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Models for shear properties/behavior of dry fibrous
materials at various scales: a review

Elena Syerko · Sébastien Comas-Cardona · Christophe Binetruy

Abstract During forming operations of dry fibrous mate-
rials in order to get the composite preforms, the defor-
mation mode is substantially determined by the occurring
shear strains. Consideration of the material shear response
namely from the theoretical point of view has gained high
importance because multi-scale nature and anisotropy of
fibrous materials complicates their experimental investiga-
tion, which raises the question of the tests realizability,
complexity, and cost. This work analyses and classifies
the existing theoretical approaches for the shear prediction
with respect to the mathematical principles employed, as
well as with respect to the architecture of diverse fibrous
materials, to which the approach can be applied. Both
classifications depend in turn on the main criterion of clas-
sification emphasized here – the scale of observation of
the shear load. According to the theoretical framework, the
approaches form the main groups based either on purely
geometrical reasoning, or on finite elements analysis, or
on energy minimization, or on forces equilibrium princi-
ple. The approaches are compared according to the total of
mechanical factors included in their analysis and typical for
a certain stage of shear load and a certain scale (micro-,
meso-, or macro-). The advantages and difficulties of each
of the methods are evaluated.
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Introduction

The formability of composite parts is substantially deter-
mined by the mechanical response to loading of the dry
reinforcements – fibrous materials. During the forming
of composites, the reinforcements undergo high tensile
stresses and large strains, and the strains are mainly asso-
ciated with the in-plane shear mode. In the late stages of
forming deformation particularly the shear mode causes the
wrinkle apparition. Since investigation of the deformation
modes before manufacturing of final composite parts would
help to omit a number of high-cost trial and error opera-
tions, the development of both experimental and theoretical
approaches to analyze shear behavior of fibrous materials is
of considerable interest.

The first approaches for the prediction of structural
changes and mechanical characteristics of dry fibrous mate-
rials date back to the 1930s [1–3]. Since then, the conducted
research has not obtained extensive results in comparison
to other materials domains, though the necessity to han-
dle complex fibrous materials properties has grown. The
developments have been limited by the computer memory
capacities. Now technical progress of today favors further
theoretical research in this field. Besides, experimentally it
has become possible to observe fibrous materials not only
from its surface, but also inside with the help of the X-Ray
tomography and full-field Digital Image Correlation (DIC)
measurements [4]. This is of particular value, because the
porous structure of fibrous materials transmits them the geo-
metrical heterogeneity: their variety can be classified as it is
presented in Fig. 1.

Another feature of these materials is their multi-scale
architecture: microscopic constituents (fibers) are assem-
bled into yarns, representing mesoscopic scale, which
in turn create macroscopic pattern of the material. At
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Fig. 1 Structural classification
of fibrous materials

meso-scale, for periodic materials the smallest repeated pat-
tern can be defined. It is called the Representative Unit Cell
(RUC). The analogous concept exists for the random hetero-
geneous fibrous materials – the Representative Elementary
Volume (REV). Though its definition is more complicated
because it should fulfill the conditions for the size, which
has to be large enough to own all possible properties and
configurations of meso-constituents, and small enough not
to possess a macroscopic heterogeneity anymore.

It should be noted that the tensile stiffness of fibrous
materials in the yarns direction is several orders of magni-
tude higher than all the other rigidities. The bending and
in-plane shear stiffness are low. The material is bent and
draped easily, as opposed to the continuous materials such
as polymer composites, or metals. In contrast to them,
fibrous materials are characterized by the low cohesion
between their constituents (between yarns at meso-scale,
and between fibers at micro-scale) caused by the possi-
ble relative sliding between them and not perfectly straight
structure. Even though the in-plane shear stiffness is low, it
should not be neglected in modeling because during drap-
ing it is responsible for the wrinkles apparition, and for the
woven and non-crimp materials the in-plane shear strains
are the principal strains during draping [5, 6]. With the

gradual increase in shear angle, the lateral compression and
crushing of yarns as well as changes in their cross-sections
shape happen at meso-scale [7]. Therefore, the analysis
at meso-scale should include the occurred local transverse
compression field [8]. High compressibility is one more
particularity of fibrous materials. The experimental anal-
ysis of fibrous materials shear behavior is often intricate,
because meso-scale phenomena of yarns crushing, sliding
with respect to each other and changes of the yarns cross-
sections are hard to capture with any kind of shear tests
[7, 9–11]. The simple shear test on the fibrous material is
not easy to perform either because simple shear implies the
maintenance of two opposite specimen sides parallel to each
other and with the constant length. Consequently, while
being sheared, other two sides stretch out, and the specimen
deforms into a parallelogram. Therefore, theoretical models
for the prediction of the material response to the shear gain
in high importance. Let us outline the reviews available in
the literature on the models for mechanical properties of dry
fibrous materials.

Since the numerical approaches for the prediction of
fibrous materials behavior, as it was already mentioned,
started to evolve with the technical progress, in 1980s,
the first review of them was made by [12] with the
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description of challenges and trends for the future. The
review was related more to the domain of computational
fabric mechanics because the application of the consid-
ered models was the textile and garment industry, and
rarely the composite materials industry. The main classifi-
cation of numerical models divided them into continuum
and discontinuum ones, mentioning separately geometri-
cal and particle-based models. In the review paper [13] the
approaches for modeling cloth, describing it at mesoscopic
and macroscopic scales, were classified into geometrical,
mechanical, and hybrid, which occupies the intermediate
place between the first two types. Similarly, the emphasis
was made on the models predicting the draping appearance
properties and fabric hand, rather than mechanical proper-
ties, though particularly shear participates actively in drap-
ing deformations and defines wrinkles apparition. Hence
later, [14] paid special attention to the shear prediction
while considering the models for draping of woven and non-
crimp materials. The authors in [14] described the essence
and problems of geometrical and finite elements analysis
(FEA) models, giving several examples of calculations by
these models and their validation. Only macroscopic and
mesoscopic models were under consideration. The review
of FEA models for the prediction of woven fabric forming
was made in [15]. They were classified into the continuous,
discrete, and semi-discrete FEA. The latter was represented
by the sole approach owing the features of both continu-
ous and discrete approaches, and accounting for the tensile
and shear properties. Continuous models were represented
by the hypoelastic and non-orthogonal approaches. Later,
in [16] the comparison of FEA models according to the
same classification was performed. This time the results of
hypoelastic, hyperelastic approaches (as the representatives
of continuous FEA) were compared to the results of dis-
crete and the improved semi-discrete approach that included
simulation of tensile, shear, as well as bending properties.
None of the review works have presented the real distinction
of models according to the three scales of fibrous materials
architecture. This is the guideline for this paper. The previ-
ous work of authors [17] has addressed such classification,
having distinguished therewith the models for the prediction
separately the bending properties and the tensile properties.

Therefore, the goal of this work is to provide an overview
of the earlier studies made over the past decades to theoreti-
cally investigate particularly the shear properties and behav-
ior of fibrous materials. The paper is organized according to
the hierarchy of models with respect to the scale (Fig. 2):
models addressing the behavior at the whole material parts
scale; models taking into account yarns behavior at meso-
scale; and models with the implemented behavior of con-
stituents at fiber scale. In each section the approaches are
also systematized relative to their mathematical formulation
and framework.

Macroscopic (whole component) scale

The shear behavior of fibrous materials can be investigated
with the following experimental techniques: picture frame
shear, reproducing the pure shear mechanisms (Fig. 3a), bias
extension (Fig. 3b), simple shear deformation (Fig. 3c), and
forming to the hemisphere (Fig. 3d). The first three con-
figurations are used for the shear characterization, while
the hemispherical forming serves for the validation of
the theoretically predicted deformations, and for the shear
deformation, inherent in forming, in particular.

As it was already mentioned, draping is realized mainly
by the in-plane shear mode particularly for the woven and
non-crimp (NCF) fabrics. The models for these two classes
of fibrous materials are thus considered in the sequel. The
shear behavior of NCF differs from the one of woven fab-
rics due to stitching, binding two plies of angle-oriented
tows, and causing the dependence of the behavior on the
direction of deformation. Therefore, the shear stiffness of
NCF is often referred to as ”apparent shear stiffness” being
superimposed on the tensile stiffness of the stitch. Thus the
corresponding subsections in the paper will help to evalu-
ate the differences between the models for woven and for
non-crimp materials.

Woven materials

Geometrical approach

The advantage of applying the macroscopic methods to pre-
dict the material shear response is that they do not necessi-
tate the preliminary measurement of small-scale parameters
of the material to be input (like, for example, the width of
yarns, yarns cross-sectional area – see Section “Mesoscopic
(yarn) scale” and “Microscopic (fiber) scale”). The first
models [22–24] were able to address only a macroscopic
scale of the material as they were purely kinematic, i.e.
independent of the material construction (yarn spacing, yarn
size, weaving) and local mechanistic effects such as friction
between yarns, or yarn compaction. These models repre-
sent a geometrical, the so-called pin-joint (or mapping)
approach. They depict the material as a combination of
points and lines of zero width (thus in the literature they are
also referred to as ”fishnet” approach) and usually deal with
a single layer (Fig. 4).

The works by Potter [22] and Robertson et al. [23] inves-
tigated the rearrangement of the sheared yarns particularly
during forming of a flat woven fabric to a sphere. Pot-
ter included the effect of yarns extension into his model,
while Robertson et al. assumed the fabric components to be
inextensible, considering these effects, often caused by the
presence of yarn undulations, to be negligible in comparison
to the overall deformation. Another assumption typical for
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Fig. 2 Classification of models
for the prediction of shear
response of fibrous materials

the pin-joint models states that the yarn crossings are fixed,
with no slippage between yarns at these points that can
occur in the reality. According to the approach by Robertson
et al., the net representing a fabric is laid on the quadrant
of the hemisphere starting from its top, a pole, and locat-
ing consequent nodes of the net by going from the right
boundary of the quadrant downward, column by column, to
the left boundary of the quadrant until the entire net (or the
nodes of the net) is in contact with the hemispherical surface

(Fig. 5). The forming to the one quadrant only is performed
reasoning from the symmetry stated by the authors, how-
ever, this symmetry can be experimentally confirmed only
for the balanced woven materials [21, 26].

