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Abstract

This article studies the targeted sequential inference of an optimal treatment rule (TR) and its 

mean reward in the non-exceptional case, i.e., assuming that there is no stratum of the baseline 

covariates where treatment is neither beneficial nor harmful, and under a companion margin 

assumption.

Our pivotal estimator, whose definition hinges on the targeted minimum loss estimation (TMLE) 

principle, actually infers the mean reward under the current estimate of the optimal TR. This data-

adaptive statistical parameter is worthy of interest on its own. Our main result is a central limit 

theorem which enables the construction of confidence intervals on both mean rewards under the 

current estimate of the optimal TR and under the optimal TR itself. The asymptotic variance of the 

estimator takes the form of the variance of an efficient influence curve at a limiting distribution, 

allowing to discuss the efficiency of inference.

As a by product, we also derive confidence intervals on two cumulated pseudo-regrets, a key 

notion in the study of bandits problems.

A simulation study illustrates the procedure. One of the corner-stones of the theoretical study is a 

new maximal inequality for martingales with respect to the uniform entropy integral.
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1. Introduction

This article contributes theoretically to the burgeoning field of precision medicine, whose 

general focus is on identifying which treatments and preventions will be effective for which 

patients based on genetic, environmental, and lifestyle factors. It studies the targeted data-

adaptive inference of an optimal treatment rule (TR) from data sampled based on a targeted 

sequential design. A TR is an individualized treatment strategy in which treatment 

assignment for a patient is based on her measured baseline covariates. Eventually, a reward 

is measured on the patient. Optimality is meant in terms of maximization of the mean 

reward. We also infer the mean reward under the optimal TR.

We choose not to frame our statistical model into a causal one. To give an idea of how the 

targeted sequential design unfolds, suppose nonetheless (in this paragraph only) that there 

exists an infinite sequence of independent and identically distributed (i.i.d.) full data 

structures consisting each of a set of baseline covariates and a couple of potential rewards 

measured on a randomly sampled patient. The baseline covariates describe the 

corresponding patient and the rewards are the two potential outcomes for the patient 

corresponding with the two possible treatments. Only one reward can be observed, that 

corresponding with the assigned treatment. A TR maps deterministically the baseline 

covariates to one treatment; a stochastic TR does so randomly. The optimal TR is that TR 

which maps the baseline covariates to that treatment with the larger mean reward. The mean 

reward of the optimal TR is the average of the larger mean with respect to (wrt) the baseline 

covariates. Until a number of observations deemed sufficient to begin to learn from them is 

reached, treatment is assigned equiprobably regardless of the baseline covariates. Then, 

sequentially, all observations collected so far (each consisting of baseline covariates, a single 

treatment assignment and the reward resulting from it) are exploited to learn the optimal TR, 

which is approximated by a stochastic TR from which the next treatment assignment is 

drawn conditionally on the next observed baseline covariates. Our statistical model is a 

submodel of the above causal model derived from it under sequential missingness.

The targeted sequential elaboration of our design and its companion inference procedure are 

driven by two objectives. First, increasing the chance that each patient enrolled in the study 

be assigned that treatment which is more favorable to her according to data accrued so far. 

Second, increasing the robustness and efficiency of statistical inference through the 

construction of targeted, narrower confidence intervals. The latter objective is appealing to 

the investigators of the study, and the former to the patients enrolled in it and their doctors. 

Indeed, a known disadvantage of traditional randomized clinical trials is that randomization 
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interferes with the doctor-patient relationship: clinicians must admit to each potential patient 

that it is not known which of the treatments would be best for her, thereby potentially 

eroding their relationship. From an ethical perspective, a second disadvantage is that the 

clinicians should believe that the treatments are equivalent wrt potential patient benefit, a 

situation many of them find uncomfortable [29]. These two disadvantages would be 

respectively considerably diminished and irrelevant in a trial based on our design, at the cost 

of a more complex implementation. In addition, one may expect a gain in compliance.

The authors of [3] present an excellent unified overview on the estimation of optimal TRs, 

with a special interest in dynamic rules (where treatment assignment consists in successive 

assignments at successive time points). The estimation of the optimal TR from i.i.d. 

observations has been studied extensively, with a recent interest in the use of machine 

learning algorithms to reach this goal [24, 36, 37, 34, 35, 28, 20]. In contrast, we estimate 

the optimal TR (and its mean reward) based on sequentially sampled dependent observations 

by empirical risk minimization over sample-size-dependent classes of candidate estimates 

with a complexity controlled in terms of uniform entropy integral.

The estimation of the mean reward under the optimal TR is more challenging than that of the 

optimal TR. In [36, 37], the theoretical risk bound evaluating the statistical performance of 

the estimator of the optimal TR can also be interpreted in terms of a measure of statistical 

performance of the resulting estimator of the mean reward under the optimal TR. However, 

it does not yield confidence intervals.

Constructing confidence intervals for the mean reward under the optimal TR is known to be 

more difficult when there exists a stratum of the baseline covariates where treatment is 

neither beneficial nor harmful [26]. In this so called “exceptional” case, the definition of the 

optimal TR has to be disambiguated. Assuming non-exceptionality, confidence intervals are 

obtained in [34] for the mean reward under the (sub-) optimal TR defined as the optimal TR 

over a parametric class of candidate TRs, and in [18] for the actual mean reward under the 

optimal TR. In the more general case where exceptionality can occur, different approaches 

have been considered [4, 12, 17, 19]. Here, we focus on the non-exceptional case under a 

companion margin assumption [21].

Because we are committed to providing robust and (more) efficient inference, we rely on the 

targeted minimum loss estimation (TMLE) principle [31]. Succinctly, and focusing on 

targeted maximum likelihood estimation, the first instance of TMLE [32], the procedure 

consists in the following steps: (a) viewing the parameter of interest as a smooth functional 

Ψ evaluated at a law P0, (b) computing a possibly highly data-adaptive initial estimator 

of P0 (e.g., a super learner), (c) defining a least favorable model through  (i.e., a 

parametric model through  whose score spans the so called canonical gradient at  of the 

derivative of Ψ), (d) maximizing the log-likelihood over this model to define an updated 

estimator  (possibly iteratively), (e) defining the TMLE as the plug-in estimator 

obtained by evaluating Ψ at the last update of the estimator of P0. Targeted maximum 

likelihood estimation was naturally extended to targeted mininimum loss based estimation 

by replacing the log-likelihood loss and least favorable model by any pair of loss and 
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submodel whose generalized score spans the canonical gradient. The method has been 

applied and advanced across a large variety of data structures, models, and target parameters. 

Since it involves substitution estimators, TMLE should typically yield better performances 

in small sample than one-step [13, 23] or estimating equations-based [30] estimators, which 

are also not as general. We can build upon previous studies on the construction and 

statistical analysis of targeted, covariate-adjusted, response-adaptive trials also based on 

TMLE [6, 38, 7]. One of the cornerstones of the theoretical study is a new maximal 

inequality for martingales wrt the uniform entropy integral, proved by decoupling [9], 

symmetrization and chaining, which allows us to control several empirical processes indexed 

by random functions.

Our pivotal TMLE estimator is actually constructed as an estimator of the mean reward 

under the current estimate of the optimal TR. Worthy of interest on its own, this data-

adaptive statistical parameter (or similar ones) has also been considered in [4, 16, 17, 18, 

19]. Our main result is a central limit theorem for our TMLE estimator. The asymptotic 

variance takes the form of the variance of an efficient influence curve at a limiting 

distribution, allowing to discuss the efficiency of inference.

We use our TMLE estimator to infer the mean rewards under the current estimate of the 

optimal TR and under the optimal TR itself. Moreover, we use it to infer two additional data-

adaptive statistical parameters. The first one compares the sum of the rewards actually 

received during the course of the experiment with the sum of the means of the rewards we 

would have obtained if we had used from the start the current estimate of the optimal TR to 

assign treatment. The second one compares the sum of the rewards actually received during 

the course of the experiment with the sum of the counterfactual rewards we would have 

obtained if we had used from the start the current estimate of the optimal TR to assign 

treatment.

