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Highlights 

Phytotoxic effects of cyanotoxins on agricultural plants have been updated. 

We report mechanisms of cyanotoxins and target molecules in vegetable organisms. 

The effects of cyanotoxins in the terrestrial environment is particularly scarce. 

We describe fate of cyanotoxins in aquatic and soil ecosystems. 

We examine bioaccumulation of cyanotoxins in vegetable foods. 
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Abstract 

The occurrence of harmful cyanobacterial blooms in surface waters is often accompanied by the 

produc- tion of a variety of cyanotoxins. These toxins are designed to target in humans and animals 

specific organs on which they act: hepatotoxins (liver), neurotoxins (nervous system), cytotoxic 

alkaloids, and dermatotoxins (skin), but they often have important side effects too. When introduced 

into the soil eco- system by spray irrigation of crops they may affect the same molecular pathways 

in plants having iden- tical or similar target organs, tissues, cells or biomolecules. There are also 

several indications that terrestrial plants, including food crop plants, can bioaccumulate cyanotoxins 

and present, therefore, potential health hazards for human and animals. The number of publications 



 

concerned with phytotoxic effects of cyanotoxins on agricultural plants has increased recently. In 

this review, we first examine different cyanotoxins and their modes of actions in humans and 

mammals and occurrence of target biomolecules in vegetable organisms. Then we present 

environmental concentrations of cyanotoxins in freshwaters and their fate in aquatic and soil 

ecosystems. Finally, we highlight bioaccumulation of cyanotoxins in plants used for feed and food 

and its consequences on animals and human health. Overall, our review shows that the information 

on the effects of cyanotoxins on non-target organisms in the terres- trial environment is particularly 

scarce, and that there are still serious gaps in the knowledge about the fate in the soil ecosystems 

and phytotoxicity of these toxins. 
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Introduction 

In light of global climate change, and particularly measurable rises in global temperature, as well as 

increased fluxes of certain nutrients (i.e., nitrates, phosphates) brought either by agricultural run-off 

or by sewage treatment plants and other anthropogenic sources, it has been suggested that 

cyanobacteria, including toxin-producing taxa, may be increasing in abundance, and thus rep- resent 

an emerging human and environmental health concern (For review see in O’Neil et al., 2012). The 

presence of such toxins has been reported throughout the world and it appears that liver- toxic 

microcystins are more commonly found in 40–75% cyano- bacterial blooms (Sivonen and Jones, 

1999). The contamination of surface waters by these cyanotoxins can cause water quality problems 

for fisheries, aquaculture, farming, and sanitary hazard for human and animals. Humans are exposed 

to cyanobacteria toxins through many routes, including drinking water, recreational contact, and 

health food products made from cyanobacteria, and food chain. In recent years, several 

cyanobacterial toxins were investigated in regard to their ability to enter the food chain via 

freshwater seafood (Ibelings and Chorus, 2007; Ettoumi et al., 2011), however, their ability to enter 

the food chain via agricultural crops has not been thoroughly investigated to date. Although no case 

of poisoning by these products has been reported in the literature, this eventuality must not be 

ignored. Indeed, a recent epidemiological study showed that the excessive incidence of amyotrophic 

lateral sclerosis in the population of the islands of Guam in the Pacific was linked to a consumption 

of the seeds of cycas contaminated by a neurotoxin, -methylamino-L-alanine (BMAA), produced 

by a species of cyanobacteria of the genus Nostoc living in symbiosis in the roots of this plant 

(Banack and Cox, 2003; Cox et al., 2003; Murch et al., 2004; Steele and McGeer, 2008). This last 

cited fact is gaining importance since plants could in a direct or indirect manner contribute to food 

chain cyanotoxin’s transfer, and by the way constitute a potent health risk source. Indeed, numerous 

studies reported that both submerged and emergent aquatic plants have been shown to absorb 

microcystins from low external concentrations (Pflugmacher et al., 1998, 2001; Yin et al., 2005; 

Saqrane et al., 2007). In terrestrial plants, Codd et al. (1999) reported that spray irrigation of 

commercial lettuce (Lactuca sativa) plants with water containing Microcystis resulted in colonies 

and single cells of the cyanobacte- rium being lodged on the leaves 10 d after the last irrigation. 

MC-LR was present at 2.5 mg kg-1 dry weight (DW) in the central leaves, 0.833 mg kg-1 (DW) in 

the distal zone of mature leaves, and 0.094 mg kg-1 (DW) in the basal zone of mature leaves. The 

last study indicated that toxins were absorbed by the plant as the central leaves would have been 

protected from irrigation. Similar conclusions were reached for rice (Oryza sativa) and rape 



 

(Brassica napus) by Chen et al. (2004). Therefore, the accumulation of cyanotoxins in the terrestrial 

food chain is at present remains more worrying and the proposed quality limits are rare, indeed, 

many aspects concerning these toxins are particularly scarce, notably those relative to the fate of 

cyanotoxins in the soil ecosystems and their toxicity and bioaccumulation on agricultural crops. 

There have been several reviews of the intensification and glo- bal expansion of harmful 

cyanoabcterial blooms in terms of abun- dance, geographic extent, factors that may be promoting 

this expansion, and prevention and management of cyanobacteiral blooms and their toxins, as well 

as effects on aquatic ecosystem health and transfer on food webs (Wiegand and Pflugmacher, 2005; 

Ibelings and Chorus, 2007; Paerl and Huisman, 2009; Aráoz et al., 2010; Kinnear, 2010; Merel et  

al., 2010; Jancula and Maršálek, 2011; O’Neil et al., 2012). However, the purpose of this review is 

to: (1) Highlight important findings of the last decade of modes of actions of cyanotoxins in humans 

and mammals and occurrence of target biomolecules in vegetable organisms; (2) Describe the fate 

of cyanotoxins in aquatic and soil ecosystems and focus in their phytotoxicity; and (3) Emphasize 

bioaccumula- tion of these toxins in vegetable foods and its consequences on ani- mals and human 

health. 

 

Cyanotoxins and their producers 

 

Recent research suggests that eutrophication and climate change are two processes they may 

promote the proliferation and expansion of harmful cyanobacterial blooms in freshwater, estuarine, 

and marine ecosystems. These microorganisms are known to biosynthesize a wide range of 

chemical classes of sec- ondary metabolites such as peptides, macrolides, and glycosides (Patterson 

et al., 1994; Namikoshi and Rinehart, 1996) possessing a number of bioactivities: antiviral 

(Patterson et al., 1993, 1994), antifungal (Patterson et al., 1994), cytotoxic (Patterson et al., 1991), 

enzymatic inhibitor (Honkanen et al., 1995), antineoplastic (Moore, 1996), and allelopathic 

(Pushparaj et al., 1998). However, some of these cyanobacterial secondary metabolites encompass a 

diversity of alkaloid and peptide cyanotoxins which have been suggested to both pose threats to 

human and environmental health worldwide (Hawkins et al., 1985; Carmichael and Falconer, 1993; 

Kuiper-Goodman et al., 1999; Sivonen and Jones, 1999; Hitzfeld et al., 2000; Ettoumi et al., 2011). 