The position of each subsequent node is defined as the
intersection of three spheres: two ones with the centers
in adjacent nodes with known positions and of radii a,
and the main hemisphere. Hence for the arbitrary node
(m,n), at location (Xm,n, Ym,n, Zm,n), the following set of

Fig. 3 a Picture frame (pure) shear [18]; b shear deformation in bias extension [19]; c simple shear [20]; d hemispherical forming [21]
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Fig. 4 Schematic representation
of shear deformation of woven
fabrics [25]

equations developed initially by Sickafus and Mackie [27]
for the packing of spheres was solved:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(Xm,n − Xm−1,n)2 + (Ym,n − Ym−1,n)2

+ (Zm,n − Zm−1,n)
2 = a2

(Xm,n − Xm,n−1)
2 + (Ym,n − Ym,n−1)

2

+ (Zm,n − Zm,n−1)
2 = a2

X2
m,n + Y 2

m,n + (Zm,n − R)2 = R2

(1)

where R is the radius of the main hemisphere, a =
2Rsin(π/4M), M is the number of nodes along the bound-
ary of the quadrant including the equator and excluding the
pole. The intersection the furthest from the pole is chosen
among the solutions of equations. The proposed technique
aimed at predicting a shear angle in yarn rearrangements,
investigating the uniqueness of these possible rearrange-
ments, and, in the case of non-uniqueness, analyzing the
occurrence of wrinkles. It was found for the quadrant, and
thus for the upper hemisphere, that no wrinkle appeared
– a conclusion made out of the found symmetry about
the diagonal conditions: Xm,m = Ym,m, Xm,n = Yn,m,
Zm,n = Zn,m. The obtained yarn rearrangements with shear

Fig. 5 Laying of the fabric ”net” on a quadrant surface of the
hemisphere [23]

angles were compared to the experimental observations of
the cheesecloth draped over a sphere, and showed a good fit.
Besides, the extrapolation of the curve for the shear angle
along the upper hemisphere gives the same occurrence of
wrinkling in the lower hemisphere at a vertical distance of
1.7R from the upper pole as in the experiments.

In pin-joint models the material deformation pattern is
highly dependent on the choice of starting point and yarn
directions. For many geometries this position is obvious, for
instance, the highest point of a hemisphere. But more com-
plex geometries may have multiple initial contact points,
which complicates the simulation of the forming process,
for instance, forming with a punch and a die.

The mapping approach was improved by Long [26], who
extended the capacities of the approach and applied it to the
woven satin materials. An iterative shear strain energy min-
imization scheme was used to find a deformed shape of the
net. This improvement has distinguished more or less this
technique from the class of purely geometrical ones. The
total energy was calculated by summing the contribution at
each node of the net (i.e. yarn crossover) Us :

Us(ϑ) =
∫ ϑ

0
T (γ )dγ, (2)

where T (γ ) is the torque required to reach a shear angle
γ . The data for the shear energy necessary to be input
in the scheme was obtained from the picture frame test
(Fig. 3a). Modeling of draping of 4-harness satin weave over
a hemisphere gave accurate prediction of shear angles.

FEA continuous

A number of macroscopic models were developed to be
used in continuous finite element formulation [19, 28–30]
taking into account, at the same time, implicitly the yarn
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directions from the mesoscopic scale. The difference in their
formulations requires different parameters to be input, and
correspondingly makes a model to be attached to one or
another experimental test, which is sometimes not advanta-
geous. The models also differ by the mechanisms during the
shear deformation taken into account, for instance, account-
ing or not for friction effects. There are some models
focused on a particular stage of shear deformation: whether
it is a prediction of the initial shear displacements, or the
shear force-angle relation is predicted up to the onset of
wrinkles.

Xue et al. [28] proposed the non-orthogonal constitutive
model for large deformations, where the stress-strain rela-
tionship in the global coordinates is defined by linking the
analysis in the global orthogonal coordinate system and the
non-orthogonal material coordinate system (Fig. 6a), and
using the rigid body rotation matrices.

Assuming the tensile and shear responses of the material
to be decoupled, the adequacy of which had been proved in
the experiments earlier, the authors formulated the constitu-
tive equation in the local coordinate system (O

′
, X

′
, Y

′
) as

[σ ]
x

′
y

′ = D[ε]
x

′
y

′ with the material matrix D = T2DT3

in (O
′
, X

′
, Y

′
), where T2 and T3 are 3 × 4 transforma-

tion matrices from non-orthogonal coordinates (O
′
, ξ, η) to

the orthogonal (O
′
, X

′
, Y

′
), for stresses and strains respec-

tively. T2 and T3 are defined in terms of angle ϑ (Fig. 6a).
The material matrix D in (O

′
, ξ, η) for balanced fabric, and

the stress-strain relationship in the global coordinate system
(O, X, Y ) read:

D =

⎡

⎢
⎢
⎣

D11 D12 0 0
D12 D11 0 0

0 0 D33 0
0 0 0 D33

⎤

⎥
⎥
⎦ ;

⎡

⎣
σx

σy

τxy

⎤

⎦ = RDRT

⎡

⎣
εx

εy

γxy

⎤

⎦ ,

(3)
where R is the unit transformation matrix between the local
coordinates (O

′
, X

′
, Y

′
) and the global ones (O, X, Y )

expressed in terms of angle α (Fig. 6a). The material matrix
D was found by matching the calculated force-displacement
curves with the available experiments of unequal biaxial
tension and picture frame test. The shear angle, defined as
the angle change from a right angle after shear deformation,

was calculated as follows γ = π
2 − 2 cos−1

(
u
2a

+
√

2
2

)
,

where u is the end nodal displacement along the x direction
and a is the width of the square sample contained between
the clamping bars of the frame. The validation of the shear
behavior prediction was performed on the picture frame
shear deformation with misalignment of yarns relatively to
the frame edges, characterized by the so-called off-angle ϕ,
defined as ϕ = ϕ0(1 − 2γ /π) (ϕ0 is the initial off-angle).
The increasing off-angle showed the rapid increase in the
force (Fig. 6b), as the misalignment causes the deformation
to be dominated by tension, not by shear. The reasonable
agreement with experiments was found, with some discrep-
ancies attributed by the authors to the deficiency of angle
measurements, or to the assumption of no-slip boundary
conditions under clamps.

Peng and Cao in [19] questioned the physical mean-
ing of the stress transformation and stress definition in
the non-orthogonal coordinate system in [28]. They pro-
posed to integrate a convected coordinate system, whose
in-plane axes take directions of warp and weft yarns of
woven fabrics, into continuous finite elements. The global
non-orthogonal constitutive relation, describing large defor-
mations, was derived by transformations between con-
travariant stress/covariant strain components, introduced
in the convected coordinate system, and the Cartesian
stress/strain components. The equivalent contravariant elas-
tic matrix was determined by empirical testing of the load-
displacement curves of the uniaxial tensile and bias exten-
sion tests. It was expressed through the Green-Lagrange
strains, shown to give adequate tensile and shear trends, as
opposed to covariant or logarithmic strains. The constitu-
tive equation together with the developed fiber orientation

Fig. 6 a Global, local and material coordinate systems for the fabric; b comparison of load vs. displacement curves for the predicted and
experimental picture frame shear with misaligned reinforcements [28]
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model, based on fundamental continuum mechanics con-
cepts, gave the results of the bias extension and picture
frame shear simulations that agreed well with experiments
(Figs. 7 and 8).

The bias extension modeling revealed the presence
of three deformation zones (Fig. 7a): Zone I with the
unchanged shear angle; Zone II with the combined shear
and tensile deformations, and some change in angle
between yarns; Zone III with significant shear deformation.
Figure 7b shows the contribution of the tensile deformation
(in one of two directions): its highest values are located from
the corners of the clamped end to the center of the free ends.

The thorough analysis of the picture frame shear was per-
formed as well: setting material properties extracted from
different shear frame tests, setting different misalignment
angles between yarns and frame edges. The same influence
of this angle on the shear behavior, as the one found in [28],
was observed (Fig. 8).

Yu W. et al. [29] also proposed the non-orthogonal con-
stitutive model for woven fabrics in the framework of the
continuum FE approach, in which the material properties
are determined in analytical form, explicitly relating stresses
and strains as follows:

[
�σxx

�σyy

�σxy

]

=

⎡

⎢
⎢
⎢
⎣

Ẽα

bc
+ 

(
a

h̄

) (
a2

c

)


(
a

h̄

) (
b2

c

)


(
a

h̄

) (
ab
c

)


(

b
ā

) (
a2

c

)


(
b
ā

) (
b2

c

)
+ Ẽβ

āc


(
b
ā

) (
ab
c

)


(

b

h̄

) (
a2

c

)


(
b

h̄

) (
b2

c

)


(
b

h̄

) (
ab
c

)

⎤

⎥
⎥
⎥
⎦

×
[

�εxx

�εyy

2�εxy

]

(4)

Fig. 8 Load-displacement curves in picture frame shear with yarns
misalignments [19]

Here Ẽα = EαAα,  = Aγ Eγ /(a2 +b2)3/2, where Aα , Aγ

and Eα , Eγ are the cross-sectional area and elastic modulus
of yarn respectively in α and γ yarn directions (Fig. 9); (a,b)
is the material element of the γ yarn based on materially
embedded coordinate system; ā and b̄ are vectors showing
the magnitude and direction of the α and γ yarns in the unit
cell (Fig. 9); c is the thickness of the material.

