.pone.0076531.g006
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Overall, this analysis shows that the extended BW model

parameters undergo two kinds of effects as the inclination

increases, and the two predictions (b) and (c) should be considered.

As for the prediction of klino-kinesis (b), ants moving on the

steeper inclination actually appeared to increase their path lengths,

on average, when they are aligned with the steepest line (Fig. 5C).

As for the choice of the new direction at the ends of their free paths

(taxis, c), they also modified their choice when their incoming

direction was horizontal with a marked preference for choosing

new vertical headings. For intermediate incoming directions, ants

favored up or down directions depending on which is closer.

Consistently, they also appeared to maintain more often their

current heading when they were already walking uphill or

downhill.

Discussion

In this study, we have performed a detailed analysis of how L.

niger ants move on an inclined support, examining even at the scale

of their decision making processes. We have first revealed

population level statistics which show indeed that the support

inclination affects the ants’ dispersal, and we propose in the end a

behavioral model of their random walk that embeds the influence

of this inclination on their decision about where to move to, and

for how long: the extended Boltzmann Walker model. The standard

Boltzmann Walker model is a model of reference to describe the

random walk of ants on a horizontal plane. It was extended to

incorporate the different possible effects the support inclination

could have on the decision making of walking ants. The extended

model was parameterized using a high-quality set of data, and the

measured functional dependencies of its parameters on the

inclination show how the latter affects these decisions. At this

Figure 7. Phase function depending on the incoming direction
and support inclination. The orientation domain has been split into
8 sectors. Segments were partitioned in sectors according to ai , the
incoming direction of the ant. Graphs represent the corresponding
distributions of the next direction deviation h. Red arrows are the
average ai in each sector.
doi:10.1371/journal.pone.0076531.g007

Figure 8. Observed (left) and predicted (right) statistics of the
exit heading, for each inclination. The exit headings were
computed for each ant as the direction from the starting point to the
point where they exited the disk of radius 0.2 m. Their distributions are
shown for each inclination (left, N = 69 per c value). The arrow indicates
the direction of the magnetic North (N). Simulations of trajectories were
performed using the sector-based statistics of the phase function and
mean free path (N = 100,000 simulations by inclination, see Methods for
the simulation algorithm). The corresponding predicted exit headings
distributions are shown on the right. The compatibility of the data with
the predictions was tested using the standard Kolmogorov-Smirnov test
for the null hypothesis that the two distributions were drawn from the
same continuous distribution. This null hypothesis is not rejected for
any inclination. The consistency of the data and the predicted
distributions indicates that the impact of the inclination on the ant
motion is comprehensively captured by the induced change in the BW
model features.
doi:10.1371/journal.pone.0076531.g008
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individual level, we found that the directional field given by

support inclination affects ants’ motion decisions on two param-

eters, depending on their incoming direction (or alignment with

the steepest line): the mean distance between turning events (mean

free path) and the choice of the new direction at turning points.

Thus the behavioral decision process appears to combine

klinokinesis with taxis. We also found that the support inclination

had a major impact on the average moving speed of the ants, but

this effect was isotropic and did not depend on the incoming

direction. The model establishes the correspondence between the

individual stochastic motion decisions governing the random walk

process and the prediction of the anisotropic dispersal of the

population (Fig. 8).

The present set-up was designed to isolate the effect of

inclination on the ants’ decision-making, so as to identify and

quantify this effect. To this end, we managed to maintain the

inclination the same all over the field, and keep everything else as

constant as possible. In this homogeneous field, we consistently

assumed that the influence of inclination on motion decisions was

the same everywhere. It is noteworthy in this case that the lower

speed on steeper inclines is more or less compensated for by

straighter trajectories, so that the mean residence time in a definite

area is only mildly affected by inclination. Further theoretical

developments are required to derive the macroscopic equations

corresponding to the extended BW model in the case of such a

homogeneous directional field. Such a derivation of invariant

characteristics (oriented diffusion, residence time, first-return

statistics, statistics of visits…) is however expected to be

challenging, especially considering the asymmetric shape of the

phase functions for intermediate directions (Fig. 7), which

precludes the reciprocity of paths, a standard requirement for

the diffusion approximation. In fact, in the present state, it is likely

that such macroscopic features are to be derived numerically in

most cases.

Moreover, the most interesting biological situations arise

naturally for landscapes of varying inclinations. Since the

characteristic shape of these variations (e.g. spatial frequencies

spectrum) will probably be case-specific (dispersal within the nest,

foraging in the external environment around the nest entrance,

migration, etc), the functional consequences of the reaction to

support inclination is expected to be highly context-dependent. In

the context of building behavior, the next step will be to establish

how the distributions of visits inside a given structure is affected by

the preference for alignment with the steepest line (versus a

uniform distribution predicted by pure diffusion).