Both additional data-adaptive statistical parameters are “cumulated pseudo- regrets”. We 

borrow this expression from the literature on bandits. Bandits have raised a considerable 

interest in the machine learning community as relevant models for interactive learning 

schemes or recommender systems. Many articles define efficient strategies to minimize the 

expected cumulated pseudo-regret (also known as the “cumulated regret”), see [2] for a 

survey. Sometimes, the objective is to identify the arm with the largest mean reward (the best 

arm) as fast and accurately as possible, regardless of the number of times a sub-optimal arm 

is played, see [11] for an in-depth analysis of the so called fixed-confidence setting where 

one looks for a strategy guaranteeing that the probability of wrongly identifying the best arm 

at some stopping time is no more than a fixed maximal risk while minimizing the stopping 

time’s expectation. Here, we derive confidence intervals on the cumulated pseudo-regrets as 

by products of the confidence intervals that we build for the mean rewards under the current 

estimate of the optimal TR and under the optimal TR itself. Thus, the most relevant 

comparison is with the so called “contextual bandit problems”, see [15, Chapter 4] for an 

excellent overview.

Organization—Section 2 presents our targeted, data-adaptive sampling scheme and our 

pivotal estimator. Section 3 studies the convergence of the sampling scheme, i.e., how the 
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sequences of stochastic and TRs converge, assuming that a function of the conditional mean 

of the reward given treatment and baseline covariate is consistently estimated. Section 4 is 

devoted to the presentation of our main result, a central limit theorem for our pivotal 

estimator, to the comment of its assumptions and to an example. Section 5 builds upon the 

previous section to build confidence intervals for the mean rewards under the current 

estimate of the optimal TR and under the optimal TR itself, as well as confidence intervals 

for the two cumulated pseudo-regrets evoked in the introduction. Section 6 presents the 

results of a simulation study. Section 7 closes the article with a brief discussion. All proofs 

are given in [8, Section A]. Technical lemmas are gathered in [8, Sections B and C].

2. Targeting the optimal treatment rule and its mean reward

2.1. Statistical setting

At sample size n, we will have observed the ordered vector On ≡ (O1, …, On), with 

convention O0 ≡ ∅. For every 1 ≤ i ≤ n, the data structure Oi writes as Oi ≡ (Wi,Ai, Yi). 

Here, Wi ∈  consists of the baseline covariates (some of which may be continuous) of the 

ith patient, Ai ∈  ≡ {0, 1} is the binary treatment of interest assigned to her, and Yi ∈  is 

her primary outcome of interest. We interpret Y as a reward: the larger is Y, the better. We 

assume that the space  ≡ × ×  is bounded. Without loss of generality, we may then 

assume that  ≡ (0, 1), i.e., that the rewards are between and bounded away from 0 and 1. 

Interestingly, the content of this article would still hold up to minor modifications if we 

assumed instead  ≡ {0, 1}.

Let μW be a measure on  equipped with a σ-field, μA = Dirac(0)+ Dirac(1) be a measure 

on  equipped with its σ-field, and μY be the Lebesgue measure on  equipped with the 

Borel σ-field. Define μ ≡ μW ⊗ μA ⊗ μY, a measure on  equipped with the product of the 

above σ-fields. The unknown, true likelihood of On wrt μ⊗n is given by the following 

factorization of the density of On wrt μ⊗n:

(2.1)

where (i) w ↦ QW,0(w) is the density wrt μW of a true, unknown law on  (that we assume 

being dominated by μW), (ii) {y ↦ QY,0(y|a,w) : (a,w) ∈ × } is the collection of the 

conditional densities y ↦ QY,0(y|a,w) wrt μY of true, unknown laws on  indexed by (a,w) 

(that we assume being all dominated by μY), (iii) gi(1|Wi) is the known conditional 

probability that Ai = 1 given Wi, and (iv) gn ≡ (g1, …, gn), the ordered vector of the n first 

stochastic rules. One reads in (2.1) (i) that W1, …, Wn are independently sampled from QW,

0dμW, (ii) that Y1, …, Yn are conditionally sampled from QY,0(·|A1,W1)dμY, …, QY,0(·|
An,Wn)dμY, respectively, and (iii) that each Ai is drawn conditionally on Wi from the 

Bernoulli distribution with known parameter gi(1|Wi).

In (2.1) and the subsequent text, subscript “0” stands for “truth” and refers to true, unknown 

features of the distribution of the data. This notational convention will prevail throughout the 

article.
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We introduce the semiparametric collection  of all elements of the form

with {w1, …, wK} ⊂ . Here, QW is a density wrt either μW or a discrete measure 

 (thus, we can take the empirical measure of W as first component of Q). 

Each QY (·|a,w) is a density wrt μY. In particular, Q0 ≡ (QW,0dμW,QY,0(·|a,w), (a,w) ∈ ×

) ∈ . In light of (2.1) define, for every Q ∈ , 

. The set {ℒQ,gn: Q ∈ } is a 

semiparametric model for the likelihood of On. It contains the true, unknown likelihood 

ℒQ0,gn.

Fix arbitrarily Q ∈ . The conditional expectation of Y given (A,W) under Q is denoted QY 

(A,W) ≡ ∫ yQY (y|A,W)dμY (y). To alleviate notation, we introduce the so called “blip 

function” qY characterized by qY (W) = QY (1,W) − QY (0,W). If qY (W) ≥ 0 (respectively, 

qY (W) < 0), then assigning treatment A = 1 (respectively, A = 0) guarantees that the patient 

receives the superior treatment in the sense that her mean reward is larger in this arm than in 

the other one. If qY (W) = 0, then the mean rewards are equal. This characterizes an optimal 

stochastic rule r(QY) given by

(2.2)

It is degenerate because, given W, the assignment is deterministic. Such degenerate 

stochastic rules are usually referred to as treatment rules in the causal inference literature 

(already used in Section 1, this expression abbreviates to TRs). When Q = Q0, we denote QY 

≡ QY,0, qY ≡ qY,0, and r(QY) ≡ r0.

The parameter of interest is the mean reward under the optimal TR,

(2.3)

Let  be the semiparametric collection of all stochastic TRs g, which satisfy g(1|W) = 1 − 

g(0|W) ∈ (0, 1). From now on, for each (Q, g) ∈ × , we denote PQ,g the distribution of O = 

(W, A, Y ) obtained by drawing W from QW, then A from the Bernoulli distribution with 

parameter g(1|W), then Y from the conditional distribution QY (·|A,W)dμY. Let ℳ ≡ {PQ,g : 

Q ∈ , g ∈ }. We actually see ψ0 as the value at any PQ0,g (g ∈ ) of the mapping Ψ :ℳ 
→[0, 1] characterized by
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(2.4)

Obviously, the parameter Ψ(PQ,g) does not depend on g. It depends linearly on the marginal 

distribution QWdμW, but in a more subtle way on the conditional expectation QY.

We have not specified yet what is precisely gn ≡ (g1, …, gn). Our targeted sampling scheme 

“targets” the optimal TR r0 and ψ0. By targeting r0, we mean estimating QY,0 based on past 

observations, and relying on the resulting estimator to collect the next block of data, as seen 

in (2.1), and to estimate ψ0. Targeting ψ0 refers to our efforts to build an estimator of ψ0 

which allows the construction of valid, narrow confidence intervals.

2.2. Targeted sequential sampling and inference

Let {tn}n≥1, {ξn}n≥1 be two user-supplied, non-increasing sequences with t1 ≤ 1/2, limn tn ≡ 
t∞ > 0 and limn ξn ≡ ξ∞ > 0. For every n ≥ 1, introduce the function Gn characterized over 

[−1, 1] by

(2.5)

For convenience, we also introduce G∞ ≡ Gn1 where n1 ≥ 1 is chosen large enough so that 

tn1 = t∞ and ξn1 = ξ∞. Function Gn is non-decreasing and cn-Lipschitz with

A smooth approximation to x ↦ 1{x ≥ 0} with values bounded away from 0 and 1, Gn will 

be used to derive a stochastic TR from an estimated blip function, see (2.11). This derivation 

mimicks the definition of the optimal TR as the indicator of the true blip function being non-

negative. This particular choice of Gn is one among many. Any other non-decreasing 

function G̃
n such that G̃

n(x) = tn for x ≤ − ξn, G̃
n(x) = 1−tn for x ≥ ξn, and G̃

n κn-Lipschitz 

with κn upper-bounded by a finite κ∞ could be chosen as well.

Loss functions and working models—Let gb ∈  be the balanced stochastic TR 

wherein each arm is assigned with probability 1/2 regardless of baseline covariates. Let gref 

∈  be a stochastic TR, bounded away from 0 and 1 by choice, that serves as a reference. In 

addition, let L be a loss function for QY,0 and 1,n be a working model
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consisting of functions QY,β mapping ×  to [0, 1] (in the above display, QY denotes the 

conditional expectation of Y given (A,W) under Q ∈ ). One choice of L is the quasi 

negative-log-likelihood loss function Lkl. For any QY ∈ Y bounded away from 0 and 1, 

Lkl(QY ) satisfies

(2.6)

Another interesting loss function L for QY,0 is the least-square loss function Lls. It is 

characterized at any QY ∈ Y by

(2.7)

The loss function and working models will be used to estimate QY,0.

