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Abstract—In this paper, we study a highly generic version
of influence maximization (IM), one of optimizing influence
campaigns by sequentially selecting “spread seeds” from a set
of candidates, a small subset of the node population, under
the hypothesis that, in a given campaign, previously activated
nodes remain “persistently” active throughout and thus do not
yield further rewards. We call this problem online influence
maximization with persistence. We introduce an estimator on
the candidates’ missing mass – the expected number of nodes
that can still be reached from a given seed candidate – and
justify its strength to rapidly estimate the desired value. We
then describe a novel algorithm, GT-UCB, relying on upper
confidence bounds on the missing mass. We show that our
approach leads to high-quality spreads on classic IM datasets,
even though it makes almost no assumptions on the diffusion
medium. Importantly, it is orders of magnitude faster than
state-of-the-art IM methods.

Keywords-Influence maximization; information diffusion; on-
line social networks; online learning; multi-armed bandits

I. INTRODUCTION

Advertising based on word-of-mouth diffusion in social
media has become very important in the digital marketing
landscape. Nowadays, social value and social influence are
arguably the hottest concepts in the area of Web advertising
and most companies that advertise in the Web space must
have a “social” strategy. For example, on widely used
platforms such as Facebook or Twitter, promoted posts
are interleaved with normal posts on user feeds. Users
interact with these posts by actions such as “likes” (adoption),
“shares” or “reposts” (network diffusion). This represents an
unprecedented tool in advertising, as products, news, ideas,
movies, etc, can propagate easily to a large audience [1].

Motivated by the need for effective viral marketing
strategies, influence estimation and influence maximization
(IM) have become important research problems, at the
intersection of data mining and social sciences [2]. In short,
IM is the problem of selecting a set of nodes from a given
diffusion graph, maximizing the expected spread under an
underlying diffusion model. This problem was introduced in
2003 by the seminal work of Kempe et al. [3], through two
stochastic, discrete-time diffusion models, Linear Threshold
(LT) and Independent Cascade (IC). These models rely
on diffusion graphs whose edges are weighted by a score
of influence. They show that selecting the set of nodes
maximizing the expected spread is NP-hard for both models,

and they propose a greedy algorithm that takes advantage
of the sub-modularity property of the influence spread, but
does not scale to large graphs. A rich literature followed,
focusing on computationally efficient and scalable algorithms
to solve IM. The recent benchmarking study of Arora et al. [4]
summarizes state-of-the-art techniques and also debunks
many IM myths.

Importantly, all the IM studies discussed in [4] have as
starting point a specific diffusion model (IC or LT), whose
graph topology and parameters – basically the edge weights
– are known. In order to infer the diffusion parameters
or the underlying graph structure, or both, [5], [6], [7],
[8] propose offline, model-specific methods, which rely on
observed information cascades.

There are however many situations where it is unreasonable
to assume the existence of relevant historical data in the form
of cascades. For such settings, online approaches, which
can learn the underlying diffusion parameters while running
diffusion campaigns, have been proposed. Bridging IM and
inference, this is done by balancing between exploration
steps (of yet uncertain model aspects) and exploitation ones
(of the best solution so far), by so called multi-armed bandits
techniques, where an agent interacts with the network to infer
influence probabilities [9], [10], [11], [12]. The learning agent
sequentially selects seeds from which diffusion processes are
initiated in the network; the obtained feedback is used to
update the agent’s knowledge of the model.

Nevertheless, all these studies on inferring diffusion
networks, whether offline or online, rely on parametric
diffusion models, i.e., assume that the actual diffusion
dynamics are well captured by such a model (e.g., IC). This
maintains significant limitations for practical purposes. First,
the more complex the model, the harder to learn in large
networks, especially in campaigns that have a relatively short
timespan, making model inference and parameter estimation
very challenging within a small horizon (typically tens or
hundreds of spreads). Second, it is commonly agreed that
the aforementioned diffusion models represent elegant yet
coarse interpretations of a reality that is much more complex
and often hard to observe fully. For examples of insights
into this complex reality, the topical or non-topical nature
of an influence campaign, the popularity of the piece of
information being diffused, or its specific topic were all
shown to have a significant impact on hashtag diffusions in



