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Abstract

Robust inference of a low-dimensional parameter in a large semi-parametric model relies on 

external estimators of infinite-dimensional features of the distribution of the data. Typically, only 

one of the latter is optimized for the sake of constructing a well-behaved estimator of the low-

dimensional parameter of interest. Optimizing more than one of them for the sake of achieving a 

better bias-variance trade-off in the estimation of the parameter of interest is the core idea driving 

the general template of the collaborative targeted minimum loss-based estimation procedure. The 

original instantiation of the collaborative targeted minimum loss-based estimation template can be 

presented as a greedy forward stepwise collaborative targeted minimum loss-based estimation 

algorithm. It does not scale well when the number p of covariates increases drastically. This 

motivates the introduction of a novel instantiation of the collaborative targeted minimum loss-

based estimation template where the covariates are pre-ordered. Its time complexity is (p) as 

opposed to the original (p2), a remarkable gain. We propose two pre-ordering strategies and 

suggest a rule of thumb to develop other meaningful strategies. Because it is usually unclear a 

priori which pre-ordering strategy to choose, we also introduce another instantiation called SL-C-

TMLE algorithm that enables the data-driven choice of the better pre-ordering strategy given the 

problem at hand. Its time complexity is (p) as well. The computational burden and relative 

performance of these algorithms were compared in simulation studies involving fully synthetic 

data or partially synthetic data based on a real world large electronic health database; and in 

analyses of three real, large electronic health databases. In all analyses involving electronic health 

databases, the greedy collaborative targeted minimum loss-based estimation algorithm is 

unacceptably slow. Simulation studies seem to indicate that our scalable collaborative targeted 

minimum loss-based estimation and SL-C-TMLE algorithms work well. All C-TMLEs are 

publicly available in a Julia software package.
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1 Introduction

The general template of collaborative double robust targeted minimum loss-based estimation 

(C-TMLE; “C-TMLE template” for short) builds upon the targeted minimum loss-based 

estimation (TMLE) template.1,2 Both the TMLE and C-TMLE templates can be viewed as 

meta-algorithms which map a set of user-supplied choices/hyper-parameters (e.g., parameter 

of interest, loss function, submodels) into a specific machine-learning algorithm for 

estimation, that we call an instantiation of the template.

Constructing a TMLE or a C-TMLE involves the estimation of a nuisance parameter, 

typically an infinite-dimensional feature of the distribution of the data. For a plain TMLE 

estimator, the estimation of the nuisance parameter is addressed as an independent statistical 

task. In the C-TMLE template, on the contrary, the estimation of the nuisance parameter is 

optimized to provide a better bias-variance trade-off in the inference of the targeted 

parameter. The C-TMLE template has been successfully applied in a variety of areas, from 

survival analysis,3 to the study of gene association4 and longitudinal data structures,5 to 

name just a few.

In the original instantiation of the C-TMLE template of van der Laan and Gruber,2 that we 

henceforth call “the greedy C-TMLE algorithm”, the estimation of the nuisance parameter 

aiming for a better bias-variance trade-off is conducted in two steps. First, a greedy forward 

stepwise selection procedure is implemented to construct a sequence of candidate estimators 

of the nuisance parameter derived by fitting a nested sequence of models. Second, cross-

validation is used to select the candidate from this sequence which minimizes a criterion that 

incorporates a measure of bias and variance with respect to (w.r.t.) the targeted parameter 

(the algorithm is described in Section 4). The authors show that the greedy C-TMLE 

algorithm exhibits superior relative performance in analyses of sparse data, at the cost of an 

increase in time complexity. For instance, in a problem with p baseline covariates, one 

would construct and select from p candidate estimators of the nuisance parameter, yielding a 

time complexity of order (p2). Despite a criterion for early termination, the algorithm does 

not scale to large-scale and high-dimensional data. The aim of this article is to develop novel 

C-TMLE algorithms that overcome these serious practical limitations without compromising 

finite sample or asymptotic performance.

We propose two such “scalable C-TMLE algorithms”. They replace the greedy search at 

each step by an easily computed data adaptive pre-ordering of the candidate estimators of 

the nuisance parameter. They include a data adaptive, early stopping rule that further reduces 

computational time without sacrificing statistical performance. In the aforementioned 

problem with p baseline covariates where the time complexity of the greedy C-TMLE 

algorithm was of order (p2), those of the two novel scalable C-TMLE algorithms is of 

order (p).
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Because one may be reluctant to specify a single a priori pre-ordering of the candidate 

estimators of the nuisance parameter, we also introduce a SL-C-TMLE algorithm. It selects 

the best pre-ordering from a set of ordering strategies by Super Learning (SL).6 SL is an 

example of ensemble learning methodology which builds a meta-algorithm for estimation 

out of a collection of individual, competing algorithms of estimation, relying on oracle 

properties of cross-validation.

We focus on the estimation of the average (causal) treatment effect (ATE). It is not difficult 

to generalize our scalable C-TMLE algorithms to other estimation problems, by simply 

replacing the greedy search part in the corresponding greedy C-TMLE algorithm with the 

scalable version when building the sequence of candidate estimates, while leaving other 

building blocks unchanged.

The performance of the two scalable C-TMLE and SL-C-TMLE algorithms are compared 

with those of competing, well-established estimation methods: G-computation,7 inverse 

probability of treatment weighting (IPTW),8,9 augmented inverse probability of treatment 

weighted estimator (A-IPTW).10–12 Results from unadjusted regression estimation of a point 

treatment effect are also provided to illustrate the level of bias due to confounding.

The article is organized as follows. Section 2 introduces the parameter of interest and a 

causal model for its causal interpretation. Section 3 describes an instantiation of the TMLE 

template. Section 4 presents the C-TMLE template and a greedy instantiation of it. Section 5 

introduces the two proposed pre-ordered scalable C-TMLE algorithms, and SL-C-TMLE 

algorithm. Sections 6 and 7 present the results of simulation studies (based on fully or 

partially synthetic data, respectively) comparing the C-TMLE and SL-C-TMLE estimators 

with other common estimators. Section 8 presents and compares the empirical processing 

time of C-TMLE algorithms for different sample sizes and numbers of candidate estimators 

of the nuisance parameter. Section 9 compares the performance of the new C-TMLEs with 

standard TMLE on three real data sets. Section 10 is a closing discussion. The appendix 

presents a brief introduction to a Julia software that implements all the proposed C-TMLE 

algorithms.

2 The average treatment effect example

We mainly consider the problem of estimating the ATE in an observational study where we 

observe on each experimental unit: a collection of p baseline covariates, W; a binary 

treatment indicator, A; a binary or continuous (0, 1)-valued outcome of interest, Y. We use 

Oi = (Wi,Ai,Yi) to represent the i-th observation from the unknown observed data 

distribution P0, and assume that O1, …,On are independent. The parameter of interest is 

defined as

Ψ(P0) = 𝔼0[𝔼0(Y ∣ A = 1, W) − 𝔼0(Y ∣ A = 0, W)]

The ATE enjoys a causal interpretation under the non-parametric structural equation model 

(NPSEM) given by
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W = f W(UW)

A = f A(W , UA)

Y = f Y(A, W , UY)

where fW, fA and fY are deterministic functions and UW,UA,UY are background (exogenous) 

variables. The potential outcome under exposure level a ∈ {0, 1} can be obtained by 

substituting a for A in the third equality: Ya = fY(a,W,UY). Note that Y = YA (this is known 

as the “consistency” assumption). If we are willing to assume that (i) A is conditionally 

independent of (Y1, Y0) given W (this is known as the “no unmeasured confounders” 

assumption) and (ii) 0 < P(A = 1|W) < 1 almost everywhere (this is known as the 

“positivity” assumption), then Ψ(P0) satisfies Ψ(P0) = 0(Y1 − Y0).