The extended Boltzmann Walker model is a time-continuous

description of the motion built upon the assumption of a memory-

less process, so decision-making is considered instantaneous at the

model time-scale, and only depends at any time on the

information perceived at position ~xx at that time. So it remains

fully appropriate in the context of a varying inclination, as the

extension (2) simply translates to:

c:c(c(~xx); a), m:m(c(~xx); a) and Pa:Pa(aD’a; c(~xx); a) ð3Þ

The predictions about how the extended BW model would

shape the distribution of ants in a given landscape call for

dedicated numerical studies, using Monte-Carlo simulations in

complex geometries. There is no additional need for simulating

the choice of a new direction since it remains a purely local

decision at turning points. However, it would require specific

algorithms (such as a null-collision algorithms [41]) to cope

with heterogeneous distributions of the mean free path, and

computation with no approximation of the locations where the

individual makes heading turns. Such an algorithm will need to be

further adapted to also take into account the effect of inclination

on the average motion speed.

As for the speed variance (either for one individual across time,

or among individuals), we have indicated that we focused on the

geometrical aspects of the trajectories, considering the speed

process as independent. As a matter of fact, this assumption is well

supported a posteriori by the result that we did not find an effect of

the heading on the average speed of ants, that is, the speed process

does not seem to be affected by directional information. As it is

known that speed can vary with temperature, replicating the same

study with higher and lower temperatures would constitute a good

test for the independence between the process governing speed,

and the two processes governing trajectory geometry, which we

have assumed here.

Considering macroscopic statistics, using average speed and

neglecting speed distribution has proven to be a fair approxima-

tion in previous studies [1,6,13–17]. Accordingly, we suggest using

average speed as a first order approximation, as long as typical

speed variations are the same scale as the mean free path. Under

this condition, speed fluctuations would impact only mildly on

measures averaged over large time scales. If this approximation is

to be rejected based on experimental grounds (e.g. caste-

dependent average speed, or daily-scale variations), it might

become necessary to investigate more closely the impact of speed

distribution on average statistics, depending on the biological

question at hand.

Open questions
The isotropic distribution of average speed appears as a

surprising result since it would be expected, for instance, that ants

progressing uphill should be slower than when moving downhill.

For instance, Seidl et al. found lower speeds on steeper inclines in

desert ants moving uphill, but indicate that desert ants progressing

downhill displayed high velocities [42]. This is in contrast with our

finding with Lasius niger in the present set-up where the velocity

showed no dependency to the walking direction, even for the

steepest inclination. However, Wohlgemuth et al. report, also in

the desert ant, that speed was reduced in both their uphill and

downhill channels (+540) compared to their flat channel, thereby

excluding metabolic cost as a reliable means to gauge walked

distance on various inclines [28]. In an attempt to determine the

effects of inclination on the gross metabolic cost of locomotion in

leaf-cutter ants, Holt & Askew report that ants travelled the fastest

on a horizontal plane, and indeed moderated their speed with the

inclination, both on the incline and the decline. They suggest that

ants adapt their behavior so as to keep their metabolic rate

constant despite changing mechanical demands [43]. The issue of

energy demand and climbing behavior in small animals was raised

by Full & Tullis [44], who pointed out that this demand should be

minimal. Consistently, Lipp et al. refute an energy-based

mechanism for slope angle measurements in small ants such as

Camponotus because the relative cost of vertical locomotion

should be smaller in smaller animals, and become negligible with

regards to the relatively larger cost of basic metabolism required

for just walking [45]. These contrasting findings in different species

may of course stem from the species per se (e.g. the inclination has

no effect on speed in the wood ants [42]), but also from the

different behavioral tasks the ants had to face and the different

experimental situations in which those measures were carried out.

For instance, in the context of following foraging trails on inclines,

leaf-cutter ants show a behavioral plasticity in selecting their load
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size, likely because the inclination had a significant effect on their

walking speed [46].

Regarding the statistics of exit heading direction (Fig. 8), we

observed a visible excess in favor of the lower right part of the

canvas, which is mostly present for intermediate support

inclinations (and disappears for the steepest one, c~p=3). We

have no explanation for this bias so far, and it calls for further

examination and testing. For instance, eusocial insects are sensitive

to the magnetic field [47]. Sandoval et al. have shown recently that

Solenopsis ant orientations are affected by changes in the magnetic

field direction in a context of exploration (on the level plane) [48],

and Atta colombica were also shown to use magnetic information for

their path integration [49]. We have indicated the direction of the

magnetic North on figure 8, but the skew observed in the exit

headings does not align with it, and we are not aware of studies

about magneto-reception in Lasius niger.