Toxic cyanobacteria that have been involved in such incidents belong essentially to the genera 

Microcystis, Anabaena, Aphanizomenon, Planktothrix, Oscillatoria, Cylindrospermopsis and less 

often Gomphosphaeria, Coelosphaerium, Gloeotrichia, Nodularia and Nostoc (Hawkins et al., 1985; 

Sivonen and Jones, 1999). The cyanotoxins are essentially endotoxins which can be released in the 
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environment following a cellular lyse (Codd et al., 1989) or following treatment of cyanobacterial 

blooms with algaecides (Kenefick et al., 1993). They can be classified into four families according 

to the organs on which they act: neurotoxins (nervous system), hepatotoxins (liver), cytotoxins 

(several organs: liver, kidneys, adrenal glands, small intestine), and dermatotoxins (irritant toxins). 

Cyanobacterial neurotoxins are divided in three groups: anatoxins (anatoxin-a, homoanatoxin-a, and 

anatoxin-a(s)), saxitoxins, and the neurotoxic amino acid L-beta-N-methylamino-L-alanine 

(BMAA). Anatoxins and the BMAA are specific of cyanobacteria, while, saxitoxins are also 

synthesized by some marine dinoflagel- lates and associated with the human disease paralytic 

shellfish poisoning or PSP (Falconer, 1991; Carmichael, 1994; Kaebernick and Neilan, 2001). By 

contrast to the other neurotoxins which production depends on the phylogeny of the species, the 

BMAA can be produced by almost all groups of cyanobacteria from freshwater, brackish, and 

marine environments (Cox et al., 2005; Banack et al., 2007). Hepatotoxins are divided into two 

groups: Microcystins (MCs), cyclic heptapeptide hepatotoxins (MW 900-1200), that are regarded as 

the most frequently occurring and widespread of the cyanotoxins with more than 80 MC variants 

already reported (Sivonen and Jones, 1999; Cox et al., 2005; del Campo and Ouahid, 2010); and 

nodularins (MW 800-900) composed of five amino acids with only nine different natural analogs 

have been characterized (De Silva et al., 1992; Namikoshi et al., 1993; Rinehart et al., 1994; Codd 

et al., 2005). The hydrophilic alkaloid cytotoxin, cylin- drospermopsin (MW 415) has been 

identified in the freshwater cyanobacteria Cylindrospermopsis raciborskii (Ohtani et al., 1992), 

Umezakia natans (Harada et al., 1994), Aphanizomenon ovalisporum (Sivonen and Jones, 1999), 

Anabaena sp. (Schembri et al., 2001), and Raphidiopsis sp. (Li et al., 2001). Today, only two 

congeners of cylindrospermopsin have been identified: 7-epicylindrospermopsin and 

deoxycylindrospermopsin. The freshwater cyanobac-erial irritant toxins such as lipopolysaccharides 

(LPS), or endotoxins as they are commonly called, are major components of the cell wall in most 

Gram-negative bacteria including cyanobacteria (Jann and Jann, 1984; Mayer and Weckesser, 1984; 

Kaya, 1996; Stewart et al., 2006). 

 

  



 

Modes of actions in humans and mammals and occurrence of target biomolecules in vegetable 

organisms 

 

Neurotoxins 

 

Anatoxin-a is a potent postsynaptic depolarizing neuromuscular blocking agent that affects both 

nicotinic and muscarinic acetyl cholineacetylcholine receptors  (Carmichael et  al., 1979; Spivak et 

al., 1980). It acts as a depolarizing neuromuscular blocking agent mimicking the action of 

acetylcholine. However, this neurotoxin is not degraded by the acetylcholinesterase, and 

consequently its action on the muscular cells does not stop and, due to being stimulated, these cells 

are blocked and thereby resulting to muscle paralysis (Carmichael, 1994; Lilleheil et al., 1997). 

When the respiratory muscles are affected, the insufficient oxygenation of the brain engenders 

convulsions and the oppression (Carmichael, 1994; Humpage et al., 1994). The LD50 (lethal dose 

resulting in 50% deaths) of this neurotoxin is 200 µg kg-1 (mouse, i.p.) (Carmichael et al., 1979; 

Skulberg et al., 1992). Homoanatoxin-a is a homologue of anatoxin-a, that was reported to be a 

potent nicotinic agonist (Wonnacott et al., 1992). It enhances the release of acetylcholine from 

peripheral cholinergic nerves through opening of endogenous voltage dependent neuronal L-type 

calcium chan- nels (Aas et al., 1996; Lilleheil et al., 1997). Despite the similarity in their names, 

anatoxin-a(s) and anatoxin-a are not structurally related and exhibit different physiological 

properties. Anatoxin-a(s) belongs to the organophosphate class of neurotoxins and it acts as an 

irreversible inhibition of acetylcholinesterase at the nerve synapse (Mahmood and Carmichael, 

1986, 1987). The LD50 (mouse, i.p.) of this toxin is about 20–40 µg kg-1 (Mahmood and 

Carmichael, 1987; Matsunaga et al., 1989; Carmichael et al., 1990). In animals, the mechanisms of 

action of PSP toxins (saxitoxins) are based on the blockage of sodium conductance in axons (Kao et 

al., 1967; Henderson et al., 1973). They so inhibit the transmission of the electric activity and 

prevent the liberation of the acetylcholine (Nishiyama, 1968). Their toxicity is more important than 

that of anatoxins with a LD50 (mouse, i.p.) in the same conditions for the saxitoxin of 10 µg kg-1 

(Gorham and Carmichael, 1988). Saxitoxins can also bind to calcium (Ca+2) and K+ channels, 

interfering with the speed of opening and closing of these channels, which can in turn lead to 

alteration in the influx of ions to the cell (Wang et al., 2003; Su et al., 2004). In addition, the Na+-

channel blockage may alter the selective permeability of the membrane and may change the flow of 

ions, leading to damage to cellular homeostasis (Hille, 1992; Jablonski et al., 2007). Concerning the 

neurotoxic amino acid (BMAA), it acts in mammals as a glutamate agonist at AMPA, kainite and 
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NMDA receptors (Spencer et al., 1986, 1987; Andersson et al., 1997; Seawright   et al., 1999). 

Consequently, it increases the intracellular concentra- tion of calcium in neurons and induces 

neuronal activity by hype- rexcitation (Brownson et al., 2002). To our knowledge, no data regarding 

the toxicity of cyanobacterial neurotoxins in higher plants have been reported. However, interfering 

of some of them such as saxitoxins with the speed of opening and closing of Na+, Ca2
+ and K+ 

channels could modify ions transport in plant cells. For example, a modification of sodium signals 

can modify osmotic pressure in cells or the assimilation of CO2 for C4 plants (Brownell and 

Crossland, 1972). While sodium extrusion in animal cells and microorganisms (including yeast) is 

directly energized by ATP hydrolysis (Na+-ATPases), these Na+ pumps are absent from higher 

plants (Horie and Schroeder, 2004). 