Twitter [8], [13], [14].
Aiming to address such limitations, we propose in this

paper a large-scale approach for online and adaptive IM, in
which the underlying assumptions for the diffusion processes
are kept to a minimum. We argue that it can represent a
versatile tool in many practical scenarios. More precisely, we
focus on social media diffusion scenarios in which influence
campaigns consist of multiple consecutive trials (or rounds)
spreading the same type of information from an arbitrary
domain (be it a product, idea, post, hashtag, etc). The goal of
each campaign is to reach (or activate) as many distinct users
as possible, the objective function being the total spread. In
our setting, the campaign selects from a set of spread seed
candidates, a small subset of a potentially large and unknown
population. At each round, the learning agent picks among
the candidates those from which a new diffusion process
is initiated in the network, gathers some feedback on the
activations, and adapts the subsequent steps of the campaign;
the agent may “re-seed” certain nodes (we may want to
ask a particular node to initiate spreads several times, e.g.,
if it has a strong convertion impact). This perspective on
influence campaigns imposes naturally a certain notion of
persistence, which is given the following interpretation: users
that were already activated in the ongoing campaign – e.g.,
have adopted the product or endorsed the political candidate –
remain activated throughout that campaign, and thus will not
be accounted for more than once in the objective function.

We call this problem online influence maximization with
persistence (in short, OIMP). Our solution for it follows the
multi-armed bandit idea initially employed in Lei et al. [15],
but we adopt instead a diffusion-independent perspective,
whose only input are the spread seed candidates, while the
population and underlying diffusion network – which may
actually be the superposition of several networks – remain
unknown. In our bandit approach, the parameters to be
estimated are the values of the candidates – how good is
a specific candidate –, as opposed to the diffusion edge
probabilities of a known graph as in [15]. Furthermore, we
assume that different campaigns are independent, and make
the model’s feedback more realistic: after each trial, the
agent only gathers the set of activated nodes. The rationale
is that oftentimes, for a given “viral” item, we can track in
applications only when it was adopted by various users, but
not why. A key difference w.r.t. other multi-armed bandit
studies for IM such as [9], [10], [11], [12] is that these
look for a constant optimal set of seeds, while the difficulty
with OIMP is that the seemingly best action at a given trial
depends on the activations of the previous trials (and thus
the learning agent’s past decisions).

The multi-armed bandit algorithm we propose, called GT-
UCB, relies on a famous statistical tool known as the Good-
Turing estimator, first developed during WWII to crack the
Enigma machine, and later published by Good in a study
on species discovery [16]. Our approach is inspired by the
work of Bubeck et al. [17], which proposed the use of the

Good-Turing estimator in a context where the learning agent
needs to sequentially select experts that only sample one
of their potential nodes at each trial. In contrast, in OIMP,
when a candidate is selected, it may have a potentially large
spread and may activate many nodes at once. Our solution
follows the well-known optimism in the face of uncertainty
principle from the bandit literature by deriving an upper
confidence bound on the estimator for the remaining potential
for spreading information of each candidate, and by choosing
in a principled manner between explore and exploit steps.

Through our approach, we show that efficient and effective
influence maximization can be done in a highly uncertain or
under-specified social environment.

II. SETTING

In this section, we formally define the OIMP framework.

A. Background

Given a graph G = (V,E), the traditional problem of
influence maximization (IM) is to select a set of seed nodes
I ⊆ V , under a cardinality constraint |I| = L, such that
the expected spread of an influence cascade starting from I
(or the expected number of activated nodes) is maximized.
Formally, denoting by the random variable S(I) the spread
initiated by the seed set I , IM aims to solve the following
optimization problem:

argmax
I⊆V,|I|=L

E[S(I)].

As mentioned before, a plethora of algorithms have been
proposed to solve the IM problem, under specific diffusion
models. These algorithms can be viewed as full-information
and offline approaches: they choose all the seeds at once, in
one step, and they have the complete diffusion configuration,
i.e., the graph topology and the influence probabilities.

In the online case, during a sequence of N (what we call
hereafter the budget) consecutive trials, L seed nodes are
selected at each trial, and feedback on the achieved spread
from these seeds is collected.