More generally, the coarseness of the substrate on which ants

are moving should also be considered, as it can impact greatly on

both speed and the sinuosity of trajectories [17]. In addition it is

likely that ants’ motion behavior should be affected by physical

parameters such as temperature, wind or even air humidity. In

principle, the extended BW model would allow the incorporation

of any combination of these effects within the same framework,

and the experimental task would consist of revealing how the three

extended parameters are affected by each kind of information. In

the spirit of Weitz et al. [6], we advocate that this framework is

then a good starting point to design the relevant experimental

setups. For instance, ants might also adapt their paths according to

the local curvature of the support, in addition to its inclination.

Since curvature is indeed a spatial variation of inclination, both

effects can be difficult to disentangle. The extended BW

framework could help in designing the most efficient experimental

measures that should be taken to discriminate between both

effects.

Finally, is this influence of ground inclination relevant for

contexts other than ants’ motion behavior? Understanding how

animal movements are explicitly driven by environmental factors

is a challenge for further advances in dispersal ecology [50–52].

One major constituent of landscapes are spatial variations in

declivities and hills. The extended Bolztmann Walker framework and

the methodology presented above for using it in quantification and

prediction of animal movements might be of help in such studies.

Methods

Ants collection and housing
Three colonies of ants Lasius niger were collected along the south

part of the river Garonne, about 30 km south of Toulouse, France,

on a private property with the permission of the owner. Lasius niger

is not a protected nor endangered species. Our experiments

complied with the laws and ethical recommendations currently in

effect in France where the experiments were performed. Colonies

were housed in plastic containers, and fed ad libitum with sugar

water and Bhatkar preparation [53]. The experiments took place

in a facility provided by the Ecole des Mines, Albi, France (E

2010’50:09’’, N 43055’20:06’’). The upper end of the steepest line

of the canvas was heading ENE (Grid azimuth = 730, the magnetic

North is indicated on figure 8, the magnetic declination of the site

is approximately 0:20). The timetable of the experiments is given in

Table 1.

Computer tracking procedure
The tracking program was written from scratch using the Core

Image infrastructure of Mac OSX (Objective-C+GPU-based

Image manipulation), starting from the CIColorTracking example

([54]). Each movie frame was successively applied with the filters

CIGammaAdjust (with inputPower 0.3), CICrop (with inputRec-

tangle set as a 40640 pixels square centered around the latest

detected location), CIColorControls (with inputContrast as 3.5),

and the CIColorTracking ad hoc filter MaskFromColor (with

inputThreshold 0.27083 and inputColor defined by the user

clicking on the background color in the first frame). This yielded a

binary representation of the 40640 pixels area containing ON-

pixels corresponding to the ant and noisy speckle from

background, from which the centroid of the largest spot was

computed, using a partition algorithm where two adjacent ON-

pixels were considered to belong to the same spot. A short

recording of a typical session is given as supplementary Movie S2.

Data availability
The whole set of data is made available as supplementary

information. The data are given as supplemental data files (zip

archives) : c~0 : Dataset S1; c~p=9 : Dataset S2 ; c~p=6 :

Dataset S3 ; c~p=4 : Dataset S4 ; c~p=3 : Dataset S5.

Each archive file contains a series of 69 files, one file per ant.

Each file contains the data of a trajectory in a tab-delimited text

format with 9 columns, corresponding in order to the inclination

index, the colony index, the temperature, the humidity, the

recording date, the individual index, the rank of the video frame,

the corresponding time in second, and the x and y coordinates in

meters. Each file starts with a header line labeling this information.

Estimates of heading distribution from raw data
For the distribution of headings over the time shown in Fig. 1,

each trajectory was split into a sequence of 1-s periods,

corresponding each from about 20 to 50 data points, depending

on the speed. The local orientation of the trajectory was computed

as the orientation of the axis corresponding to the first principal

component of the cloud of points, using the R function princomp

Table 1. Experiments Timetable.

Inclination Colony
Day
(YYYY-MM-DD)

Hour (HH:MM–
HH:MM)

0 D 2012-05-29 14:15–15:00

p=9 D 2012-05-29 15:25–16:20

p=6 D 2012-05-29 16:25–17:30

0 C 2012-05-31 15:45–16:40

p=6 C 2012-05-31 17:15–18:05

p=4 C 2012-06-01 11:20–12:35

p=3 C 2012-06-01 16:55–18:45

0 C 2012-06-01 19:45–20:50

p=9 C 2012-06-04 11:30–12:40

p=9 C 2012-06-04 14:10–14:40

0 A 2012-06-15 14:00–15:45

p=9 A 2012-06-15 16:10–17:30

p=4 A 2012-06-15 17:50–18:40

p=3 A 2012-06-18 11:30–12:50

p=6 A 2012-06-18 14:50–15:30

p=3 D 2012-06-18 16:00–17:20

p=4 D 2012-06-18 17:40–18:50

doi:10.1371/journal.pone.0076531.t001
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[55]. The circular histogram of the values were finally computed

using the function rose.diag of the R package circular [56].