For future use, we introduce the propensity score (PS), defined as the conditional probability 

of receiving treatment, and define g0(a,W) ≡ P0(A = a|W) for both a = 0, 1. We also 

introduce the conditional mean of the outcome: Q̄
0(A,W) = 0(Y|A,W). In the remainder of 

this article, gn(a,W) and Q̄
n(A,W) denote estimators of g0(a,W) and Q̄

0(A,W).

3 A TMLE instantiation for the ATE

We are primarily interested in double robust (DR, which also stands for double robustness) 

estimators of Ψ(P0). An estimator of Ψ(P0) is said to be DR if it is consistent if either Q̄
0 or 

g0 is consistently estimated. In addition, an estimator of Ψ(P0) is said to be efficient if it 

satisfies a central limit theorem with a limit variance which equals the second moment under 

P0 of the so-called efficient influence curve (EIC) at P0. The EIC for the ATE parameter is 

given by

D∗(Q0, g0)(O) = H0(A, W)(Y − Q0(A, W)) + Q0(1, W) − Q0(0, W) − Ψ(P0)

where H0(A,W) = A/g0(1,W) − (1 − A)/g0(0,W). The notation D*(Q̄
0, g0) is slightly 

misleading: it suggests that Q̄
0 and g0 fully characterize D*(Q̄

0, g0) whereas the marginal 

distribution P0,W of W under P0, which appears in Ψ(P0), is also needed. We nevertheless 

keep the notation as is for brevity. We refer the reader to Bickel et al.13 for details about 

efficient influence curves.

More generally, for every valid distribution P of O = (W,A,Y) such that (i) the conditional 

expectation of Y given (A, W) equals Q̄(A,W) and the conditional probability that A = a 
given W equals g(a, W), and (ii) 0 < g(1,W) < 1 almost surely, we denote

D∗(Q, g)(O) = Hg(A, W)(Y − Q(A, W)) + Q(1, W) − Q(0, W) − Ψ(P)

where Hg(A,W) = A/g(1,W) − (1 − A)/g(0,W). The augmented inverse probability of 

treatment weighted estimator (A-IPTW, or so called “DR IPTW”)14–16 and TMLE1,17 are 
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two well-studied DR estimators. Taking the estimation of the ATE as an example, A-IPTW 

estimates Ψ(P0) by solving the EIC equation directly. Given two estimators Q̄
n and gn of Q̄

0 

and g0, setting

Hgn
(A, W) = A/gn(1, W) − (1 − A)/gn(0, W) (1)

and solving (in ψ)

0 = ∑
i = 1

n
Hgn

(Ai, Wi) Yi − Qn(Ai, Wi) + Qn(1, Wi) − Qn(0, Wi) − ψ

yield the A-IPTW estimator

ψn
A − IPTW = 1

n ∑
i = 1

n
Hgn

(Ai, Wi) Yi − Qn(Ai, Wi) + Qn(1, Wi) − Qn(0, Wi)

It is worth noting that the A-IPTW estimator is not a substitution estimator: it cannot be 

written as the value of Ψ at a particular P. The A-IPTW may thus sometimes take values 

outside of the parameter space [0, 1] where Ψ(P0) is known to live. On the contrary, an 

instantiation of the TMLE template yields a substitution estimator which, by construction, 

belongs to [0,1]. This is a desirable property. For instance, a TMLE estimator can be 

constructed by applying the TMLE algorithm below (which incorporates the negative log-

likelihood loss function and logistic fluctuation; see comment below).

I. Estimating Q̄
0. Derive an initial estimator Qn

0 of Q̄
0.

II. Estimating g0. Derive an estimator gn of g0.

III. Building the so-called “clever covariate”. Define Hn(A,W) as in equation (1).

IV. “Fluctuating” the initial estimator. Fit the logistic regression of Y on Hn(A,W) 

with no intercept, using logit(Qn
0(Ai, Wi)) as i-specific offset/intercept. This yields 

a minimum loss estimator εn. Update the initial estimator Qn
0 into Qn

∗ given by

Qn
∗(A, W) = expit(logit(Qn

0(A, W)) + εnHn(A, W)) (2)

V. V Constructing the TMLE. Evaluate

ψn
TMLE = 1

n ∑
i = 1

n
Qn

∗(1, W i) − Qn
∗(0, W i) (3)
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In steps I and II, it is highly recommended to avoid making parametric assumptions, as any 

parametric model is likely mis-specified. Relying on SL6 is a good option. Step IV aims to 

reduce bias in the estimation of Ψ(P0) by enhancing the initial estimator derived from Qn
0

and the marginal empirical distribution of W as an estimator of its counterpart under P0. It is 

dubbed a “fluctuation” step because it consists, here, in (i) building a parametric model 

through Qn
0 and (ii) finding the optimal fluctuation of Qn

0 in it w.r.t. the chosen loss function. 

In practice, bounded continuous outcomes and binary outcomes are fluctuated on the logit 
scale (hence the expression “logistic fluctuation”) to ensure that bounds on the model space 

are respected.18 In the context of the above TMLE algorithm, step IV consists in minimizing 

ε Ln(Qn
0(ε)) over ℝ, where

Ln Qn
0(ε) = ∑

i = 1

n
Y i log (Qn

0(ε)(Ai, W i)) + (1 − Y i) log (1 − Qn
0(ε)(Ai, W i)) (4)

is the empirical loss of Qn
0(ε) given by equation (2) with ε substituted for εn. Moreover, the 

fluctuation in step 4 is made in such a way that the EIC equation is solved: 

∑i D∗(Qn
∗, gn)(Oi) = 0, which justifies why Qn

∗ is said to be “targeted” toward Ψ(P0). This is 

the key to the TMLE estimator being DR and asymptotically efficient under regularity 

conditions.1

Standard errors and confidence intervals (CIs) can be computed based on the variance of the 

influence curve. Proofs and technical details are available in the literature.1,17

4 The C-TMLE general template and its greedy instantiation for the ATE

When implementing an instantiation of the TMLE template, one relies on a single external 

estimate of the nuisance parameter, g0 in the ATE example (see step 2 in Section 3). In 

contrast, an instantiation of the C-TMLE template involves constructing a series of nuisance 

parameter estimates and corresponding TMLE estimators using these estimates in the 

targeting step. Section 4.1 presents the C-TMLE general template and Section 4.2 its first 

instantiation, called the greedy C-TMLE algorithm.

4.1 The C-TMLE template

When the ATE is the parameter of interest, the C-TMLE template can be summarized 

recursively like this (see Algorithm 1 for a high-level algorithmic presentation).