The stress-strain relationships were derived under the
assumption of small deformation using the kinematics and
the force equilibrium of the related structural net (Fig. 9).
Unlike the non-orthogonal models in [19, 28], the work by
Yu W. et al. additionally accounts for the friction effect at
the intersection points of fabric by means of elastic springs
introduced between the diagonal intersection points in the

Fig. 7 a Zones of shear strain in bias extension simulation; b contour of Green-Lagrange direct strain (responsible for stretching) in the x weft
direction in bias extension simulation [19]
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Fig. 9 A structural net (left)
and a unit cell (right) of woven
fabric in materially embedded
coordinate system [29]

unit cell, and expressed as a resistance parameter Ẽβ . The
value of Ẽβ is chosen by fitting the experimental mea-
surements, particularly, by fitting the fiber angle for the
central point of the specimen in the bias extension test.
The simulations of the bias extension up to 25 % showed
three typical distinct deformation regions described above,
and good agreement with experiments. In simple shear and
pure shear predictions the fact of not significant change in
length of boundaries, compared in [29] to the predicted by
the orthotropic constitutive law, confirmed the adequacy of
the proposed non-orthogonal model. The simulation of the
shear deformation of fabric formed over the hemispherical
mold with a flat base (Fig. 10a) showed good agreement
with experiments as well – for the angle values of max-
imal deformation in the equator region, 90◦ angle values
around the apex, and for the boundary profiles (Fig. 10b). A
slight disagreement in the profiles in the weft direction was
explained by the assumed equal properties for both warp and
weft directions.

Recently, a hyperelastic objective constitutive model
for large deformations of woven materials has been pro-
posed by Aimene et al. [20, 30] to be implemented in the

continuum FE formulation. The hyperelastic approach is
a good solution to address at macro-scale the strong non-
linearities of the material originating from its meso- and
microstructural rotations. The potential is proposed in the
form of the sum of tensile energies in two yarn direc-
tions, assumed to be uncoupled, and a shear energy,
independent from the tensile one, each of which is a
function of the right Cauchy Green and structural ten-

sor invariants: W = W1(I1) + W2(I2) + WC(I12) with

invariants Ii = Tr
(

C · L
ii

)
= λ2

i , i = 1, 2, I12 =
1

I1I2
Tr

(
C · L

11
· C · L

22

)
= cos2 ϑ , where λi are the yarn

elongations, ϑ is the angle between yarns, C is the Cauchy
Green strain tensor, L

ii
is the structural tensor, account-

ing for the material anisotropy: L
ii

= Li ⊗ Lj with
Li – the initial yarn orientation. Then the second Piola
Kirchhoff stress tensor S is expressed from the strain

energy as: S = 2
(

∂W
∂I1

∂I1
∂C + ∂W

∂I2

∂I2
∂C + ∂W

∂I12

∂I12
∂C

)
. Finally,

it is derived that the components of the second Piola
Kirchhoff tensor in the initial yarns orientation, divided
by the Jacobian J of the deformation, are equal to

Fig. 10 a FE model for the forming of woven fabric over a hemispherical mold; b comparison between experimental and predicted boundary
profiles of draped fabric [29]
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Cauchy stress tensor components in the actual yarns
orientation [20]: σ ij = 1

J
Sij . The potential is deter-

mined by fitting the data from two uniaxial tensile
and a picture frame tests. The hemispherical form-
ing simulations of plain-weave balanced and twill-weave
unbalanced fabrics showed satisfactory qualitative corre-
lation with experiments and importance of shear energy
in describing wrinkle apparition. However, the results for
balanced fabrics demonstrated better agreement with exper-
iments in the case without accounting for shear energy,
when there are no wrinkles. It was explained by the use of
blankholder in experiments, helping to avoid wrinkles.

The same hyperelastic approach was applied by
Charmetant et al. [31] to the prediction of large strains (in-
cluding shear deformations) of 3D layer-to-layer angle in-
terlock. Since this type of woven materials additionally owns
the yarns through the thickness, perpendicular to other two
yarns directions, its strain energy potential was built based
on strain invariants representative to six deformation modes,
compared to the three modes in [20]. Similarly to [20], the
contribution of each deformation mode is assumed to be in-
dependent from the others, and thus allows additive compo-
sition of the strain energy density function. The deformation
modes are expressed in tensile invariants in two yarn direc-
tions, transverse compression invariant, in-plane shear invari-
ant, and two transverse shear invariants. The model parame-
ters were identified from the following tests on fabric: ten-
sile, compression, bias extension, and transverse shear (along
warp and weft directions) realized by the special on-purpose
device with two parallel planes fixed to the sample. The
predicted by the hyperelastic model shear angles on top
and bottom faces of draped over a hemisphere 3D interlock
material [31] differ between each other and correspond well
to the experimental data. Another advantage is the possibil-
ity to obtain predicted transverse compaction strains.

Discrete energy based approach

The discrete energy based approach developed by Ben
Boubaker et al. [32] is also related to the macroscopic scale
approaches because the woven fabric structure is repre-
sented by the two-dimensional lattice (trellis) with the nodes
each owing a mass and a rotational rigidity (Fig. 11a), and
the mesoscopic sizes (yarns width, spaces between yarns
etc.) as well as the undulated geometry are not taken into
account. At the same time, some underlying mesoscopic
deformation mechanisms are included in the analysis: the
nodes are connected by the bars that can exhibit extension;
the unit cells, composed of set of four bars, are endowed
with a torsion mode (Fig. 11b). The fabric is considered as
an elastic structure, with the principal directions coincid-
ing with the warp and weft directions. Thus the following
mechanical parameters for the constituents of lattice need

to be input in the model: the stiffness moduli in the warp
and weft directions E1, E2, the shear modulus G, the con-
traction coefficients ν1, ν2 in the warp and weft directions.
There is an equivalent elastic foundation represented by the
extensional springs (Fig. 11a) located perpendicularly to
the initial plane of the lattice. A relatively large variety of
boundary conditions can be prescribed in the model due to
the rotational rigidities given to the lattice edge nodes.

By minimizing the total potential energy the equilibrium
shape of the structure is obtained. The strain energy of the
lattice equals the sum of the bending, torsional, stretch-
ing and shearing energies (specified at each node), deduced
from the work of the internal forces. The total strain energy
of the discrete model is defined as a sum of the strain energy
of the lattice, total stretching energy of the elastic founda-
tion, and energy of the edge’s supports. The work of the
external forces is composed of terms of the work of the
gravitational forces and the work of the applied mechani-
cal loads. In the calculations, however, the authors assumed
the kinematics to be dependent only on the local bending
rotations, supposing the fabrics to be submitted to its own
weight and to small loads. Therefore, the contributions of
stretching and shearing energies were omitted. The prob-
lems of fabric draping over a square support, to the surface
of which the fabric was attached, and draping over a hemi-
sphere under the own weight were considered. These con-
strained problems, owing around 2500 degrees of freedom,
were solved by the classical method of Lagrange multi-
pliers. The stability analysis using the Dirichlet-Lagrange
criterion was also performed in [32]. As a result, the critical
buckling loads of the structure were found.

Evaluating the proposed approach from the point of view
of practical realization, the inconvenience of large number
of degrees of freedom should be mentioned. There is also a
lack of estimation of accuracy of the obtained results in [32]
(e.g. experimental comparison).

Non-crimp/stitched materials

Geometrical approach

All above mentioned macroscopic models are employed for
woven fabrics. At the same time, growing industrial needs
in non-crimp fabrics (Fig. 1) as composite reinforcements
motivate the development of models to describe their defor-
mation. And since the yarns – tows – of NCF are very stiff
in tension, the fabrics deformation in the process of forming
to the double-curved geometries is achieved mainly by the
in-plane shear.

Suggesting in [33] to use the geometrical approach,
Potter showed that it can adequately describe the global
shear deformation of the non-crimp unidirectional cross-
plied prepreg subjected to bias extension, meaning the
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Fig. 11 a Discrete model for fabric with fixed edges; b woven unit cell of fabrics with the illustrated shear deformation [32]

general relationships between the longitudinal and trans-
verse strains. However, the observed in the experiment local
deformation, like the local buckling of fibers (not affecting
every tow in the prepreg), was different from the predicted
one.

Improved geometrical (mapping) approach in [26] with
the iterative strain energy minimization scheme, described
in the previous section, was applied in [26] to predict the
shear behavior of non-crimp materials as well. The model
has proved to give accurate prediction of shear angles for a
range of fabrics and geometries, such as ±45◦ pillar warp
knit draped over a hemisphere; ±45◦ tricot 1 & 1 warp
knit formed over a jet engine nose-cone geometry.