Segmenting trajectories into sequences of straight free
paths

We will detail in this section the algorithm we used to split the

ants’ trajectories into series of consecutive segments. Our

algorithm is sourced from the field of time series data mining.

This matter has received much attention over the last decade in

relation with the increase of computer power and the explosion of

data time series in a wide range of fields, from Life Sciences [57] to

Telecom [58] and Image Processing [59]. The so-called piecewise

linear approximation of a temporal signal is widely used to support

clustering [60], classification and context recognition [58,61].

Three major segmentation approaches can be distinguished: the

sliding window, the top-down and the bottom-up algorithms. An

extensive comparison between these approaches is given by Keogh

et al [62]. The first is the most intuitive approach but gives the

worst result [63]. Both latter ones operate on the whole set of

points and the bottom-up approach is clearly the most reliable

one.

The piecewise linear approximation in our context addresses

the following problem: given a time series of locations in the plane,

finding the best partitioning in linear segments. Such a process will

thus aggregate consecutive points that belong to the same segment

into one representation of this segment even if those points are not

perfectly aligned. As an approximation, it can give a compact

representation of the data, but compromises accuracy.

Hence the major concern for series segmentation is the balance

between compactness and accuracy, i.e. the optimal number of

segments [57,64]. For a given series, the compactness can be

evaluated by the number K of segments, and the accuracy should

be evaluated by a distance between original data and approxima-

tion. In the words of Keogh [62], the balance criterion can be

considered in several ways:

1. Given a time series T, produce the best representation using a

fixed number K of segments.

2. Given a time series T, produce the best representation such

that the maximum error for any segment does not exceed some

user-specified threshold (local error, e).

3. Given a time series T, produce the best representation such

that the combined error of all segments is less than some user-

specified threshold (total error eT ).

The problem of finding the best partitioning is combinatorially

complex, and the data time series are up to approximately

N~15000 points long. We therefore designed a heuristic-based

O(N2) algorithm inspired from gradient-descent to derive the

segments series from the points series. This algorithm is presented

in Algorithm 1, and a typical result is shown in Fig. 2. We have

chosen to follow the second criterion, and had to set a distance e,

meaning that any original data point is not further than e from the

line segment it has been aggregated to. For a given time sampling

of the ants’ motion, the appropriate value of e depends on the

noise introduced by the tracking program: if the criterion is too

low, the process of aggregating points into sets corresponding to

segments stops too early, and lots of segments actually correspond

to noise. Conversely, if the criterion is set too high, points are

aggregated in too large sets, and we miss the details of the turning

events. Hence, the confidence in this procedure ultimately calls for

a fair estimate of the noise.

As a first check for the algorithm consistency, we have tested its

performance on an artificial set of data in a zero-noise situation.

For this, we have generated an artificial trajectory following the

Boltzmann Walker model on a large area (1.5 m), with parameters

close to the ones found in ants in first approximation:

l~1:0 10{2 m, g~0:6. This trajectory is a sequence of 2266

segments separated by reorientation events, which have been

sampled according to the elliptical sampling presented below in

section Elliptical heading deviation sampling. This sequence was

then resampled every Dl~0:6 10{3 m corresponding to an ant

travelling at 15 10{3 m:s{1 sampled at 25 Hz. This yielded a

series of 37876 locations, given as the input to the segmentation

algorithm, run with a very demanding criterion e~10{6 m. The

output of the algorithm was 2037 segments, with an estimated

mean free path l̂l~1:09 10{2 m and an estimated persistence

ĝg~0:609. The missed segments correspond to very small angular

deviations: two almost perfectly aligned segments are combined

into one segment by the algorithm when their angular difference

falls below the minimal angle associated with e. Both distributions

of segments lengths and angular deviations were also well

recovered (Fig. S1).

The next step was to estimate the sensitivity of the segmentation

procedure to the accuracy of our estimation of tracking noise sT .

