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Abstract 

The food grain supply chain problem of the Public Distribution System (PDS) of India is 

addressed in this paper to satisfy the demand of the deficit Indian states. The problem involves 

the transportation of bulk food grain by capacitated vehicles from surplus states to deficit states 

through silo storage. A mixed integer non-linear programming (MINLP) model is formulated 

which seeks to minimize the overall cost including bulk food grain shipment, storage, and 

operational cost. The model incorporates the novel vehicle preference constraints along with 

the seasonal procurement, silo storage, vehicle capacity and demand satisfaction restrictions. 

The management of Indian food grain supply chain network is more intricate and difficult issue 

due to many uncertain interventions and its chaotic nature. To tackle the aforementioned 

problem an effective meta-heuristic which based on the strategy of sorting elite ants and 

pheromone trail updating called Improved Max-Min Ant System (IMMAS) is proposed. The 

solutions obtained through IMMAS is validated by implementing the Max-Min Ant System 

(MMAS). A sensitivity analysis has been performed to visualize the effect of model parameters 

on the solution quality. Finally, the statistical analysis is carried out for confirming the 

superiority of the proposed algorithm over the other.    

 

Keywords:  Distribution system, Supply chain management, Inventory, Transportation, Mixed 

integer non-linear programming, Ant colony optimization  

1. Introduction  

India is the second largest food grains (wheat and rice) producer in the world after China. 

Despite this fact, India is still facing the challenge of feeding the high-quality, nutritious and 

safe food to more than one billion peoples in the country (Mukherjee et al. 2013). India is 
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ranked at 80th position out of 104 countries in the Global Hunger Index (GHI) and lagging the 

neighboring country such as Nepal, Sri Lanka and China (Von Grebmer et al. 2015). In India, 

every year around 25-30 percent of agricultural production gets wasted due to the improper 

handling and storage, poor logistics, inadequate storage and lack of transportation 

infrastructure (Sachan et al. 2005). As per the Food and Agriculture Organization (FAO) of the 

United Nations estimation, out of total food produced for human consumption, 32% of the food 

by weight was wasted across the entire food supply chain in 2009, equivalent to around 1.3 

billion tons (FAO, 2011). According to World Bank Report (1999), post-harvest losses in India 

amount to 12 to 16 million metric tons of food grains each year, an amount that the World Bank 

stipulates could feed one-third of India's poor. The monetary value of these losses amounts to 

more than Rs 50,000 crores (7515.689 million US dollars) per year (Singh 2010; Naik and 

Kaushik 2011). The improper transportation planning, untimely deliveries, mismatched 

demand-produce scenario, inadequate infrastructure and highly inefficient supply chain are the 

primarily causes behind this (Maiyar & Thakkar 2017, Parwez 2014). In the past few decades, 

the major concern of developing countries was on the increasing the food production to feed 

the growing population and the advanced agricultural production technologies have helped to 

increase the production, but they have not given the proper attention towards the reduction of 

losses.  

The targeted Public Distribution System (PDS) is the national food security system of India, 

which provides food grains to poor people of the society at a subsidized rate. The procurement, 

storage, movement and distribution to final consumers are the major stages of the food grain 

supply chain. The Food Corporation of India (FCI) is the central nodal agency which handles 

all these activities as shown in Fig. 1. The various states in India are categorized into producing 

and consuming states based on production quantity of food grains. The food grain is procured 

under two scheme, i.e. centralized and decentralized procurement scheme. In a centralized 

system, FCI and several State Government Agencies (SGAs) procure the food grain from the 

farmers in procurement centers, located in different parts of states, at minimum support price 

(MSP). Next, this procured food grain is transported to FCIs central warehouses for storage. 

The Government of India (GOI) makes the annual allocation at a uniform central issue price 

(CIP) to each consuming state and Union territories based on the demand of the state and off-

take in the previous period. The consuming state takes care of the distribution of food grains 

from state depot to the final consumer. Primarily, the interstate movement of food grain from 

producing state to consuming state depot is carried out by rail mode and intrastate movement 
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through road. Under decentralized procurement (DCP), SGAs procures, store and distribute 

food grains to beneficiaries through PDS on behalf of the GOI. 

Presently, FCI is facing numerous major issues and challenges related to food grain storage 

and transportation. FCI yearly transports around 40 to 50 million tons of food grains through 

rail, road and waterways across the country which incurred the average expenditure of 47.2737 

billion (CAG, 2013). The key issues of food grain supply chain include a huge amount of 

transportation and handling cost, underutilization of existing storage facilities, leakages in 

PDS, manpower shortages, vague buffer stock norms, unavailability of a sufficient number of 

vehicles,  manual loading and unloading of gunny bags and lack of modern storage facilities. 

FCI has to maintain the operational and buffer stock of food grains in deficit states for food 

security purpose. Currently, PDS is having a large network of 5.13 lakh Fair Price Shops (FPS) 

in throughout the country which becomes a largest retail system in the world. To handle all 

these real time major issues and challenges of Indian PDS, FCI needs the effective storage and 

movement plan of food grains with time.  

Farmers Procurement Centers Central Pool (FCI)

Deficit States
Fair Price Shops 

(FPS)
Beneficiaries

Procurement at 
MSP

Intrastate 
Transportation

Allocation at CIP

Distribution Sale at CIP

 

Fig. 1. PDS activities 

 

In this paper, we have examined the issue of bulk food grain transportation between 

producing and consuming states along with silo storage considering operational (handling) cost 

inside the silos. Food grain supply chain has been divided into four stages as described follows. 

 1. Intrastate food grain transportation from procurement centers to silos in surplus states. 

 2. Interstate shipment from surplus state silos to deficit state silos.  

3. The grain shipment from deficit state silos up to block level and  

4. The food grain shipment from block level to fair price shops.  
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In this study, we consider major wheat producing and consuming states like Punjab, 

Haryana, Madhya Pradesh, Uttar Pradesh, Rajasthan and Maharashtra, Tamilnadu, Karnataka, 

West Bengal, respectively. 

The food grain transportation and storage problem is complex with below mentioned 

numerous constraints and specificities.  

The FCI has to take the efficient decisions about “from which surplus nodes to which 

surplus state silos and when to transport the food grains” in order to minimize the food grain 

supply chain cost. The operational and inventory holding cost of food grain at the surplus state 

silos, availability of food grain at surplus nodes, silo storage capacity, the demand of particular 

deficit state and availability of different capacitated vehicles are considered.  