FEA continuous

The non-orthogonal model in [29] was then extended by
Yu W. et al. in [21] to predict shear deformations of non-
crimp fabrics. To the constitutive Eq. (4) [29], accounting
for fiber directional properties, eliminating the friction term
with Ẽβ , in [21] Yu W. et al. added the contribution from
the non-linear shear properties of fabrics, defining the incre-
ment of stress �σ due to the increment of shear angle �γ

as follows:

�σ =
[
�σxx

�σyy

�σxy

]

=
⎡

⎢
⎣

0 0 2G1g
1
1g1

2 + G2
(
g1

1g2
2 − g2

1g1
2

)

0 0 2G1g
2
1g2

2 + G2
(
g1

1g2
2 − g2

1g1
2

)

0 0 G1
(
g1

1g2
2 − g1

2g2
1

)

⎤

⎥
⎦

[
0
0

�γ

]

,

(5)

where G1 = 1
lc

{
dFs

dγ

√
g11 + Fs

√
g11(g11 − 1)

}
, G2 =

Fs

lc

√
g11, Fs is the shear force, g11 is the contravariant base

vector, l and c are the side length and thickness of the fab-
ric respectively, assumed to be constant in picture-frame

shearing (the fact experimentally justified for dry NCF).
After transforming Eq. (5) into the local coordinate system
used in Eq. (4), which can change during shear deformation,
Eq. (5) is then added to Eq. (4) to get the final constitu-
tive equation. Shear force Fs versus shear angle data were
input into the constitutive equation from fitting the exper-
imental picture-frame shear curves with exponential and
polynomial functions for two regions. Being implemented
then into the implicit FE code, the non-orthogonal constitu-
tive model was reasonably validated against picture-frame
test force-shear angle curves, demonstrating the asymmetric
shear deformations of NCF (Fig. 12a). Some discrepancies
were observed, and attributed by the authors to the differ-
ence in boundary conditions between the picture-frame test
and the simulation.

The extensive hemispherical forming simulations with
detailed parametrical studies on the influence of blank-
holder force, its shape, and friction effect were presented as
well in [21]. It was found that both increasing the blank-
holder force, and increasing friction decreased asymmetry
in shear angle distributions, usually observed for NCF form-
ing even to symmetric geometries (Fig. 12b). The weakness
of the obtained forming simulations is the disagreement
with experiments in the equator region – the region with
large deformations.

The solution to this problem of FE analysis of large
deformations of highly anisotropic materials was proposed
by ten Thije et al. in [34]. They decomposed the deforma-
tion gradient into a rotation tensor R, reflecting the rotation
of the axes of anisotropy, and a stretch tensor G as fol-
lows: F = R · G. Here the principle of the updated or total
Lagrange FE formulation for anisotropic materials lies in
the relation of the invariant (because it co-rotates with the
rigid body rotations of the axes of anisotropy) local stress
tensor τ to the global Cauchy stress tensor σ by a rotation
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Fig. 12 a Experimental shear compliance curves for the parallel and perpendicular to the stitch direction shear; b asymmetric formed shape of
NCF [21]

only: σ = R·τ ·RT . To address large deformations, the right
C and left B Cauchy Green tensors were used and became
as follows after decomposition of the deformation gradient:

C = GT · G, B = R · G · GT · RT . (6)

Constitutive equations were derived using the Helmholtz
free energy. The mechanical equilibrium without the pres-
ence of body forces, after the procedure of weighing,
reduced integration and application of the divergence theo-
rem of Gauss, in the rate form reads:

∫

V

(

w
←−∇ : σ̇ − w

←−∇ · v
←−∇ : σ + w

←−∇ : σ
J̇

J

)

dV, (7)

where J denotes the Jacobian, the volume ratio J =
det (F) = dV

dV0
, v is the velocity, w are the weight func-

tions. With the help of this equation, the consistent tangent
matrix for the generalized elastic anisotropic material is then
expressed as:

K =
∫

V

[
ρ

ρ0
· 1

2
(w

←−∇ + −→∇ w) : (F · 4I · F) : 4E : (FT · 4I · FT ) :

: 1

2
(v

←−∇ + −→∇ v) + −→∇ w · v
←−∇ : σ

]

dV, (8)

where 4I is a fourth order tensor, 4E is the invariant and
constant fourth order material tensor.

In the bias extension simulation of NCF with two lay-
ers oriented at ±45◦ and the stitch at 0◦, proposed by ten

Thije et al. [34], the stitch is considered to deform plasti-
cally and to dominate the shear deformation of the fabric.
It is included in the formulation by additional fiber fraction
deforming according to the Nadai stress-strain curve, with
the initial linear region up to the yielding point and subse-
quent region described by: σy = σ0 + C(ε0 + εp)n, where
εp is the plastic strain, σ0 = 30 MPa, C = 100 MPa,
ε0 = 5×10−5 and n = 0.6 are taken as material parameters.
The results of the bias extension simulations showed the
distribution of the stitch plastic strain with 40 % maximum
value.

Thus the proposed FE formulation successfully copes
with non-crimp materials large deformation simulations,
moreover, demonstrating quadratic convergence of calcula-
tions. However, there is a lack of quantitative comparison
of simulated shear deformations with experiments in the
work.

Mesoscopic (yarn) scale

After the initial stages of shear deformation the material
behavior starts to be greatly influenced by its architecture,
i.e. meso-structure, like yarn width, yarn spacing, which
are not taken into account in macro-scale models. It is also
influenced by mechanistic effects, like friction (slippage)
between yarns, as well as inter-ply interactions (for multi-
layered structures) and local reduction in global stiffness
due to lay-up orientation [25]. The completeness of the
mesoscopic model can thus be estimated by a quantity of the
mentioned factors and mesoscopic mechanisms addressed
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in the model. Different approaches address different stages
of the shear deformation. Some of mesoscopic approaches
are devoted mostly to the late stages of shear deformation,
i.e. when wrinkling (out-of-plane buckling) occurs after a
certain in-plane shear angle value is reached (except for the
shear behavior in bias extension test).

Woven materials

Geometrical approach

Prodromou and Chen proposed a model in [25] based on
the pin-joint theory and simultaneously accounting for the
aforementioned fabric geometrical parameters to predict the
shearing behavior and locking angle apparition.

Reasoning from the geometry (Fig. 13), the shear angle
versus percent displacement curve was obtained according
to the expression:

cos ϑ = cos ϑ0

(

1 + AD − AD0

AD0

)

= cos ϑ0(1 + %displacement) (9)

where ϑ0 is the initial angle, ϑ is the shearing angle, AD

denotes half the length of the unit cell in the bias direc-
tion, AD0 denotes the value of AD at 0 % displacement.
It showed the same trend as experimental data from the
picture frame test performed in [25]. However, at final
stages of the displacement the substantial scatter between
the experimental and predicted values was observed.

In [25] it was proposed that the locking angle occurred
at the point, where the distance between the warp and weft
yarns was zero, because the locking angle is defined as
the highest shearing angle corresponding to the observation
of wrinkles. The formula expressing that locking angle is:
ϑ = arcsin(t/L), where t is the tow width, and L is the tow
spacing (distance between the centers of successive tows).
The comparison of measured and predicted locking angles
showed deviations in the values. This illustrates the weak-
ness of the pin-joint theory in describing the shear behavior.
The possible reason for that is that the mechanistic effects
such as friction between the yarns, variability of the tow
width (which can be observed initially along the tow, or

Fig. 13 One quadrant of the unit cell in pin-joint model: initial
position and locked position [25]

after some time during shearing), and/or tow spacing are not
taken into account. The authors provided the evidence of the
influence of these factors by analyzing friction in the pull-
out test on the fabrics, and performing a parametric study
of the tow width and spacing variations. However, account-
ing for these effects in the model was only mentioned as a
perspective.

Rozant et al. [35] investigated the drapeability of fab-
rics and predicted the locking angle in the same manner as
Prodromou et al., but calculating it independently for the
warp and weft yarn directions, which most often have dif-
ferent yarn sizes and spacing. Then the highest of the two
obtained values was chosen as the locking angle.

Force based approach

The force based approach, working on the principle of equi-
librium of forces within the deformed material, was used by
several groups of authors [36–38]. The analysis of differ-
ent shear configurations was performed: bias extension and
pure shear. Different works also considered different stages
of shear deformation, one of the major phenomena of which
is the slippage at yarns intersections that is considered to be
an indicator of the transition to the next shear deformation
stage. The influence of different material parameters on the
occurrence of slippage was studied as well.

In [36, 37] Page and Wang proposed an approach based
on the forces equilibrium and beam deflection theory in
order to include the above-mentioned mechanistic effects
in the analysis of plain woven fabrics at meso-scale. Con-
sidering the uniform shear deformation, i.e. with the same
shear angle everywhere in the pattern of fabric subjected to
bias extension, three stages of the shear state were analyzed:
initial shear without sliding owing to the friction at yarns
intersections; shear with sliding at intersections; and larger
shear deformation (but until the yarns contact side by side)
accompanied by elastic resistance. In the first stage, charac-
terized only by slight bending of yarns, based on the beam
deflection theory, the deformation was calculated to be very
small and, therefore, neglected. In the second stage with
sliding, the force based approach gave the shear force Fu

expressed in terms of ϑ
′ = ϑ/2 (ϑ was the angle between

yarns) as:

Fu =
√

2NbuIϑ

L2 sin ϑ
′
A − 2L cos ϑ

′ tan αuIϑ

, (10)

where A = 1
2w2[tan ϑ

′ + tan (90◦ − ϑ
′
)],

and Iϑ = 1
12w3

[
sin ϑ

′

cos2 ϑ
′ + cos ϑ

′

sin2 ϑ
′ + ln tan

(
45◦ + ϑ

′
2

)

− ln tan
(

ϑ
′

2

)]
.
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The normal force Nb = const between yarns due to
bending, inter-yarn friction coefficient u, yarn length L in
the RUC, weave angle α, and yarn width w were input
from measurements and characterization tests. The third
stage was proposed to be described by Eqs. (10), but with
Nb = Nb(ϑ), prescribed as the evolution of the normal
force with the increasing shear as a result of growing fric-
tion. Nb was obtained from the FEM simulation of the fabric
RUC with its internal forces owing to weaving [37]. Thus
the non-linear shear force-angle prediction correlated well
with the bias extension test data. Reasoning from the sym-
metrical deformation of every RUC in uniform shear, it was
concluded that the slippage can occur when the uniform dis-
tribution of angles is violated, and it is the more probable
the higher the bending rigidity of yarns is.