For this purpose, we carried out a cross-exploration of couples

(e,sT ), with e values in

e[(0:01,0:1,0:5,1,1:5,1:6,1:7,1:8,2,3)|10{3 m

and sT values in

sT[(0,0:1,0:2,0:25,0:3,0:35,0:4,0:45,0:5,0:6,0:8,1)|10{3 m

For each couple of values, we generated 300 artificial

trajectories as above, using parameters g~0:6, and

l~(0:5,1:0,1:5,2:0)|10{3m, and retrieved the estimates ĝg and

l̂l. The results are shown in Fig. S2. Essentially, fixing our estimate

of the tracking noise to sT~0:3|10{3 m, there exists a criterion

e~1:7|10{3 m (Fig. S2, red lines) around which the segmenta-

tion procedure returns a fair estimation of both l and g, and more

importantly in the present context, captures almost perfectly the

varying l. If we fix the criterion to this value, and vary the noise,

the results appear also robust against a rough estimation of the

tracking noise. Finally, since the criterion is ultimately a minimal

angle of deviation between two consecutive segments, e also

depends on the spatial frequency of the data points, namely the

mean distance covered between two consecutive points. With a

sampling time frequency fixed by the video tracking, this implies

that it depends in turn on average speed, so we scaled this criterion

as speed decreases for steeper inclinations, following

ec
0~(cc~0=cc

0 ) e.

Algorithm 1 Piecewise linear segmentation of the trajectories.

The procedure is parameterized by a stopping criterion e, a

distance.

fPig, i~1::N are 2D-locations sampled at a constant time

sampling rate.

fLjg, j~1::M, MvN are sets of consecutive Pi of various

lengths.

Each set is associated with Sj the segment delineated by the

orthogonal projection of the two end points onto the major axis of

the points cloud.

We denote d(i) the distance from Pi to segment Sj it belongs to.

We denote e~ maxi d(i) the error associated with fLjg.
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We denote fLjg k | kz1ð Þ the segments series derived from fLjg
by merging the successive segments k and kz1, resulting in one

segment extending from segment k starting point to segment kz1
ending point. The derived series is one segment shorter than the

original.

We denote fLjg k | kz1| kz2ð Þ the segments series derived from

fLjg by merging the successive segments k, kz1 and kz2, at the

point Pmin which introduces the minimal error, resulting in two

segments extending from segment k starting point to Pmin, and

from Pmin to segment kz2 ending point. The derived series is one

segment shorter than the original.

1: fLjg is initialized with the complete series of the shortest

segments, joining every couple of successive locations: P1{P2,

P3{P4,…, Pi{Piz1

2: e~0 since all Pi are endpoints of their respective segment.

3. while eƒe do
4: for each Lk[fLjg do

5: Compute ek for fLjg k | kz1 | kz2ð Þ
6: end for
7: fLjg becomes fLjg k | kz1 | kz2ð Þ for which ek is minimal.

8: for each Lk[fLjg do

9: Compute ek for fLjg k | kz1ð Þ
10: end for
11: fLjg becomes fLjg k | kz1ð Þ for which ek is minimal.

12: e~ek

13: end while

Mean Square Displacement computation
Since ants displayed varied speeds, and showed some periods of

stopping from time to time, we computed the Mean Square

Displacement as a function of the number of reorientation events

rather than time, following [65]. For this, we used the trajectory

representations given by the segmentation procedure. For each

number of reorientation events k, k~1::25, the trajectory was split

into a sequence of n(k) successive reorientation locations xi

separated by k events. The MSD was then computed as:

MSD(k)~
1

n(k){1

Xn(k){1

i~1

Exiz1{xiE ð4Þ

Circular Statistics
In order to conduct heading statistics analysis, we used circular

statistics, taking heading distribution as the input. Linear statistical

measures cannot be used because angles on a unit circle have

modulus 2p (0~2p~4p etc), and the fact that {p and p
correspond to the same direction [66]. Given the shape of the

distribution (with a combined skew towards upward and down-

ward directions), we used a test for uniformity that is capable of

dealing with bimodal data: the Hodges-Ajne test. This test is

reputed to work well for bimodal or multimodal distributions. It

was written with R [55] using code written for a MATLAB

toolbox providing a useful approximation for large data sets,

allowing us to avoid factorial calculations [39,40]. The null

hypothesis is that the population is uniformly distributed

(isotropic). We can therefore compute the orientation direction

when the null hypothesis is rejected. Since the distributions seem

to be bimodal with two opposite modes, undirected axes have been

computed. Following Batschelet [66], we double the angles and

reduce them modulo 2p to obtain a unimodal circular sample. Let

m2 denote the mean vector with r2 and H2 its polar coordinates.