B. Influence maximization via candidates

The short timespan of campaigns makes parameter estima-
tion very challenging within small horizons. In other cases,
the topology – or even the existence – of a graph is too strong
of an assumption. In contrast to [15], we do not try to estimate
edge probabilities in some graph, but, instead, we assume
the existence of several users – in the following referred to
as the spread seed candidates (in short, candidates) – who
are the only access to the medium of diffusion. Formally,
let [K] := {1, . . . ,K} be a set of candidates for selection;
each candidate is connected to an unknown and potentially
large base (the candidate’s support) of basic nodes, each with
an unknown activation probability. For illustration, we give
in Figure 1 an example of this setting, with 3 candidates
connected to 4, 5, and 4 basic nodes, respectively.



pk(u)pk(u)

u

Candidates

Basic Nodes

Figure 1:3 candidates and associated activation probabilities pk(u).

Now, the problem boils down to estimating the value of
the K candidates, for a K which is typically much smaller
than the number of parameters of the diffusion model. The
medium over which diffusion operates may remain a general
diffusion graph, just like in the literature, but we make no
assumption on that: the diffusion may happen in a completely
unknown environment. Finally, note that by choosing K =
|V | candidates, the classic IM problem can be seen as a
special instance of our setting.

We complete the formal setting by assuming the existence
of K sets Ak ⊆ V of basic nodes such that each candidate
k ∈ [K] is connected to each node in Ak, with pk(u) the
probability for candidate k to activate the child node u ∈ Ak.

Definition 1 (Influence process). When a candidate k ∈ [K]
is selected, each basic node u ∈ Ak is sampled for activation,
according to its probability pk(u). The feedback (or spread)
for k’s selection consists of all the activated nodes, while
the associated reward consists of the newly activated ones.

Remark: Limiting the IM method to working with a
small subset of the entire set of nodes may seem overly
restrictive, but it allows to rapidly estimate nodes’ values.
As a motivating example, take marketing firms that may not
have knowledge of the entire diffusion graph, only having
access to a few influential people that can diffuse information
(the candidates in our setting).

C. Online influence maximization with persistence

We are now ready to state our online influence maximiza-
tion with persistence:

Problem 1 (OIMP). Given a set of candidates [K] :=
{1, . . . ,K}, a budget of N trials, and a number 1 ≤ L ≤ K
of candidates to be activated at each trial, the objective of
the online influence maximization with persistence (OIMP)
is to solve the following optimization problem:

argmax
In⊆[K],|In|=L,∀16n6N

E
∣∣∪Nn=1S(In)

∣∣ .
Note that, in contrast to persistence-free online influ-

ence maximization – considered, e.g., in [9], [11] – the
performance criterion used in OIMP displays the so-called
diminishing returns property: the expected number of nodes
activated by successive selections of a given candidate is
decreasing, due to the fact that nodes that have already been
activated are discounted. We refer to the expected number of
nodes remaining to be activated as the potential or missing
mass of a candidate. The diminishing returns property implies

that there is no static best set of candidates to be selected,
but that the algorithm must follow an adaptive policy, which
can detect that the remaining potential of a candidate is small
and switch to another candidate that has been less exploited.
Our solution to this problem overcomes challenges on two
fronts: (1) it needs to estimate the potential of nodes at each
round, without knowing the diffusion model nor the activation
probabilities, and (2) it needs to identify the currently best
spread candidates, according to their estimated potentials.

Other approaches for the online IM problem rely on
estimating diffusion parameters [15], [9], [11] – generally,
a distribution over the influence probability of each edge in
the graph. However, the assumption that one can estimate
accurately the diffusion parameters may be overly ambitious,
especially in cases where the number of allowed trials (the
budget) is rather limited.

III. ALGORITHM

We describe now our UCB-like algorithm, which relies on
the Good-Turing estimator to sequentially select the spread
candidates to activate at each round, from the available ones.

A. Missing mass and Good-Turing estimator

Given the K candidates, the OIMP problem boils down
to the following: How should we select a candidate at each
step? More precisely, a good algorithm for OIMP should
aim at selecting the candidate k with the largest potential for
influencing its children Ak. However, the true potential value
of a candidate is a priori unknown to the decision maker.