Later, Sun and Pan [38] also applied the force based
approach to obtain the force-displacement relationship for
the two initial stages of in-plane shear deformation (with-
out and with sliding at yarns intersections) of plain woven
fabrics. The case was considered as the pure shear because
at small shear angles the tensile components of forces own
negligible magnitude. The model required the following
geometric and material properties of yarns to be input:
the spacing between adjacent picks of yarns for warp and
weft directions, the yarn thickness and length, the con-
tact length of yarns, the yarn Young’s modulus, the shear
modulus of the yarn cross-section. The expressions for the
yarns rotational angles were derived from the bending and
torsional moments at any cross-section in the case of non-
sliding. Considering the case of sliding at the contact zone,
the shear force was obtained from the sliding equilibrium
between the external moment due to the shear force and
the frictional moment. Comparison of the obtained shear
force/angle curves, as well as the limits of sliding regions
(in degrees) with the experimental ones showed reason-
able agreement. Satisfactory correlation was also observed
between the predicted average shear modulus, calculated
by the linear interpolation, and the experimental one, how-
ever, with the tendency of the model to stiffen the material
response.

Continuous energy based approach

The proposed in the literature models based on the energy
minimization principle [39–41] differ one from each other
by different definition of the constituent energies compos-
ing the total energy. Consequently, the accuracy of results,
obtained by different models, can be evaluated according to
the included in the analysis energy terms that correspond
to the mesoscopic mechanisms induced by the shear defor-
mation, e.g. the slippage at yarns cross-overs, the yarns
transverse compression, the yarns rotation, and according to
the way the mechanisms are decoupled in the model.

The mechanistic effect of yarns slippage during the shear
deformation in three experimentally identified stages of the
bias extension was investigated by Zhu et al. [40]. In each
of the stages the total energy consisted of several of the
following components: in-plane shear, yarn tension and/or
inter-yarn slippage contribution. The first stage is defined
as the one during which the plain woven fabric owns seven
regions (or three symmetrical to each other zones – see
Sect. 1) with different shear angles; besides there is increas-
ing tension along yarns. Thus the total energy contains the
shear component, obtained in the picture frame test, and
the tension component, which was assumed in this stage
to increase linearly from zero to the value of the slippage
energy that occurs in the second stage. The distinct sepa-
ration of three shear zones is violated in the second stage
because the yarns cannot be further tensioned, and the slip-
page of yarns starts to expand from the middle of the loaded
material area to the top and bottom, as observed in the tests.
Therefore, the slippage energy should be added to the total
energy, and is expressed in terms of lateral compressive
force between yarns [40]. The magnitude of the force was
obtained in a lateral compression test. In the third stage the
shear energy remains constant because there is no further
shear deformation. The slippage energy is identified simi-
larly, but only in the bottom region of the specimen, where
the slippage is localized during this stage.

The method is convenient for the comparative observa-
tion of each mechanism contribution to the bias extension
behavior because it is possible to estimate them decou-
pled: the separate graphs of the shear, tension, and slippage
energies versus displacement were presented. The predicted
total energy was a little lower than the experimental one,
particularly in later stages. It was explained by the linear
assumptions, by the yarn bending along the boundaries of
different regions, and by the non-uniformity of the distribu-
tion of zones of identical shear angle. The inconvenience of
the model is that most of the required input data have to be
obtained from several different experiments.

Later, the same group of authors Zhu et al. [41] employed
the energy based approach to predict the picture frame
shear of plain woven fabrics up to large deformations and
wrinkles apparition. The total in-plane shear energy was
considered as a sum of the energy, dissipated by the rota-
tional friction between yarns cross-overs, the sliding friction
energy relating to the boundaries of the cross-over regions,
and the transverse compression energy. The rotational fric-
tion energy was estimated following Kawabata et al. [42].
The two other components were expressed in terms of trans-
verse compressive force to a yarn segment, identified from
the lateral compression test of yarns. The results showed
significant role of the yarn lateral compression at later shear
stages, and negligible contribution of the rotational fric-
tion energy during all stages. The shear locking (wrinkling)
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criterion was proposed in the form of equality between
the in-plane shear energy and the out-of-plane wrinkling
energy. The latter was defined as the localized bending at the
boundaries between four parts of the woven RUC (Fig. 14),
with the neglect of change in the yarn geometry inside
each of four parts. The predicted locking angle value and
the load-displacement curve showed good agreement with
experiments.

The continuous energy based model was also developed
by Lomov et al. in [39] to predict the shear behavior of
woven fabrics. The model calculated the sheared state of the
fabric RUC, as a function of the shear angle, in the pres-
ence of (pre)tension, as an equilibrium between the internal
energy change and mechanical work A of the applied loads
as follows: M = 2T XY cos γ , A = 1

2Mγ , where T is the
shear force; γ is the shear angle; M is a moment, X and
Y are sizes of the RUC. The shear deformation is coupled
to tensile effects, where yarns tensions (input from the test)
and associated (calculated) transversal forces were assumed
to be constant during shear. The mechanical work was com-
posed of yarns (un)bending, torsion, friction, and vertical
displacement. The yarns lateral compression was addressed
by an additional component, defined from the experimental
compression diagram of the yarn, in transversal forces cal-
culation. The latter took part in the definition of the work of
vertical displacement. For the other work terms the follow-
ing parameters were required to be input from the tests: the
friction coefficient and the bending rigidity, measured on
KES-F (Kawabata Evaluation System for Fabrics). The tor-
sional rigidity of the yarn C was proposed to be estimated in
terms of bending rigidity B and the yarn thickness d1 as fol-
lows: C = B

d1/2 . Consequently, the proposed model allowed
to obtain shear load-displacement curves, and to estimate
the contribution of each mechanism to the shear resistance.
At shear angle 45◦ more than half of the work is spent on
friction, then the smaller contribution is made by torsion
and vertical displacement, the smallest – by bending, which

Fig. 14 Representative unit cell of plain-weave woven fabrics [43]

decreases even more at a shear angle of 60◦. On the contrary,
the impact of friction and vertical displacement increases
with the angle; the torsion gets weaker.

The built shear curves were further used by the same
group of authors for the development of another type
of model, whose principles are described in the next
section.

Empirical approach

Following the work [39], Lomov and Verpoest [44] pro-
posed then a phenomenological model that can be employed
for the prediction of shear resistance of woven fabrics of
different structure, with components having clear mechani-
cal meaning. The suggested empirical relation had the form:
T (γ ) = T0 + T1 tanα γ , where T0 defined the initial finite
shear resistance, caused by the inter-yarn friction, before
any occurrence of the displacement; T1 defined the shear
modulus. For the purpose of finding parameters T0, T1 and
α by fitting, the shear curves from [39] were used. The
parameters were identified by the regression analysis, and
expressed in terms of fabrics lineal density t, looseness
factor s = (p − d1)/d1 (p is the spacing of yarns) and
pretension ε as follows:

ln T0 = b1 + b2 · ln t + b3 · ln s + b4 · ln ε

+b5 · (ln t)2 + b6 · (ln t · ln s)

+b7 · (ln t · ln ε) + b8 · (ln s)2

+b9 · (ln s · ln ε) + b10 · (ln ε)2,

ln T1 = c1 + c2 · ln t + c3 · ln s + c4 · ε

+c5 · (ln t)2 + c6 · (ln t · ln s)

+c7 · (ln t · ε) + c8 · (ln s)2 + c9 · (ln s · ε)

+c10 · ε2. (11)

After fitting, the parameter α showed its independence of
t, s and ε, and was chosen as α = 2. Such parametrization
of the description of shear deformation gives the advantage
of simple building of shear curves based only on the ini-
tial fabric parameters: its lineal density and looseness, and
the pretension. The performed parametric study revealed
the increase of the shear resistance with the decrease of s
and the increase of t and ε, being especially sensitive to
the fabrics pretension ε in picture frame shear. Compared
to the experimental, the constructed curves showed good
agreement up to the locking shear, and less steep form after
locking, explained, firstly, by the influence of the approxi-
mate description of lateral compression in the model in [39],
and thus in Eqs. (11); and, secondly, by the possible increase
of tension on the frame during the test, not accounted
for.

14



FEA continuous

The continuum finite element models represent a large class
of models that describe the shear deformation of fiber mate-
rials. The majority of models were developed for woven
fabrics. A part of them can be related to the mesoscopic
scale [45–50]. In the continuous formulation, the woven
fabric is seen as an anisotropic planar continuum with two
principal material directions (Fig. 15a). Depending on the
formulation of the model within the FEA framework and
the underlying mesoscopic phenomena taken into account,
the model is able or not to address large shear defor-
mations. Besides, different FEA continuous models may
require different additional tests to be performed for the
inverse identification of input parameters for the model.

The developments of the continuum non-orthogonal mo-
del by Xue et al. [28], mentioned in Section “Macroscopic
(whole component) scale ”, were extended to address the
mesoscopic scale as well [45]. The micromechanical model
describing large shear deformation of the woven cell, and
accounting for the yarn compaction during shear, was inte-
grated into the continuum FE shell elements. The yarn
compaction was introduced in the calculation of the stiffness
matrix of the unit cell via the relation for the yarn width w :
w = w0(sin ϑ)αg0/w0 , where w0 is the initial yarn width, g0

is the inter-yarn gap, ϑ is the angle between warp and weft
yarns, and α is the empirical coefficient. The uncoupled
shear and tensile properties in the global non-orthogonal Eq.
(3) were defined this time from the micromechanical model,
with input structural and material properties of yarns, not
by experimental matching as in [28]. The comparison of the
total force-displacement dependence of the picture frame
shear deformation with the experimental one showed good
agreement. It was also found that at later stages of defor-
mation the shear stiffness of the material increases with the
increase of the Young’s modulus of the fibers, as well as
with the increase of the fiber packing fraction, and with the
decrease of the inter-yarn gap.