 

Hepatotoxins 

 

Cyanobacterial hepatotoxins type microcystin-LR are generally not able to penetrate vertebrate cell 

membranes and therefore, re- quire uptake via the bile acid transport system present in hepato- cytes 

and cells lining the small intestine (Runnegar et al., 1991). As a result of this, toxicity of these 

cyanotoxins is restricted to organs expressing the organic anion transporter on their cell membranes 

such as the liver (Fischer et al., 2005). However, in vegetable cells one relatively unexplored 

question regarding these toxins concerns the mechanism of uptake, particularly the variants that 

would be predicted to be membrane impermeable based on polarity. They may cross cell 

membranes of plants by other mechanisms, includ- ing diffusion or by root absorption. Pflugmacher 

et al. (2001) have been reported that when the emergent reed plant P. australis was exposed to 0.5 

µg of 14C-labeled microcystin-LR L-1 for 3 d, it dem- onstrated a rapid uptake (since 0.5 h) of the 

toxin. The main uptake route appeared to be in the stem and rhizome, from which the tox- in is 

transported into the higher parts of the plant to the leaves. Uptake directly through the leaves may 

also occur by direct contact of small plants or by the lowest leaves of a plant with surface water and 

with upper leaves by wave and spray contact (Pflugmacher et al., 2001). Once in both vertebrate 

and vegetable cells, microcystins and nodularins have been shown to be potent and specific 

inhibitors of protein phosphatases 1 and 2A, and this inhibition accounts for their extreme toxicity 

(MacKintosh et al., 1990; Kurki-Helasmo and Meriluoto, 1998; Hastie et al., 2005). Those proteins 

are involved in several physiological and molecular processes in higher plants (Sheen, 1993; 

Takeda et al., 1994). Indeed, numerous studies reported that microcystins have several perturbatory 



 

ef- fects on plant physiology  and  metabolism, when  sufficient levels of toxin enter the plant cells 

(MacKintosh et al., 1990; Siegl et al., 1990; Sheen, 1993; Yamasaki, 1993; Smith et al., 1994; 

Takeda et al., 1994; Abe et al., 1996; Smith, 1996; Kurki-Helasmo and Meriluoto, 1998; Weiss et 

al., 2000; McElhiney et al., 2001; Pflugmacher, 2002; Romanowska-Duda  and Tarczynska, 2002; 

Gehringer et al., 2003; Chen et al., 2004, 2011; Mitrovic et al., 2005; Saqrane et al., 2007, 2008; 

Stüven and Pflugmacher, 2007; Järvenpää et al., 2007; Jang et al., 2007; Peuthert et al., 2008; 

Máthé et al., 2009; Huang et al., 2009; El Khalloufi et al., 2011, 2012; Jámbrik et al., 2011; Perron 

et al., 2012). On the other hand, several studies have also reported that these hepatotoxins induce 

oxidative stress in mammal cells (Zegura et al., 2003; Botha et al., 2004 Bouaïcha and Maatouk, 

2004; Puerto et al., 2010). Therefore, their toxicity on aquatic plants seems to be also more linked to 

the induction of oxidative stress manifested by elevated reactive oxygen species (ROS) production 

and malondialdehyde (MDA) content (Lefevre et al., 1950; Pflugmacher, 2004; Hu et al., 2005; 

Leflaive and Ten- Hage, 2007). 

 

Cytotoxins 

 

The alkaloid cylindrospermopsin (CYN) is known as a general cytotoxin that blocks protein 

synthesis in mammal cells (Runnegar et al., 1995; Froscio et al., 2001, 2003). Implications of this 

effect can be also observed in vegetable cells. In fact, Froscio et al. (2008) reported that CYN was 

shown to inhibit the eukaryotic pro- tein synthesis apparatus with similar potency in plant and 

mammalian cell extracts, IC50 of 334 nM in wheat germ extract and 110 nM in reticulocyte lysate. 

Metcalf et al. (2004) also showed that CYN inhibited pollen germination in tobacco plants 

(Nicotiana tabacum), with partial inhibition of protein production in the ger- minating pollen tubes 

following exposure to 138 µg mL-1 of toxin. 

 

Environmental concentrations of cyanotoxins in freshwaters and fate in aquatic and soil ecosystems 

 

Environmental concentrations of cyanotoxins 

 

The occurrence of cyanobacterial toxins was reported through- out the world in surface waters, 

where hepatotoxic microcystins are more commonly found in 50–75% cyanobacterial blooms 

(Ettoumi et al., 2011). Data on environmental concentrations of cyanotoxins have been compiled 

and reviewed in numerous papers (Sivonen and Jones, 1999; Falconer and Humpage, 2006; Van 
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Apeldoorn et al., 2007; Messineo et al., 2009). In this review, we give a summary on environmental 

concentrations focusing on irrigation waters with the ultimate aim to relate them to phytotox- 

icological data. Cyanotoxins are intracellular toxins contained within living cells, depending on 

both the nature of the toxin and the growth stage (Jungmann et al., 1996; Orr and Jones, 1998; Park 

et al., 1998a,b; Sivonen and Jones, 1999). They are only released into the water, to form dissolved 

toxin, during cell senescence or cell death and lysis or through water treatment processes such as 

algaecide application, rather than by continuous excretion (James and Fawell, 1991; Gupta et al., 

2001; Babica et al., 2006). The highest total (intracellular plus dissolved) cyanotoxin levels have 

been found in blooms and scums. For example, total MC concentrations in surface waters vary from 

trace to several milligrams per liter, being strongly influenced by the occurrence of these forms of 

cyanobacterial biomass. In surface waters used as irrigation source, total MC concentrations of 4-50 

µg L-1, up to 6500 µg L-1, have been reported in multiple locations, including but not limited to the 

Morocco (Oudra et al., 2001), Tunisia (El Herry et al., 2008), India (Prakash et al., 2009), Turkey 

(Gurbuz et al., 2009), and Finland (Spoof et al., 2003), but much higher levels up to 29000 µg L-1 in 

Algeria (Nasri et al., 2008) (Table 1). It should be noted, however, that these very high 

concentrations of cyano- toxins would be from scums or from very dense cyanobacterial biomass. 