1. Initialization. Build an initial triplet (gn,0, Q̄
n,0, Qn, 0

∗ ) where gn,0 estimates g0 

and Qn, 0 = Qn
0 and Qn, 0

∗  estimate Q0̄, the latter estimator being targeted toward 

Ψ(P0) for instance as in step 4 of the TMLE algorithm presented in Section 3.
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Suppose that k triplets (gn, 0, Qn, 0, Qn, 0
∗ ), …, (gn, k − 1, Qn, k − 1, Qn, k − 1

∗ ) have been 

built.

2. Deriving the next triplet.

a. Tentatively set Q̄
n,k = Q̄

n,k−1.

b. Derive candidate estimators gn, k
j  of g0 (1 ≤ j ≤ Jn,k) so that the empirical 

fit provided by each gn, k
j  is better than that of gn,k−1.

c. For each j, build Qn, k
j, ∗ by fluctuating Q̄

n,k based on gn, k
j  as in step 4 of 

the TMLE algorithm presented in Section 3 for instance.

d. Find J such that the empirical loss (see (4) in Section 3 for an example) 

of Qn, k
J, ∗ equals the minimum among the empirical losses of 

Qn, k
j, ∗ (1 ≤ j ≤ Jn, k), then tentatively set 

(gn, k, Qn, k, Qn, k
∗ ) = (gn, k

J , Qn, k, Qn, k
J, ∗).

e. If the empirical loss of the candidate Qn, k
∗  is smaller than that of 

Qn, k − 1
∗ , then accept the candidate triplet.

f. If the empirical loss of the candidate Qn, k
∗  is larger than that of Qn, k − 1

∗ , 

then set Qn, k = Qn, k − 1
∗ , go back to step 2b and carry out steps 2b, 2c, 

2d and 2e.

3. Selecting the best triplet. Once all the triplets have been built, identify the 

triplet (gn,kn, Q̄
n,kn, Qn, kn

∗ ) that minimizes a cross-validated, loss-based, 

penalized empirical risk, with the same loss function as that used in step 2c to 

fluctuate Q̄
n,k.

4. Constructing the C-TMLE. Evaluate

ψn
C − TMLE = 1

n ∑
i = 1

n
(Qn, kn

∗ (1, Wi) − Qn, kn
∗ (0, Wi))

As in step 1 of the TMLE instantiation presented in Section 3, we recommend relying on SL 

in step 1 of the above general template of C-TMLE. Two comments are in order regarding 

step 2. First, to achieve collaborative DR eventually, the sequence of estimators (gn,k: k) 

derived in steps 2b and 2d should be arranged in such a way that the estimator becomes 

increasingly nonparametric, with asymptotic bias and variance, respectively, decreasing and 

increasing, and so that gn,k converges (in k) to a consistent estimator of g0.1 One could for 

instance rely on a nested sequence of models, see Section 4.2. By doing so, the empirical fit 

for g0 improves as k increases.1,19 Second, if step 2f is carried out, then it necessarily holds 

Ju et al. Page 7

Stat Methods Med Res. Author manuscript; available in PMC 2018 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that the empirical risk of Qn, k
∗  is smaller than that of Qn, k − 1

∗  the second time step 2e is 

undertaken, so the candidate triplet is accepted. In step 3, kn is formally defined as

kn = argmin
k

cvRiskk + cvVark + n × cvBiask
2

where cvRiskk, cvVark, cvBiask are, respectively, given by

∑
v = 1

V
∑

i ∈ Val(v)
loss(Qn, k

∗ (Pnv
0 ))(Oi),

1
n ∑

v = 1

V
∑

i ∈ Val(v)
D∗(Qn, k

∗ (Pnv
0 ), gn, k(Pn, v

0 ))(Oi)
2,

1
V ∑

v = 1

V
[Ψ(Qn, k

∗ (Pnv
0 )) − Ψ(Qn, k

∗ (Pn))]

where Ψ(Qn, k
∗ (Pnv

0 )) and Ψ(Qn, k
∗ (Pn)) are shorthand notation for equation (3) with Qn, k

∗ (Pnv
0 )

and Qn, k
∗ (Pn) substituted for Qn

∗, and where loss is the loss function used in step 2c to 

fluctuate Q̄
n,k. That could be for instance the leastsquare loss function, in which case 

cvRiskk would equal

cvRSSk = ∑
v = 1

V
∑

i ∈ Val(v)
(Yi − Qn, k

∗ (Pnv
0 )(Wi, Ai))

2

In the two previous displays, Val(v) is the set of indices of observations used for validation 

in the v-th fold, Pnv
0  is the empirical distribution of the observations indexed by i ∉ Val(v), Pn 

is the empirical distribution of the whole data set, and Z(Pnv
0 ) (respectively, Z(Pn)) means that 

Z is fitted using Pnv
0  (respectively, Pn). The penalization terms 1

n , cvVark and cvBiask 

robustify the finite sample performance when the positivity assumption is violated.2

The C-TMLE eventually defined in step 4 inherits all the properties of the plain TMLE 

estimator defined in equation (3).2 It is DR and asymptotically efficient under appropriate 

regularity conditions. Porter et al.20 discuss and compare TMLE and C-TMLE with other 

DR estimators, including A-IPTW.

Section 4.2 presents the first instantiation of the C-TMLE general template.
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Algorithm 1

General Template of C-TMLE

1 Construct an initial estimator Qn
0 for Q̄

0.

2 Create candidate Qn, k
∗ , using different estimators gn,k of g0, such that the empirical risks of Qn, k

∗  and gn,k 

are decreasing in k.

3 Select the best candidate Qn
∗ = Qn, kn

∗  using loss-based cross-validation, with the same loss function as 

in the TMLE targeting step.

4.2 The greedy C-TMLE algorithm

We refer to the first instantiation of the C-TMLE template as the greedy C-TMLE algorithm. 

It uses a forward selection algorithm to build the sequence of estimators of g0 based on a 

nested sequence of models for g0 that we call PS models. Let us describe the algorithm in 

the case that W consists of p covariates. The steps we refer to are those of the C-TMLE 

template of Section 4.1.

The construction of gn,0 in step 1 relies on the PS model defined as the one-dimensional 

logistic model with only an intercept (the “intercept model”). Therefore, if the PS model is 

fitted based on Pn, then gn,0 is given by gn,0(1|W) = 1 − gn,0(0|W) = Pn(A = 1). The 

derivation of Qn, 0
∗  from Q̄

n,0 and gn,0 in step 1 is then carried out by fitting the logistic 

regression of Y on Hgn,0 (A,W) with i-specific offset/intercept logit(Qn,0(Ai,Wi)), where

Hgnk
(A, W) = A/gn, k(1 ∣ W) − (1 − A)/gn, k(0 ∣ W) (5)

leading to

logit(Qn, k
∗ (A, W)) = logit(Qn, k(A, W)) + εkHgnk

(A, W) (6)

(with k = 0). We denote by ℒ0 the empirical risk of Qn, 0
∗  w.r.t. the negative log-likelihood 

function ℒ.