King et al. [46] performed extensive continuous FE anal-
ysis to model macroscopic in-plane deformations of plain
woven fabrics with the incorporated mesostructural state of
yarns deformation. The woven RUCs configuration was def-
ined on the basis of Kawabata’s et al. model [42] (Fig. 15b)
with the addition of truss elements, which remain normal to
the yarns and allow to account for their locking in shear.

With the assumptions of constant fabric thickness and
non-sliding of yarns at the cross-overs, King et al. addressed
eight meso-scale modes: four of them describing linear
elastic resistance to extension and to bending of the two
(warp and weft) yarn families; cross-sectional compres-
sion at cross-overs defined by the non-linear interference
spring (Fig. 15b); locking at cross-overs; linear elastic rel-
ative yarn rotation; and dissipative yarn rotation defined as

a rate-dependent power law. The fabric configuration was
then identified from the macroscopic deformation gradient
by minimizing a conditional elastic energy function, and
the RUC internal forces were calculated. The latter were
divided by the projected areas to obtain continuum macro-
stresses. The needed input yarn geometrical and material
properties were measured in separate tests. The proposed
approach gave good predictions of the shear angle distribu-
tions and load-displacement relations of the bias extension
deformation.

The continuum FE formulation was also used by Lin
et al. [51] to describe large deformations of woven fabrics
subjected to the combined shear and compression loading,
which is poorly covered in the literature. At the same time,
namely a combination of loads, composed of fabric shear
for conforming to the doubly-curved shapes, and compres-
sion due to the tool closure before the injection of matrix, is
encountered during forming of the material to obtain com-
posite parts. To address the non-linear material behavior
in large deformations, the non-linear transverse mechani-

cal law: E33(ε33) = σ33/ε33 = −a(Vf 0/e
ε33 )b+aV b

f 0
ε33

, G23 =
E33

2(1+ν23)
was incorporated in the stiffness matrix with nine

independent constants. E33 is the transverse Young’s modu-
lus; G23 is the transverse-longitudinal shear modulus; Vf 0 is
the initial fiber volume fraction; a and b are fitting the yarn
compression test data parameters. It was found that differ-
ent Vf 0 affected both compressive and pure shear behavior
of fabrics (the analogous to [45] conclusion), making them
dependent on the transverse Young’s modulus. Coupling of
loads showed the need to apply higher shear forces in order
to deform the compacted material to the same degree as
non-compacted.

Some investigations concerning the adequacy of the
mesoscopic continuous FE approaches in modeling yarns
deformation within the material were made by Durville
[52]. With the assumption of the continuity of yarns, the
author calculated Green-Lagrange strain-tensors by the 3D
finite elements with the mesh based on the nodes defined on
fibers. The strong inhomogeneities in strains were observed
in simulations of the equibiaxial tension, for example: the
obtained shear strains meant a rearrangement of fibers in
the center of the yarn; the axial strain was found to be twice
higher on the sides of the yarn than in the center.

Therefore, in order to use the advantages of the con-
tinuous FE approach and to overcome its drawback in the
prediction of large non-linear shear deformations of fibrous
materials, Boisse et al. in [47], Badel et al. in [48–50]
employ the hypoelastic model with the specific objective
derivative, used to update the orientation of the constitutive
tensor, as long as it changes owing to the fiber rotations
within the yarn. In [50] it was shown that the models
based on objective derivatives of Green-Naghdi or Jaumann
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Fig. 15 a Approximation of a fabric as an anisotropic continuum; b geometry model of the woven RUC [46]

describing the average rotation of the continuum do not
give adequate response. The proposed constitutive relation
σ∇ = C : D of the stress rate σ∇ to the strain rate D by

the elastic tensor C is based on the rotation � of the fiber.

Through cumulating in the rotated frame, this results in the
following stress tensor:

σ = � ·
(∫ t

0
�T · (C : D) · �dt

)

· �T (12)

The initial orthotropic axes {k0} along the elements are
redefined to the current physical constitutive axes {kt } as
follows:

kt
i =� · k0

i ; kt
1 = F · k0

1∥
∥
∥F · k0

1

∥
∥
∥
, kt

2 =k0
2−

b2

1 + b1

(
k0

1+kt
1

)
,

(13)

kt
3 = k0

3 − b3

1 + b1

(
k0

1 + kt
1

)
, (14)

where bk = kt
1 · k0

k and bk 	= 1, F is a deformation gra-
dient. The contact between yarns was also included in the
analysis by the master/slave technique with Coulomb fric-
tion. The adequacy of the model was demonstrated by the
good correlation of the shear load-displacement curves for
the woven unit cell to the experimental ones [47, 48, 50].
In [47] an implicit scheme gave good values until the lock-
ing angle. The appeared at this stage convergence problems
were suggested to be solved by using an explicit scheme,
or by the local mesh refinement. In [48], in addition, the
comparison of predictions for two RUC forms was made
in order to correctly address the periodicity and boundary
conditions. In [49] the model was improved by uncoupling
the ”spherical” (though in 2D meaning) and the deviatoric
phenomena in the transversely isotropic behavior of yarns,

the first describing the fiber density changes within the yarn,
the second accounting for cross-section shape changes.
This allowed to obtain the laterally compacted (as a result
of pure shear) yarn cross-sections well-agreed with X-ray
tomography cross-sections shapes [49].

In [50] and later, in [53], the hypoelastic model was
extended to calculate the macroscopic shear deformations of
the fabric in hemispherical forming. Since this macroscopic
approach chronologically originates from the mesoscopic
hypoelastic approach, for the sake of clarity its essence and
predictions, made by it, will be described here, in the section
devoted to the mesoscopic scale. For the situation of this
method in the classification, the reader is referred to Fig. 2.

The principle of the macro-approach is the superposi-
tion within the elementary material volume of two stress
states (sum of tension and shear) for two yarn directions
of woven fabrics, each of which is obtained similarly as
in the meso-approach [50]. This superposition represents
the sum of the transformed stresses calculated in the two
orthogonal rotated frames containing fiber directions, and
expressed then in the Green-Naghdi’s frame [53]. The check
of validity of the approach on the elementary tests of sin-
gle element analyses (simple shear test, tension followed by
the simple shear, and by the rotation) has shown that it is
capable of predicting correctly large strains. In order to per-
form macroscopic forming simulations for woven fabrics,
the approach required as the parameters the elastic tensile
moduli for two yarns directions, the in-plane shear rigidity
(obtained by the inverse method), the friction coefficient,
and the blank holder force. A good correlation with exper-
imental data was observed for the shear angle distributions
and deformed fabric shape for 0◦/90◦ and ±45◦ yarn orien-
tations in the hemispherical forming [50], and in the double
dome benchmark forming [53]. Besides, multilayer fabrics
forming simulations were performed with the satisfactory
convergence [53].
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FEA semi-discrete

Although a number of continuous FE models, with differ-
ent level of complexity and accounting for different factors
of the shear behavior of fibrous reinforcements, were devel-
oped, the alternative to these approaches was suggested
recently in order to avoid the difficulties of continuous mod-
eling of large deformations of highly anisotropic materials.
The suggested semi-discrete FE approach [5, 6, 54, 55] is
close to the discrete approach in the sense that finite ele-
ments are composed of discrete number of constituents –
yarns, unit cells (RUCs) etc., however, it prevails over the
discrete approach thanks to the avoidance of large number
of unknowns. Boisse et al. [5], Zouari et al. [54], Hamila
and Boisse [6, 55], within the framework of semi-discrete
method, demonstrated the importance of addressing the
shear rigidity in the analysis of large deformations of woven
fabrics by expressing its interior virtual work by three terms
in a dynamic equation as follows:

ncell∑

p=1

∫

pl

pT 11pε11(η)dl +
ncell∑

p=1

∫

pl

pT 22pε22(η)dl

+
ncell∑

p=1

pCs
pγ (η) − Wext (η) =

∫

�

ρü · ηdV (15)

∀η/η = 0 on u, where ncell is the number of the unit
woven cells in the domain under consideration �; ε11(η)

and ε22(η) are the virtual axial strains in the warp and weft
directions; γ (η) is the virtual angle between warp and weft

directions; T 11 and T 22 are the axial tensions on the unit
woven cell; Cs is the shear torque; ü is the acceleration of
the point P; ρ is the mass per volume; u is the part of
the boundary with the prescribed virtual displacement field
η; pA means that the quantity A is considered for the cell
number p. The mesoscopic material properties T 11, T 22, Cs

were input in the model either from the elementary tests
[5, 54, 55], or from the 3D computations of the unit woven
cell [5, 6]. Thus the friction between yarns (master/slave
technique in case of 3D cell) as well as transverse yarn
compaction during shear were anyhow accounted for in the
analysis. However, the drawback of inputs from the tests is
that the change in yarns undulations during deformation is
not taken into account in this case [55]. It should be noted
that the semi-discrete approach occupies an intermediate
place between the macro- and meso-scale approaches. Since
in [5, 6, 54, 55] meso-scale properties were incorporated
in the semi-discrete elements and influenced the simulated
results, these works are related here to the predictions made
at the mesoscopic scale.

The peculiarity of the semi-discrete approach is defining
tensile and shear strains as functions of nodal displacements

of each element, accounting for the interpolation of the geo-
metric and kinematic conditions within the element (4-node
[5, 54] or 3-node [6, 55] – see Fig. 16a). Thus the condi-
tion of continuity, i.e. that the yarns at cross-overs do not
slide, is imposed in the approach. The formulation of 3-node
FE, as opposed to 4-node, does not restrict the directions
of components to be aligned with the sides of the ele-
ment providing the advantage for the mesh refinement and
remeshing.