The next important goal is to minimize the total numbers of vehicles required for food 

grain transportation. The total time requires for movement of food grains is influenced by the 

different capacitated vehicles because if high capacity vehicles are utilized then it transports 

the food grains in fewer numbers of the trip than low capacitated vehicles. However, in real 

time scenario sufficient numbers of each type of capacitated vehicles may not be available 

during the particular time period. In general, we can say that if high capacitated vehicles are 

given the first priority than low capacitated vehicles, then the cost and time require for 

movement will be minimized. Thus, owing to all these vehicles related issues the novel vehicle 

preference constraints are formulated for shipping the food grain, which has not been addressed 

in most of the previous transportation related literature.  

Two main contributions of this paper are as follows. First, a novel MINLP mathematical 

model is formulated to minimize the food grain supply chain cost in India. It considers 

simultaneously the seasonal procurement, heterogeneous vehicles and their fixed costs, 

inventory and operational costs of food grain, specific vehicle preference constraints, 

capacitated silos, intermodal transportation and a definite planning horizon. Second, we 

propose a variant of MMAS algorithm called IMMAS to solve the MINLP model in a 

reasonable computational time.  

Following this introduction, in section 2 some related works are described in 

perspective of food supply chain transportation problems. Conventional heuristics and 

metaheuristics used as solution approaches are reported. Section 3 describes the problem 

background of the Indian food grain supply chain. Section 4 presents the MINLP mathematical 

formulation including the objective function and constraints. Section 5 describes the proposed 
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IMMAS algorithm for solving the model. Section 6 is devoted to the extensive analysis of the 

model results and discussion. Finally, conclusions are given in section 7 which includes some 

recommendation for future research.       

 

2. Related Work 

The food supply chain transportation problem is not new and many studies have been 

carried out before. For better understanding, the below presentation of the existing results is 

divided into two sub-sections. The first sub-section deals with the food supply chains and other 

inventory transportation-related problems addressed in the literature. The second sub-section 

examines several solution methodologies employed to handle these models.  

2.1 Food supply chains and their models 

A linear integer programming (LIP) model of wheat storage and transportation problem 

in Iran has been solved using the LINGO software and genetic algorithm by Asgari et al. 

(2013). The rail-road flexibility, operational cost, vehicle capacity and availability constraints 

have not been introduced in that study.  

Analytic and simulation models of Canadian wheat supply chain were developed by Ge 

et al. (2015) for identification of effective wheat quality testing strategies to minimize the 

handling cost of wheat supply chain.  

The mathematical model for the crop movement planning from the farm to processing 

plant was developed by Lamsal et al. (2016) by considering the multiple independent farmers 

and no storage at farms. Three types of crops were considered in this paper, i.e. sugar canes, 

sugar beets, and vegetables.  

The strategic vehicle routing problem of dairy industries of the Canada has been solved 

by the two-stage technique which depends on the adaptive large neighborhood search (ALNS) 

(Masson et al. 2015).  

In the perspective of food grain supply chain, Mogale et al. (2017) examined the two 

stage food grain transportation problem and solved the formulated model using Hybrid 

chemical reaction optimization with tabu search algorithm. The focus of the paper was 

restricted to minimization of transportation, storage and handling costs. Furthermore, Maiyar 

and Thakkar (2017) developed the cost-effective model in the context of Indian food grain 

supply chain by considering rail-road flexibility option. However, they have not focused on the 
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inventory holding cost, allocation decision, and vehicle preference constraints. In this paper, 

we additionally incorporate intermodal transportation, vehicle capacity, and novel vehicle 

preference constraints to minimize the total numbers of vehicles required for food grain 

transportation. In order to determine the travel time, variable cost and rail network capacity, 

Hyland, Mahmassani and Mjahed (2016) formulated there models of domestic grain 

transportation including trucking, elevator storage, and rail shipment, respectively. A 

mathematical model with the objective function of minimization of infrastructure investment 

and economic cost was developed for reduction of post-harvest losses (Nourbakhsh et al. 2016).     

In order to deliver the food just in time and with least delivery cost inclusive of holding 

and transportation cost, Agustina et al. (2014) studied the cross docking operations of food 

grain supply chain. The operational planning and integrated tactical model for the production 

and distribution of perishable agricultural products (Bell peppers and tomatoes) have been 

investigated by Ahumada and Villalobos (2011a) and (2011b) respectively.  

Finally, Soto-Silva et al. (2015) revised the current state of the art of literature in detail 

for operation research models used in the fresh fruit supply chain. Their main focus was on 

planning models for fruit supply chain and classification of literature by different criteria. 

Ahumada and Villalobos (2009) have done the comprehensive review of successfully 

implemented planning models in production and distribution of agri-food supply chain.  

2.2 Solution methods 

The use of metaheuristics for solving the computationally complex NP-hard 

optimization problems is significantly growing because of its effectiveness of getting the near 

optimal solutions in a reasonable time (Hauser and Chung 2006; Bachlaus et al. 2009; 

Borisovsky et al. 2009; Pal et al. 2011; Essafi et al. 2012; Lee 2017).  

Stützle, and Hoos (2000) presented the Max-Min Ant System (MMAS) algorithm 

which was a variant of ant system and successfully applied to travelling salesmen as well as 

quadratic assignment problems. Recently, Tang et al. (2014) have developed a novel beam 

search with Max-Min ant system algorithm called BEAM MMAS for solving the weighted 

vehicle routing problem (WVRP).  The novel WVRP model with variable weight into the 

routing has been considered for determining the total cost. Furthermore, a Beam-ACO 

algorithm was developed by hybridizing the solution construction mechanism of ACO with 

beam search and validated using the well-known open shop scheduling (OSS) benchmark 

instances (Blum 2005).  
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A two-stage supply chain distribution network problem with a fixed charge for a 

transportation route has been examined by the Panicker et al. (2013) and proposed an ACO 

based heuristic for solving the problem. The Frito lay’s outbound supply chain was studied by 

Çetinkaya et al. (2009) and developed an integrated model considering inventory and 

transportation decisions. The suggested mixed integer programming (MIP) model was solved 

by an iterative solution approach by decomposing the problem into inventory and routing 

components.  

Genetic algorithms or genetic algorithm based heuristics are widely used for solving 

two-stage fixed charge transportation and multi-period fixed charge transportation problems 

(Jawahar and Balaji 2009; Jawahar and Balaji 2012; Hajiaghaei-Keshteli, Molla-Alizadeh-

Zavardehi, and Tavakkoli-Moghaddam 2010; Antony Arokia Durai Raj and Rajendran 2012). 