Let hi be one of the n observed angles. Let �xx and �yy be the

rectangular coordinates of the centre of mass of points projected

on the unit circle. Then

�xx ~ 1
n

(cos h1zcos h2z . . . zcos hn)

�yy ~ 1
n

(sin h1zsin h2z . . . zsin hn)
ð5Þ

r2 is the mean vector length with components �xx and �yy:

r2~
1

n
½(
X

cos hi)
2z(

X
sin hi)

2� ð6Þ

The mean angle H2 is obtained:

H2~
arctan(�yy=�xx) if �xxw0

pzarctan(�yy=�xx) if �xxv0

�
ð7Þ

In order to obtain of the undirected axis angle of the original

sample, we must cancel the effect of doubling:

H1~H2=2 or pzH2=2 ð8Þ

H1 defines the mean axis. In order to measure the dispersion,

Batschelet proposes the mean angular deviation:

s2~½2(1{r2)�1=2 ð9Þ

The final angular deviation value of our bimodal samples is:

s1~s2=2 ð10Þ

The function to compute the P-value for the test of uniformity

was adapted for R from circ_otest of Circular Statistics MATLAB

toolbox [39,67].

Simulating the extended BW model
When the need is to simply generate trajectories from the standard

BW model, parameterized by a mean free path l and a phase

function given by an elliptical function characterized by the mean

cosine g, the numerical resolution can be done exactly, with no spatial

approximation nor time discretization, following the algorithm 2.

Algorithm 2 Generation of a standard BW trajectory.

Input parameters: mean free path l, elliptical phase function of

parameter g
Variables: position (x,y), heading a.

runif (a,b) returns uniform sampling in ½a::b�
rexp(l) returns exponential sampling of mean l.

relliptic(g) returns elliptical sampling according to algorithm 4

below.

End() is any condition to stop.

1: (x,y)~(0,0)
2: a~runif ({p,p)
3: l~rexp(l)
4: while (not End()) do
5: (x,y)~(x,y)z(l cos(a),l sin(a))
6: a~azrelliptic(g)
7: l~rexp(l)
8: end while
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To simulate the extended BW model, we need to further take

into account the dependence of the parameters on the heading a.

To this end, we have used the eight sector-based experimental

distributions of mean free path and heading deviations shown in

Fig. 6 and 7. Since we used eight sectors as, the resolution of the

extended BW model is an approximation regarding angular

dependence, but otherwise keeps the structure of the algorithm 2.

These simulations were performed in the R environment [55].

In order to program the random sampling function for each

sector, and each parameter, the empirical cumulative distribution

was first estimated from the corresponding data set, using ecdf .

Then, this estimated function was sampled over an abscissa

interval discretized in 100 bins, using approx.

For instance, let’s denote F(a) as the discretized cumulated

function of heading deviations for a given sector and a given

inclination, with ai, i~1::100 spanning ½{p,p�. By construction

F (a)[½0::1�, F ({p)~0 and F (p)~1. To draw random numbers

according to F (a), a uniform u is drawn in ½0::1�, the lowest

discrete abscissa ak for which F (a)wu is found using which, and

the output value o is computed by linear interpolation between this

discrete abscissa ak and the previous ak{1, proportionally to their

corresponding F values, namely:

o~ak{1z ak{ak{1ð Þ u{F (ak{1)ð Þ= F (ak){F (ak{1)ð Þ ð11Þ

Denoting sector-based random sampling rfreepathc(a) and

rheadingc(a) for free paths and turning angles respectively,

generation of one simulated trajectory according to the extended

BW model for a given inclination c is given by the algorithm 3. To

generate the predictions of exit headings, series of 10,000

trajectories for each inclination were generated following this

algorithm, each starting from the center, and up to the exit from

the 0.2 m radius of the circle (End() condition). Then the

intersection point between the trajectory and the circle was

retrieved, and its heading computed.

Algorithm 3 Generation of an extended BW trajectory.

Input parameters: inclination 2c, free path sampling function

rfreepath2c(as), turning angle sampling function rheading2c(as)

sector(a) returns the sector of a.

runif (a,b) returns uniform sampling in ½a::b�
Variables: position (x,y), heading a.

End() is first exit from the 0.2 m radius circle.

1: (x,y)~(0,0)

2: a~runif ({p,p)

3: l~rfreepath2c(sector(a))

4: while (not End()) do

5: (x,y)~(x,y)z(l cos(a),l sin(a))

6: a~azrheadingc(sector(a))

7: l~rfreepath2c(sector(a))

8: end while

Elliptical heading deviation sampling
Generating artificial data required sampling the angular

deviation according to a probability density function governed

by parameter g, the average cosine of the deviation. We used an

elliptical shape for this function. A random deviation can be drawn

following the algorithm 4.

Algorithm 4 Elliptical angular sampling.