Assume that gn,1, …, gn,k−1 have already been derived by fitting PS models for g0 where the 

ℓ th PS model is included (as a set) in the (ℓ+ 1) th PS model because in the latter A is 

regressed on an intercept, the same (ℓ − 1) covariates as in the former and on an additional 

covariate (for each 1 ≤ ℓ ≤ k). To construct the (k + 1) th PS model in step 2b, each covariate 

Wj (1 ≤ j ≤ p such that Wj has not been included yet) is considered in turn as a candidate 

additional covariate added to the kth PS model to form the (k + 1) th PS model. By fitting 
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the corresponding candidate (k + 1) th PS model, we obtain a candidate gn, k
j . Step 2c 

consists in defining the corresponding H
gn, k

j  and Qn, k
j, ∗ as in equations (5) and (6). To carry 

out step 2d, let the empirical risk of Qn, k
J, ∗ w.r.t. ℒ be the smallest of the empirical risks of 

Qn, k
j, ∗ (for all considered js), let the (k + 1) th PS model be the one where WJ is added to the 

kth PS model, and set (gn, k, Qn, k, Qn, k
∗ ) = (gn, k

J , Qn, k − 1, Qn, k
J, ∗). Let ℒk be the empirical risk 

of Qn, k
∗  w.r.t. ℒ. In step 2e, we assess whether ℒk ≤ ℒk−1 or not. If the inequality is met, 

then the candidate triplet is accepted. Otherwise, we reset Qn, k = Qn, k − 1
∗  and repeat steps 2c 

and 2d. It is then guaranteed that the empirical risk of Qn, k
∗  w.r.t. ℒ is smaller than ℒk−1, 

and the candidate triplet is accepted.

This forward stepwise procedure is carried out recursively until all p covariates have been 

incorporated into the PS model for g0. In the discussed setting, choosing the first covariate 

requires p comparisons, choosing the second covariate requires (p − 1) comparisons and so 

on.

Fitting a PS model to derive an estimator gn,k and fluctuating a current Q̄
n,k based on the 

resulting Hgn,k does not take much computational time. We consider this time as the time 

unit, and can thus claim that the time complexity w.r.t. p of the greedy C-TMLE algorithm is 

𝒪(∑k = 1
p k) = 𝒪(p2) time units (the  accounts for the cross-validation).

5 Scalable C-TMLE algorithms

Now that we have introduced the background on C-TMLE, we are in a position to present 

our scalable C-TMLE algorithm. Section 5.1 summarizes the philosophy of the scalable C-

TMLE algorithm, which hinges on a data adaptively determined pre-ordering of the baseline 

covariates. Sections 5.2 and 5.3 present two such pre-ordering strategies. Section 5.4 

discusses what properties a pre-ordering strategy should satisfy. Section 5.5 proposes a 

discrete Super Learner-based model selection procedure to select among a set of scalable C-

TMLE estimators, which is itself a scalable C-TMLE algorithm. Finally, Section 5.6 

sketches how to adapt scalable C-TMLEs to other estimation problems, with the example of 

the relative risk (RR).

5.1 Outline

A ( p2) time complexity when there are p covariates is unsatisfactory for large-scale and 

high-dimensional data, a situation which is increasingly common in health care research. For 

example, the high-dimensional propensity score (hdPS) algorithm is a method to extract 

information from electronic medical claims data that produces hundreds or even thousands 

of candidate covariates, increasing the dimension of the data dramatically.21

In order to make it possible to apply C-TMLE algorithms to such data sets, we propose to 

add a new preordering procedure after the initial estimation of Q̄
0 and before the stepwise 
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construction of the candidate Qn, 0
∗ , Qn, 1

∗ , …, Qn, k
∗ , …. We present two pre-ordering procedures 

in Sections 5.2 and 5.3. By imposing an ordering over the covariates, only one covariate is 

eligible for inclusion in the PS model at each step when constructing the next candidate 

Qn, k
∗ . In other words, Jn,k equals 1 in steps 2b and 2c, and 𝚥 = j = 1 in step 2d of the C-TMLE 

general template presented in Section 4.1. Therefore, the computational time of a scalable 

CTMLE algorithm w.r.t. p is 𝒪(∑i = 1
p 1) = 𝒪(p) time units (the  accounts for the cross-

validation).

5.2 Logistic pre-ordering strategy

The logistic pre-ordering procedure is similar to step 2 of the C-TMLE general template 

specialized to the greedy C-TMLE algorithm of Section 4.2. However, instead of selecting 

one single covariate before going on, we use the empirical losses w.r.t. ℒ to order the 

covariates by how much they can improve the predictive performance of Qn
0 (or, 

heuristically, by their ability to reduce bias). More specifically, for each covariate Wk (1 ≤ k 
≤ p), we construct an estimator gn,k of the conditional distribution of A given Wk only (one 

might also add Wk to a fixed baseline model); we define a clever covariate as in equation (5) 

using gn,k and fluctuate Qn
0 as in equation (6); we compute the empirical loss of the resulting 

Qn, k
∗  w.r.t. ℒ, yielding ℒk. Finally, the covariates are ranked by increasing values of the 

empirical loss. This is summarized in Algorithm 2.

Algorithm 2

Logistic Pre-Ordering Algorithm

1. for each covariate Wk in W do

2. Construct an estimator gn,k of g0 using a logistic model with Wk as predictor.

3. Define a clever covariate Hgn,k (A,Wk) as in (5).

4.
Fit εk by regressing Y on Hgn,k (A,Wk) with i-specific offset/intercept logit(Qn

0(Ai, Wk, i)).

5.
Define Qn, k

∗  as in (6).

6. Compute the empirical loss ℒk w.r.t. ℒ.

7. end for

8. Rank the covariates by increasing ℒk.

5.3 Partial correlation pre-ordering strategy

In the greedy C-TMLE algorithm described in Section 4.2, once k covariates have already 

been selected, the (k + 1) th is that remaining covariate which provides the largest reduction 

in the empirical loss w.r.t. ℒ. Heuristically, the (k + 1) th covariate is the one that best 

explains the residual between Y and Qn, k
∗  . Drawing on this idea, the partial correlation pre-

ordering procedure ranks the p covariates based on how each of them is correlated with the 

residual between Y and the initial Qn
0 within strata of A. This second strategy is less 
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computationally demanding than the previous one because there is no need to fit any 

regression models, all one has to do is merely to estimate p partial correlation coefficients.

Let ρ(X1,X2) denote the Pearson correlation coefficient between X1 and X2. Recall that the 

partial correlation ρ(X1,X2|X3) between X1 and X2 given X3 is defined as the correlation 

coefficient between the residuals RX1 and RX2 resulting from the linear regression of X1 on 

X3 and of X2 on X3, respectively.22 For each 1 ≤ k ≤ p, we introduce R = Y − Qn
0(A, W)

ρ(R, Wk ∣ A) =
ρ(R, Wk) − ρ(R, A) × ρ(Wk, A)

(1 − ρ(R, A)2)(1 − ρ(Wk, A)2)
.

The partial correlation pre-ordering strategy is summarized in Algorithm 3.

Algorithm 3

Partial Correlation Pre-Ordering Algorithm

1. for each covariate Wk in W do

2.
Estimate the partial correlation coefficient ρ(R,Wk|A) between R = (Y − Qn

0(A, W)) and Wk given A.

3. end for

4. Rank the covariates based on the absolute value of the estimates of the partial correlation coefficients.

5.4 Discussion of the design of pre-ordering

Sections 5.2 and 5.3 propose two pre-ordering strategies. In general, a rule of thumb for 

designing a pre-ordering strategy is to rank the covariates based on the impact of each in 

reducing the residual bias in the target parameter which results from the initial estimator Qn
0

of Q̄
0. In this light, the logistic ordering of Section 5.2 uses TMLE to reflect the importance 

of each variable w.r.t. its potential to reduce residual bias. The partial correlation ordering of 

Section 5.3 ranks the covariates according to the partial correlation of residual of the initial 

fit and the covariates, conditional on treatment.