A non-linear fixed charge transportation problem has been extensively addressed by the Xie 

and Jia (2012). The proposed MIP model was solved with a minimum cost flow based genetic 

algorithm. Bilgen and Ozkarahan (2007) addressed a bulk grain bending and shipping problem 

of wheat supply chain and formulated a MIP model which has been solved with the ILOG 

CPLEX software. A new discrete event simulation tool has been proposed by Van der Vorst et 

al. (2009) for a food supply chain redesign problem to integrate the logistics, sustainability, 

and food quality analysis decisions. 

Pitakaso et al. (2007) addressed an unconstrained multi-level lot-sizing problem and 

presented an ant-based algorithm for solving the proposed MIP model. A three-tier multi-

objective model with a cost function, time function and delay punishment function of a supply 

chain scheduling problem with networked manufacturing has been developed by Tang, Jing 

and He (2013) and solved using an Improved ant colony optimization (IM-ACO) algorithm. 

To avoid the premature convergence and increase the search speed, Ding et al. (2012) proposed 

a hybrid ant colony optimization (HACO) algorithm and applied it to solve a vehicle routing 

problem with time windows. Moreover, Yu, Yang, and Yao (2009) proposed an improved ant 

colony optimization (IACO) with ant weight strategy and mutation operation for solving a 

vehicle routing problem. Dorigo and Stützle (2009) gave an overview of ACO and its 

application to NP-hard problems along with recent developments in ACO. Liu et al. (2012) 

addressed a product disassembly sequence planning problem which is a NP-hard combinatorial 

problem and used an improved max-min ant system based algorithm to solve it.   
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Recently, Wari and Zhu (2016) have reviewed and described the extensive applications 

of metaheuristic methods in the food industry comprising of modelling approaches, parameters 

tuning and determination of near optimal solutions. The transportation cost minimization 

problem of cross-docking network has been addressed by Musa, Arnaout and Jung (2010) using 

novel ACO algorithm. They have not considered the heterogeneous vehicles and their fixed 

costs, multi-period, inventory and operational cost into the integer programming model. In 

addition, many authors have employed the different variants of ACO for solving the various 

combinatorial optimization problems including integrated scheduling of production and 

distribution, shortest loop design and multi-floor discrete layout (Cheng, Leung and Li 2015; 

Eshghi and Kazemi 2006; Izadinia and Eshghi 2016). 

However, research in the area of agricultural supply chain management is mainly 

targeted on perishable foods like fruits and vegetables, sugarcanes, sustainability aspects and 

milk transportation problems. There is scarce literature available on food grains supply chain 

optimization problems. The most of the authors have not extensively addressed all the practical 

aspects of the problems like vehicle capacity constraints, intermodal transportation, fixed cost 

of vehicles, and multi-period scenario. In our problem, steel silos are used for storage of bulk 

food grains which can minimize the gunny bags cost, loading and unloading time, manpower 

shortage problem and increases the life of food grains. Moreover, in this research work, the 

operational cost of food grains inside the surplus state silos is considered because of the 

automation of silo operations. The crucial practical aspects of the food grain supply chain 

problem are captured with the novel vehicle (trucks and rakes) preference constraints.  

 

3. Problem description 

The considered multi-period bulk food grains shipment and storage problem of the 

Indian food grain supply chain is discussed in this section. As explained earlier, procurement 

of food grains from the farmers at MSP is done at procurement centers located at different parts 

of the producing states during Rabi market season (April to June) by FCI and state government 

agencies. The transportation of food grains in the bulk form from the procurement centers to 

nearby silos is carried out by trucks and tractors. At the silo level, bulk food grains are moved 

through the belt conveyors and before storing it goes through sampling, cleaning and automatic 

weighing machine, etc. The distribution conveyor shipped the food grains to the receiving silo 

bins, long storage bins, and shipping bins according to the requirement. Here, operational cost 

is incurred because of the movement of food grains from the beginning point to silo bins and 
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from silo bins to loading into the rakes and trucks. The next stage is the interstate shipment of 

food grains from surplus states to deficit states on the basis of the allocation made by GOI to 

each particular states and union territories. Due to the long distances between the two states, a 

large volume of food grains and less transportation cost, rail mode is generally preferred for 

interstate shipments. Additionally, maintaining an optimal inventory into the surplus state silos 

for reducing the inventory holding cost is also a crucial aspect of the problem.  

There are various restrictions associated with bulk food grain shipment and storage 

problems such as seasonal procurement, limited silo storage capacity and a limited number of 

different capacitated vehicles in planning time horizon, demand, fixed cost of vehicles and 

available mode of transportations, etc.  

In this paper, we have focused on only two stages of the food grain supply chain which 

include the shipment between procurement centers to surplus states silos and from surplus 

states silos to deficit states silos. The overall depiction of this problem is as shown in Fig. 2. 

The main objective of this paper is to minimize the total cost of bulk food grain shipment from 

surplus states to deficit states along with the operational and inventory holding cost in surplus 

state silos in a multi-period environment.  

Surplus Node 1

Surplus Node 2

Surplus Node 3

Surplus Node M

Surplus State 
Silo 1

 Surplus State 
Silo 2

Surplus State 
Silo S

Intrastate transportation Interstate transportation

Deficit State silo 1

Deficit State silo 2

Deficit State silo 3

Deficit State silo N

 

Fig. 2. Two stage transportation network  

 

4. Mathematical model  
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In this section, we present a Mixed Integer Nonlinear Program (MINLP) model for the bulk 

food grain shipment and storage. The objective is to obtain a time dependent shipment and 

storage plan with minimized objective function value.  

First of all, the assumptions, parameters, and decision variables of the model are defined. 

Then, the objective function and constraints used to solve the problem along with explanation 

are given.  

Assumptions: 

The following assumptions are considered while developing the model.  

1) The clusters of procurement centers are represented by the various surplus state nodes.   

2) Procurement at surplus nodes and demand of deficit states silos are deterministic in 

nature and well known with little variation. In this paper, we have not considered the 

stochastic environment. The GOI keep the records of all the people or different families 

in the particular states and their monthly allocation is also known and fixed, therefore 

demand is taken as a deterministic parameter.  

3) At each surplus node and silos, finite numbers of capacitated vehicles are available in 

each time period. Generally, FCI uses the three different capacitated trucks and rakes 

for intra-state transportation and interstate transportation, respectively, and their 

availability is also limited in each time period. 

4) The variable shipment cost is considered with the travelled distances among locations.  

5) The procured food grain quantity is adequate to fulfill the demand of each deficit state 

silos in each time period therefore, backlog and shortages are not considered here.  