In the field, water samples with more than 1 µg L-1 total MCs, dissolved fraction did not comprise 

more than 10% of the combined intra and extracellular pool (Lindholm and Meriluoto, 1991; Jones 

and Orr, 1994; Tsuji et al., 1996; Ueno et al., 1996; Lahti et al., 1997). As well in some laboratory 

studies, where both intracellular and extracellular cyclic peptide toxins and STXs have been 

measured, it is generally the case that in healthy log phase cultures, less than 10–20% of the total 

toxin pool is dissolved in the culture medium (Sivonen et al., 1990; Lehtimaki et al., 1997; Negri et 

al., 1997; Rapala et al., 1997). On the contrary, CYN may often be found at higher levels in 

dissolved form than within cells, as it readily leaks from cells under normal growth conditions 

(Norris et al., 2001; Falconer and Humpage, 2006; Wörmer et al., 2008). For example, Shaw et al. 

(1999) found that in two instances of A. ovalisporum blooms around 80% of the total toxin content 

of the water was in free solution. Recently, Messineo et al. (2009) re- ported that in several Italian 

lakes of different characteristics and human uses, extracellular concentrations of total CYN varied 

from non-detectable values up to 126 µg L-1. However, limited or no information is available about 

the proportion of dissolved form with respect to the total level for the cyanobacterial neurotoxins. 

 

 



 

Fate in aquatic and soil ecosystems 

 

Once they enter in aquatic and soil ecosystems, cyanotoxins can be removed according to various 

processes such as photochemical degradation by UV, adsorption in particles in suspension or onto 

sediments, and biodegradation (Tsuji et al., 1994; Rapala et al., 1994; Lahti et al., 1996; Chiswell et 

al., 1999; Welker and Steinberg, 1999; Kaebernick and Neilan, 2001; Mazur-Marzec et al., 2006; 

Wörmer et al., 2008; Burns et al., 2009; Klitzke et al., 2010, 2011; Thirumavalavan et al., 2012). 

However, the four groups of cyanotoxins: hepatotoxins, neurotoxins, cytotoxins, and dermatotoxins, 

exhibit quite different chemical stabilities in these ecosystems. Hepatotoxin cyclic peptide 

cyanotoxins, microcystins and nodularins, are extremely stable compounds and may persist in 

aquatic systems for weeks after being released from the cells (Jones and Orr, 1994; Chen et al., 

2008; Edwards et al., 2008). According to other studies, these toxins in natural conditions could 

persist for several months or years (Harada et al., 1996; Sivonen and Jones, 1999). However, 

numerous studies reported that photochemical degradation by sunlight UV and exposure to 

degrading bacteria may speed up their removal from the water (Bourne et al., 1996; Heresztyn and 

Nicholson, 1997; Sivonen and Jones, 1999; Park et al., 2001; Song et al., 2009; Ho et al., 2012). 

The photodegrada- tion of MCs in full sunlight can take as little as two weeks or longer than six 

weeks, depending on the presence of water-soluble cell pigments (Tsuji et al., 1994; Welker and 

Steinberg, 2000). More recently, Thirumavalavan et al. (2012) showed in a laboratory exper- iment 

that the presence of humic acid and turbidity affected the photo-degradation process. Additionally, 

in sea water the rate of nodularin photolysis can be accelerated by the presence of some cell 

components and humic substance (Welker and Steinberg, 1999). Conversely, during the benthic 

phase, the photodegradation of these cyanotoxins is expected to be almost negligible due to low 

radiation penetration (Wörmer et al., 2010). In fact, Welker and Steinberg (2000) found that the 

half-life of MCs in the deep lakes is longer than the season of cyanobacteria growth, what suggests 

that the photolysis is significant only for shallow lakes. The alkaloid cytotoxin, CYN, is relatively 

stable in the dark; however, in sunlight and in the presence of cell pigments degradation occurs 

quite rapidly with more than 90% within 2–3 d (Chiswell et al., 1999). The neurotoxin, anatoxin-a, 

is also relatively stable in the dark, but it undergoes rapid photochemical degradation in sunlight 

particularly in alkaline conditions, even in the absence of cell pig- ments (Stevens and Krieger, 

1991; Smith and Sutton, 1993). However, no data are available for other cyanobacterial neurotoxins 

and LPS dermatotoxins. 

Cyanotoxins can also be retained on suspended particles or onto sediments in aquatic systems. 
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Wörmer et al. (2011) showed the great importance of sedimentation processes in the fate of MCs in 

freshwaters with an amount of toxin associated to settling parti- cles to be in the range of mg d-1 m-

2. But other studies reported that no more than 20% of toxins can be adsorbed on sediments (Rapala 

et al., 1993; Lahti et al., 1996). Furthermore, it was sug- gested that the removal of cyanotoxins in 

this process was the re- sult of both adsorption and biodegradation (Lahti et al., 1996). Therefore, 

biodegradation would appear to be the main fate for most cyanotoxins in aquatic systems and the 

relative performance of this process would be very site specific and dependent upon lo- cal 

sediment characteristics and microbial activity. It was recently reported that the data generated in 

laboratory and field studies strongly indicate that, in shallow lakes, low persistence and natural 

eliminations of MCs are due to biodegradation; suggesting that sediments play a crucial role in 

biodegradation by continuously supplying toxin-degrading bacteria to the water column (Chen et 

al., 2008, 2010; Mazur-Marzec et al., 2009). However, in deep sediments, biodegradation might be 

limited due to anoxic condi- tions (Holst et al., 2003; Grützmacher et al., 2002, 2010) and sedi- 

ments only bring nutrients for bacteria responsible of cyanotoxins biodegradation. Degradative 

heterotrophic bacteria of hepatotoxic cyanotoxins (MCs and NOD), and cytotoxins (CYN) have 

been found in various media, such as water columns (Jones and Orr, 1994; Cousins et al., 1996; 

Christoffersen et al., 2002; Hyenstrand et al., 2003; Lemes et al., 2008; Mazur-Marzec et al., 2009; 

Chen et al., 2010), sediments (Rapala et al., 1994; Holst et al., 2003), sew- age effluents (Lam et al., 

1995) or soils (Miller et al., 2001; Grützm- acher et al., 2002), with specific enzymatic pathways 

well characterized (Bourne et al., 1996; Okano et al., 2009; Zhang et al., 2010). Several previous 

studies have been indicated that MCs can be degraded by aquatic bacteria identified as pertaining 

especially to the genus Sphingomonas (Bourne et al., 1996; Harada et al., 2004; Ishii et al., 2004; 

Maruyama et al., 2006; Manage et al., 2009). Therefore, a microcystin-degrading gene cluster, 

mlrA, B, C and D was identified in these microorganisms, sequenced and the degradation process 

was proposed (Bourne et al., 2001; Saito et al., 2003; Imanishi et al., 2005). In the last two decades, 

several other species of bacteria capable of degrading peptidic cyanotoxins were identified, 

Sphingomonas sp. strain ACM-3962 (Jones et al., 1994), Paucibacter toxinivorans (Rapala et al., 

2005), Sphingosinicella microcystinivorans (Maruyama et al., 2006), Burkholderia sp. (Lemes et 

al., 2008). The most toxic congener, Microcystin-LR, was also found susceptible to breakdown by 

Sphingomonas, which initiated ring-opening and the production of a linear compound 200 times 

less toxic (Bourne et al., 1996). Recently, Ho et al. (2012) identified another bacterium strain 

(TT25) whose genome is similar to Sphin- gopyxis sp. that it is able to degrade MCs. The ability of 



 

these all species to degrade other congeners of MCs and NODs was investi- gated and revealed that 

peptides with the Adda–Arginine bond were successfully degraded while MC-LF, with Adda-

Phenyalanine bond and 6(z)-Adda-MC-LR and 6(z)-Adda-MC-RR were not significantly degraded 

(Imanishi et al., 2005). Another Japanese Sphingomonas isolate, 7CY, was shown to degrade a 

wider range of MCs, including MC-LR, -RR, -LY, -LW, and -LF but it was unable to de- grade 

NOD-Har a NOD analog where arginine is replaced by homo- arginine (Ishii et al., 2004). 