Because the rule of thumb considers each covariate in turn separately, it is particularly 

relevant when the covariates are not too dependent. For example, consider the extreme case 

where two or more of the covariates are highly correlated and can greatly explain the 

residual bias in the target parameter. In this scenario, these dependent covariates would all 
be ranked towards the front of the ordering. However, after adjusting for one of them, the 

others would typically be much less helpful for reducing the remaining bias. This 

redundancy may harm the estimation. In cases where it is computationally feasible, this 

problem can be avoided by using the greedy search strategy, but many other intermediate 

strategies can be pursued as well.
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5.5 Super learner-based C-TMLE algorithm

Here, we explain how to combine several C-TMLE algorithms into one. The combination is 

based on a (SL). SL is an ensemble machine learning approach that relies on cross-

validation. It has been proven that a SL selector can perform asymptotically as well as an 

oracle selector under mild assumptions.6,23,24

As hinted at above, a SL-C-TMLE algorithm is an instantiation of an extension of the C-

TMLE template. It builds upon several competing C-TMLE algorithms, each relying on a 

different strategy to construct a sequence of estimators of the nuisance parameter. A SL-C-

TMLE algorithm can be designed to select the single best strategy (discrete SL-C-TMLE 

algorithm), or an optimal combination thereof (ensemble SL-C-TMLE algorithm). A SL-

CTMLE algorithm can include both greedy search and pre-ordering methods. A SL-C-

TMLE algorithm is scalable if all of the candidate C-TMLE algorithms in the library are 

scalable themselves.

We focus on a scalable discrete SL-C-TMLE algorithm that uses cross-validation to choose 

among candidate scalable (pre-ordered) C-TMLE algorithms. Algorithm 4 describes its 

steps. Note that a single cross-validation procedure is used to select both the ordering 

procedure m and the number of covariates k included in the PS model. It is because 

computational time is an issue that we do not rely on a nested cross-validation procedure to 

select k for each pre-ordering strategy m.

Algorithm 4

Super Learner C-TMLE Algorithm

1. Define M covariates pre-ordering strategies yielding M C-TMLE algorithms

2. for each pre-ordering strategy m do

3.
Follow step 2 of Algorithm 1 to create candidate Qn, m, k

∗  for the m-th strategy.

4. end for

5.
The best candidate Qn

∗ is the minimizer of the cross-validated losses of Qn, m, k
∗  across all the (m, k) combinations.

The time complexity of the SL-C-TMLE algorithm is of the same order as that of the most 

complex C-TMLE algorithm considered. So, if only pre-ordering strategies of order ( p) 

are considered, then the time complexity w.r.t. p of the SL-C-TMLE algorithm is ( p) as 

well (the  accounts for the cross-validation). Given a constant number of user-supplied 

strategies, the SL-C-TMLE algorithm remains scalable, with a processing time that is 

approximately equal to the sum of the times for each strategy.

We compare the pre-ordered C-TMLE algorithms and SL-C-TMLE algorithm with greedy 

C-TMLE algorithm and other common methods in Sections 6 and 9.

5.6 Extending to other estimation problems

We have claimed that the scalable C-TMLEs presented so far, which are tailored to the 

estimation of the ATE, can be easily adapted to other estimation problems. Say for instance 
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that the RR is the target parameter: Ψ′(P0) = 0[ 0(Y|A = 1,W)]/ 0[ 0(Y|A = 0,W)]. Then 

it suffices to adapt the targeting step (6). We now define two clever covariates

Hgnk
0 (A, W) = − (1 − A)/gn, k(0, W)

Hgnk
1 (A, W) = A/gn, k(1, W)

and carry out the regression of Y on Hgn, k
0 (A, W) and Hgn, k

1 (A, W) with i-specific offset/

intercept logit(Q̄
n,k(Ai,Wi)), leading to

logit(Qn, k
∗ (A, W)) = logit(Qn, k(A, W)) + εk

0Hgnk
0 (A, W) + εk

1Hgnk
1 (A, W)

Finally, Qn, k
∗  yields the TMLE estimator of Ψ′(P0) given as the ratio

1
n ∑

i = 1

n
Qn

∗(1, Wi)/ 1
n ∑

i = 1

n
Qn

∗(0, Wi)

See Rose and van der Laan25 for details.

6 Simulation studies on fully synthetic data

We carried out four Monte-Carlo simulation studies to investigate and compare the 

performance of G-computation (that we call MLE), IPTW, A-IPTW, greedy C-TMLE 

algorithm and scalable C-TMLE algorithms to estimate the ATE parameter. For each study, 

we generated N = 1, 000 Monte-Carlo data sets of size n = 1, 000. Propensity score 

estimates were truncated to fall within the range [0.025, 0.975] for all estimators.

Denoting Qn
0 and gn two initial estimators of Q̄

0 and g0, the unadjusted, G-computation/

MLE, and IPTW estimators of the ATE parameter are given by equations (7) to (9)

ψn
unadj =

∑i = 1
n AiY i

∑i = 1
n Ai

−
∑i = 1

n (1 − Ai)Y i

∑i = 1
n (1 − Ai)

(7)

ψn
MLE = 1

n ∑
i = 1

n
(Qn

0(1, W i) − Qn
0(0, W i)) (8)
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ψn
IPTW = 1

n ∑
i = 1

n (2Ai − 1)Y i
gn(Ai, W i)

(9)

ψn
A − IPTW = 1

n ∑
i = 1

n (2Ai − 1)
gn(Ai ∣ W i)

(Y i − Qn
0(W i, Ai)) + 1

n ∑
i = 1

n
(Qn

0(1, W i) − Qn
0(0, W i)) (10)

The A-IPTW and TMLE estimators are presented in Section 3. The estimators yielded by 

the C-TMLE and scalable C-TMLE algorithms are presented in Sections 4.2 and 5.

In all simulation studies, the definitions of the TMLE (3), IPTW (9) and A-IPTW (10) 

estimators involve an estimator gn of g0 obtained by fitting a correctly specified, main terms 

logistic regression PS model. The definitions of the C-TMLEs also involve estimators 

obtained by fitting main terms logistic regression PS model but with an additional layer of 

variable selection.

The simulation studies of Sections 6.1 and 6.2 illustrate the relative performance of the 

estimators in scenarios with highly correlated covariates. These two scenarios are by far the 

most challenging settings for the greedy C-TMLE and scalable C-TMLE algorithms. The 

simulation studies of Section 6.3 and 6.4 illustrate performance in situations where 

instrumental variables (covariates predictive of the treatment but not of the outcome) are 

included in the true PS model. In these two scenarios, greedy C-TMLE and our scalable C-

TMLEs are expected to perform better, if not much better, than other widely used doubly-

robust methods.