 

Notations: 

Index sets: 

T  Set of time periods ( )1,2,...., ,t T=  where T  being the upper limit on number 

of time periods 

 M  Set of surplus nodes ( )1, 2,...., ,m M=  where  M being the upper limit on 

number of surplus nodes 

S  Set of surplus state silos ( )1, 2,...., ,s S=  where  S being the upper limit on 

number of surplus state silos  
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N  Set of deficit state silos ( )1, 2,...., ,n N=  where  N being the upper limit on 

number of deficit state silos 

P  Set of trucks ( )1, 2,...., ,p P=  where  P being the upper limit on types of trucks 

R  Set of rakes ( )1, 2,...., ,r R= where  R being the upper limit on types of rakes 

Vehicle-related parameters: 

 
p

  Capacity of trucks of type p where p P  

r  Capacity of rakes of type  r where r R   

t

pm
Q  Number of p type trucks available at node m  in time period t  where 

, ,m M p P t T    

t

rs
A  Number of  r type rakes available at surplus state silo s  in time period t  

where , ,r R s S t T    

Cost and distance parameters: 

msc  Unit shipment cost (road transportation) per km from surplus node m  to surplus 

state silo s  where ,m M s S          

snc  Unit shipment cost (rail transportation) per km from surplus state silo s  to 

deficit state silo  n  where ,s S n N      

msd   Distance from surplus node m  to surplus state silo s  where ,m M s S      

snd   Distance from surplus state silo s  to deficit state silo  n  where ,s S n N   

p

msf  Fixed transportation cost on route ( ),m s  for truck type p where  

, ,m M s S p P         

r

snf  Fixed transportation cost on route ( ),s n for rake type r  where

, ,s S n N q Q    

sb  Inventory carrying cost per Metric Tonne (MT) per unit time in surplus state 

silo s  where s S  

s  Operational cost per MT at surplus state silo s  where s S  

Procurement, capacity and demand parameters: 
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t

mV  Food grain quantity available at surplus node m  in period t  where 

 and s S t T            

sH  Capacity of surplus state silo s  where s S  

t

nD  Demand of deficit state silo n  in period t  where  and n N t T   

Decision variables:  

Binary variables  

t

msJ  
1    if surplus node  is assigned to surplus state silo  in period ;

0   otherwise

m s t



  

t

snL  
1    if surplus state silo  is assigned to deficit state silo  in period ;

0   otherwise

s n t



     

t

pmg   
1    if all  type trucks at surplus node  are loaded/full in period ;

0   otherwise.

p m t



 

t

rsh  
1     if all  type rakes of surplus state silo  are loaded/full in period ;

0    otherwise

r s t



 

 

Continuous variables:  

t

msw  The food grain quantity in MT shipped through road from surplus node m  to 

surplus state silo s  in time period t  where , ,m M s S t T    

t

snv  The food grain quantity in MT shipped through rail from surplus state silo s  to 

deficit state silo  n  in time period t  where , ,s S n N t T    

t

sE  Food grain quantity available in surplus state silo s  at time t  where

,s S t T   

 

Integer variables 

pt

msk  Number of p  type trucks used for food grain transportation from surplus 

node m  to surplus silo s  in time period t  where
, ,  and m M s S p P t T     

rt

snq  Number of r type rakes used for food grain transportation from surplus state 

silo s  to deficit state silo  n   in time period t  where 
, ,  and s S n N q Q t T     
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Objective function: 

Minimize  

( ) ( ) ( ) ( )

( )
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

     

M S P T S N R T
p pt t t r rt t t

ms ms ms ms ms ms sn sn sn sn sn sn

m s p t s n r t

T M S S N S T
t t t

ms sn s s s

t m s s n s t

f k c d w J f q c d v L

w v b E

= = = = = = = =

= = = = = = =
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 

 

   
 

The objective function minimizes the overall total cost required for transporting the bulk food 

grain from a set of surplus nodes to a set of surplus state silos through road, from a set of surplus 

state silos to a set of deficit state silos through rail, the operational cost inside the surplus state 

silos and inventory holding cost at surplus state silos.  

Subject to  

1

S
t t t

ms ms m

s

w J V
=

     ,m t   (1) 

1

N
t t t

sn sn s

n

v L E
=

     ,s t   (2) 

Constraint (1) limits the quantity of food grain shipped from surplus node to surplus state silo, 

to maximum quantity of food grain available at the surplus node during each time period.  

Constraint (2) restricts the quantity of food grain shipped from surplus state silo to deficit state 

silo, to maximum available inventory at given surplus state silo in given time period.  

1

S
t t t

sn sn n

s

v L D
=

=      ,n t   (3) 

Constraint (3) ensures that total quantities shipped from surplus state silo to deficit state silo 

through rail must be equal to the demand of the given deficit state silo.     

1

1

M
t t t

s ms ms s

m

E w J H
−

=

+                 ,s t      (4) 

Constraint (4) is a capacity constraint on surplus state silo which states that sum of inventory 

available and quantity of food grains arrived cannot increase the capacity of the silo in any 

period for all the silos. 
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1

1 1

M N
t t t t t t

s ms ms sn sn s

m n

E w J v L E
−

= =

+ − =           ,s t   (5) 

Constraint (5) is an inventory balancing constraint represents that total inventory at the end of 

this period is the sum of quantities received in the current period, leftover inventory from the 

previous period, minus quantities transferred to deficit state silos. 

0 0t

sE
= =        ,s t   (6)  

Constraint (6) specifies inventory in time period t = 0 is set to zero 

1

P
t t pt

ms ms ms p

p

w J k 
=

         , ,m s t    (7) 

1

S
pt t

ms pm

s

k Q
=

          , ,m p t    (8) 

Constraint (7) describes the trucks capacity constraint. Constraint (8) limits the number of 

trucks used on the route ( ),m s , to maximum trucks available at the surplus node during each 

time period.  

1

R
t t rt

sn sn sn r

r

v L q 
=

              , ,s n t                          (9) 

 
1

N
rt t

sn rs

n

q A
=

          , ,s r t        (10) 

Constraint (9) limits the maximum quantity that is being transferred from surplus state silo s to 

deficit state silo n to maximum capacity of all the rakes being used in that period from s to n. 

Constraint (10) restricts the number of rakes used on the route ( ),s n , to maximum rakes 

available at surplus state silo during each time period. 

Trucks preference constraints: 

3 2 1

t t t

p m p m p mg g g      , ,m p t                (11) 

1

1 1 1
1

S
p tt t t

p m p m ms p m

s

g Q k Q
=

     , ,m p t                

(12) 2

2 2 2 1
1

S
p tt t t t

p m p m ms p m p m

s

g Q k Q g
=

     , ,m p t                
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(13) 
3

3 3 3 2
1

S
p tt t t t

p m p m ms p m p m

s

g Q k Q g
=

     , ,m p t                

(14) 

Constraints (11)-(14) defines the trucks preference constraints. In this paper, we considered 

three types of different capacitated trucks. These constraints ensure that high-capacity trucks 

should fill first in order to minimize the cost and time for movement of food grains.   