In the following, we index trials by t when referring to
the time of the algorithm, and we index trials by n when
referring to the number of selections of the candidate. For
example, the t-th spread initiated by the algorithm is noted
S(t) whereas the n-th spread of candidate k is noted Sk,n.

Definition 2 (Missing mass Rk(t)). Consider a candidate
k ∈ [K] connected to Ak basic nodes. Let S(1), . . . , S(t) be
the set of nodes that were activated during the first t trials
by the seeded candidates. The missing mass Rk(t) is the
expected number of new nodes that would be activated upon
starting a t+ 1-th cascade from k:

Rk(t) :=
∑
u∈Ak

1
{
u /∈ ∪ti=1Sk(i)

}
pk(u),

where 1{·} denotes the indicator function.

Definition 2 provides a formal way to obtain the remaining
potential of a candidate k at a given time. The optimal
policy would simply select the candidate with the largest
missing mass at each time step. The difficulty is, however,
that the probabilities pk(u) are unknown. Hence, we have
to design a missing mass estimator R̂k(t) instead. It is
important to stress that the missing mass is a random quantity,
because of the dependency on the spreads Sk(t), . . . , Sk(t).
Furthermore, due to the diminishing returns property, the
sequence (Sk,n)n≥1 is stochastically decreasing.



Following ideas from [16], [17], we now introduce a
version of the Good-Turing statistic, tailored to our problem
of rapidly estimating the missing mass. Denoting by nk(t)
the number of times candidate k has been selected after t
trials, we let S1, . . . , Snk(t) be the nk(t) cascades sampled
independently from candidate k. We denote by Uk(u, t) the
binary function whose value is 1 if node u has been activated
exactly once by candidate k – such occurrences are called
hapaxes in linguistics – and Zk(u, t) the binary function
whose value is 1 if node u has never been activated by
candidate k. The idea of the Good-Turing estimator is to
estimate the missing mass as the proportion of hapaxes in
the nk(t) sampled cascades, as follows:

R̂k(t) :=
1

nk(t)

∑
u∈Ak

Uk(u, t)
∏
l 6=k

Zl(u, t).

Albeit simple, this estimator turns out to be quite effective
in practice. If a candidate is connected to a combination of
both nodes having high activation probabilities and nodes
having low activation probabilities, then successive traces
sampled from this candidate will result in multiple activations
of the high-probability nodes and few of the low-probability
ones. Hence, after observing a few spreads, the candidate’s
potential will be low, a fact that will be captured by the
low proportion of hapaxes. In contrast, estimators that try
to estimate each activation probability independently will
require a much larger number of trials to properly estimate
the candidate’s potential.

B. Upper confidence bounds

Following principles from the bandit literature, the GT-
UCB algorithm relies on optimism in the face of uncertainty.
At each step (trial) t, the algorithm selects the highest
upper-confidence bound on the missing mass – denoted by
bk(t) – and activates (plays) the corresponding candidate
k. This algorithm achieves robustness against the stochastic
nature of the cascades, by ensuring that candidates who
“underperformed” with respect to their potential in previous
trials may still be selected later on. Algorithm 1 presents the
main components of GT-UCB for the case L = 1, that is,
when a single candidate is chosen at each step.

Algorithm 1 – GT-UCB (L = 1)

Require: Set of candidates [K], time budget N
1: Initialization: play each candidate k ∈ [K] once, observe the

spread Sk,1, set nk = 1
2: For each k ∈ [K]: update the reward W = W ∪ Sk,1

3: for t = K + 1, . . . , N do
4: Compute bk(t) for every candidate k
5: Choose k(t) = argmaxk∈[K] bk(t)
6: Play candidate k(t) and observe spread S(t)
7: Update cumulative reward: W = W ∪ S(t)
8: Update statistics of candidate k(t): nk(t)(t+1) = nk(t)(t)+