Biodegradation has also been shown to be an important process for the removal of the alkaloid 

cytotoxin, CYN, from contaminated water (Chiswell et al., 1999; Senogles et al., 2002). By 

contrast, a laboratory study investigating biodegra- dation of CYN with bacterial communities from 

two water bodies  in Spain, one having frequent exposure to CYN, the other rarely, has been shown 

that biodegradation of this toxin by an active microbial community does not take place during a 40-

d (Wörmer et al., 2008). A recent study demonstrated that CYN was degraded by indigenous 

microbial flora in waters with a history of Cylindrospermopsis blooms (Smith et al., 2008). Despite 

isolation of many bacteria from CYN enriched cultures, only a single isolate (Delftia sp.) capable of 

degrading CYN has been obtained (Smith, 2005). However, for cyanobacterial neurotoxins there 

are few reports on their persistence and biodegradation compared to cyanobacterial heptotoxins, 

although the increasing occurrence of these toxins in surface waters. A recent study indicated that 

saxitoxins (STXs) are predisposed to bacterial degradation during passage through bioactive 

treatment plant (Kayal et al., 2008). However, this study showed that structural modification during 

the biological treat- ment resulted to decrease of the predominant C-toxins variants and an increase 

in GTX2 and GTX3 which are more toxic than 

the C-toxins. Early work by Kiviranta et al. (1991) reported the isolation of a Pseudomonas sp. 

capable of rapid degradation of anatoxin-a, with a rate of 6-30 mg mL-1 per 3 d. A later study 

reported by Rapala et al. (1994) has been shown the removal of anatoxin-a by microbial populations 

isolated from water and sed- iments of a eutrophic, oligotrophic, and humic lake. In conclusion, the 

period of photodegradation of cyanotoxins is relatively long in comparison to the degradation 

caused by the microbial activity. Recently, Hu et al. (2012) found that the Bacillus sp. strain EMB 

is able to completely remove 2.99 mg L-1 of MC-RR and 2.15 mg L-1 of MC-LR within 24 h. 

However, the biodegradation speed of cyanotoxins in aquatic ecosystems can be influenced by the 

initial concentration and nature of toxins (Edwards et al., 2008; Ho et al., 2012) and by additional 

factors such as the water temperature (Park et al., 2001; Ho et al., 2007a,b; Smith et al., 2008; 

Hoefel et al., 2009) and the bacterial community composition within the water body; not only the 

types of organisms present, but also their abundance (Hoefel et al., 2009; Ho et al., 2012). Hoefel et 
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al. (2009) have demonstrated a direct relationship between the abundance of degrading organisms 

and the rate of degradation of MC-LR. Fur- thermore, although MCs are degraded by most of 

bacteria species, it seems that a lasting day’s delay or weeks are necessary before the degradation is 

introduced. This result was in agreement with the conclusion of Hyenstrand et al. (2003) indicating 

that bacteria species have to adapt themselves at first to the cyanobacteria metabolites before the 

degradation of MCs becomes effective. Indeed, the results of this last study indicate a weaker 

degradation of the MC-LR in May compared with September where the occurrence of 

cyanobacteria is higher. Similarly, Smith et al. (2008) found that CYN was degraded by indigenous 

microbial flora in waters with a history of Cylindrospermopsis blooms. 

The physicochemical fate and the environmental concentrations of cyanotoxins in soil have been 

the subject of a range of recent studies. Several classes of these toxins have been detected in field 

soils, and the sorption behavior and degradation and transfer to vegeta- bles have been studied to a 

large extent (Morris et al., 2000; Miller et al., 2001; Chen et al., 2006b; Bibo et al., 2008; 

Sathishkumar et al., 2011). The use of water from sources containing cyanobacterial blooms and 

toxins for spray irrigation of terrestrial plants, including food crop plants presents both a harmful 

effect on growth and development of plants and on soil ecosystems and potential health hazards 

through several exposure routes, including uptake into the food chain and accumulation of toxins on 

the external surfaces of edible plant material. Questions, therefore, arise about the persistence of 

total cyanotoxins (dissolved and within the cyanobacterial cells) when reach the soil ecosystem to 

produce phytotoxic ef- fects. Once reach the soil ecosystem, cyanotoxins persist in the environment, 

depending on the efficiency of degradation (i.e., photolysis, hydrolysis and bacterial degradation). 

Microcystins can persist in agriculture soils for relatively long times, with a half-life ranging 

between 6 and 17.8 d (Chen et al., 2006b). Jones et al. (1995) reported that scums of M. aeruginosa 

that dry on the shores of lakes may contain high concentrations of MCs for several months. 

Recently, Metcalf et al. (2012) found that MCs were detected in her- barium specimens of 

cyanobacteria which had been collected from aquatic and terrestrial environments in 11 countries 

throughout the world, dried, and stored at ambient temperatures in the dark for up to 170 years. 

Microcystins were also detected by HPLC and ELISA assays in desert crust samples from Qatar at 

concentrations between 1.5 and 53.7 ng g-1 dry weight (Metcalf et al., 2012). Thus, the persistence 

of these toxins within dried cyanobacterial cells for long period suggests that they will be released 

back into the soil when re-immersed by irrigation water, particularly when cyanobacterial blooms 

are used in some countries as an organic fertilizer (Chen et al., 2006a,b). However, as mentioned 



 

above for aquatic ecosystems, adsorption on sediments and specially exposure to degrading bacteria 

may also speed up their removal from the soil. 