6.1 Simulation study 1: low-dimensional, highly correlated covariates

In the first simulation study, data were simulated based on a data generating distribution 

published by Freedman and Berk26 and further analyzed by Petersen et al.27 A pair of 

correlated, multivariate normal baseline covariates (W1, W2) is generated as (W1,W2) ~ 

N(μ,Σ) where μ1 = 0.5, μ2 = 1 and ∑ = 2 1
1 1 . The PS g0 is given by

g0(1 ∣ W) = expit(0.5 + 0.25 × W1 + 0.75 × W2)

(this is a slight modification of the mechanism in the original paper, which used a probit 

model to generate treatment). The outcome is continuous, Y = Q̄
0(A,W) + ε, with ε ~ N(0, 

1) (independent of A, W) and Q̄
0(A,W) = 1 + A +W1 + 2 × W2. The true value of the target 

parameter is ψ0 = 1.

Note that (i) the two baseline covariates are highly correlated and (ii) the choice of g0 yields 

practical (near) violation of the positivity assumption.

Ju et al. Page 15

Stat Methods Med Res. Author manuscript; available in PMC 2018 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Each of the estimators involving the estimation of Q̄
0 was implemented twice: by fitting a 

model correctly specified for Q̄
0, and by regressing Y on A and W1 only in a mis-specified 

linear model.

Bias, variance, and mean squared error (MSE) for all estimators across 1,000 simulated data 

sets are shown in Table 1. Box plots of the estimated ATE are shown in Figure 1.

When the model for Q̄
0 was correctly specified, all estimators had very small bias. As 

Freedman and Berk26 discussed, even when the correct PS model was used, near positivity 

violations could lead to finite sample bias for IPTW estimators.27 Scalable C-TMLEs had 

smaller bias than the other DR estimators, but the distinctions were small.

When the model for Q̄
0 was not correctly specified, the G-computation/MLE estimator was 

expected to be biased. Interestingly, A-IPTW was more biased than the other DR estimators. 

All C-TMLE estimators had identical performance, because each approach produced the 

same treatment model sequence.

6.2 Simulation study 2: highly correlated covariates

In the second simulation study, we tackle the case that multiple confounders are highly 

correlated with each other. Here, we use the notation W1:k = (W1, …, Wk). The data-

generating distribution is described as follows:

W1, W2, W3 ∼iid Bernoulli(0.5),

W4 ∣ W1:3 Bernoulli(0.2 + 0.5 × W1),

W5 ∣ W1:4 Bernoulli(0.05 + 0.3 × W1 + 0.1 × W2 + 0.05 × W3 + 0.4 × W4),

W6 ∣ W1:5 Bernoulli(0.2 + 0.6 × W5),

W7 ∣ W1:6 Bernoulli(0.5 + 0.2 × W3),

W8 ∣ W1:7 Bernoulli(0.1 + 0.2 × W2 + 0.3 × W6 + 0.1 × W7),

g0(1 ∣ W) = expit( − 0.05 + 0.1 × W1 + 0.2 × W2 + 0.2 × W3 − 0.02 × W4 − 0.6 × W5 − 0.2 × W6 − 0.1 × W7)

and, finally, for ε ~ N(0, 1) (independent from A and W)

Y = 10 + A + W1 + W2 + W4 + 2 × W6 + W7 + ε

The true ATE for this simulation study is ψ0 = 1.

In this case, the true confounders are W1,W2,W4,W6,W7. Covariate W5 is most closely 

related to W6. Covariate W3 is mainly associated with W7. Neither W3 nor W5 is a 

confounder (both of them are predictive of treatment A, but do not influence directly 

outcome Y). Including either one of them in the PS model should inflate the variance.28
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As in Section 6.1, each of the estimators involving the estimation of Q̄
0 was implemented 

twice: by fitting a model correctly specified for Q̄
0, and by regressing Y on A only in a mis-

specified linear model.

Table 2 demonstrates and compares performance across 1000 replications. Box plots of the 

estimated ATE are shown in Figure 2. When Q̄
0 was estimated by fitting a correctly 

specified model, all estimators except the unadjusted estimator had small bias. The DR 

estimators had lower MSE than the inefficient IPTW estimator. When Q̄0 was estimated by 

fitting a mis-specified model, the A-IPTW and IPTW estimators were less biased than the C-

TMLE estimators. The bias of the greedy C-TMLE was five times larger. However, all DR 

estimators had lower MSE than the IPTW estimator, with the TMLE outperforming the 

others.

6.3 Simulation study 3: binary outcome with instrumental variable

In the third simulation, we assess the performance of C-TMLE in a data set with positivity 

violations. We first generate W1,W2,W3,W4 independently from the uniform distribution on 

[0, 1], then A|W ~ Bernoulli(g0(1|W)) with

g0(1, W) = expit( − 2 + 5 × W1 + 2 × W2 + W3)

and, finally, Y|(A,W) ~ Bernoulli(Q̄
0(A,W)) with

Q0(A, W) = expit( − 3 + 2 × W2 + 2 × W3 + W4 + A)

As in Sections 6.1 and 6.2, each of the estimators involving the estimation of Q̄
0 was 

implemented twice: by fitting a model correctly specified for Q̄
0, and by regressing Y on A 

only in a mis-specified linear model.

Table 3 demonstrates the performance of the estimators across 1000 replications. Figure 3 

shows box plots of the estimates for the different methods across 1000 simulation, with a 

well-specified or mis-specified model for Q̄
0.

When the model for Q̄
0 was correctly specified, the DR estimators had similar bias/variance 

trade-offs. Although IPTW is a consistent estimator when the model for the estimation of g0 

is correctly specified, truncation of the PS gn may have introduced bias. However, without 

truncation it would have been extremely unstable due to violations of the positivity 

assumption when instrumental variables are included in the propensity score model.

When the model for Q̄
0 was mis-specified, the MLE was equivalent to the unadjusted 

estimator. The DR methods performed well with an MSE close to the one observed when Q̄
0 

was estimated based on a correctly specified model. All C-TMLEs had similar performance. 

They out-performed the other DR methods (namely, A-IPTW and TMLE) and the pre-

ordering strategies improved the computational time without loss of precision or accuracy 

compared to the greedy C-TMLE algorithm.
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6.3.1 Side note—Because W1 is an instrumental variable that is highly predictive of the 

PS, but not helpful for confounding control, we expect that including it in the PS model 

would increase the variance of the estimator. One possible way to improve the performance 

of the IPTW estimator would be to apply a C-TMLE algorithm to select covariates for fitting 

the PS model. In the mis-specified model for Q̄
0 scenario, we also simulated the following 

procedure:

1. Use a greedy C-TMLE algorithm to select the covariates.

2. Use main terms logistic regression with selected covariates for the PS model.

3. Compute IPTW using the estimated PS.

The simulated bias for this estimator was 0.0340, the SE was 0.0568, and the MSE was 

0.0043. Excluding the instrumental variable from the PS model thus reduced bias, variance, 

and MSE of the IPTW estimator.

6.4 Simulation study 4: continuous outcome

In the fourth simulation, we assess the performance of C-TMLEs in a simulation scheme 

with a continuous outcome inspired by that of Gruber and van der Laan29 (we merely 

increased the coefficient in front of W1 to introduce a stronger positivity violation). We first 

independently draw W1,W2,W3,W4,W5,W6 from the standard normal law, then A given W 
with

g0(1, W) = expit(2 × W1 + 0.2 × W2 − 3 × W3)

and, finally Y given (A, W) from a Gaussian law with variance 1 and mean

Q0(A, W) = 0.5 × W1 − 8 × W2 + 9 × W3 − 2 × W5 + A

The initial estimator Qn
0 was built based on a linear regression model of Y on A, W1, and 

W2, thus partially adjusting for confounding. There was residual confounding due toW3. 