The performed analysis of the forming of one ply and five
plies of fabric over a hemisphere showed good agreement
with experiments. Besides, large deformations in forming
over square box, cubical and circular table showed wrinkles
apparition as in reality only with the shear stiffness included
(Fig. 16c), unlike the zero-shear cases (Fig. 16b).

It should be noted that in continuous and semi-discrete
FEM simulations of fibrous materials the numerical prob-
lem termed intra-ply shear locking (not to be confused
with the physical phenomena of material shearing) may
arise. It was initially identified by Yu X. et al. in 2005
(extended in [56]). The incorrect predicted deformation
profiles as well as the so-called spurious wrinkles can
be observed during woven fabric bias extension simula-
tions and forming simulations by the shell finite elements
[56, 57]. They represent the consequence of the incor-
rect element displacement field and overestimated stiff-
ness, when the intra-ply shear modes of 4-node or 3-node
elements, depending on mesh orientation, are not fully
addressed. On the way to overcome this problem the effec-
tiveness of aligning element boundaries with fiber/yarn
directions at the beginning of simulation was shown in
[56] while simulating 2D bias extension and 3D diaphragm
forming. On the other hand, aligning the mesh restricts
the use of automatic mesh generation, and does not allow
to use multi-layer elements [57]. Therefore, in the case
of unaligned meshes [57] proposed a way out as the
employment of the triangular multi-field membrane ele-
ment, because it owns a semi-quadratic in-plane and a
linear out-of-plane displacement field. The use of selective
reduced integration, implying that only the fiber compo-
nents of the material model are under-integrated, was pro-
posed to help to improve the accuracy of simulations in case
of arbitrary meshes as well.

Non-crimp/stitched materials

Continuous energy based approach

In comparison to the wovens, at mesoscopic scale the shear
behavior of NCF additionally includes intricate stitch-to-
yarn interactions, stitch tension and inter-stitch friction at
loop points [58], which cannot be modeled very accurately
by macroscopic models.
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Fig. 16 a 3-node finite element made of fibrous reinforcement components; b woven fabric draped over a circular table without shear stiffness
and c with shear stiffness [55]

Therefore, Wiggers et al. [58] addressed the stitch effects,
as well as the yarns compaction in their mesoscopic energy-
based model for the tricot-stitch warp-knitted ±45◦ NCF,
however, without accounting for the inter-yarn friction, and
neglecting the interaction between the stitch tension and the
yarn compaction. Thus the application of the model is lim-
ited to low shear angles, i.e. without the variation of fabric
thickness t. Stitch tensile deformations were determined out
of the modified length of the stitch segments c, d and t
(Fig. 17a) expressed by the stitch length c0, stitch spacing
h0 and a shear angle basing on the geometrical reasoning
(Fig. 17b). Other required input parameters were the stitch
modulus, the stitch effective cross-sectional area, and the
fabric size.

The inter-stitch friction was defined by considering the
lateral force at the point of contact as being equal to
the stitch tension. The tow compaction description was
adopted from the one by Cai and Gutowski [59]. Hence
the predicted shear force-angle curves successfully showed
the asymmetric shear behavior of NCF, depending on
the load direction, and also on the stitch length. How-
ever, the curves go to infinity in a steeper way and at
a smaller angle than the ones from the picture frame
test, that was attributed to the t = const assumption
(Fig. 17a).

FEA discrete

Later, the employment of the discrete finite elements
approach allowed Creech and Pickett [18] to address the
shear deformation in draping of the macroscopic NCF parts
(analogically, tricot-stitch warp-knitted ±45◦ NCF), and
accounting for the mesoscopic effects mentioned earlier
(Fig. 18).

A mesoscopic representative cell of the model (Fig. 19)
consisted of two layers, constructed of solid elements to
represent the yarns (tows), and of bar elements to rep-
resent the tricot stitch. Unlike [58], Creech and Pickett
included the stitch-to-yarn interactions (Fig. 18g) in their
analysis by defining the friction forces from the tow pull-
out test. Besides, the inter-tow friction, previously ignored,
was modeled by Coulomb friction coefficients, measured
after being separated into three cases: sliding between tows
of different plies, sliding between tows of the same ply, and
cross-over point sliding (Fig. 18b, c and d respectively).
An assumption was made that the shear deformation until
≈ 30◦ was dominated by stitch effects (Fig. 18e, f), and
after – by the tow compaction (Fig. 18a). The stitch stiffness
was identified by the analytical formula from [58], while the
tow lateral compaction – by the inverse identification from
the picture frame test. Consequently, the simulations of the

Fig. 17 a Tricot-stitch warp-knitted ±45◦ NCF unit cell (left) and its stitch (right); b scheme of the unit stitch before and after shear [58]
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Fig. 18 Mesoscopic deformation mechanisms constituting shear deformation of non-crimp fabric [18]

bias extension gave good agreement between experimental
and predicted force-strain curves and angle distributions, as
well as in yarn slippage zones. An important achievement
was the capability of the model to reproduce the asymmetri-
cal deformation of the NCF during hemispherical forming,
moreover, with high accuracy.

FEA semi-discrete

The developed initially for woven fabrics semi-discrete
approach has been recently employed by Bel et al. [60] for
the prediction of deformations during forming of +90◦/0◦
biaxial warp-knitted NCF. Each of UD fiber layers was
modeled by triangular shell elements whose internal forces
contain the tensile, bending moment and shear moment
(perpendicular to the shell) components. The corresponding
constitutive equations of fiber layers were assumed to be
linear elastic because all non-linearities were supposed to
originate from sliding between stitches and fibers. The input
values of tensile, bending, and shear stiffness were obtained
by the inverse identification. One of the main objectives of
the approach was addressing the inter-ply sliding observed
during non-crimp fabrics forming operations in [60, 61].
The inter-ply sliding implied the distance between the pro-
jection on the mid-surface of the NCF of two points initially
opposed and belonging to different plies. Large sliding was
modeled with the help of bar elements (simply meshed) con-
necting fiber layer shell elements. The anisotropic Coulomb
friction was considered between the bar and the shell ele-
ments, allowing sliding between layers and between layers
and stitches, but only in the fiber direction for the lat-
ter. Sliding in other directions was neglected because the
tows of NCF are supposed to be tightly hold by inter-
stitching. Hence the approach accounts for all listed above

Fig. 19 A representative unit cell of the meso-mechanical model for
the non-crimp fabric [18]

mesoscopic mechanisms contained in the shear deformation
of non-crimp fabrics, except for the frictional inter-stitch
sliding (Fig. 18f). It additionally includes the out-of-plane
bending of fiber layers inherent in preforming.

As a result, the prediction of hemispherical forming
showed close to the experimental observations inter-ply
sliding, almost negligible at the top of the hemisphere, and
reaching the maximum of approximately 14 mm far from
the top (Fig. 20). Observed in both (perpendicular) direc-
tions, sliding is found to be symmetric for each of them
with respect to the top, and different for two directions,
which is attributed to the difference in bending stiffness in
these directions. Therefore, the advantage of the developed
approach is its capacity to adequately predict the defor-
mations of large parts made out of NCF with reasonable
computational time. Another advantage is that the employ-
ment of bar and shell elements does not restrict varying the
mesh size, whatever the fabric unit cell size is. The inconve-
nience of the approach is the necessity to perform additional
tests for the definition of local rigidities.

Microscopic (fiber) scale

The consideration of shear deformations of fibrous materi-
als at microscopic scale is known in the literature partic-
ularly for woven fabrics. The changes of the yarn cross-
section shape associated with shear are caused by micro-
scopic rearrangements of fibers inside the yarns. Besides,
the global shear response of the fabric is influenced by
presence of contacts and friction between fibers at micro-
scale. So modeling at this scale should take into account the
aforementioned phenomena. The predictions, however, are
complexified by the heterogeneous structure of the material
at micro-scale where the repeated structural cells can hardly
be defined, as opposed to meso-scale.

Extended geometrical approach

Hofstee et al. [62] proposed to simulate the shear defor-
mation of woven fabrics by the help of fishnet approach,
described earlier, but replacing the fishnet segments
(assumed to be inextensible sections, representing yarns,
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Fig. 20 Sliding in the two main directions of the square sample for the experiment and the simulation according to the direction a �x; b �y [60]

connected by pivots) with the 3D RUC of typical crimped
pattern (Fig. 21). The yarns, or fiber bundles, in the RUC are
described by the in-plane centerline path, curved horizontal
midplane, and variation of cross-sectional thickness, with
initial values prescribed from the experimental observations
and cross-section photomicrographs. Constant packing and
constant position with respect to each other were assumed
for fibers inside a bundle. Besides, the moderate deflec-
tion angles were assumed between the local and mean fiber
bundle orientation. The RUC shear deformation, which was
considered as a combination of 1) yarns out-of-plane undu-
lation, 2) midplane curvature and 3) midplane twist, was
modeled as a loading imposed by the hinged frame.

The predicted deformed geometries of the plain-weave
balanced and unbalanced fabrics showed the increased yarn
thickness, as similarly observed on the laminate cross-
section photomicrographs. This is a result of the decreased
distance between yarns, the reduction of yarns width, and
consequence of constant volume condition. Good agreement
was observed between the photomicrographs and simu-
lated sheared to 54◦ configurations of balanced fabric, as
well as between the sheared to 61◦ unbalanced fabric and

corresponding photomicrographs. The simulation also
showed good agreement between cross-sections normal
to the mean yarn direction, where twisting was success-
fully captured by the model. The shear prediction of other
types of wovens (twill, satin) is possible with the proposed
approach too.