The information on the adsorption of cyanotoxins in agriculture soil ecosystems is particularly 

scarce. However, adsorption of cyanobacterial hepatotoxins was measured in several batch studies 

to determine the applicability of bank filtration as an efficient removal strategy of these toxins from 

drinking water. For example, in batch experiments Miller et al. (2001) studied the adsorption of 

cyanobacterial hepatotoxins, MC-LR and NOD, in five soils with different physicochemical 

properties collected from regions around South Australia. They found that the soils with the high 

clay and/or organic carbon contents had the higher toxins adsorption coefficients. In similar 

experiments, Miller and Fallowfield (2001) found that the soils with the highest organic carbon 

content (2.9%) and the highest clay content (16.1%) were the most effective at removing these tox- 

ins in batch experiments. However, the sandy soil (98.5% sand) was incapable of the removal of 

cyanotoxins. This finding was supported by Morris et al. (2000) who reported that the clay content 

and its quality may be more important for the adsorption than other soil characteristics. However, 

Eynard et al. (2000) suggested that soil was unable to protect groundwater from cyanotoxins that 

origi- nated from surface waters. Thus, it seems that cyanotoxins sorption in soils is low and could 

potentially result in their high bioavailability to soil organisms and plants. In several studies, it 

seems that the major dissipation process for cyanotoxins in soil ecosystems is mainly via microbial 

degradation (Miller and Fallowfield, 2001; Chen et al., 2006b). In fact, numerous soil bacteria as 

Arthrobacter sp., Brevibacterium sp. and Rhodococcus sp. are able to breakdown MCs (Manage et 

al., 2009). Bourne et al. (2001) observed the same thing with Sphingomonas sp. that possesses a 

gene cluster involved in the degradation of MC-LR. Furthermore, Falconer et al. (1983) and 

Lambert et al. (1996) conclude that sand filtration alone is un- able to remove dissolved 

cyanotoxins. However, slow sand filters can be expected to remove 99% of dissolved cyanotoxins 

(Keijola et al., 1988; Grützmacher et al., 2002). This can be explained by the formation of a biofilm 

on top of the filter that it allows for some biodegradation of cyanotoxins in slow sand filtration. No 

data are available for other cyanoabcterial toxins such as neurotoxins and dermatotoxins, but some 

degradation may be expected, again depending on the chemical conditions of soil. In conclusion, 

the scarce results on the fate of cyanotoxins in soil ecosystems are very variable, which do not allow 

affirming with certainty the necessary time for a complete disappearance of these toxins. This 

variability ensues partially from used methods (e.g. studies led in laboratory with non 

environmental concentrations of toxins and in free-soil systems). Therefore, the fate of cyanotoxins 

in soil ecosystems will require more studies before we are capable to formulate an opinion on their 
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persistence and uptake into the food chain. 

 

Phytotoxicity effects of cyanotoxins 

 

The information on the effects of cyanotoxins on non-target organisms in the terrestrial 

environment is particularly scarce. However, despite the impressive amount of information on their 

toxicity on mammals compiled during the last two decades, there are still serious gaps in the 

knowledge about the phytotoxicity of these toxins. The phytotoxic effects of cyanotoxins on higher 

plants were firstly focused on aquatic photoautotrophic organisms (algae and macrophytes) that are 

naturally exposed to cyanotoxins (Har- per, 1992; Papke et al., 1997; Weiss et al., 2000; Yu et al., 

2000; Ikawa et al., 2001; Pietsch et al., 2001; Mitrovic et al., 2004; Ha and Pflugm- acher, 2013). 

Since few years, scientists were also interested by the effect of these toxins on terrestrial plants 

because, irrigation waters from sources containing cyanobacterial blooms and toxins are generally 

used without treatment for spraying agricultural crops and plants that might, therefore, induce a 

food chain contamination with a considerable health risk and potential economic losses. 

 

Neurotoxins 

 

The cyanobacterial neurotoxins have not received more re- search attention than have 

cyanobacterial hepatotoxins. This is a consequence of the many livestock deaths caused by 

cyanobacterial species producing hepatotoxic microcystins and their more widespread occurrence 

rather than species producing neurotoxins (Ettoumi et al., 2011). In addition, the recent inclusion of 

microcy- stin-LR as a toxic chemical in the World Health Organisation (WHO) drinking water 

guidelines has further accelerated investi- gation of the toxic effects of microcystins on mammals 

and vegeta- bles rather than cyanobacterial neurotoxins. Therefore, there are only few studies 

reported in the literature on the effects of cya- noabcterial neurotoxins on crops and plants. Mitrovic 

et al. (2004) were exposed the free-floating aquatic plant L. minor and the filamentous macroalga 

Chladophora fracta to anatoxin-a at 0.1-25 µg L-1 under laboratory conditions for 4-7 d. They 

found in both organisms significantly increase of peroxidase activity after 4 d exposure at 25 µg L-1 

but not at lower concentrations. After 7 d exposure to this neurotoxin significant increase of GST 

activity and reduction of photosynthetic oxygen production were observed at 5 and 20 µg L-1 but 

not at lower concentrations in L. minor. In addition, Ha and Pflugmacher (2013) reported that this 



 

alkaloid neurotoxin at an environmentally relevant concentration (15 µg L-1), induced phytotoxic 

effects on the submerged aquatic macrophyte Ceratophyllum demersum, mediated by oxidative 

stress. Recently, Esterhuizen-Londt et al. (2011) investigated in in vitro study the effect of BMAA 

at different environmentally concentrations (0.5, 1, 5, 50 and 100 µg L-1) for 24 h on the oxidative 

stress responses of the macrophyte C. demersum. The most pronounced effects found were activity-

inhibiting effects on all the oxidative stress response enzymes at all exposure concentrations. 

However, enzymes not related to oxidative stress response were not affected by the BMAA in these 

experiments. For other neurotoxins, the literature search did not yield any results. 

 

Hepatotoxins 

 

The effects of cyanoabcterial toxins on photoautotrophic organ- isms have been most intensively 

studied for MCs, in line with their abundance and their mode of action. First experiments were fo- 

cused on the ability of these hepatotoxins to act as general allelopathic compounds against 

planktonic microalgae, macroalgae and macrophytes in aquatic ecosystems. The allelopathic effects 

of Aphanizomenon and other cyanobacteria bloom formers on chlorophyte species are early 

documented in several studies (Lefevre et al., 1950; Tassigny and Lefevre, 1971; Boyd, 1973). 

Subse- quently, Ikawa et al. (2001) and Papke et al. (1997) observed that cyanobacterial metabolites 

can induce the growth inhibition of the green alga Chlorella pyrenoidosa and the photosynthesis of 

other cyanobacteria species, respectively. Similarly, Sukenik et al. (2002) found that Microcystis 

sp., a MCs producer, severely inhibited the growth of the freshwater dinoflagellate Peridinium 

gatunense in mixed laboratory cultures which was attributed to the excretion of allelopathic 

substances rather than to successful competition for nutrients. Hu et al. (2005) found that the growth 

of Synechococcus elongatus was reduced by 53.6% after 6 d of exposure to 100 µg L-1 of MC-RR 

suggesting that oxidative stress manifested by elevated ROS levels and MDA contents might be 

responsible for the toxicity of MC-RR to this species. Moreover, Singh et al. (2001) demonstrated 

that MCs are strongly algicidal and point to the pos- sibility that they may have an important role in 

establishment and maintenance of toxic blooms of M. aeruginosa in freshwater ecosys- tems. 