Rakes preference constraints: 

3 2 1

t t t

r s r s r sh h h     , ,s r t                     

(15) 

1

1 1 1
1

N
r tt t t

r s r s sn r s

n

h A q A
=

    , ,s r t                      

(16) 

2

2 2 2 1
1

N
r tt t t t

r s r s sn r s r s

n

h A q A h
=

    , ,s r t                             

(17) 3

3 3 3 2
1

N
r tt t t t

r s r s sn r s r s

n

h A q A h
=

    , ,s r t      

            (18) 

Similarly, the priority for filling of the three different capacitated rakes is depicted by the 

constraints (15)-(18). 

 , , , 0,1t t t t

ms sn pm rsJ L g h =     , , , , ,m s n p r t                                    (19) 

   , , 0 t t t

ms sn s
w v E       , , ,m s n t                                       (20) 

 ,   pt rt

ms sn
k q Z                       , , , , ,m s n p r t                            (21) 

Constraint (19), (20) and (21) are domain constraints.  

The fixed costs presents in the objective function create discontinuities (nonlinearity) therefore 

the problem becomes much more difficult to solve. Our problem is a variant of FCTP and 

FCTPs are known to be NP-hard (Jawahar and Balaji 2009; Jawahar and Balaji 2012; Panicker 

et al. 2013; Antony Arokia Durai Raj and Rajendran 2012). The complexity of our problem is 

even increasing because of inclusion of time-dependent inventories, capacitated vehicles and 

operational cost. These types of problems are very difficult and hard to solve using the exact 

algorithms because as the problem size increases the computational effort needed to find the 
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best solutions grows exponentially. Any optimization algorithm cannot solve them in 

reasonable computational time or obtained solution may not be very high quality. The 

conventional technique-based commercial software are incapable to solve the models with non-

linear and discrete decision variables (Yu et al. 2017). Thus, heuristic algorithms which can 

provide the near optimal solutions in a relatively short computation time are adopted by many 

authors to tackle the NP hard problems (Dorigo and Stützle 2009; Ding et al. 2012; Pratap et 

al. 2017). 

The ant colony optimisation (ACO) has been successfully used to solve combinatorial 

problems such as the Traveling Salesman Problem, Quadratic Assembly and Vehicle Routing 

(Dorigo and Stützle 2009), FCTP (Xie and Jia 2012), job-shop scheduling (Chang et al. 2008) 

and the sequencing problems (Zhu and Zhang 2011). Therefore, the Improved Max-Min Ant 

System (IMMAS) algorithm is used to solve the model and its detail description is given in the 

next section. 

5. Improved Max-Min Ant System (IMMAS) 

ACO is a population-based metaheuristic which is inspired from the natural behavior of 

ants for finding the shortest route between the nests (colony) to the food source. While 

travelling from the nest to the food source ants deposits the chemical substance called 

pheromone. They use the stigmergic communication through the pheromones trails. With the 

time progress, the deposited pheromones on the chosen path evaporate. The evaporation rate is 

high on a longer path than the shorter path, therefore more pheromones will be condensed on 

shorter routes than a longer route. Therefore, more number of ants will follow the shorter path 

compared to the longer path. Initially, we deposit the small amount of pheromones on each 

edge of the graph. Next, ants travel from current nodes to another node on the basis of the rule 

that specified the preference of possible nodes. The probability of choosing the next node 

mainly depends on the pheromone intensity ( ) and problem dependent heuristic information

( ) . Furthermore, after all ants completed their tour from the nest to food source pheromones 

will be updated locally and globally on the basis of the solution obtained through the tour (cost 

value) and evaporation rate ( ) . The performance of an ACO is depended on the different 

parameters such as a number of ants, greedy heuristic to determine the visibility, evaporation 

rate and the importance of pheromones versus visibility.  
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 In the present situation, different variants of the basic ant system are developed by 

several researchers for improving the performance of the ant system such as Elitist strategy, 

Ant Colony System (ACS), rank-based Ant System (AS rank), MAX–MIN Ant System 

(MMAS) and Population based ACO (Stützle and Hoos 2000; Guntsch and Middendorf 2002; 

Dorigo and Stützle 2009;).  Along with these variants, many other authors have hybridized or 

improved the original ACO algorithm by hybridizing the solution construction mechanism and 

using the various strategies or new operators (Tang et al. 2014; Cheng, Leung and Li 2015; 

Izadinia and Eshghi 2016). For example, a stronger exploitation of the best solution found in 

the search space can improve the performance of the algorithm.  

In this paper, we have modified the MMAS variant of ACO based on the strategy of sorting 

elite ants and pheromone trail updating to improve the performance of the algorithm. MMAS 

avoids the premature convergence of the search by restricting the pheromone trail between the 

upper and lower bounds. The MMAS differs from the ant system in three key features:  

i) The strong elitist strategy is used for updating the pheromones. Therein, only the best solution 

obtained after each iteration or global best solution is allowed to update the pheromones trails.  

ii) The pheromones trails will be updated on each solution component in the interval of 

 ,Min Max   to avoid the stagnation of the search space.  

iii) In order to achieve the higher exploration by the algorithm, the pheromones trails will be 

initialised to  Max at the start of the algorithm (Stützle, and Hoos 2000).  Initially, we will give 

all the problem specific information i.e. input parameters value required for solving the 

developed MINLP model.  

Figure 3 shows the steps used along with an algorithm to find out the optimal solution. In next 

section, each step represented in the Fig. 3 is explained in detail along with the formulations 

used. 
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Fig. 3. Algorithm procedure 
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5.1 Initialize Pheromone 

Initially, pheromones are set to some arbitrarily high value so that after first iteration 

pheromone trails are forced to take a value in limits set by us. This type of initialization leads 

to a greater exploration of the solution space. 

5.2  Determination of Probability of Selecting a Route 

The probability for selecting a surplus state silo, which further determines the route of the 

solution is calculated using the given formula:  

   
   

.
 

.

msnt msnt

msnt

msnt msnt

s S

p

 

 

 

 


=
  

This is the probability for transporting the food grains The aim of this study was to determine 

m to deficit state silo n through surplus state silo s by an ant and it updated after every iteration. 

In numerator the first term represents the pheromone accumulated, it is raised to the power of 

 which signifies the importance given to pheromone trail.  

Where  is a parameter of the algorithm which has to be tuned such that the algorithm 

performs efficiently. The second term indicates heuristic information which is available locally.  

In our problem, we used a combination of shipment costs and distances. Given below is the 

formulae used to determine   on route m, s and n during iteration t. 