Completing the description of the sampling scheme—We initialize the sampling 

scheme by setting g1 ≡ gb. Consider 1 < i ≤ n. Since

we naturally define

(2.8)

and use QY,βi as an estimator of QY,0 based on Oi−1. It gives rise to qY,βi and ri such that

(2.9)

(2.10)

two substitution estimators of the blip function qY,0 and optimal TR r0, respectively.
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For smaller sample sizes i, setting gi equal to ri would be hazardous. Indeed, there is no 

guarantee that qY,βi estimates well qY,0. Say, for instance, that qY,βi (w) is large by mere 

chance for all w in a data-dependent subset Si of . If we used gi = ri, then future patients 

with W ∈ Si would systematically be assigned to treatment arm a = 1 and the poor 

estimation of qY,0 on Si could not be corrected, if needed. Thus, we characterize gi by setting

(2.11)

This completes the definition of the likelihood function, hence the characterization of our 

sampling scheme.

Note that choosing t1 = …= tn0 = 1/2 for a limit sample size n0 would yield g1 = …= gn0 = 

gb, the balanced stochastic TR. Furthermore, the definitions of Gn and gn entail 

straightforwardly the following lemma:

Lemma 2.1: Set n ≥ 1. It holds that

(2.12)

(2.13)

Lemma 2.1 illustrates the so called exploration/exploitation trade-off, i.e., the ability of the 

sampling scheme to exploit the accrued information (2.12) while keeping exploring in 

search of potential discordant new piece of information (2.13). From a different perspective, 

(2.12) shows that TR rn meets the positivity assumption.

Targeted minimum loss estimator—Let ℛ be the set of all TRs, i.e., the set of all 

functions mapping  to {0, 1}. For each g ∈  and ρ ∈ ℛ, we define a function Hρ(g) 

mapping  to ℝ by setting

(2.14)

Introduce the following one-dimensional parametric model for QY,0:

(2.15)

where ℰ ⊂ ℝ is a closed, bounded interval containing 0 in its interior. Let εn be
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(2.16)

which indexes a minimizer of the empirical loss along the fluctuation. Define 

 and

(2.17)

Grounded in the TMLE principle,  is our pivotal estimator.

3. Convergence

For every p ≥ 1 and measurable f :  → ℝ, let ||f||p be the seminorm given by

We introduce g0 ∈  given by

(3.1)

The stochastic TR g0 approximates the TR r0 in the following sense:

(3.2)

Therefore, if t∞ is small and if |qY,0(W)| ≥ ξ∞, then drawing A from g0 does not differ much 

from drawing A from r0. Rigorously, the distance in total variation between the Bernoulli 

laws with parameters g0(1|W) and r0(W) equals 2t∞. On the contrary, if |qY,0(W)| < ξ∞, then 

the conditional laws of A given W under g0 or r0 may be very different. However, if ξ∞ is 

small, then assigning randomly A = 1 or A = 0 has little impact on the mean value of the 

reward Y.

We now study the convergence of rn to r0 and that of gn to g0. In each case, the convergence 

is relative to two measures of discrepancy. For rn, we consider the seminorm ||rn − r0||p (any 

p ≥ 1) and

(3.3)

Chambaz et al. Page 10

Ann Stat. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



By analogy, the measures of discrepancy for gn are

(3.4)

(3.5)

Note that Δ(rn, r0) and Δ(gn, g0) are the absolute values of the differences between the mean 

rewards under the TRs rn and r0 and the stochastic TRs gn and g0, respectively. As such, they 

are targeted toward our end result, i.e., the inference of ψ0, as shown in the following 

lemma:

Lemma 3.1: Set n ≥ 1. It holds that

(3.6)

(3.7)

The next lemma shows that the convergence of qY,βn to qY,0 implies that of rn to r0.

Lemma 3.2: Set p ≥ 1. If ||qY,βn − qY,0||2 = oP (1), then ||rn − r0||p = oP (1) hence Δ(rn, r0) = 

oP (1).

Similarly, the convergence of qY,βn to qY,0 implies that of gn to g0.

Lemma 3.3: Set p ≥ 1. It holds that 0 ≤ Δ(gn, g0) ≤ ||gn − g0||p. Moreover, if ||qY,βn − qY,0||2 = 

oP (1), then ||gn − g0||p = oP (1) hence Δ(gn, g0) = oP (1).

4. Asymptotia

4.1. Notation

Consider a class ℱ of functions mapping a measured space  to ℝ and ϕ: ℝ → ℝ. Recall 

that ℱ is said separable if there exists a countable collection ℱ′ of functions such that each 

element of ℱ is the pointwise limit of a sequence of elements of ℱ′. If ϕ ∘ f is well defined 

for each f ∈ ℱ, then we note ϕ(ℱ) ≡ {ϕ∘f: f ∈ ℱ}. In particular, we introduce the sets 1,n ≡ 
{Gn(qY): QY ∈ 1,n}, r( 1,n) ≡ {r(QY): QY ∈ 1,n} (all n ≥ 1) and 1 ≡ ∪n≥1 1,n.

Set δ > 0, μ a probability measure on , and let F be an envelope function for ℱ, i.e., a 

function such that |f(x)| ≤ F(x) for every f ∈ ℱ, x ∈ . We denote N(δ,ℱ, ||· ||2,μ) the δ-

covering number of ℱ wrt ||·||2,μ, i.e., the minimum number of L2(μ)-balls of radius δ 
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needed to cover ℱ. The corresponding uniform entropy integral wrt F for ℱ evaluated at δ 

is , where the supremum is taken over 

all probability measures μ on the measured space  for which ||F||2,μ > 0.

In general, given a known g ∈  and an observation O drawn from PQ0,g, Z ≡ g(A|W) is a 

deterministic function of g and O. Note that Z should be interpreted as a weight associated 

with O and will be used as such. Therefore, we can augment O with Z, i.e., substitute (O,Z) 

for O, while still denoting (O,Z) ~ PQ0,g. In particular, during the course of our trial, 

conditionally on Oi−1, the stochastic TR gi is known and we can substitute (Oi, Zi) = (Oi, 
gi(Ai|Wi)) ~ PQ0,gi for Oi drawn from PQ0,gi. The inverse weights 1/gi(Ai|Wi) are bounded 

because 1 is uniformly bounded away from 0 and 1.

The empirical distribution of On is denoted Pn. For a measurable function f: ×[0, 1] → ℝd, 

we use the notation . Likewise, for any fixed PQ,g ∈ℳ, PQ,gf ≡ 
EQ,g(f(O,Z)) and, for each i = 1, …, n,

The supremum norm of a function f:  ×[0, 1] → ℝd is denoted ||f||∞. When d = 1, we 

denote . If f is only a function of W, then ||f||2 =|||qY,0|1/2f||2,PQ0,gref.

For every QY,β ∈ 1 ≡ ∪n≥1 1,n, the blip function QY,β(1, ·)−QY,β(0, ·) is denoted qY,β by 

analogy with (2.9). We will often deal with seminorms ||f||2 with f = QY −QY,β0 for some QY 

∈ Y and Y,β0 ∈ 1. A consequence of the trivial inequality (a − b)2 ≤ 2(ua2 + (1 − u)b2)/

min(u, 1 − u) (valid for all a, b ∈ ℝ, 0 < u < 1), the following bound will prove useful:

(4.1)

The constant 2||1/gref||∞ is minimized at gref = gb, with 2||1/gb||∞ = 4.

4.2. Central limit theorem

Our main result is a central limit theorem for . It relies on the following assumptions, 

upon which we comment in Section 4.3.

A1 The conditional distribution of Y given (A,W) under Q0 is not degenerated. 

Moreover, PQ0 (|qY,0(W)| > 0) = 1.
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Existence and convergence of projections

A2 For each n ≥ 1, there exists QY,βn,0 ∈ 1,n satisfying

Moreover, there exists QY,β0 ∈ 1 such that, for all δ > 0,

Finally, it holds that qY,β0 = qY,0.

A3 For all ρ ∈ ℛ and ε ∈ ℰ, introduce

(4.2)

where Hρ(g0) is given by (2.14) with g = g0. For every ρ ∈ ℛ, there exists a 

unique ε0(ρ) ∈ ℰ such that

(4.3)

Reasoned complexity

A4 The classes 1,n, L( 1,n) and r( 1,n) are separable. Moreover, the following 

entropy conditions hold: 

, where 

each Fn is an envelope function for L( 1,n).