Valdor and Aboal (2007) demonstrated the inhibitory effect of both cyanobacterial extracts and 

pure MCs on the growth of microalgae. Bártová et al. (2010) examined effects of semipurified 

Microcystis extract containing MCs (0.2-20 nM) on age-induced cell differentiation of the 

filamentous cyanobacterium Trichormus variabilis and they found that heterocyst and akinete 

formation was significantly decreased after exposure to extract containing 2 or 20 nM of MCs 
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within 10 d of exposure. Recently, Perron et al. (2012) evaluated the effect of four microcystins 

standards (variants MC-LF, -LR, -RR, -YR) at different concentrations (0.01-10 µg mL-1) and 0.01, 

0.1, and 1 µg mL-1 equivalent microcystins extracted from Microcystis aeruginosa (CPCC299), 

which is known to produce mainly MC-LR, on the fluorescence of four green algae (Scenedesmus 

obliquus CPCC5, Chlamydomonas reinhardtii CC125, Pseudokirchneriella subcapitata CPCC37 

and Chlorella vulgaris CPCC111) and how they can affect the flow of energy through photosystem 

II. Their results showed that MCs affect the photosynthetic efficiency and the flow of energy 

through photosystem II from 0.01 µg mL-1 within only 15 min and that MC-LF was the most potent 

variant, followed by MC-YR, -LR and -RR. 

It was also noticed that in eutrophic freshwaters dominated by cyanobacteria, a decrease in species 

diversity and in the growth of macrophytes often occurs (Harper, 1992; Weiss et al., 2000; Yu et al., 

2000; Pietsch et al., 2001). Casanova et al. (1999) found that the abundance and the variety of 

macrophytes are reduced in the presence of cyanobacterial blooms. In 1986, Kirpenko showed for 

the first time the inhibition growth of water plants Elodea and Lemna by MCs isolated from a 

natural bloom. This allelopathic action was recently confirmed by Weiss et al. (2000) further to the 

cocul- ture of the plant Lemna minor with the cells of M. aeruginosa. Moreover, Pflugmacher 

(2002) revealed that MC-LR induces allelopathic effects on the aquatic macrophytes such as C. 

demersum and Myriophyllum spicatum, resulting in growth inhibition, reduction in photosynthetic 

oxygen production, and changes in pigment pattern. Jang et al. (2007) found by examining 

cyanobacterial toxin production in response to direct exposure to an axenically cultured aquatic 

plant (Lemna japonica Landolt) using two toxic monoclonal strains of M. aeruginosa Küzing (NIES 

strains 103 and 107) that re- ciprocal allelopathic responses have been observed between these two 

species Microcystis and Lemna. In several other studies, it occurred that MCs have the potential to 

exert toxic effects on growth and physiological processes, which all might be related to the 

inhibition of protein phosphatase activity or oxidative stress in aquatic moss (Wiegand et al., 2002) 

and in higher aquatic plants such as Lemna gibba (Saqrane et al., 2007), Lemna genus (Mitrovic et 

al., 2005), L. japonica (Jang et al., 2007), Spirodela oligorrhiz (Romanowska-Duda and 

Tarczynska, 2002), Phragmit  australis (Yamasaki, 1993; Máthé et al., 2009; Jámbrik et al., 2011), 

and C. demersum (Pflugmacher, 2004). 

There are also several indications that terrestrial plants, including food crop plants, can be altered 

by MCs present in irrigation waters, resulting principally to their serine/threonine phosphatases 

inhibition and reactive oxygen species (ROS) production. Sheen (1993) found that the marine 



 

phycotoxin okadaic acid, a potent inhibitor of serine/threonine protein phosphatases like MCs, 

efficiently blocks chlorophyll accumulation induced by light in eti- olated maize leaves. It seems 

also that this phycotoxin blocks root hair growth and alter cortical cell shape of Arabidopsis 

thaliana L. at 3 nM (Smith et al., 1994). Takeda et al. (1994) found that okadaic acid and MC-LR, 

inhibitors of protein phophatases type 1 and 2A block the sugar-inducible gene expression in 

petioles of sweet po- tato Ipomoea batatas. Similarly, Siegl et al. (1990) reported that in in vivo 

these toxins prevented the light-induced activation of sucrose-phosphate synthase (SPS) that is 

generally activated by dephosphorylating by protein phosphatase 2A, and decreased su- crose 

biosynthesis and CO2 fixation in spinach leaves. Yin et al. (2005) reported that MC-LR at 5 mg L-1 

is able to cause oxidative damage resulting in lipid peroxidation and decrease of glutathione GSH 

content and increases of superoxide dismutase (SOD) and catalase (CAT) activities on A. thaliana 

cells. Later, Stüven and Pflugmacher (2007) provide further evidence that cyanobacterial toxins as 

well as cyanobacterial crude extract containing MC-LR induce oxidative stress response in 

Lepidium sativum seedlings, manifested by lipid peroxidation, elevation of alpha- and beta-

tocopherol concentrations and elevated activities of antioxidative enzymes like the glutathione 

peroxidase, glutathione S-transferase and glutathione reductase. El Khalloufi et al. (2012) showed 

that 30 d exposure of Lycopersicon esculentum to a cyanobacterial crude extract containing 2.22–

22.24 µg MCs mL-1 caused enhancement on peroxidase activity and phenolic content indicated that 

the ex- tract caused an oxidative stress. The exposure of rice plants (Oriza sativa) to toxic M. 

aeruginosa cyanobacterial extracts containing 50 µg MC-LR L-1 resulted in a significant increase in 

the GST activity in leaves of this plant (Prieto et al., 2011). Therefore, by acting as protein 

phosphatase inhibitors and inducers of ROS production, MCs could be involved in several 

physiological and molecular pro- cesses in higher terrestrial plants. 

 

Cytotoxic alkaloids 

 

Cylindrospermopsin, a protein synthesis inhibitory cyanoabcterial cytotoxin also led to a clear 

growth inhibition and anatomy modification through the alteration of microtubules organization of 

the common reed P. australis at concentrations 0.5–40 µg mL-1 (Beyer et al., 2009). Previous study 

demonstrated that CYN inhibited the growth of Sinapsis alba mustard seedlings at 18.2 µg mL-1 

(Vasas et al., 2002). Short term exposure of rice plants (Oriza s.) to toxic A. ovalisporum 

cyanobacterial extracts containing 0.13 µg CYN L-1 can lead to an increase of oxidative stress 

(increase in GST and GPx activities). Moreover, longer exposure periods can lead to tissue necrosis 



19 

 

19 

 

(loss of tissue fresh weight) concomitant with the oxidative stress. In addition, the plant expo- sure 

to a mixture of A. ovalisporum and M. aeruginosa cell extracts containing 0.13 µg CYN L-1 and 50 

µg MC-LR L-1, respectively, resulted in a significant increase in the GST and GPx activities, sug- 

gesting a synergistic effect of both extracts (Prieto et al., 2011). 