[1 ( )] [1 ( )]msnt ms ms sn snC d C d =  +   

Here,   is a parameter similar to  which signifies the importance given to local heuristic 

information. 

5.3  Solution Generation 

Here, an ant represents a complete solution which is found out by first selecting a surplus state 

silo for each surplus node and deficit state silo selected randomly during each time interval. A 

matrix H:     m n t   is generated using the probability function explained in above section 

for each iteration. The generated matrix is to be populated up to the maximum number of 

surplus state silos (s=1, 2, 3….S). 

 Let us assume that for simple sample case we have three surplus nodes (m=3), three 

deficit state silos (n=3), two surplus state silos (s=2) and one time period (t=1).  In order to fill 
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the cell entry in the first column and first row in the decision matrix H, the probabilities for 

shipping the load from m=1 to n=1 through the s=1 and 2 in time period t=1 is to be evaluated 

using the probability function. After calculating probabilities of selecting s=1 or s=2, the 

cumulative density function (CDF) is generated out from these two probability values. Next, a 

value is selected as follows. Suppose 0.3 and 0.7 are the probabilities for s=1 and 2 respectively. 

This indicates that surplus state silo two (s=2) is more likely to be selected for shipping the 

food grains. The corresponding CDF values are 0.3 and 1.0 (0.3+0.7). Thus, we generate a 

random number between 0 and 1. If the generated random number is 0.6, for example, then we 

will choose the surplus state silo 2 (s=2) because that generated random number (0.6) value 

lies in the range between 0.3 and 1. To fill the value in the other cell of the matrix, we simply 

repeat the same procedure. The matrix H is described as follows for this example. 

 

1 1 2

2 1 2

1 2 1

H

 
 =  
  

   

This matrix shows that the food grains from m=1 to n=1, m=1 to n=2, m=2 to n=2, m=3 to n=1 

and m=3 to n=3 are to be transported to deficit state silos through the surplus state silo one 

(s=1), whereas the remaining nodes use the surplus state silo 2 for shipping the food grains. 

Once nodes are assigned, quantities of food grain to be transferred is calculated. A greedy 

optimization technique is used to find out the quantities to be shipped. A lowest cost route is 

selected in H matrix as the probability of such a route being selected would be high due to large 

pheromone concentration. To minimize the cost, maximum quantity should be shipped from 

the route with minimum cost. Quantities to be shipped is further divided. First, we consider 

quantities to be shipped from m to s, then we consider quantities to be shipped from s to n for 

time periods t=1 to T. Maximum quantity to be shipped from m to s is calculated based on 

three limiting constraints: 

i) quantity available at node m in time period t 

ii) maximum capacity of different trucks available in time period t at node m 

iii) difference between maximum possible inventory and current inventory at selected 

surplus state silo at time period t 



21 

 

Minimum value obtained from the above three values is the maximum quantity that can be 

shipped without violating any constraints. Now, we calculate the quantities to be shipped from 

s to n. The maximum quantity that can be shipped is decided taking into account three variables: 

i) Inventory available at s in time period t 

ii) Maximum capacity of different rakes available in time period t at surplus state silo 

s 

iii) Remaining demand to be fulfilled at deficit state silo n 

Here quantity to be shipped and updated values of the variables are decided in exactly same 

way as done in the case of m to s. Once the route of ant and quantity of food grains to be carried 

through each route is decided, we have the values of all the decision variables. So, the total 

cost for each ant is found out using the objective function. 

5.4  Pheromone Trail Updating 

After all ants generate a solution and one iteration is completed, pheromones on each path are 

updated. MMAS follows an elitist approach, and solutions are updated only when a better 

solution is generated, i.e. a solution having a lower cost than that of the global best solution. 

Flowchart of the algorithm used to update pheromone structure in case of MMAS is shown in 

Fig. 4. 
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 Fig. 4. Pheromone Updating Flowchart using MMAS 

 

To improve the solution quality and search speed, MMAS has been modified using the strategy 

of sorting elite ants ( )  in ascending order and updating the top best solutions. The main 

difference between MMAS and IMMAS is the solution update methodology. In MMAS if a 

current best solution is better than the global best solution then only the best solution (best ant) 

updates the pheromone structure whereas in IMMAS first all current solutions are sorted in 

ascending order then instead of only best solution updating pheromone structure, top n 

solutions (elite ants) update pheromone structure where 1 ( ) number of antsn   . The number 

of elite ants in the algorithm is denoted by  . The pheromone update rule used here is as 

shown below: 



23 

 

 ( ) ( ) ( )1 2 ....L t L t L t
     

1

( 1) (1 ) ( ) ( ),r

msnt msnt msnt

r

t t t


   
=

+ = − +   

Where, 

1 ( )   if route ( , , ) is used by 

 ( )               ant  in iteration 

0            otherwise

r

r

msnt

L t m s n

t r t

 = 



   

Therein, ( )r
L t  is the solution cost of rth ant in tth iteration. 

The flowchart and procedure of IMMAS are depicted in Figs. 5 and 6 respectively.  
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Fig. 5. Pheromone Updating Flowchart using IMMAS 
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Fig. 6. Procedure of the IMMAS 

 

6. Computational Results and Discussions 

In this section, various problem instances, parameter tuning of the algorithm and results of 

the several computational experiments are described. The three problem categories i.e., small, 

medium and large-scale, each one with 10 instances (total 30 instances) with increasing 

complexity are considered to extensively investigate the efficiency of the developed 

mathematical model. This categorization has been done considering the number of surplus 
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nodes, surplus state silos, deficit state silos and time periods. The small scale problem category 

comprises of 3-10 surplus nodes, 1-5 surplus state silos, 1-10 deficit state silos and 2-4 time 

periods. The description of the other two problem categories along with small scale category 

are given in Table 1. The data require for solving mathematical model has been taken from 

several reliable secondary sources such as PDS Portal of India, Ministry of Consumer Affairs, 

Food and Public Distribution (http://pdsportal.nic.in/main.aspx), CAG 2013 report, Report of 

the high-level committee on reorienting the role and restructuring of FCI and PDS annual 

reports (Functioning of the PDS, an Analytical report, 2013).  

 
Table 1 Description of problem instances 

 

Category 
Surplus nodes  

(I) 
Surplus state silos  

(J) 
Deficit state silos  

(K) 
Time periods 

(T) 
Small- scale [3-10] [1-5] [1-10] [2-4] 

Medium-scale [11-20] [6-10] [11-20] [5-7] 
Large-scale [21-30] [11-15] [21-30] [8-10] 

 

 

Additionally, for improving the performance of the algorithm different control parameters i.e. 