Input parameter: g.

runif (a,b) return uniform sampling in ½a::b�.
1: gratio~(1:0{g)=(1:0zg)

2: tmp~tan(runif (0,1) � (p=2)) � gratio

3: sgn~sign(runif ({1,1))

4: dev~2:0 � sgn � atan(tmp)

5: return dev

The Boltzmann Walker (BW) model
In the Boltzmann Walker model, the particle or the animal keeps

moving on a straight line until it punctually and instantaneously

changes its velocity (orientation). Its path can thus be split into a

sequence of linear segments. This model, inspired by the scattering

behavior displayed by photons in participating media, has been

called Velocity-Jump process in other fields [7,8].

When particles such as photons are involved, velocity changes

are triggered by local interactions with molecules or particles. As

far as ants or other animals are concerned, the velocity changes

look random, with no apparent events such as collisions, and the

attempt to disclose the deterministic triggering mechanism

(internal neural process, reaction to randomly dispersed indis-

cernible heterogeneities, etc) would be challenging in most cases.

However, this random component of the path can be precisely

specified as follows: the velocity change can occur at any time, it

does not depend on how long the animal has been walking since

the last velocity change event — this is a memory-less process. Let

m denote the rate at which velocity changes occur; the unit is the

inverse of a distance, meaning that (in case of m constant) an ant

displays a velocity change every 1=m m on average. It is worth

noting that this quantity may vary in space and time under the

leverage of environmental clues provided that this influence can be

considered as instantaneous at the model time scale; thereafter, we

shall restrict the analysis to specific cases where it only depends on

the position (m:m(r)).

Starting from the location of the last change, the probability that

the next change does not occur before the ant has walked l is thus

given by :

P(l)~exp {

ðl

0

m(r)ds

� �
ð12Þ

with integration following the curvilinear abscissa along the

trajectory.

If the rate is constant over space, P(l)~exp {mlð Þ and the

probability to carry on over l with the same velocity is indeed the

survival function. We will denote the average distance covered

between changes l~1=m (in m), which is known as mean free path in

statistical physics.

What happens at turning points under this model ? Let us

denote w’ and w the unit direction vectors of two consecutive

segments. The normalized distribution of direction changes

p(wDw’) is also known as the phase function (or scattering

indicatrix) in statistical physics. The quantity p(wDw’)dw deter-

mines, for a turning event, the probability that an animal walking

in the direction w’, will be scattered within the limits of the

elementary angle dw in the direction w. The normalization

constraint is then:

ð
2p

p(wDw’)dw~1

In the field of biology, this random walk is called a correlated

random walk (CRW): the new direction is chosen with a particular

shape of the probability density function according to the previous

direction. It is common to observe in a social insect that forward

scattering is dominant, meaning that the animal has a tendency to

make small deviations at each reorientation. The particular case
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where p(wDw’) is uniform and indeed independent of w’ is named a

pure random walk (RW). To characterize reorientation events

with a single and scalar quantity, it is usual to define the anisotropy

coefficient of the angular phase function g computed by:

g~

ð
2p

p(wDw’)w:w’dw ð13Þ

g collapses to 0 for a uniform phase function and tends to 1 as the

deviations become smaller and smaller around the previous

direction. It may also tend to 21 when the animal exhibits a

strong propensity to take frequent u-turns.

It can be shown that the statistics of space occupancy

corresponding to this model are well approximated by a diffusion

process (see below). Moreover, the corresponding diffusion

coefficient that would govern the spreading rate of a population

over time is strictly related to the parameters of the individual

decision model following (in 2D):

D~
v

2

l

1{g
ð14Þ

so that, at the macroscopic level, the diffusion coefficient truly

depends on the combination of the mean free path and the

distribution of turning angles. Hence a macroscopic formulation of

a correlated random walk driven by l,gð Þ could be as well rendered by

a pure random walk driven by l�,0ð Þ provided the mean free path l is

tuned accordingly so that: l�~ l
1{g

. Statistical physics calls l� the

transport mean free path.

Translation into a transport equation. With the BW

model, a single walker is followed over time along its trajectory,

making free paths and turning events. There is an alternative

description focusing on what happens at a given position and a

given direction over time. Let f (x,w,t) be the probability density

the walker is at location x and walking in direction w at time t
(v~cw is the walker speed vector). The individual-based scale

description of the Boltzmann walker can then be strictly translated

into the following mesoscopic equation [13,69]:

Lf
Lt

zcw:+f ~{mcf zmc
Ð

2p p(wDw’)f ’dw’

With f ’:f (x,w’,t)
ð15Þ

Equation 15 is a version of the well-known Boltzmann equation,

when it is used for describing linear transport systems (e.g. photons

scattering in a cloud).