 

Bioaccumulation of cyanotoxins in vegetable foods and consequences on animals and human health 

 

In aquatic ecosystems, several studies have been reported the bioaccumulation of cyanotoxins in 

common aquatic vertebrates and invertebrates, including zooplankton, mollusks and crusta- ceans, 

and fish, which pose a potential risk to both animal and hu- man health if such aquatic animals are 

consumed (Ibelings and Chorus, 2007; Ettoumi et al., 2011). However, their ability to enter the food 

chain via agricultural crops has not been thoroughly investigated to date. Questions, therefore, arise 

about the health significance of spray irrigation of crops with water from sources containing 

cyanobacterial blooms and toxins. Nevertheless, several studies have been shown the accumulation 

potential of cyanotox- ins in aquatic vegetable organisms, suggesting that terrestrial plants, 

including food crop plants, can also take up these toxins. Mitrovic et al. (2005) reported that the 

filamentous alga C. fracta accumulates MC-LR at a rate of 8 ng g-1 d-1. In addition, few amounts of 

MCs were detected in C. vulgaris and Scenedesmus quadricauda cells only during the first 3 d of 

exposure, but not during the remaining period of the experiment, suggesting a possible 

biotransformation of MCs in these algae (Mohamed, 2008). The emergent reed plant P. australis 

showed an apparent distribution of MC-LR in the different parts of the plant, after exposure to this 

toxin at 0.5 µg L-1 with highest uptake was detected in the stem and then the rhizome (Pflugmacher 

et al., 2001). In addition, Lemna minor has also been shown to accumulate MC-LR up to a 

concentration of 0.2887 ± 0.009 ng mg-1 wet wt plant material, after 5 d of exposure to this toxin at 

20 µg L-1 with an accumulation rate equivalent to 58 ng g-1 d-1 (Mitrovic et al., 2005). However, 

Saqrane et al. (2007) reported that L. gibba could take up and biotransform microcystins. The 

chronic exposure of plant led to dose-dependent MCs accumulation which reached 2.24 µg g-1 dry 

weight after being exposed to 0.3 µg mL-1 of MCs (Saqrane et al., 2007). Recently, it has been 

shown that collected water chestnut (Trapa natans) from Lake Tai accumulated MCs at highest 

level up to 7.02 ng g-1 dw (Xiao et al., 2009). 

Terrestrial plants could be exposed to cyanobacterial toxins via the use of eutrophic water that may 

contain cyanobacterial blooms and toxins from irrigation and, therefore, they can take up 



 

cyanotoxins. Peuthert et al. (2007) have been reported that MC-LR could be absorbed by roots and 

be translocated from roots to shoots in seedlings of eleven agricultural plants. A second study by 

Crush et al. (2008) that used different species too, revealed a high level of MCs accumulation in 

lettuce (L. sativa) exceeding the tolerable daily intake of 0.04 µ kg-1 of body weight d-1 

recommended by the World Health Organization (Sivonen and Jones, 1999). However, the most of 

these studies have been performed in hydroponic conditions where the roots have been in direct 

contact with the toxin solutions and can, therefore, overestimate the bioaccumula- tion rate. In our 

knowledge the only study reported in the literature that was realized in soil showed that MC 

concentrations in roots did not exceed the tolerably limit, however, the concentration of MCs in 

aerial parts of the plant are not determined (Järvenpää et al., 2007). Both the roots and shoots of rice 

were re- ported to accumulate MC-LR in a laboratorial study (Chen et al., 2004). In addition, a 

recent study by Chen et al. (2012) reported for the first time the accumulation of MC-LR in rice 

grains har- vested from Lake Taihu in China. However, the concentration of MC-LR detected in 

rice grains was very low and thus may not pose a threat to human health currently. In addition to the 

possibility of internal accumulation of MCs, irrigation may lead to accumulation of toxins on the 

external surfaces of edible plant materials when the contaminated water dries on the plant surface 

between irriga- tion periods or when the water becomes trapped in the centers of, for example, salad 

plants. In fact, Codd et al. (1999) have been re- ported that colonies and single cells of M. 

aeruginosa and microcystins were retained by salad lettuce after growth with spray irrigation water 

containing the microcystin-producing cyanobacte- ria. Recently, Kittler et al. (2012) reported that 

treatment of Brassica oleracea var. sabellica, Brassica juncea, and S. alba under varying 

experimental conditions showed significant CYN uptake, with CYN levels ranging from 10% to 

21% in the leaves compared to the CYN concentration applied to the roots (18–35 µg L-1). These 

results suggest that crop plants irrigated with CYN-contain- ing water may represent a significant 

source of this toxin within the food chain. However, further research is needed into the uptake and 

fate of microcystins and other cyanobacterial toxins by food plants and the persistence of these 

toxins in the edible plant materials. 

 

Conclusion and future directions 

 

This review has established that cyanobacterial cells and toxins can be associated with crop plants 

after spray irrigation with water containing these agents. Therefore, the use of water from sources 

containing cyanobacterial blooms and toxins for spray irrigation of crop plants may not only inhibit 
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growth of plants, but also can induce a food chain contamination with a considerable health risk and 

potential economic losses. Several studies have been shown that cyanotoxins could be absorbed by 

roots, transported to shoots, and then be translocated to grains and/or fruits. Nevertheless, the 

concentration of MC-LR detected, for example, in rice grains was very low and thus may not pose a 

threat to human health cur- rently. Cyanotoxins could be partially metabolized during the long 

distance transportation from roots to grains or fruits, which may resulted in the lower level of 

cyanobacterial hepatotoxins type microcystins detected in rice grains. In addition, MCs could bind 

to serine/threonine phosphatases during transport and thus could also affect their accumulation in 

grains and fruits. Therefore, further investigations are needed into the uptake and fate of micro- 

cystins and other cyanobacterial toxins by food plants during the totally period of vegetative and 

fruit development. 

However, there are gaps remaining concerning information on the future of cyanotoxins in soil in 

term of speciation, persistence, mode of degradation and impact on biological life in soils. The re- 

sults of many existing tests and particularly laboratory studies on phytotoxicity of cyanotoxins are 

done in soil-free systems and using non realistic environmental concentration of toxins. Therefore, 

they are difficult to compare to field studies because both abi- otic (e.g., soil conditions) as well as 

biotic (composition of the degrading biological community) factors can influence the out- come of 

such studies. In order to assess the relevance of phytotoxicity of cyanotoxins and their 

bioaccumulation in crop plants in the terrestrial environment, further research seems thus 

appropriate. 
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Table 1 

Overview of some published cyanobacterial toxin concentrations from various countries. 

Concentrations are presented in µg g-1 dry weight (DW) or else in µg L-1 as indicated. 

 

 