FEA discrete

The discrete finite elements approach developed for the sim-
ulation of different fibrous materials (Fig. 1) deformation
at microscopic scale by Durville in [63] was also applied
to model shear deformation of woven fabrics [64–66]. The
approach is based on the 3D-beams theory where the cross-
sections of beams are described by three vector fields: one
for the translation of the beam centroid, two others for the
orientation and deformation of the cross-section. This rep-
resents an improvement with respect to the classical beam
models with rigid cross-sections, because the deformed
beams’ trajectories can be simulated without complex for-
mulations for large rotations, typical for the beam models
described by two vector fields. The problem is set as a

Fig. 21 a Extended fishnet with b the 3-D geometry model of its unit cell – sheared configuration [62]
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principle of virtual work, which includes the virtual works
of all beams, and the virtual work of contact-friction interac-
tions between fibers. The virtual work of internal forces for
each fiber is expressed using a total Lagrangian formulation:

W
(i)
int (U, V ) =

∫

�(i)0

T r

(

s(U)
DE

DU
· V

)

dω (16)

where U is the generalized displacement field, V, the cor-
responding virtual field, E is the Green-Lagrange strain
tensor, and s, the second Piola-Kirchhoff stress tensor.

At first, the initial crimped fabric configuration was
defined by simulating the weaving process basing only
on the description of weaving pattern. An important issue
here is the provision of “flexible” boundary conditions,
which while applying global loadings to the end of each
component (edge of the sample or yarn) could allow the
subcomponents (yarns for the edges or fibers for the yarns)
to move and rearrange. It was realized by attaching rigid
bodies to the ends of fibers and yarns and usage of average
binding conditions (on average displacements and average
rotations of subcomponents). The condition on the displace-
ment is expressed so that the displacement of the barycenter
of nodes of subcomponents is the same as the displacement
of the rigid body, with respect to the moving frame attached
to the rigid body. The condition on the average rotation pre-
vents the rotation of the set of subcomponents around three
directions of the rigid body. Consequently, each of these
rigid bodies can be driven either by displacement/rotation,
or by force/moment.

After obtaining the initial configuration of the plain-
weave fabric, two opposite edges of the latter were sub-
jected to opposite horizontal displacements, while dis-
placements in orthogonal directions were left free, as
well as two remaining edges of the fabric. Hereby the

loading/unloading/re-loading cycle, up to the shear angle of
nearly 25◦, was simulated (Fig. 22).

The shape of the loading curve agrees well with the one
obtained in the known benchmark results [11]. The same
non-linearity due to the locking between yarns, and hys-
teresis associated with the friction between fibers (friction
coefficient 0.2) are observed. However, the convergence
problems of the model restrict the maximum attainable
shear angle. Although the “flexible” boundary conditions
bring the model nearer to the reality, they probably need to
be improved, especially at the corners of the sample at the
level of fibers, to reduce convergence issues.

Conclusions

A summary of the existing methodologies for the prediction
of fibrous materials response to the shear loading, inherent
in forming procedures, has been presented. The approaches
have been classified primarily by the scale, at which they
address the shear properties whether of the whole material
part, or taking into account the constituents – yarns and/or
fibers. The classifications according to the fibrous material
architecture being modeled, and according to the theoreti-
cal framework employed, have been proposed as well. The
variety of approaches in this domain, and the absence of the
generally accepted one, is attributed to the intricate struc-
ture of fibrous materials causing their strongly anisotropic
behavior.

Forming of particularly two classes of fibrous materials
is realized primarily by the shear strains: woven and non-
crimp fabrics. Hence the models addressing the specific
shear behavior of each of these classes have been developed.
The shear deformation can be investigated with the help of

Fig. 22 Configuration at the end of the simulation of the shear test (left) and loading/unloading curves (right) for the plain woven fabrics [66]
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the three characterization tests: picture frame, bias exten-
sion, and simple shear. In order to validate the predicted
shear deformation results, the practical realization and sim-
ulation of forming to the hemisphere, as the most widely
used shape, can be performed. Modeling of the simple shear
mode is of particular interest because it is difficult to realize
it experimentally maintaining the necessary boundary con-
ditions. While comparing the predicted picture frame shear
and the one obtained in the test, the pretension of fabrics,
present in the test, should be taken into account. Theoret-
ical prediction of bias extension of woven fabrics should
give as a result typical for wovens distinct zones with the
corresponding strain magnitudes.

For the non-crimp fabrics the approach should be able
to predict its assymetric (as opposed to the majority of
woven fabrics) shear behavior in forming dependent on the
direction of load application. And here the macroscopic
geometrical, including geometrical in combination with the
energy principle, as well as FEA continuous models gave
satisfactory qualitative results. It is found that the assymetry
in the NCF deformation can be diminished by increasing
the blank-holder force, as well as by increasing the fric-
tion effect. The most accurate results are obtained by the
approaches taking into account all the characteristic for
the NCF deformation mechanisms: stitch-to-yarn interac-
tions, stitch tension, and inter-stitch friction at loop points.
Therefore, the models particularly at meso-scale are capa-
ble of doing that: the energy based one, the FEA discrete
and FEA semi-discrete. The first two deformation mecha-
nisms can be omitted, still giving realistic predictions by
the energy based approach, if the initial stages of shear
deformation only are under consideration. FEA discrete and
semi-discrete approaches have been shown to be the most
precise in addressing the shear behavior of NCF up to large
deformations.

There is even larger variety of approaches developed
to predict shear properties of woven fabrics: geometrical,
energy based, force based, empirical, FEA continuous, FEA
discrete, and FEA semi-discrete. Nowadays geometrical
methods are still widely used as a quick design tool in
industry due to its minimal requirements of data input and
specification of the shape. A number of commercial codes,
such as CATIA CPD, PAM-QUIKFORM, FiberSIM, MSC
Laminate Modeller, use them. On the one hand, the advan-
tage of these methods is their simplicity in realization, and
they can give quite adequate results (once the net size is
refined enough) for the initial fabric deformation stages, as
was proved by experiments and sensitivity analysis of the
node location versus the net size. On the other hand, in order
to describe the later stages of deformation, which lead to
the onset of wrinkles (buckling) after a certain shear angle
value is reached, the models require additional information
from experiments, at least the locking angle value as an

input. However, including this parameter in the macroscopic
geometrical or continuous FE model still does not give a
sufficient accuracy in the prediction of the later stages of
shear deformation. It is attributed to the fact that at these
stages the material behavior is greatly determined by its
architecture, i.e. yarn sizes, yarn path, yarn spacing, as well
as by the mechanistic effects, e.g. inter-yarn friction, buck-
ling resistance. These factors prompt to model the material
at mesoscopic scale.

Mesoscopic continuous FE models with the measured
aforementioned mesoscopic parameters, input in the anal-
ysis, give reasonable predictions of the shear behavior of
woven fabrics. The parametric studies have shown that the
shear stiffness is higher if the Young modulus of yarns is
higher, and if the yarn spacing is decreasing. The continu-
ous FE model has also handled the analysis of the combined
shear and compression loads, typical for the shaping proce-
dure, and has shown that preliminarily compacted material
is more difficult to shear than the uncompacted one. The
limitations of the continuous FEA show up in the identifi-
cation of homogenized material parameters, because these
parameters alter when the directions of the yarns change and
lateral contact between the yarns occurs due to large strains.
Employment of the objective derivative following the fibers
in their rotation within the yarns in the hypoelastic contin-
uum FE model has allowed to get rid of these limitations,
and to give good results.

Another efficient alternative to avoid the continuity lim-
itations imposed in the continuous FE models is to employ
the recent semi-discrete FE approach, whose finite elements
are composed of mesoscopic constituents – yarns. In order
to omit computational difficulties of numerical approaches,
the force based or empirical approach, accounting for the
happening at meso-scale phenomena such as yarns lat-
eral compression, inter-yarn friction, can be used for fast
calculations of the shear deformation. The energy-based
approach allows to define the most important mesoscopic
mechanisms that contribute the most to the total energy at
each of the shear deformation stages.

At micro-scale FEA discrete approach successfully mod-
els fabrics and its shear deformation starting from its
constituents that are continuous indeed – fibers, their
contact/friction interaction, up to the whole component
structure. The inconvenience of the approach is that for
the realistic results it demands significant computational
costs.
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Sci Technol 72:1352

32. Ben Boubaker B, Haussy B, Ganghoffer JF (2007) Compos B Eng
38(4):498

33. Potter K (2002) Compos A Appl Sci Manuf 33(1):63
34. ten Thije R, Akkerman R, Huétink J (2007) Comput Methods Appl

Mech Eng 196(33–34):3141
35. Rozant O, Bourban PE, Manson JA (2000) Compos A Appl Sci

Manuf 31(11):1167
36. Page J, Wang J (2000) Compos Sci Technol 60(7):977
37. Page J, Wang J (2002) Finite Elem Anal Des 38(8):755
38. Sun H, Pan N (2005) Compos Struct 67(3):317
39. Lomov S, Truong T, Chi Verpoest I, Peeters T, Roose D, Boisse

P, Gasser A (2003) Int J Form Process 6(3–4):413
40. Zhu B, Yu T, Tao X (2007) Compos A Appl Sci Manuf 38(8):

1821
41. Zhu B, Yu TX, Teng J, Tao XM (2009) J Compos Mater 43(2):125
42. Kawabata S, Niwa M, Kawai H (1973) J Text Inst 64(2):62
43. Naik N, Tiwari S, Kumar R (2003) Compos Sci Technol 63(5):

609
44. Lomov S, Verpoest I (2006) Compos Sci Technol 66(7–8):919
45. Xue P, Cao J, Chen J (2005) Compos Struct 70(1):69
46. King M, Jearanaisilawong P, Socrate S (2005) Int J Solids Struct

42(13):3867
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48. Badel P, Vidal-Sallé E, Boisse P (2007) Comput Mater Sci

40(4):439
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