1 and Sk,nk(t) = S(t).
9: end for

10: return W

The algorithm starts by activating each candidate k ∈ [K]
once, in order to initialize its Good-Turing estimator. The
main loop of GT-UCB occurs at lines 3-9. Let S(t) be the
observed spread at the trial t, and let Sk,s be the result of the
s-th diffusion initiated at candidate k. At every step t > K,
we recompute for each candidate k ∈ [K] its index bk(t),
representing the upper confidence bound on the expected
reward in the next trial. The computation of this index uses
the previous samples Sk,1, . . . , Sk,nk(t) and the number of
times each candidate k has been activated up to trial t, nk(t).
The index is set as:

bk(t) = R̂k(t) +
(
1 +
√
2
)√ λ̂k(t) log(4t)

nk(t)
+

log(4t)

3nk(t)
,

where R̂k(t) is the Good-Turing estimator and λ̂k(t) :=∑nk(t)
s=1

|Sk,s|
nk(t)

is an estimator for the expected spread from
candidate k. The index formula is motivated by the confidence
intervals given in Theorem 11.

Theorem 1. With probability at least 1 − δ, for λ =∑
u∈A p(u) and βn :=

(
1 +
√
2
)√λ log(4/δ)

n + log(4/δ)
3n ,

−βn −
λ

n
≤ Rn − R̂n ≤ βn.

Then, in line 5, GT-UCB selects the candidate k(t) with
the largest index and initiates a cascade from it. The feedback
S(t) is observed and is used to update the cumulative reward
set W . Note that S(t) provides only the Ids of the nodes that
were activated, with no information on how this diffusion
happened in the hidden diffusion medium. Finally, statistics
associated to the chosen candidate k(t) are updated.

C. Extensions for the case L > 1

Algorithm 1 can be easily adapted to select L > 1
candidates at each round. Instead of choosing the candidate
maximizing the Good-Turing UCB in line 5, we can select
those having the L largest indices. Note that k(t) then
becomes a set of L candidates. A diffusion is initiated from
the associated nodes and, at termination, all activations are
observed. As in [12], the algorithm would require feedback
to include the candidate responsible for the activation of each
node, in order to update the statistics accordingly.

IV. EXPERIMENTS

We conducted experiments on two widely-used graphs
from the IM literature, including [15]. Namely, we tested
our algorithm on HepPh – a graph with 34.5K nodes and
422K edges – and DBLP – 317K nodes and 2.1M edges –,
both representing publicly available collaboration networks,
where undirected edges are drawn between authors who
have collaborated on at least one paper. All methods are
implemented2 in C++ and simulations are done on an Ubuntu

1The proof of Theorem 1 is available at https://arxiv.org/abs/1702.05354
2The code is available at https://github.com/smaniu/oim.
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Figure 2: Impact of GT-UCB parameters on influence spread.

16.04 machine with an Intel Xeon 2.4GHz CPU 20 cores
and 98GB of RAM.

A. Extracting candidates from graphs

GT-UCB does not make any assumptions about the
topology of the nodes influenced by the candidates. Indeed,
in many settings it may be more natural to assume that the
set of candidates is given and that the activations at each trial
can be observed, while the topology of the underlying graph
G remains unknown. In other settings, we may start from an
existing social network G, in which case we need to extract
a set of K representative candidates from it. Ideally, we
should choose candidates that have little intersection in their
“scopes of influence” to avoid useless seed selections. While
this may be interpreted and performed differently, from one
application to another, we discuss next some of the most
natural heuristics for selecting candidates which we use in
our experiments.

MaxDegree. This method selects the K nodes with the
highest out-degrees in G.

Greedy MaxCover. This strategy follows the well-known
greedy approximation algorithm for selecting a cover of the
graph G. Specifically, the algorithm executes the following
steps K times: (i.) select the node with highest out-degree
(ii.) remove all out-neighbors of the selected node.

DivRank [18]. DivRank is a PageRank-like method
relying on reinforced random walks, with the goal of
producing diverse high-ranking nodes, while maintaining the
rich-gets-richer paradigm. We adapted the original DivRank
procedure by inverting the edge directions. In doing so, we
get influential nodes instead of prestigious ones.

IM algorithms. This method assigns uniformly at random
a propagation probability to each edge of G, assuming the IC
model. Then, an IM algorithm – PMC [19] in our experiments
– is executed on G to get the set of K candidates.