A4* Let {δn}n≥1 be a sequence of positive numbers. If δn = o(1), then J1(δn, 1,n) = 

o(1) and J1(δn, r( 1,n)) = o(1).

Margin condition

A5 There exist γ1, γ2 > 0 such that, for all t ≥ 0,

We first focus on the convergence of the sequences of stochastic TRs gn and empirical TR 

rn. By Lemmas 3.2 and 3.3, it suffices to consider the convergence of qY,βn. By (4.1), we 

may consider the convergence of QY,βn. By adapting the classical scheme of analysis of M-

estimators and exploitation of A5, we derive the following result.
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Proposition 4.1: Under A2 and A4, both ||QY,βn − QY,β0||2,PQ0,gref = oP (1) and ||QY,βn−qY,0||

2 = oP (1). Hence, for any p ≥ 1, ||rn−r0||p = oP (1), ||gn − g0||p = oP (1), Δ(rn, r0) = oP (1), 
Δ(gn, g0) = oP (1) by Lemmas 3.2 and 3.3. If A1 and A5 are also met, then ||rn − r0||2,PQ0,gref 

= oP (1) and ||gn − g0||2,PQ0,gref = oP (1) as well.

Define now the data-adaptive parameter

(4.4)

By (3.6) in Lemma 3.1 and Lemma 3.2, we have the following corollary to Proposition 4.1:

Corollary 4.1: Under A2 and A4, 0 ≤ ψ0 − ψrn,0 = oP (1).

We now turn to the convergence of . Its asymptotic behavior can be summarized in these 

terms:

Theorem 4.1: Suppose that A1, A2, A3, A4, A4* and A5 are met. It holds that 

. Thus, by Corollary 4.1,  as well. Moreover, 

 is approximately standard normally distributed, where Σn is the explicit 

estimator given in (4.14).

Theorem 4.1 is a toned down version of Theorem 4.2 that we state and comment on in 

Section 4.5. Section 4.3 discusses their assumptions and Section 4.4 presents an example. 

Theorems 4.1 and 4.2 allow the construction of confidence intervals for several parameters 

of interest, as shown in Section 5.

4.3. Commenting on the assumptions

Assumption A1 consists in two statements. The first one is a simple condition guaranteeing 

that the limit variance of  is positive. The second one is more stringent. In the 

terminology of [26], it states that Q0 is not exceptional. If Q0 were exceptional, then the set 

{w ∈ : qY,0(w) = 0} would have positive probability under Q0. To a patient falling in this 

set, the optimal TR r(QY,0) ≡ r0 recommends to assign treatment A = 1 instead of treatment 

A = 0. This arbitrary choice has no consequence whatsoever in terms of conditional mean of 

the reward given treatment and baseline covariates.

However, it is well documented that exceptional laws are problematic. For the estimation of 

the optimal TR r0, one reason is that an estimator will typically not converge to a fixed limit 

on {w ∈ : qY,0(w) = 0} [26, 27, 19]. Another reason is that the mean reward under the 

optimal TR seen as a functional, Ψ, is pathwise differentiable at Q0 if and only if, Q0-almost 

surely, either |qY,0(W)| > 0 or the conditional distributions of Y given (A = 1,W) and (A = 

0,W) under Q0 are degenerated [19, Theorem 1]. This explains why it is also assumed that 

the true law is not exceptional in [34, 18, 20]. Other approaches have been considered to 

circumvent the need to make this assumption: relying on m-out-of-n bootstrap [4] (at the 
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cost of a -rate of convergence and need to fine-tune m), or changing the 

parameter of interest by focusing on the mean reward under the optimal TR conditional on 

patients for whom the best treatment has a clinically meaningful effect (truncation) [12, 16, 

17].

To the best of our knowledge, only [19] addresses the inference of the original parameter at a 

-rate of convergence without assuming that the true law is not exceptional. Moreover, if 

the true law is not exceptional, then the estimator is asymptotically efficient among all 

regular and asymptotically linear estimators. Developed in the i.i.d. setting, the estimator of 

[19] does not require that the estimator of r0 converge as the sample size grows. It relies on a 

clever iteration of a two-step procedure consisting in (i) estimating well-chosen nuisance 

parameters, including r0, on a small chunk of data, then (ii) constructing an estimator 

targeted to the mean reward under the current estimate of r0 with the nuisance parameters 

obtained in (i). The final estimator is a weighted average of the resulting chunk-specific 

estimators. Adapting this procedure to our setting where data are dependent would be very 

challenging.

Assumptions A2 states the existence of L-projections QY,βn,0 of QY,0 onto each working 

model 1,n and their convergence to a limit L-projection QY,β0 ∈ 1 ≡ ∪n≥1 1,n. More 

importantly, it states that the blip function qY,β0 associated with QY,β0 equals the true blip 

function qY,0 associated with QY,0.

For any fixed TR ρ ∈ ℛ, the limit L-projection QY,β0 can be fluctuated in a direction Hρ(g0) 

characterized by ρ and QY,0, see (2.14), (3.1) and (4.2). Assumption A3 states that there 

exists a unique Lkl-projection of QY,0 onto this ρ-specific one-dimensional parametric model 

fluctuating QY,β0. In particular, when ρ = rn, the estimator of r0 at sample size n, QY,0 is 

uniquely Lkl-projected onto, say, . One of the keys to our approach is the equality 

 even if QY,0 and  differ. 

Proven in step 3 of the proof of [8, Proposition A.1], which states that  is a consistent 

estimator of ψrn,0 (i.e., ), this robustness property is a by product of the 

robustness of the efficient influence curve of the mean reward under rn treated as a fixed TR, 

see [8, Lemma C.1].

Expressed in terms of separability and conditions on uniform entropy integrals, A4 and A4* 
restrict the complexities of the working models 1,n and resulting classes r( 1,n) and L(

1,n). Imposing separability is a convenient way to ensure that some delicate measurability 

conditions are met. Assumption A4* partially strengthens A4 because choosing 

(all n ≥ 1) in A4* implies  for both ℱn ≡ 1,n and ℱn ≡ r( 1,n) by a 

simple change of variable. Section 4.4 presents an example of sequence { 1,n}n≥1 of 

working models which meets A4 and A4*. Its construction involves VC-classes of functions, 

which are archetypal examples of classes with well-behaved uniform entropy integrals. 

Restricting the complexities of the working models 1,n, r( 1,n) and L( 1,n) in terms of 

bracketing entropy is tempting because of the great diversity of examples of classes of 

functions which behave well in these terms. Unfortunately, this is not a viable alternative, 

since bounds on the bracketing numbers of 1,n do not imply bounds on those of r( 1,n). As 
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a result, we have to prove a new maximal inequality for martingales wrt the uniform entropy 

integral to control several empirical processes indexed by random functions, see [8, Lemma 

B.3].

Inspired from the seminal article [21], assumptions similar to A5 are known as “margin 

assumptions” in the literature. They describe how the data-distribution concentrates on 

adverse events, i.e., on events that make inference more difficult. We have already discussed 

the fact that inferring the optimal TR and its mean reward is less challenging when the law 

of the absolute value of |qY,0(W)| puts no mass on {0}. It actually occurs that the less mass 

this law puts around {0}, the less challenging is the inference. Assumption A5 formalizes 

tractable concentrations. It has already proven useful in the i.i.d. setting, see [18, Lemma 1] 

and [19, Condition (16)]. By Markov’s inequality, A5 is implied by the following, clearer 

assumption:

A5** There exists γ2 > 0 such that

4.4. An example

In this section, we construct a sequence { 1,n}n≥1 of working models which meets A4 and 

A4*, see Proposition 4.2. Let ℱ− be a separable class of measurable functions from  to 

[−1, 1]\{0} such that {{w ∈ : f−(w) ≥ t}: f− ∈ ℱ−, t ∈ [−1, 1]} is a VC-class of sets. By 

definition, ℱ− is a VC-major class [33, Sections 2.6.1 and 2.6.4]. Thus, Corollary 2.6.12 in 

[33] guarantees the existence of two constants K− > 0 and α− ∈ [0, 1) such that, for every ε 
> 0,

(4.5)

Let ℱ+ be a separable class of measurable functions from  to [0, 2] such that, for two 

constants K+ > 0, α+ ∈ [0, 1) and for every ε > 0,

(4.6)

For instance, ℱ+ may be a VC-hull class of functions, i.e., a subset of the pointwise 

sequential closure of the symmetric convex hull of a VC-class of functions [33, Section 

2.6.3]. (The suprema in (4.5) and (4.6) are taken over all probability measures μ on the 

measured space .)
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We now use ℱ− and ℱ+ to define the sequence { 1,n}n≥1 of working models. Let 

 and  be rewritten as the limits of two increasing sequences of 

sets  and . Set n ≥ 1 and define

For each β ≡ (f−, f+) ∈ Bn, introduce QY,β mapping  ×  to [0, 1] characterized by

(4.7)

We define the nth working model as 1,n ≡ {QY,β: β ∈ Bn}. It is separable because ℱ− and 

ℱ+ are separable.