,  ,  ,   and m      are set up after carrying out the parameter tuning, and the tuned parameters 

values are shown in Table 2. The proposed algorithms are coded in MATLAB R2014a. 

Furthermore, all the experiments are executed on the workstation of 8 GB RAM and Intel Core 

i5 with 2.90 GH processor. The termination criteria of IMMAS and MMAS algorithms are set 

as the maximum iteration of 100 in each run.  

Table 2 Table depicting the tuned parameters values for all the problem instances 
 

Parameter Values 
Number of ants (m) 50 

Pheromone Intensity ( )  1.5 

Heuristic Information ( )  3 

Evaporation Rate ( )  0.7 

Initial deposited  pheromones 
Maximum number of iterations 

0.5 
100 

Number of elite ants ( )  15 

 

All the problem instances are solved using IMMAS and results are validated by comparing 

with MMAS algorithm. The results of the 10 each problem instances of three categories along 
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with the number of variables and constraints, near optimal solutions (total cost) and 

computational time are summarized in Table 3, 4 and 5, respectively. Moreover, the problem  

complexity can be observed from the total number of variables and constraints presents in each 

one of the instances. The total costs obtained in each instance of three categories are the average 

of 30 independent runs. It was observed from these tables that for each instance of each 

category the total costs obtained through IMMAS are substantially lower than the MMAS. In 

addition, the IMMAS provide superior performance for all the considered instances in a 

reasonable computational time.    

 Table 3 Total cost obtained through IMMAS and MMAS for small-scale problem category 

 

Table 4 Total cost obtained through IMMAS and MMAS for medium-scale problem 
category 

 

Problem 
No 

Surplus 
node 

Surplus 
state 
silo 

Deficit 
state 
silo 

Time 
period 

Number 
of 

variables 

Number 
of 

constraints 

IMMAS MMAS 

TC CT (s) TC CT (s) 

1 11 6 12 5 3140 64690 115,043,231 137.585 125,320,550 161.777 

2 13 6 11 5 3915 83895 106,296,143 152.273 113,803,320 175.784 

3 14 7 11 5 4725 
        
105125 

84,931,458 167.671 97,606,317 188.498 

4 14 6 13 5 4380 106305 123,661,179 184.814 134,650,684 202.772 

5 15 6 16 6 5994 167496 184,571,318 279.808 201,617,484 310.843 

6 15 7 17 6 7158 207174 195,987,801 304.688 213,768,406 338.828 

7 16 7 19 6 7806 246510 227,066,439 354.227 239,761,885 386.99 

8 18 9 17 6 9990 318702 194,732,254  377.82 215,422,137 428.302 

9 19 9 17 7 11991 392343 256,029,007 470.336 271,088,331 535.251 

10 20 8 18 7 11284 388598 272,413,231 493.625 277,443,931 557.771 

Average       176,073,206  189,048,305  

SD       65,607,371  66,353,129  

Problem 
No 

Surplus 
node 

Surplus 
state 
silo 

Deficit 
state 
silo 

Time 
period 

Number 
of 

variables 

Number 
of 

constraints 

IMMAS MMAS 

TC CT (s) TC CT(s) 

1 3 2 3 2 154 886 8,093,629 6.35 8,538,508 9.401 

2 3 3 3 2 222 1278 11,268,950 7.131 12,558,759 11.165 

3 4 3 4 2 288 2122 15,786,703 10.407 17,158,594 14.636 

4 5 3 4 3 486 3924 23,783,618   18.00 25,747,743 24.886 

5 5 3 5 3 531 4791 30,659,295 21.213 34,596,515 27.234 

6 6 4 5 3 762 7503 28,787,960 28.625 31,432,306 36.859 

7 7 4 6 3 891 10314 33,699,774 35.255 37,717,138 47.669 

8 8 5 6 4 1576 19436 47,224,178 49.59 52,154,574 65.043 

9 9 5 10 4 2088 35576 78,767,428 82.463 84,461,425 98.677 

10 10 5 10 4 2200 39460 76,877,001 87.85 85,634,557 105.402 
Average       35,494,854  39,000,012  

SD       25,072,003  27,431,902  
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Table 5 Total cost obtained through IMMAS and MMAS for large-scale problem category 

 

The convergence graph of the problem instances 1, 5 and 7 from each category are shown in 

Figs. (7-9) respectively. It can be seen that the rate of convergence of IMMAS algorithm is 

faster than MMAS in each instance.  

 

Fig. 7. Convergence graph of instance 1 of small category 
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Problem 
No 

Surplus 
node 

Surplus 
state 
silo 

Deficit 
state 
silo 

Time 
period 

Number 
of 

variables 

Number 
of 

constraints 

IMMAS MMAS 

Total cost CT (s) Total cost CT (s) 

1 21 11 21 8 19336 646048 355,995,505  686.774 387,849,363 747.369 

2 22 11 23 8 20680 854664 387,896,097 816.803 406,898,988  867.41 

3 23 12 22 8 22536 932208 378,080,649 858.274 405,475,898 925.819 

4 24 12 25 8 24480 1104200 428,935,917 974.709 444,358,741 1038.577 

5 25 13 24 9 29808 1345572 477,070,541 1121.838 514,436,098 1191.685 

6 25 12 26 9 28647 1345194 495,477,749 1193.821 548,621,934 1287.444 

7 26 13 25 9 31005 1457109 481,449,129 1203.832 523,332,212 1317.534 

8 27 13 25 9 31617 1512945 483,618,441 1256.351 519,539,592 1372.605 

9 28 14 26 10 39200 1951440 560,920,054 1534.845 577,123,670 1656.621 

10 30 15 28 10 45000 2410630 573,492,957 1733.733 587,042,857 1895.934 

Average       462,293,704  491,467,935  

SD       73,991,391  74,215,571  
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Fig. 8. Convergence graph of instance 5 of medium category 

 

 

Fig. 9. Convergence graph for instance 7 of large category 
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The sample values of all the decision variables including the food grain quantity transferred 

from all the surplus nodes to all the surplus state silos, from all the surplus state silos to all 

deficit state silos, total inventory available in all the surplus state silos and total number of each 

types of trucks and rakes used in all the time periods for selected three instances from each 

category are reported in Table 6. It can be observed from this table that the total food grain 

quantity transported from all surplus nodes to all surplus state silos is more than the quantity 

moved from surplus state silos to deficit state silos in a definite planning horizon.  