B. Results

Diffusion models. In the work closest to ours, Lei et
al. [15] compared their solution on the Weighted Cascade
instance of IC: every edge (u, v) has weight 1/dv where
dv is the in-degree of node v. In this experimental study,
and to illustrate that our approach is diffusion-independent,
we added the tri-valency model (TV), which associates

randomly a probability from {0.1, 0.01, 0.001} to every edge
and follows the IC propagation model.

Baselines. We compare GT-UCB to several baselines.
RANDOM chooses a random candidate at each round.
MAXDEGREE selects the node with the largest degree at
each round, where the degree does not include previously
activated nodes. Finally, EG corresponds to [15]’s confidence-
bound explore-exploit method with exponentiated gradient
update, the state-of-the-art method for the OIMP problem
(code provided by the authors). We use this last baseline
on WC and TV weighted graphs and tune parameters in
accordance to the results of their experiments: Maximum
Likelihood Estimation is adopted for graph update and edge
priors are set to Beta(1, 20). The baselines are compared to
an ORACLE that knows beforehand the diffusion model and
probabilities. At each round, it runs an IM approximated
algorithm – PMC in our experiments. Note that previously
activated nodes are not counted when estimating the value
of a node with PMC, thus making ORACLE adaptive.

All experiments are done with a trial horizon N = 500, a
setting in line with many real-world marketing campaigns.

GT-UCB parameters. We show in Fig. 2a the impact of
the candidate extraction criterion on HepPh under WC model.
We can observe that the spread is only slightly affected by
the extraction criterion: different datasets lead to different
optimal criteria. On the HepPh network, DivRank clearly
leads to larger influence spreads. We emphasize that on
some other graph and model combinations we observed that
other extraction routines can perform better than DivRank.
In summary, we note that GT-UCB performs consistently as
long as the method leads to candidates that are well spread
over the graph. In the following, for each graph, we used
DivRank as candidate extraction criterion in accordance with
these observations.

In Fig. 2b, we measure the impact of the number of
candidates K on the influence spread. We can observe that a
larger amount of candidates leads to greater influence spreads
on HepPh: this network is relatively small (34.5K nodes),
and thus half of the nodes are already activated after 400
trials. By having more candidates, we are able to access parts
of the network that would not be accessible otherwise.

GT-UCB vs. baselines. We evaluate the execution time
of the different algorithms in Fig. 3. As expected, GT-UCB
largely outperforms EG (and ORACLE). The two baselines
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Figure 4: Growth of spreads against the number of rounds.

require the execution of an approximated IM algorithm at
each round. GT-UCB is several orders of magnitude faster:
it concentrates most its running time on extracting candidates,
while statistic updates and UCB computations are negligible.

In Fig. 4, we show the growth of the spread for GT-
UCB and baselines. For each experiment, GT-UCB uses
K = 50 if L = 1 and K = 100 if L = 10. First, we
can see that MAXDEGREE is a strong baseline in many
cases. GT-UCB results in good quality spreads across every
combination of network and diffusion model. Interestingly,
on the smaller graph HepPh, we observe an increase in
the slope of spread after initialization, particularly visible
at t = 50 with WC. This corresponds to the step when
GT-UCB starts to select candidates maximizing bk(t) in
the main loop. It shows that our strategy adapts well to
the previous activations, and chooses good candidates at
each iteration. Interestingly, RANDOM performs surprisingly
well in many cases, especially under TV weight assignment.
However, when certain candidates are significantly better than
others, it cannot adapt to select the best candidate unlike
GT-UCB. EG performs well on HepPh, especially under TV
weight assignment. However, it fails to provide competitive
cumulative spreads on DBLP. We believe that EG tries to
estimate too many parameters for a horizon T = 500. After
reaching this time step, less than 10% of all nodes for WC,
and 20% for TV, are activated. This implies that we have
small confidence regarding many edge probability estimations,
as most nodes are located in parts of the graph that have
never been explored.

V. CONCLUSION

We proposed a diffusion-independent approach for online
and adaptive IM, whose role is to maximize the number

of activated nodes in an arbitrary environment, under the
OIMP framework. Our method requires as only interfaces
with the “real-world” the identification of potential seeds (the
candidates) and the spread feedback (i.e., the set of activated
nodes) at each trial. Subsequent online iterations are very
fast, making it possible to scale to very large graphs.
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