Because qY,β ≡ QY,β(1, ·) − QY,β(0, ·) = f− for every β ≡ (f−, f+) ∈ Bn, it holds that

which, by construction, is a fixed subset of a VC-class of functions, hence a VC-class of 

functions itself. Moreover, r( 1,n) is separable because ℱ− is separable and elements of ℱ− 

take only positive or negative values. These properties and (4.5), (4.6) are the main 

arguments in the proof of the following result:

Proposition 4.2: The sequence { 1,n}n≥1 of working models satisfies A4 (with L = Lls the 
least-square loss) and A4*.

4.5. Asymptotic linear expansion, resulting central limit theorem

Theorem 4.1 is a summary of Theorem 4.2 below, whose main result is the asymptotic linear 

expansion (4.15). The statement of Theorem 4.2 requires additional notation.

Let  and Σ0 be given by

(4.8)

(4.9)
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(4.10)

(4.11)

Analogously, recall that  and let  and Σn be given by

(4.12)

(4.13)

(4.14)

Note that  and Σn are empirical counterparts to  and Σ0.

Theorem 4.2: Suppose that A1, A2, A3, A4, A4* and A5 are met. It holds that 

. Thus, by Corollary 4.1,  as well. Moreover, Σn = Σ0 + oP(1) 

with Σ0 > 0 and

(4.15)

Consequently,  converges in law to the standard normal distribution.

Consider (4.9). It actually holds that the term  equals ψ0 ≡ EQ0(QY,

0(r0(W),W)) (see step one of the proof of Corollary A.1 in [8, Section A.2]). This proximity 

between QY,0 and  follows from the careful fluctuation of QY,β<sub>0</sub>. The proof of 

Theorem 4.2 mainly consists in showing the consistency of  and (4.15). It is delicate 

because it hinges on the control of empirical processes indexed by random functions which, 

similar to , are defined stepwise (βn yields gn and rn, and 

altogether they yield εn).
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Set . The influence function 

in (4.15) is closely related to the efficient influence curve  at  of the 

mapping Ψr0:ℳ → [0, 1] characterized by

(4.16)

the mean reward under Q of the TR r0 (possibly different from the optimal TR r(QY ) under 

Q) treated as known and fixed. Specifically, in light of Lemma C.1 in [8, Section C],

when Z = g0(A|W). Consequently, .

If QY,β0 = QY,0 (a stronger condition than equality qY,β0 = qY,0 in A2), then 

(because ε0(r0) from A3 equals zero) hence  and, finally, the remarkable equality Σ0 

= PQ0,g0Dr0 (Q0, g0)2: the asymptotic variance of  coincides with the 

generalized Cramér-Rao lower bound for the asymptotic variance of any regular and 

asymptotically linear estimator of Ψr0(PQ0,g0) when sampling independently from PQ0,g0 
(see [8, Lemma C.1]). Otherwise, the discrepancy between Σ0 and PQ0,g0Dr0 (Q0, g0)2 will 

vary depending on that between QY,β0 and QY,0, hence in particular on the user-supplied 

sequence { 1,n}n≥1 of working models. Studying this issue in depth is very difficult, if at all 

possible, and beyond the scope of this article.

5. Confidence regions

We explore how Theorems 4.1 and 4.2 enable the construction of confidence intervals for 

various possibly data-adaptive parameters: the mean rewards under the optimal TR and 

under its current estimate in Section 5.1; the empirical cumulative pseudo-regret in Section 

5.2; the counterfactual cumulative pseudo-regret in Section 5.3.

Set a confidence level α ∈ (0, 1/2). Let ξα < 0 and ξ1−α/2 > 0 be the corresponding α- and 

(1 − α/2)-quantiles of the standard normal distribution.

5.1. Confidence intervals for the mean rewards under the optimal treatment rule and under 
its current estimate

Theorems 4.1 and 4.2 yield straightforwardly a confidence interval for the mean reward 

under the current best estimate of the optimal TR, ψrn,0.

Proposition 5.1: Under the assumptions of Theorems 4.1 or 4.2, the probability of the event
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converges to (1 − α) as n goes to infinity.

We need to strengthen A5 to guarantee that the confidence interval in Proposition 5.1 can 

also be used to infer the mean reward under the optimal TR, ψ0. Consider thus the 

following.

A5*. There exist γ1 > 0, γ2 ≥ 1 such that, for all t ≥ 0,

Just like A5 is a consequence of A5**, A5* is a consequence of A5** where one substitutes 

the condition γ2 > 0 for the stronger condition γ2 ≥ 1.

Proposition 5.2: Under A5** there exists a constant c > 0 such that

(5.1)

Set γ3 ≡ 1/4+1/2(1+γ2) ∈ (1/4, 1/2]. By (5.1), if ||QY,βn−QY,β0||2,PQ0,gref = oP (1/nγ3), then ||

QY,βn − qY,0||2 = oP (1/nγ3), which implies .

Therefore, if the assumptions of Theorems 4.1 or 4.2 are also met, then the probability of the 

event

converges to (1 − α) as n goes to infinity.

The definition of γ3 in Proposition 5.2 justifies the requirement γ2 ≥ 1 in A5*. Indeed, γ3 ≤ 

1/2 is equivalent to γ2 ≥ 1. Moreover, it holds that γ3 = 1/2 (so that ||QY,βn − qY,0||2 = oP (1/

nγ3) can be read as a parametric rate of convergence) if and only if γ2 = 1.

5.2. Lower confidence bound for the empirical cumulative pseudo-regret

We call
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(5.2)

the “empirical cumulative pseudo-regret” at sample size n. A data-adaptive parameter, it is 

the difference between the average of the actual rewards garnered so far, , and 

the average of the mean rewards under the current estimate rn of the optimal TR r0 in the 

successive contexts drawn so far during the course of the experiment,

The former is a known quantity, so the challenge is to infer the latter. Moreover, we are 

mainly interested in obtaining a lower confidence bound.

Define  and  respectively equal to

(5.3)

(5.4)

with . Note that  is an empirical counterpart to . 

The key to the derivation of the lower confidence bound presented below is (4.15), from 

which we deduce another asymptotic linear expansion for .

Proposition 5.3: Under the assumptions of Theorems 4.1 or 4.2, the probability of the event

converges to (1 − α) as n goes to infinity.

5.3. Lower confidence bound for the counterfactual cumulative pseudo-regret

In this section, we cast our probabilistic model in a causal model. We postulate the existence 

of counterfactual rewards Yn(1) and Yn(0) of assigning treatment a = 1 and a = 0 to the nth 
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patient (all n ≥ 1). They are said counterfactual because it is impossible to observe them 

jointly. The observed nth reward writes Yn = AnYn(1) + (1 − An)Yn(0).

We call

(5.5)

the “counterfactual cumulative pseudo-regret” at n. It is the difference between the average 

of the actual rewards garnered so far, , and the average of the counterfactual 
rewards under the current estimate rn of the optimal TR r0 in the successive contexts drawn 

so far during the course of the experiment, . Once more, the former is a 

known quantity, so the challenge is to infer the latter. Moreover, we are mainly interested in 

obtaining a lower confidence bound.

For simplicity, we adopt the so called “non-parametric structural equations” approach [22]. 

So, we actually postulate the existence of a sequence {Un}n≥1 of i.i.d. random variables 

independent from {On}n≥1 with values in  and that of a deterministic measurable function 

ℚY,0 mapping  ×  ×  to  such that, for every n ≥ 1 and both a = 0, 1,

The notation ℚY,0 is motivated by the following property. Let (A,W,U) ∈  ×  ×  be 

distributed from ℙ in such a way that (i) A is conditionally independent from U given W, 

and (ii) with Y ≡ AℚY,0(1,W, U) + (1 − A)ℚY,0(0,W, U), the conditional distribution of Y 
given (A,W) is QY,0(·|A,W)dμY. Then, for each a ∈ ,

(5.6)

Although n is by nature a counterfactual data-adaptive parameter, it is possible to construct 

a conservative lower confidence bound yielding a confidence interval whose asymptotic 

coverage is no less than (1 − α).