Equation 15 can be integrated over directions to derive the

evolution of g(x,t), the density field of a population of BW (or

equivalently the probability density field of a unique walker),

yielding:

Lg
Lt

~{+:j ð16Þ

where j:j(x,t) is the current density.

In the same way, Equation 15 multiplied by w can be integrated

over directions to derive an evolution equation for j(x,t). However

at this stage, it is necessary to add a closure relation to obtain a

macroscopic equation (that is, only with variables g and j). For

situations when the distribution is close to isotropic, f may be

approximate by the first terms of its Fourier expansion. In that

case,

Lj
Lt

&{ c2

2
+g{mc 1{gð Þj ð17Þ

Considering furthermore that the temporal variation of j is

negligible over the other terms (diffusion approximation), the

diffusion equation holds:

Lg
Lt

&+: D+gð Þ ð18Þ

where the diffusion coefficient D is:

D ~ c
2m 1{gð Þ~

cl
2 1{gð Þ ð19Þ

Starting from a location x0 at time t0, an ant obeying such a

diffusion process in an infinite medium would spread from x
following an isotropic spatial probability density with a spatial

variance s2(t), depending on D. If D is uniform the probability

density is given by:

g(x,t) ~ 1

2ps2(t)
exp {

x{x0ð Þ2
2s2(t)

� �
ð20Þ

with s2(t)~2D(t{t0) meaning that the variance of the normal

distribution increases linearly with time.

The corresponding displacement q from x0 to x would then

follow a probability density pQ(q,t):

pQ(q,t) ~ q

s2(t)
exp { q2

2s2(t)

� 	
ð21Þ

Its second moment, the Mean Square Displacement, naturally

increases linearly with time as well, following:

MSD(t)~M2(Q) ~
Ð?

0
q2pQ(q,t)dq~4D(t{t0) ð22Þ

The Mean Square Displacement is then a measure of the spatial

spreading of the ant over time.

In cases when speed varies with time, it can be computed as a

function of the number of reorientations events Dn rather than

time, following [65]:

MSD(Dn)~ 2l2

1{g
Dn ð23Þ

For more formal developments, see for example [29,68–70].

Supporting Information

Movie S1 Example of ant walking down on the canvas.
The ant was gently picked up with a small pig hair paintbrush, the

brush head touched the canvas at the center point and the ant was
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left to walk down from the brush onto it. In this particular case, the

ant took approximately seven minutes to walk down from the

brush (hence, some part of the movie has been cut), but they

usually made it in approximately one minute.

(MOV)

Movie S2 Short recording of a typical tracking session.
The program tracks the location of the ant within a 40640 pixels

square centered around its location in the previous frame. Filtering

and thresholding the background color yields a binary represen-

tation of this area, with white pixels corresponding to the ant and

background speckles. A partition algorithm detects the largest spot,

from which the centroid is extracted (red dot).

(MOV)

Figure S1 Distribution of path lengths and angular
deviations on artificial data. Statistics for the artificial

trajectory are shown in blue, estimations from the segmentation

algorithm are shown in orange, and theoretical distributions are

shown in dark pink. The upper panel shows the distribution of

segments lengths, with the cumulative distribution on the left, and

the survival function on the right. The lower panel shows the

distribution of angular deviations between segments, with the

cumulative distribution on the left, and the polar histogram on the

right. For the latter, the three histograms have been scaled

differently for comparison purposes.

(TIFF)

Figure S2 Sensitivity analysis of the segmentation
algorithm using artificial data. Estimated values of l and g
are shown as a function of the value l used to generate 300

artificial trajectories (for each point) under the model hypothesis,

and g fixed to 0.6. On the left, the tracking noise was fixed to the

noise estimated from the data, sT~0:3|10{3 m and the

segmentation criterion e (MAE, Maximal Accepted Error) was

varied from 0:01|10{3 m to 3:0|10{3 m. For values close to

the finally chosen criterion e~1:7|10{3 m (red lines), the

segmentation procedure returns a fair estimation of both l and

g, and more importantly in the present context, captures almost

perfectly the varying l. On the right, the same is true for a fixed

value of the MAE, and varying the noise, so the results are also

robust against a rough estimation of the tracking noise.

(TIFF)

Dataset S1 Trajectories for c~0.

(ZIP)

Dataset S2 Trajectories for c~p=9.

(ZIP)

Dataset S3 Trajectories for c~p=6.

(ZIP)

Dataset S4 Trajectories for c~p=4.

(ZIP)

Dataset S5 Trajectories for c~p=3.

(ZIP)
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16. Challet M, Fourcassié V, Blanco S, Fournier R, Theraulaz G, et al. (2005) A

new test of random walks in heterogeneous environments. Die Naturwis-

senschaften 92: 367–70.
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