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Introduction

Since [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF], deep learning is the state of the art of supervised machine learning (see [START_REF] Lecun | Deep learning[END_REF] for a review). Typically in computer vision, deep learning has brought an important jump in performance. Today, a large part of the community thinks that deep learning may allow critical applications like autonomous driving [START_REF] Cordts | The cityscapes dataset for semantic urban scene understanding[END_REF] or health care [START_REF] Hayit Greenspan | Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique[END_REF].

Yet deep learning successes are plagued by a phenomenon called adversarial examples [START_REF] Mohsen | Universal adversarial perturbations[END_REF][START_REF] Xie | Adversarial examples for semantic segmentation and object detection[END_REF][START_REF] Papernot | The limitations of deep learning in adversarial settings[END_REF].It is possible to design a specific invisible perturbation such as the network predicts different outputs between original and disturbed input.

There is a very large effort of the community to try to moderate this issue (see for example [START_REF] Huster | Limitations of the lipschitz constant as a defense against adversarial examples[END_REF]). As this effort is currently not very efficient, [START_REF] Shafahi | Are adversarial examples inevitable?[END_REF] recently asks the question of the inevitability of adversarial examples. Indeed, [START_REF] Shafahi | Are adversarial examples inevitable?[END_REF] takes a look into adversarial example from geometric point of view, and, offer very interesting statement. Eventually, [START_REF] Shafahi | Are adversarial examples inevitable?[END_REF] claims that adversarial example are inevitable.

Yet, in this paper, I discuss this claims. Off course, I do not discuss the results (which is properly proven) but I discuss the interpretation of the results. It seems that the basic definition of adversarial examples is not that trivial. And that using different definition of adversarial examples unsurprisingly leads to very different conclusion.

Some geometric lemmas

Consistently with classical notations, ||.||p for p ∈ {1, 2, ∞} will be the classical norm 1, 2 or ∞. Bp(x, δ) will be the ball of center x and radius δ for norm p. |.| will be either the absolute value or the volume of a set. 

L 2 ball

Let consider B2(0, 1) the unit ball of R D , and, let define S α,β = {x ∈ B2(0, 1)/α ≤ xD ≤ β}. This is the cap of the ball enclosed between the two hyperplanes {x/xD = α} and {x/xD = β} (let notice that by rotation, any diameter can be used instead of the D axis).

Let fix 0 < ε < 1, and, let imagine a classifier cutting the ball in two equivalent half: S-1,0 and S0,1. The set of points close to the boundary of the classifier cut is (this quantity will be discussed in section 3). According to [START_REF] Li | Concise formulas for the area and volume of a hyperspherical cap[END_REF], it holds that:

S ambiguous = {x ∈ B2(0, 1)/∃x ∈ B2(0, 1)/||x-x ||2 ≤ ε, {x, x } ⊂ S-1,0, {x, x } ⊂ S0,1}.
µ2(D, ε) = 1 -I 2(1-ε)-(1-ε) 2 ( D-1 2 , 1 2 ) = 1 -I 1-ε 2 ( D-1 2 , 1 
2 ) where Ix(a, b) is the regularized incomplete beta function.

Yet, according to [START_REF] Lpez | Asymptotic expansion of the incomplete beta function for large values of the first parameter[END_REF],

Ix(a, b) = x a a (O(1) + O(z)) → a→∞ 0.
In the particular case of µ2(D, ε), this implies that: µ2(D, ε) → D→∞ 1 (for fixed value of ε).

L 1 ball

Let consider B1(0, 1) the unit ball of R D , and, let define H α,β = {x ∈ B1(0, 1)/α ≤ xD ≤ β}. This is again the cap of the ball (for L1 norm) enclosed between the two hyperplanes {x/xD = α} and {x/xD = β} but here the axis of the cut is crucial. Let fix 0 < ε < 1, and, let imagine again a classifier cutting the ball in two equivalent half: H-1,0 and H0,1. The set of points close to the boundary of the classifier cut is H ambiguous = {x ∈ B1(0, 1)/∃x ∈ B1(0, 1)/||x -x ||2 ≤ ε, {x, x } ⊂ H-1,0, {x, x } ⊂ H0,1}. Obviously, here again, H ambiguous = H-ε,ε.

Let define µ1(D, ε) =

|H ambiguous | |B 1 (0,1)|
. As, one can write B1(0, 1) as a disjoint union H(-1, -ε) ∪ H(-ε, ε) ∪ H(ε, 1), one can take relative volume:

|H ambiguous | |B 1 (0,1)| + |H(ε,1)| |B 1 (0,1)| + |H(-1,-ε)| |B 1 (0,1)| = 1.
This can be reduce to

H ambiguous | |B 1 (0,1)| = 1 -2 |H(ε,1)| |B 1 (0,1)| for symmetry reason. Yet, |H(0,1)| |B 1 (0,1)| = 1 2 , as H(0, 1) is half the ball. And, for homothetic reason |H(δ, 1)| = (1 -δ) D |H(0, 1)| (for δ ≥ 0). So, combining these equations, one get: µ1(D, ε) = 1 -(1 -ε) D In particular, it holds that µ1(D, ε) = 1 -(1 -ε) D → D→∞ 1.

L ∞ ball

Let consider B∞(0, 1) the unit ball of R D , and, let define G α,β = {x ∈ B∞(0, 1)/α ≤ xD ≤ β}. Let fix 0 < ε < 1, and, let imagine again a classifier cutting the ball in two equivalent half: G-1,0 and G0,1. The set of points close to the boundary of the classifier cut is . Even if this question is not more investigated in this paper, µ 1 (D, ε) could exhibit an asymptotic behaviour different from µ1(D, ε)...