There was also residual confounding due to W1 and W2 within at least one stratum of A, 

despite their inclusion in the initial outcome regression model.

Figure 4 reveals that the C-TMLEs performed much better than TMLE and A-IPTW 

estimators in terms of bias and standard error. This illustrates that choosing to adjust for less 

than the full set of covariates can improve finite sample performance when there are near 

positivity violations. In addition, Table 4 shows that the pre-ordered C-TMLEs out-

performed the greedy C-TMLE. Although the greedy C-TMLE estimator had smaller bias, it 

had higher variance, perhaps due to its more data adaptive ordering procedure.
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7 Simulation study on partially synthetic data

The aim of this section is to compare TMLE and all C-TMLEs using a large simulated data 

set that mimics a real-world data set. Section 7.1 starts the description of the data-generating 

scheme and resulting large data set. Section 7.2 presents the high-dimensional propensity 

score (hdPS) method used to reduce the dimension of the data set. Section 7.3 completes the 

description of the data-generating scheme and specifies how Q̄
0 and g0 are estimated. 

Section 7.4 summarizes the results of the simulation study.

7.1 Data-generating scheme

The simulation scheme relies on the Nonsteroidal anti-inflammatory drugs (NSAID) data set 

presented and studied in Schneeweiss et al.21 and Rassen and Schneeweiss.30 Its n=49,653 

observations were sampled from a population of patients aged 65 years and older, and 

enrolled in both Medicare and the Pennsylvania Pharmaceutical Assistance Contract for the 

Elderly (PACE) programs between 1995 and 2002. Each observed data structure consists of 

a triplet (W, A, Y) where W is decomposed in two parts: a vector of 22 baseline covariates 

and a highly sparse vector of C =9,470 unique claims codes. In the latter, each entry is a 

nonnegative integer indicating how many times (mostly zero) a certain procedure (uniquely 

identified among C = 9,470 by its claims code) has been undergone by the corresponding 

patient. The claims codes were manually grouped into eight categories: ambulatory 

diagnoses, ambulatory procedures, hospital diagnoses, hospital procedures, nursing home 

diagnoses, physician diagnoses, physician procedures and prescription drugs. The binary 

indicator A stands for exposure to a selective COX-2 inhibitor or a comparison drug (a non-

selective NSAID). Finally, the binary outcome Y indicates whether or not either a 

hospitalization for severe gastrointestinal hemorrhage or peptic ulcer disease complications 

including perforation in GI patients occurred.

The simulated data set was generated as in Gadbury et al.31 and Franklin et al.32 It took the 

form of n = 49,653 data structures (Wi, Ai, Yi) where {(Wi, Ai) : 1 ≤ i ≤ n} was extracted 

from the above real data set and where {Yi : 1 ≤ i ≤ n} was simulated by us in such a way 

that, for each 1 ≤ i ≤ n, the random sampling of Yi depended only on the corresponding (Wi, 

Ai). As argued in the aforementioned articles, this approach preserves the covariance 

structure of the covariates and complexity of the true treatment assignment mechanism, 

while allowing the true value of the ATE parameter to be known. In addition, we can control 

the bias in the unadjusted estimator by tuning the coefficients of the parametric data 

generating conditional distribution of Y given (A, W), if there exist covariates associated 

with the treatment mechanism.

7.2 High-dimensional propensity score method for dimension reduction

The simulated data set was large, both in number of observations and number of covariates. 

In this framework, directly applying any version of C-TMLE algorithms would not be the 

best course of action. First, the computational time would be unreasonably long due to the 

large number of covariates. Second, the resulting estimators would be plagued by high 

variance due to the low signal-to-noise ratio in the claims data. This motivated us to apply 

Ju et al. Page 19

Stat Methods Med Res. Author manuscript; available in PMC 2018 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the hdPS method for dimension reduction prior to applying the TMLE and C-TMLE 

algorithms.

Introduced in Schneeweiss et al.,21 the hdPS method was proposed to reduce the dimension 

in large electronic healthcare databases. It is increasingly used in studies involving such 

databases.30,33–37

The hdPS method essentially consists of two main steps: (i) generating so-called hdPS 

covariates from the claims data (which can increase the dimension) then (ii) screening the 

enlarged collection of covariates to select a small proportion of them (which dramatically 

reduces the dimension). Specifically, the method unfolds as follows21:

a. Group by resource. Group the data by resource in  groups

b. Identify candidate claims codes. For each group separately, for each claims 

code c within the group, compute the empirical proportion Pr(c) of positive 

entries, then sort the claims codes by decreasing values of min(Pr(c), 1 − Pr(c)). 

Finally, select only the top J claims codes. We thus go from C claims codes to J × 

 claims codes.

c. Assess recurrence of claims codes. For each selected claims code c and each 

patient 1 ≤ i ≤ n, replace the corresponding ci with three binary covariates called 

“hdPS covariates”: ci
(1) equal to one if and only if (iff) ci is positive; ci

(2) equal to 

one iff ci is larger than the median of {ci : 1 ≤ i ≤ n}; ci
(3) equal to one iff ci is 

larger than the 75%-quantile of {ci : 1 ≤ i ≤ n}. This inflates the number of 

claims codes-related covariates by a factor 3.

d. Select among the hdPS covariates. For each hdPS covariate, estimate a 

measure of its “potential confounding impact” (a heuristic), then sort them by 

decreasing values of the estimates of the measure. Finally, select only the top K 
hdPS covariates.

In the current example, we derived  = 8 groups in step a. The groups correspond to the 

following categories: ambulatory diagnoses, ambulatory procedures, hospital diagnoses, 

hospital procedures, nursing home diagnoses, physician diagnoses, physician procedures and 

prescription drugs. See Schneeweiss et al.21 and Patorno et al.33 for other examples.

In step b, we chose J=50. The dimension of the claims data thus went from 9470 to 400.

In step c, we relied on the following estimate of the measure of the potential confounding 

impact introduced in Bross:38 for hdPS covariate cℓ

πn
ℓ(1)(rn

ℓ − 1) + 1
πn

ℓ(0)(rn
ℓ − 1) + 1

(11)

where

Ju et al. Page 20

Stat Methods Med Res. Author manuscript; available in PMC 2018 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



πn
ℓ(a) =

∑i = 1
n 1{ci

ℓ = 1, ai = a}

∑i = 1
n 1{ai = a}

(a = 0, 1)

rn
ℓ =

pn(1)
pn(0) with

pn(c) =
∑i = 1

n 1{yi = 1, ci
ℓ = c}

∑i = 1
n 1{ci

ℓ = c}
(c = 0, 1)

A rationale for this choice can be found in Schneeweiss et al.,21 where rn
ℓ in equation (11) is 

replaced by max (rn
ℓ, 1/rn

ℓ). As explained below we chose K=100. As a result, the dimension 

of the claims data was thus reduced to 100 from 9470.

7.3 Data-generating scheme (cont.) and estimating procedures

Let us resume here the presentation of the simulation scheme initiated in Section 7.1. Recall 

that the simulated data set is written as {(Wi,Ai,Yi) : 1 ≤ i ≤ n} where {Wi : 1 ≤ i ≤ n} is the 

by-product of the hdPS method of Section 7.2 with J=50 and K=100 and {Ai : 1 ≤ i ≤ n} is 

the original vector of exposures. It only remains to present how {Yi : 1 ≤ i ≤ n} was 

generated.