Proposition 5.4: Under the assumptions of Theorems 4.1 or 4.2, the probability of the event
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converges to (1 − α′) ≥ (1 − α) as n goes to infinity.

The key to this result is threefold. First, the asymptotic linear expansion (4.15) still holds in 

the above causal model where each observation (On, Zn) is augmented with Un (every n ≥ 1). 

Second, the expansion yields a confidence interval with asymptotic level (1 − α). 

Unfortunately, its asymptotic width depends on features of the causal distribution which are 

not identifiable from the real-world (as opposed to causal) distribution. Third, and 

fortunately,  is a conservative estimator of the limit width. We refer the reader to the 

proof of Proposition 5.4 in [8, Section A.3] for details. It draws inspiration from [1], where 

the same trick was first devised to estimate the so called sample average treatment effect.

Linear contextual bandit problems—Consider the following contextual bandit 

problem: an agent is sequentially presented a context wt ∈ ℝd, has to choose an action at ∈ 
{0, 1}, and receives a random reward yt = f(at, wt) + εt, with f an unknown real-valued 

function and εt a centered, typically sub-Gaussian noise. The agent aims at maximizing the 

cumulated sum of rewards. The contextual bandit problem is linear if there exists θ ≡ (θ0, 

θ1) ∈ ℝ2d such that f(a, w) ≡ w⊤θa for all (a, w) ∈ {0, 1} × ℝd. At time t, the best action is 

 and maximizing the cumulated sum of rewards is equivalent to 

minimizing the cumulated pseudo-regret .

We refer to [15, Chapter 4] for an overview of the literature dedicated to this problem, which 

bears evident similitudes with our problem of interest. Optimistic algorithms consist in 

constructing a frequentist region of confidence for θ and choosing that action at+1 

maximizing  where ϑ ranges over the confidence region. The Bayes-UCB 

algorithm and its variants follow the same idea with Bayesian regions of confidence 

substituted for the frequentist ones. As for the celebrated Thompson Sampling algorithm, it 

consists in drawing θ̃ from the posterior distribution of θ and choosing that action at+1 

maximizing . Each time estimating θ (which is essentially equivalent to 

estimating the optimal TR and its mean reward) is a means to an end.

Various frequentist analyses of such algorithms have been proposed. It notably appears that 

the cumulated pseudo-regret  typically scales in  with high probability, where Õ 
ignores logarithmic factors in T. This is consistent with the form of the lower confidence 

bounds that we obtain, as by products rather than main objectives and under milder 

assumptions on f/QY,0, for our empirical and counterfactual cumulated pseudo-regrets.

6. Simulation study

The simulation study is conducted in R [25], using the package tsml.cara.rct designed 

for this purpose [5]. The package comes with a “vignette” showing how it works. In 

particular, the vignette contains a step-by-step guide to carrying out a simulation study.
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6.1. Setup

We now present the results of a simulation study. Under Q0, the baseline covariate W 
decomposes as W ≡ (U, V) ∈ [0, 1] × {1, 2, 3}, where U and V are independent random 

variables respectively drawn from the uniform distribution on [0, 1] and such that 

 and . Moreover, Y is conditionally drawn given 

(A, W) from the Beta distribution with a constant variance set to 0.01 and a mean QY,0(A, 

W) satisfying

The conditional means and associated blip function qY,0 are represented in Figure 2 (left 

plots, in [8] due to space constraints). We compute the numerical values of the following 

parameters: ψ0 ≈ 0.6827 (true parameter); VarPQ0,gb D(Q0, gb)(O) ≈ 0.19162 (the variance 

under PQ0,gb of the efficient influence curve of Ψ at PQ0,gb, i.e., under Q0 with 

equiprobability of being assigned A = 1 or A = 0); VarPQ0,g0
 D(Q0, g0)(O) ≈ 0.16662 (the 

variance under PQ0,g0 of the efficient influence curve of Ψ at PQ0,g0, i.e., under Q0 and the 

approximation g0 to the optimal TR r0); and VarPQ0,r0
 D(Q0, r0)(O) ≈ 0.16342 (the variance 

under PQ0,r0 of the efficient influence curve of Ψ at PQ0,r0, i.e., under Q0 and the optimal TR 

r0).

The sequences {tn}n≥1 and {ξn}n≥1 are chosen constant, with values t∞ = 10% and ξ∞ = 1% 

respectively. We choose gref = gb as reference. The targeting steps are performed when 

sample size is a multiple of 100, at least 200 and no more than 1000, when sampling is 

stopped. At such a sample size n, the working model 1,n consists of functions QY,β 
mapping  ×  to [0, 1] such that, for each a ∈  and v ∈ {1, 2, 3}, logit QY,β(a, (U, v)) is 

a linear combination of 1, U, U2, …, Udn and 1{(l − 1)/ℓn ≤ U < l/ℓn} (1 ≤ l ≤ ℓn) with dn = 3 + 

⌊n/500⌋ and ℓn = ⌈n/250⌉. The resulting global parameter β belongs to ℝ6(dn+ℓn+1) (in 

particular, ℝ60 at sample size n = 1000). Working model 1,n is fitted wrt L = Lkl using the 

cv.glmnet function from package glmnet [10], with weights given in (2.8) and the 

option ”lambda.min”. This means imposing (data-adaptive) upper-bounds on the ℓ1- and ℓ2-

norms of parameter β (via penalization), hence the search for a sparse optimal parameter βn.

6.2. Results

We repeat N = 1000 times, independently, the procedure described in Section 2.2 and the 

construction of confidence intervals for ψrn,0 and confidence lower-bounds for the empirical 

and counterfactual cumulative pseudo-regrets described in Section 5. Table 1 (to be found in 

[8] due to space constraints) reports four empirical summary measures computed across 

simulations for each parameter among ψrn,0, ψ0, ℰn and n. In rows a: the empirical 

coverages. In rows b and c: the p-values of the binomial tests of 95%-coverage at least or 

94%-coverage at least (null hypotheses) against their one-sided alternatives. In rows d: the 

mean values of the possibly data-adaptive parameters. In rows e: the mean values of Σn (for 
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ψrn,0), mean values of  (for ℰn), mean values of 

 (for n).

It appears that the empirical coverage of the confidence intervals for the data-adaptive 

parameter ψrn,0 and the fixed parameter ψ0 is very satisfying. Although 14 out of 18 

empirical proportions of coverage lie below 95%, the simulation study does not reveal a 

coverage smaller than 94%, even without adjusting for multiple testing. For sample size 

larger than 400, the simulation study does not reveal a coverage smaller than the nominal 

95%, even without adjusting for multiple testing.

The asymptotic variance of  seems to stabilize below 0.18502. This is slightly smaller 

than VarPQ0,gb D(Q0, gb)(O) ≈ 0.19162 (1916/1850 ≈ 1.04) and a little larger than VarPQ0,g0 
D(Q0, g0)(O) ≈ 0.16662 (1850/1666 ≈ 1.11). In theory, the asymptotic variance of  can 

converge to the variance VarPQ0,g0
 D(Q0, g0)(O) if QY,βn converges to QY,0. Rigorously 

speaking, this cannot be the case here given the working models we rely on. This is 

nonetheless a quite satisfying finding: we estimate ψrn,0 and ψ0 more efficiently than if we 

had achieved their efficient estimation based on i.i.d. data sampled under Q0 and the 

balanced TR gb and, in addition, do so in such a way that most patients (those for whom 

rn(W) = r0(W)) are much more likely (90% versus 50%) to be assigned their respective 

optimal treatments.

The empirical coverage provided by the lower confidence bounds on the data-adaptive 

parameters ℰn and n is excellent. Actually, the empirical proportions of coverage for ℰn, all 

larger than 96.5%, suggest that either ℰn or the asymptotic variance of its estimator is 

slightly overestimated (or both are). Naturally, there is no evidence whatsoever of an 

effective coverage smaller than 95% for ℰn. The empirical proportions of coverage for n, 

all larger than 98.9% and often equal to 100%, illustrate the fact that the lower confidence 

bounds are conservative by construction.

Finally, the mean values of  and 

 quickly stabilize around 1.30. They quantify 

how close the lower confidence bounds are to the parameters they lower bound, at the scale 

of the parameters themselves (which, by nature, are bound to get close to zero, if not to 

converge to it).