Table 6 sample values of all the decision variables  

Problem 
category 

Problem no 
(Description) 1 1 1

M S T
t

ms

m s t

w
= = =


1 1 1

S N T
t

sn

s n t

v
= = =


1 1

S T
t

s

s t

E
= =
  1

1 1 1

M S T
p t

ms

m s t

k
= = =
 2

1 1 1

M S T
p t

ms

m s t

k
= = =
  3

1 1 1

M S T
p t

ms

m s t

k
= = =
 1

1 1 1

S N T
r t

sn

s n t

q
= = =
 2

1 1 1

S N T
r t

sn

s n t

q
= = =
 3

1 1 1

S N T
r t

sn

s n t

q
= = =


Small 
scale 

2 (3 3 3 2) 56995.25 37800.65 19195.33 811 689 772 8 6 2 

5 (5 3 5 3) 143425.27 105300.40 38125.15 1841 1959 1961 23 11 11 

10 (10 5 10 
4) 

375790.83 326400.09 49390.24 5099 4884 5036 60 48 40 

Medium 
scale 

4 (14 6 13 5) 533350.64 475200.81 58150.65 8900 7858 3495 95 64 50 

7 (16 7 19 6) 914990.17 841500.95 73490.30 12130 12230 12267 159 120 99 

9 (19 9 17 7) 
1217645.7

9 
1085100.1

4 
132545.5

7 
16375 16183 16091 200 157 135 

Large 
scale 

4 (24 12 25 
8) 

1749045.2
6 

1471500.6
9 

277545.7
3 

23610 23137 23116 263 205 209 

7 (26 13 25 
9) 

2178080.8
4 

1927500.4
8 

250580.0
7 

28795 29478 28864 369 260 235 

10 (30 15 28 
10) 

2746450.0
8 

2475600.8
7 

270850.2
0 

36535 36708 36635 460 367 290 

 

The statistical confirmation of the evolutionary algorithms outcomes has been carried out using 

various t-tests such as independent t-test and pairwise comparison test (Lin, Gen & Wang 2009; 

Mousavi et al. 2014; Panicker et al. 2013; Antony Arokia Durai Raj and Rajendran 2012). 

Here, in order to verify that whether there is a significant pairwise difference between costs 

obtained through both algorithms, the paired comparison t-test has been conducted at 5% level 

of significance with respect to solutions obtained from 10 instances of each category. Initially, 

the difference between the total costs obtained through MMAS and IMMAS is computed and 

represented by the term . 

  cos -   cosMMAS IMMASTotal t Total t =  
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The null hypothesis states that there is no significant paired deviation between the average total 

cost obtained through MMAS and IMMAS. The alternative hypothesis indicates that average 

total cost found using the IMMAS is less than the average total cost obtained through MMAS.      

0 1H :   0 and H :  0    

The results of this paired comparison t-test are mentioned in Table 7. All the P values are less 

than 0.05, therefore the null hypothesis is rejected in each category. Hence, it statically proves 

that there is a significant difference between the total cost obtained using IMMAS and MMAS 

algorithm.  

Table 7 The paired comparison t test results for all problem categories  

Problem category N 
Mean of  differences 

between pairs 

SD of differences 

between pairs 
SE-Mean T value P value 

Small scale 10 3,505,158 2,512,164 794,416 4.42 0.000845 

Medium scale 10 12,975,098 4,806,581 1,519,974 8.54 0.00001 

Large scale 10 29,174,231 13,182,275 4,168,602 7.00 0.000032 

 

 

6.1 Sensitivity analysis  

In this section, the sensitivity analysis has been carried out by changing the problem 

environment on the first instance of small scale category problems.  We have mainly focused 

on the three perspectives to visualize the effects on the performance of the model and algorithm.  

6.1.1 Effect of different capacitated trucks  

There is a different fixed cost associated with each type of capacitated truck. Fig. 10 illustrates 

the effect on the total cost against the four different scenarios i.e. if all different capacitated 

trucks (ACT), only high capacitated trucks (HCT), only medium capacitated trucks (MCT) and 

finally only low capacitated trucks (LCT) used. As we can see from Fig. 10, if we are filling 

the trucks in descending order of their capacities, then the total cost will be reduced. 

Furthermore, if we change the problem size, the values may change, but the nature of the graph 

will remain same. Thus, this result gives better authentication to our novel truck preference 

constraints.  
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Fig. 10. The total cost against various scenarios of capacitated trucks   

 
 6.1.2 Effect of different capacitated rakes  

Similar to the above section, we have conducted experiments using four scenarios with respect 

to rakes i.e., all three capacitated rakes (ACR), high (HCR), medium (MCR) and low 

capacitated rakes (LCR) used for transportation. Fig. 11 shows the graph of various scenarios 

versus the total cost obtained and it also depicts the similar type of nature which is obtained in 

Fig. 10. It can be observed that when we use small capacitated rakes instead of large capacitated 

ones the total cost is increased from 7,834,730 to 9,157,988 INR. This analysis proves that the 

vehicle preference constraints help to minimize the transportation cost.    

 

Fig. 11. The total cost vs various scenarios of capacitated rakes   
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 6.1.3 Effect of increasing the base silo capacity on transportation cost 

The effect of increasing the base silo capacity on the transportation costs is shown in Fig. 12. 

The downward trend of line illustrates that the transportation cost will be decreased by 

increasing the surplus state silo capacity, but the silo construction cost may be increased.   

 

 

Fig. 12. The transportation cost against percent increase of surplus state silo capacity    
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vehicles. The issue of underutilization of existing storage facilities can be confronted through 

the storage activity plan. Since we have dealt with the bulk food grain transportation and 

storage, the wastages of the food grain will be reduced.  

 

7. Conclusion and future work 

In this work, a food grain supply chain problem of the public distribution system has 

been addressed. A mathematical model was developed to minimize the shipment, holding and 

handling costs while shipping the food grains from a set of surplus nodes to set of deficit state 

silos through storing the food grains into a set of surplus state silos. The prosposed mixed 

integer non-linear mathematical model incorporates the multi-period, intermodal shipment, 

inventory, vehicle capacity and novel vehicle preference constraints.  

The IMMAS and MMAS algorithms were developed to solve the formulated 

mathematical model. The solutions obtained from the IMMAS algorithm for different problem 

instances are completely dominating the solutions of MMAS algorithm. The effect of different 

capacitated vehicles (trucks and rakes) and silo capacity on the solution quality have been 

visualized through sensitivity analysis. Furthermore, the statistical validation of the results has 

been carried out by using the paired comparison t-tests.  

The present model can be extended by considering a stochastic demand and 

procurement. The multi food grain scenario is another future modification of this work. Multi-

modal transportation can be used instead of intermodal transportation for transporting the food 

grains. In the future research, a multi-objective optimization model can be made by adding the 

transportation time minimization objective into the current model.  
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