G ambiguous = {x ∈ B∞(0, 1)/∃x ∈ B∞(0, 1)/||x -x ||2 ≤ ε, {x, x } ⊂ G-1,0, {x, x } ⊂ G0,1} = G-ε,ε.

Implications for supervised classification

The results from previous section are more or less weaker versions of the results from [START_REF] Shafahi | Are adversarial examples inevitable?[END_REF]. Mainly, these results prove that:

• all half cut of the L2 ball have a large L2 ε expansion.

• some cut of the L1 ball have a large L2 ε expansion (typically axis aligned cut).

• some cut of the L∞ ball have a small L2 ε expansion (typically axis aligned cut).

Let note that [START_REF] Shafahi | Are adversarial examples inevitable?[END_REF] proves that all cuts of the L2 sphere have a large L2 ε expansion (in the sphere) which is a quite stronger result, but with the inconvenient of relying on a set with empty interior. Here, the presented results only consider hyperplan containing 0 (all for the L2 balls, or axis aligned for other balls). The only advantage of these statements compare to [START_REF] Shafahi | Are adversarial examples inevitable?[END_REF] is that proofs are simpler.

But anyway, the point of this paper is not to offer results complementary to [START_REF] Shafahi | Are adversarial examples inevitable?[END_REF]. The point is to stress that depending on how are defined adversarial example, one could conclude that they are inevitable adversarial or non existent ! Let a and b be two uniform distributions on H(-1, -1 2 ) and H( 1 2 , 1) i.e. a and b are two distributions at opposite vertex of the L1 ball. A good (maybe the best) classifier to separate these two set of points is obviously

f (x) = xD ≤ 0 ⇒ class a otherwise ⇒ class b
which is probably the classifier resulting from a support vector machine learning (SVM [START_REF] Vladimir | Statistical learning theory[END_REF]). The point is that in this situation none real point from either a or b distribution admit any ε adversarial examples for ε < 1. But, on the same time, the probability of a point drawn uniformly in the L1 ball to admit an adversarial goes to 1 with D.

The critical question stressed by this paradox is the following: are adversarial points close the decision boundary ? or are adversarial points not expected to be close to the boundary ? In other words, the question is to know if interesting quantity is the probability of a point drawn uniformly in the space to admit an adversarial or the probability of a point drawn from the underlying density to admit an adversarial.

Clearly, if one is concerned about the probability of a point drawn uniformly in the space to admit an adversarial, then the results from [START_REF] Shafahi | Are adversarial examples inevitable?[END_REF] (and from section 2.1 and 2.2) show that this probability may go to 1 with D -so in this case, one can state that adversarial example are inevitable. Now, if one is concerned about the probability that a point drawn from the underlying distribution of the data admit an adversarial, then this probability could be 0. Indeed, this probability is 0 for two distributions perfectly separated for ε lower than the margin (as pointed in [START_REF] Huster | Limitations of the lipschitz constant as a defense against adversarial examples[END_REF]).

Even more interesting, in the case of the L∞ norm, focusing of the ε expansion of the classifier boundary may lead to poor classifier. Let consider the learning problem of separating 2 distribution centred on -1 and on 1.

One can use f (x) = xD ≤ 0 ⇒ class a otherwise ⇒ class b
which may still separate the two distribution and with additional property that the boundary of f has a small ε expansion. Yet, using g(x) = 1 T x ≤ 0 ⇒ class a otherwise ⇒ class b seems to make more sense: along an axis the two distributions are at L2 distance 2 while along 1 they are at distance L2 distance 2 √ D. Yet, even if this is not investigated in this paper, the ε expansion of boundary of g may be large.

So, to conclude this section, machine learning problems often involve samples belonging to a space Ω and resulting classifier f may be functional on all points of Ω. But, focusing on the behaviour of f on points of Ω that does not belong to the real distribution may lead to poor decision from learning point of view. It may also lead to dramatic statement like adversarial are inevitable which may not reflect the behaviour on real samples.

At this point, one could think about requiring from classifiers to produce also a prediction about is this particular sample real. Of course, as pointed in [START_REF] Shafahi | Are adversarial examples inevitable?[END_REF] and in examples from section 2, most space may be fill by unreal samples. But this is not a problem at all: it seems that this the case especially for images. Finally, to return to adversarial, one may claim that (L2 but it could be for an other norm) adversarial are not about

x ∈ Ω/∃x Ω/||x -x ||2 ≤ ε, f (x) = f (x ) but about x ∈ Ω given as non ambiguous/∃x Ω/||x -x ||2 ≤ ε, f (x) = f (x )
To conclude, I claim that a good classifier should classify correctly all real image, detect non real image as it, and, real image should have non real image as only adversarial (class must not evolve locally except to mark that the sample is detected as unreal.

1

 1 

  Obviously, S ambiguous = S-ε,ε. Now, let focus about the volume of S ambiguous : it is linked to the volume of an hyperspherical cap. Indeed, |S ambiguous | = |B2(0, 1)|-2×|Sε,1| and |Sε,1| is the volume of the cap of height 1 -ε. Let define µ2(D, ε) = |S ambiguous | |B 2 (0,1)|

1 !

 1 Let define µ∞(D, ε) = |G ambiguous | |B∞(0,1)| . As all dimension except the last are not impacted by the cut of the ball per an hyperplan, µ∞(D, ε) = 2ε. In particular, it holds that µ∞(D, ε) = 2ε D→∞ Such situations were µ(D, ε) D→∞ 1 seem also to be possible with the L1 ball but by cutting it differently: let again consider B1(0, 1) the unit ball of R D , but, let define Q α,β = {x ∈ B1(0, 1)/α ≤ x T 1 ≤ β}. This is the cap of the ball but for hyperplane with normal vector 1. Let define µ 1 (D, ε) = |Q ambiguous | |B 1 (0,1)|