Comparison with a traditional randomized clinical trial—As per suggestion of a 

reviewer, we also conduct the same simulation study except for the fact that we now set t∞ = 

50%, and thus simulate a traditional randomized clinical trial (RCT) with independent 

sampling from PQ0,gb. Its results in terms of empirical coverage are better for n ≤ 400 and as 

good as those reported in [8, Table 1] for n ≥ 500 (not shown). This suggests that by not 

adapting the TRs, we reach more quickly the asymptotic regime. The two main and most 

interesting differences concern the variance of the estimators and values of the pseudo-
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regrets. The ratios at each sample size n ≥ 200 of the mean value across the N simulations of 

 under the targeted sequential design of Section 6.1 (see the fourth row of [8, Table 1]) 

to its counterpart under i.i.d. sampling range between 89.70% (n = 300) and 94.26% (n = 

400). These percentages should be compared with the ratio of true variances 

0.16662/0.19162 ≃ 75.60%, which provides an asymptotic, loose lower bound (see Section 

6.1 and the comment on the asymptotic variance of  in the present section). In words, one 

needs recruiting fewer patients under the targeted sequential design than under the 

traditional balanced RCT to reach a given precision in estimation. By design, but 

nevertheless remarkably, the gain in efficiency goes with a gain in empirical cumulated 

pseudo-regret: the ratios at each sample size n ≥ 200 of the mean value across the N 
simulations of ℰn under the targeted sequential design of Section 6.1 (see the 14th row of [8, 

Table 1]) to its counterpart under i.i.d. sampling decrease from 65.25% (n = 200) to 22.54% 

(n = 1000). By adapting the TRs, more patients are assigned their optimal treatments under 

the targeted sequential design than under the traditional balanced RCT, hence the decrease in 

pseudo-regrets (the same holds for the counterfactual cumulated pseudo-regret).

6.3. Illustration

Figures 1 and 2 (the latter in [8] due to space constraints) illustrate the data-adaptive 

inference of the optimal TR, its mean reward and the related pseudo-regrets with a visual 

summary of one additional run of the procedure described in Sections 2.2 and 5. We see in 

the top plot of Figure 1 that each 95%-confidence interval contains both its corresponding 

data-adaptive parameter ψrn,0 and ψ0. Moreover, the difference between the length of the 

95%-confidence interval at sample size n and that of the vertical segment joining the two 

grey curves at this sample size gets smaller as n grows, showing that the variance of  gets 

closer to the optimal variance VarPQ0,r0
 D(Q0, r0)(O). Finally, the bottom plot also reveals 

that the empirical and counterfactual cumulated pseudo-regrets n and ℰn go to zero and that 

each 95%-lower confidence-bound is indeed below its corresponding pseudo-regrets.

7. Discussion

We develop a targeted, data-adaptive sampling scheme and TMLE estimator to build 

confidence intervals on the mean reward under the current estimate of the optimal TR and 

the optimal TR itself. As a by product, we also obtain lower confidence bounds on two 

cumulated pseudo-regrets. A simulation study illustrates the theoretical results. One of the 

cornerstones of the study is a new maximal inequality for martingales wrt the uniform 

entropy integral which allows the control of several empirical processes indexed by random 

functions.

We acknowledge that assuming qY,β0 = qY,0 in A2 is a stringent condition. This equality is 

mandatory only in the context of Proposition 5.2, where we give sufficient conditions 

guaranteeing that the TMLE  can be used to derive a confidence interval for ψ0, the mean 

reward under the optimal TR r0. In fact, we can strip out condition qY,β0 = qY,0 from A2, 

replace g0 in A3 with g1 ∈  given by g1(1|W) ≡ G∞(qY,β0 (W)) (compare with (3.1)), 

replace qY,0 in A5, A5*, A5** with qY,β0 and add that the ratio |qY,0/qY,β0| can be defined 
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and has a finite (essential) supremum norm. Then, all our results still hold with the 

substitution of qY,β0 for qY,0, g1 for g0, TR r1 ≡ r(QY,β0) for the optimal TR r0, and that of 

ψ1 ≡ EQ0,r1 (QY,0(A, W)), the mean reward under TR r1, for ψ0.

Our analysis is asymptotic in the number of patients enrolled in the trial. We do not consider 

the issue of determining when the asymptotic regime is reached or when the trial should be 

stopped from either a theoretical or a numerical viewpoint. Devising a theoretical answer to 

this delicate question is certainly very challenging, if only because the complexity of , that 

of the true blip function qY,0 and related optimal TR r0, and the choice of working models 

n would play each its intricate role in the study. We should start by developing a group-

sequential testing procedure [14] on top of the statistical analysis that we carry out, by 

following the same steps as in [6]. Indeed, a group-sequential testing procedure may end the 

trial at random stopping times based on data accrued so far, either because it is already 

possible to reject the null for its alternative at the pre-specified type I and II errors, or 

because there is no hope that that will be the case later if the trial continued.

We assume here that there is no stratum of the baseline covariates where treatment is neither 

beneficial nor harmful, i.e., that non-exceptionality holds [26]. In future work, we will 

extend our result to handle exceptionality, building upon [19] (where observations are 

sampled independently). Extension to more than two treatments and to the inference of an 

optimal dynamic TR (where treatment assignment consists in successive assignments at 

successive time points) and its mean reward will also be considered.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Illustrating the data-adaptive inference of the optimal treatment rule (TR), its mean 
reward and the related pseudo-regrets (see also Figure 2).
Top plot. The blue horizontal line represents the value of the mean reward under the optimal 

TR, ψ0. The grey curves represent the mapping , where σ0 = 0.1634 

is the square root of VarPQ0,r0
 D(Q0, r0)(O); thus, at a given sample size n, the length of the 

vertical segment joining the two curves equals the length of a confidence interval based on a 
regular, asymptotically efficient estimator of ψ0. The pink crosses represent the successive 
values of the data-adaptive parameters ψrn,0. The black dots represent the successive values 

of , and the vertical segments centered at them represent the successive 95%-confidence 
intervals for ψrn,0 and, under additional assumptions, for ψ0 as well. Bottom plot. The pink 
crosses and green circles represent the successive values of the empirical and counterfactual 
cumulative pseudo-regrets ℰn and n. The black dots represent the successive values of 

, and the vertical segments represent the successive 95%-lower confidence 
bounds on ℰn and n.

Chambaz et al. Page 30

Ann Stat. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	1. Introduction
	Organization—Section 2 presents our targeted, data-adaptive sampling scheme and our pivotal estimator. Section 3 studies the convergence of the sampling scheme, i.e., how the sequences of stochastic and TRs converge, assuming that a function of the conditional mean of the reward given treatment and baseline covariate is consistently estimated. Section 4 is devoted to the presentation of our main result, a central limit theorem for our pivotal estimator, to the comment of its assumptions and to an example. Section 5 builds upon the previous section to build confidence intervals for the mean rewards under the current estimate of the optimal TR and under the optimal TR itself, as well as confidence intervals for the two cumulated pseudo-regrets evoked in the introduction. Section 6 presents the results of a simulation study. Section 7 closes the article with a brief discussion. All proofs are given in [8, Section A]. Technical lemmas are gathered in [8, Sections B and C].
	Organization


	2. Targeting the optimal treatment rule and its mean reward
	2.1. Statistical setting
	2.2. Targeted sequential sampling and inference
	Loss functions and working models
	Completing the description of the sampling scheme
	Lemma 2.1

	Targeted minimum loss estimator


	3. Convergence
	Lemma 3.1: Set n ≥ 1. It holds that(3.6)(3.7)The next lemma shows that the convergence of qY,βn to qY,0 implies that of rn to r0.Lemma 3.2: Set p ≥ 1. If ||qY,βn − qY,0||2 = oP (1), then ||rn − r0||p = oP (1) hence Δ(rn, r0) = oP (1).Similarly, the convergence of qY,βn to qY,0 implies that of gn to g0.Lemma 3.3: Set p ≥ 1. It holds that 0 ≤ Δ(gn, g0) ≤ ||gn − g0||p. Moreover, if ||qY,βn − qY,0||2 = oP (1), then ||gn − g0||p = oP (1) hence Δ(gn, g0) = oP (1).
	Lemma 3.1: Set n ≥ 1. It holds that(3.6)(3.7)The next lemma shows that the convergence of qY,βn to qY,0 implies that of rn to r0.Lemma 3.2: Set p ≥ 1. If ||qY,βn − qY,0||2 = oP (1), then ||rn − r0||p = oP (1) hence Δ(rn, r0) = oP (1).Similarly, the convergence of qY,βn to qY,0 implies that of gn to g0.Lemma 3.3: Set p ≥ 1. It holds that 0 ≤ Δ(gn, g0) ≤ ||gn − g0||p. Moreover, if ||qY,βn − qY,0||2 = oP (1), then ||gn − g0||p = oP (1) hence Δ(gn, g0) = oP (1).
	Lemma 3.1
	Lemma 3.2
	Lemma 3.3



	4. Asymptotia
	4.1. Notation
	4.2. Central limit theorem
	Existence and convergence of projections
	Reasoned complexity
	Margin condition
	Proposition 4.1
	Corollary 4.1
	Theorem 4.1


	4.3. Commenting on the assumptions
	4.4. An example
	Proposition 4.2: The sequence {
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg version="1.0" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
width="9.013px" height="9.764px" viewBox="5.226 -1.461 9.013 9.764" enable-background="new 5.226 -1.461 9.013 9.764"
xml:space="preserve">
<path d="M14.239,1.074c0,1.246-0.545,2.483-1.635,3.71c-0.911,1.02-2.014,1.857-3.307,2.513c0.831,0.25,1.468,0.376,1.912,0.376
c0.892,0,1.646-0.305,2.266-0.912c0.08-0.077,0.137-0.115,0.17-0.115c0.061,0,0.092,0.024,0.092,0.071
c0,0.148-0.173,0.355-0.518,0.622c-0.283,0.214-0.525,0.369-0.729,0.465c-0.586,0.262-1.152,0.393-1.699,0.393
c-0.614,0-1.353-0.144-2.217-0.432C7.698,8.123,7.048,8.303,6.628,8.303c-0.35,0-0.654-0.063-0.913-0.19
c-0.326-0.16-0.489-0.399-0.489-0.72c0-0.263,0.151-0.46,0.453-0.592C5.906,6.698,6.17,6.646,6.472,6.646
c0.656,0,1.468,0.189,2.436,0.566c1.086-0.462,2.11-1.411,3.073-2.846c0.42-0.623,0.781-1.291,1.083-2.004
c0.368-0.869,0.552-1.598,0.552-2.188c0-0.425-0.165-0.758-0.495-0.999c-0.298-0.212-0.668-0.319-1.111-0.319
c-0.836,0-1.681,0.321-2.535,0.963C8.7,0.402,8.098,1.091,7.668,1.888C7.371,2.45,7.223,2.967,7.223,3.439
c0,0.699,0.313,1.048,0.941,1.048c0.387,0,0.828-0.196,1.324-0.588c0.387-0.307,0.729-0.663,1.026-1.069
c0.618-0.831,0.928-1.685,0.928-2.563c0-0.146-0.01-0.288-0.028-0.425l0.262-0.071c0.057,0.434,0.085,0.772,0.085,1.012
c0,0.93-0.366,1.815-1.098,2.655c-0.76,0.873-1.598,1.31-2.513,1.31c-0.369,0-0.668-0.117-0.899-0.35
C7.02,4.164,6.905,3.864,6.905,3.495c0-1.114,0.563-2.218,1.691-3.313s2.252-1.643,3.37-1.643c0.731,0,1.301,0.243,1.706,0.729
C14.05-0.274,14.239,0.328,14.239,1.074z M8.164,7.626C7.32,7.241,6.649,7.05,6.154,7.05c-0.43,0-0.645,0.145-0.645,0.436
c0,0.173,0.135,0.307,0.403,0.4c0.194,0.065,0.399,0.098,0.616,0.098C7.001,7.984,7.546,7.865,8.164,7.626z"/>
</svg>
1,n}n≥1 of working models satisfies A4 (with L = Lls the least-square loss) and A4*.
	Proposition 4.2


	4.5. Asymptotic linear expansion, resulting central limit theorem
	Theorem 4.2: Suppose that A1, A2, A3, A4, A4* and A5 are met. It holds that . Thus, by Corollary 4.1,  as well. Moreover, Σn = Σ0 + oP(1) with Σ0 > 0 and(4.15)Consequently,  converges in law to the standard normal distribution.Consider (4.9). It actually holds that the term  equals ψ0 ≡ EQ0(QY,0(r0(W),W)) (see step one of the proof of Corollary A.1 in [8, Section A.2]). This proximity between QY,0 and  follows from the careful fluctuation of QY,β<sub>0</sub>. The proof of Theorem 4.2 mainly consists in showing the consistency of  and (4.15). It is delicate because it hinges on the control of empirical processes indexed by random functions which, similar to , are defined stepwise (βn yields gn and rn, and altogether they yield εn).Set . The influence function  in (4.15) is closely related to the efficient influence curve  at  of the mapping Ψr0:ℳ → [0, 1] characterized by(4.16)the mean reward under Q of the TR r0 (possibly different from the optimal TR r(QY ) under Q) treated as known and fixed. Specifically, in light of Lemma C.1 in [8, Section C],when Z = g0(A|W). Consequently, .If QY,β0 = QY,0 (a stronger condition than equality qY,β0 = qY,0 in A2), then  (because ε0(r0) from A3 equals zero) hence  and, finally, the remarkable equality Σ0 = PQ0,g0Dr0 (Q0, g0)2: the asymptotic variance of  coincides with the generalized Cramér-Rao lower bound for the asymptotic variance of any regular and asymptotically linear estimator of Ψr0(PQ0,g0) when sampling independently from PQ0,g0 (see [8, Lemma C.1]). Otherwise, the discrepancy between Σ0 and PQ0,g0Dr0 (Q0, g0)2 will vary depending on that between QY,β0 and QY,0, hence in particular on the user-supplied sequence {
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg version="1.0" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
width="9.013px" height="9.764px" viewBox="5.226 -1.461 9.013 9.764" enable-background="new 5.226 -1.461 9.013 9.764"
xml:space="preserve">
<path d="M14.239,1.074c0,1.246-0.545,2.483-1.635,3.71c-0.911,1.02-2.014,1.857-3.307,2.513c0.831,0.25,1.468,0.376,1.912,0.376
c0.892,0,1.646-0.305,2.266-0.912c0.08-0.077,0.137-0.115,0.17-0.115c0.061,0,0.092,0.024,0.092,0.071
c0,0.148-0.173,0.355-0.518,0.622c-0.283,0.214-0.525,0.369-0.729,0.465c-0.586,0.262-1.152,0.393-1.699,0.393
c-0.614,0-1.353-0.144-2.217-0.432C7.698,8.123,7.048,8.303,6.628,8.303c-0.35,0-0.654-0.063-0.913-0.19
c-0.326-0.16-0.489-0.399-0.489-0.72c0-0.263,0.151-0.46,0.453-0.592C5.906,6.698,6.17,6.646,6.472,6.646
c0.656,0,1.468,0.189,2.436,0.566c1.086-0.462,2.11-1.411,3.073-2.846c0.42-0.623,0.781-1.291,1.083-2.004
c0.368-0.869,0.552-1.598,0.552-2.188c0-0.425-0.165-0.758-0.495-0.999c-0.298-0.212-0.668-0.319-1.111-0.319
c-0.836,0-1.681,0.321-2.535,0.963C8.7,0.402,8.098,1.091,7.668,1.888C7.371,2.45,7.223,2.967,7.223,3.439
c0,0.699,0.313,1.048,0.941,1.048c0.387,0,0.828-0.196,1.324-0.588c0.387-0.307,0.729-0.663,1.026-1.069
c0.618-0.831,0.928-1.685,0.928-2.563c0-0.146-0.01-0.288-0.028-0.425l0.262-0.071c0.057,0.434,0.085,0.772,0.085,1.012
c0,0.93-0.366,1.815-1.098,2.655c-0.76,0.873-1.598,1.31-2.513,1.31c-0.369,0-0.668-0.117-0.899-0.35
C7.02,4.164,6.905,3.864,6.905,3.495c0-1.114,0.563-2.218,1.691-3.313s2.252-1.643,3.37-1.643c0.731,0,1.301,0.243,1.706,0.729
C14.05-0.274,14.239,0.328,14.239,1.074z M8.164,7.626C7.32,7.241,6.649,7.05,6.154,7.05c-0.43,0-0.645,0.145-0.645,0.436
c0,0.173,0.135,0.307,0.403,0.4c0.194,0.065,0.399,0.098,0.616,0.098C7.001,7.984,7.546,7.865,8.164,7.626z"/>
</svg>
1,n}n≥1 of working models. Studying this issue in depth is very difficult, if at all possible, and beyond the scope of this article.
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