First, we arbitrarily chose a subset W′ of W, that consists of 10 baseline covariates 

(congestive heart failure, previous use of warfarin, number of generic drugs in last year, 
previous use of oral steroids, rheumatoid arthritis, age in years, osteoarthritis, number of 
doctor visits in last year, calendar year) and five hdPS covariates. Second, we arbitrarily 

defined a parameter

β = (1.280, − 1.727, 1.690, 0.503, 2.528, 0.549, 0.238, − 1.048, 1.294, 0.825, 0.055, − 0.784, − 0.733, − 0.215,
− 0.334)⊤

(the entries of β were drawn independently from standard normal random variables). Finally, 

Y1, …, Yn were independently sampled given {(Wi, Ai) : 1 ≤ i ≤ n} from Bernoulli 

distributions with parameters q1, …, qn where, for each 1 ≤ i ≤ n

qi = expit β⊤Wi′ + Ai

The resulting true value of the ATE is ψ0 = 0:21156.

The estimation of the conditional expectation Q̄
0 was carried out based on two logistic 

regression models. The first one was well specified whereas the second one was mis-

specified, due to the omission of the five hdPS covariates.
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For the TMLE algorithm, the estimation of the PS g0 was carried out based on a single, main 

terms logistic regression model including all of the 122 covariates. For the C-TMLE 

algorithms, main terms logistic regression model were also fitted at each step. An early 

stopping rule was implemented to save computational time. Specifically, if the cross-

validated loss of Qn, k
∗  is smaller than the cross-validated losses of Qn, k + 1

∗ , …, Qn, k + 10
∗ , then 

the procedure is stopped and outputs the TMLE estimator corresponding to Qn, k
∗ .

The scalable SL-C-TMLE library included the two scalable pre-ordered C-TMLE 

algorithms and excluded the greedy C-TMLE algorithm.

7.4 Results

Table 5 reports the point estimates for ψ0 as derived by all the considered methods. It also 

reports the 95% CIs of the form [ ψn ± 1.96σn/ n], where σn
2 = n−1∑i = 1

n D∗(Qn, gn)(Oi)
2

estimates the variance of the efficient influence curve at the couple (Q̄n, gn) yielding ψn. We 

refer the interested reader to van der Laan and Rose1 (Appendix 1) for details on influence 

curve based inference. All the CIs contained the true value of ψ0. Table 5 also reports 

processing times (in seconds).

The point estimates and CIs were similar across all C-TMLEs. When the model for Q̄
0 was 

correctly specified, the SL-C-TMLE selected the partial correlation ordering. When the 

model for Q̄
0 was mis-specified, it selected the logistic ordering. In both cases, the estimator 

with smaller bias was data adaptively selected. In addition, as all the candidates in its library 

were scalable, the SL-C-TMLE algorithm was also scalable, and ran much faster than the 

greedy C-TMLE algorithm. Computational time for the scalable C-TMLE algorithms was 

approximately 1/10th of the computational time of the greedy C-TMLE algorithm.

8 Time complexity

We study here the computational time of the pre-ordered C-TMLE algorithms. The 

computational time of each algorithm depends on the sample size n and number of 

covariates p. First, we set n=1000 and varied p between 10 and 100 by steps of 10. Second, 

we varied n from 1000 to 20,000 by steps of 1000 and set p = 20. For each (n, p) pair, the 

analysis was replicated 10 times independently, and the median computational time was 

reported. In every data set, all the random variables are mutually independent. The results 

are shown in Figure 5(a) and (b).

Figure 5(a) is in line with the theory: the computational time of the forward stepwise C-

TMLE is (p2) whereas the computational times of the pre-ordered C-TMLE algorithms are 

(p). Note that the pre-ordered C-TMLEs are indeed scalable. When n=1000 and p=100, all 

the scalable C-TMLE algorithms ran in less than 30 s.

Figure 5(b) reveals that the pre-ordered C-TMLE algorithms are much faster in practice than 

the greedy C-TMLE algorithm, even if all computational times are (n) in that framework 

with fixed p.
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9 Real data analyses

This section presents the application of variants of the TMLE and C-TMLE algorithms for 

the analysis of three real data sets. Our objectives are to showcase their use and to illustrate 

the consistency of the results provided by the scalable and greedy C-TMLE estimators. We 

thus do not implement the competing unadjusted, G-computation/MLE, IPTW and A-IPTW 

estimators (see the beginning of Section 6).

In Sections 6 and 7, we knew the true value of the ATE. This is not the case here.

9.1 Real data sets and estimating procedures

We compared the performance of variants of TMLE and C-TMLE algorithms across three 

observational data sets. Here are brief descriptions, borrowed from Schneeweiss et al.21 and 

Ju et al..37

9.1.1 NSAID data set—Refer to Section 7.1 for its description.

9.1.2 Novel oral anticoagulant (NOAC) data set—The NOAC data were collected 

between October 2009 and December 2012 by United Healthcare. The data set tracked a 

cohort of new users of oral anticoagulants for use in a study of the comparative safety and 

effectiveness of these agents. The exposure is either “warfarin” or “dabigatran”. The binary 

outcome indicates whether or not a patient had a stroke during the 180 days after initiation 

of an anticoagulant.

The data set includes n=18,447 observations, p=60 baseline covariates and C=23,531 unique 

claims codes. The claims codes are manually grouped in four categories: inpatient 

diagnoses, outpatient diagnoses, inpatient procedures and outpatient procedures.

9.1.3 Vytorin data set—The Vytorin data included all United Healthcare patients who 

initiated either treatment between 1 January 2003 and 31 December 2012, with age over 65 

on day of entry into cohort. The data set tracked a cohort of new users of Vytorin and high-

intensity statin therapies. The exposure is either “Vytorin” or “high-intensity statin”. The 

outcomes indicate whether or not any of the events “myocardial infarction”, “stroke” and 

“death” occurred.

The data set includes n=148,327 observations, p=67 baseline covariates and C=15,010 

unique claims codes. The claims codes are manually grouped in five categories: ambulatory 

diagnoses, ambulatory procedures, hospital diagnoses, hospital procedures, and prescription 

drugs.

Each data set is given by {(Wi, Ai, Yi) : 1 ≤ i ≤ n} where {Wi : 1 ≤ i ≤ n} is the by-product 

of the hdPS method of Section 7.2 with J=100 and K=200 and {(Ai, Yi) : 1 ≤ i ≤ n} is the 

original collection of paired exposures and outcomes.

The estimations of the conditional expectation Q̄
0 and of the PS g0 were carried out based on 

logistic regression models. Both models used either the baseline covariates only or the 

baseline covariates and the additional hdPS covariates.
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To save computational time, the C-TMLE algorithms relied on the same early stopping rule 

described in Section 7.3. The scalable SL-C-TMLE library included the two scalable pre-

ordered C-TMLE algorithms and excluded the greedy C-TMLE algorithm.

9.2 Results on the NSAID data set

Figure 6 shows the point estimates and 95% CIs yielded by the different TMLE and C-

TMLE estimators built from the NSAID data set.

The various C-TMLE estimators exhibit similar results, with slightly larger point estimates 

and narrower CIs compared to the TMLE estimators. All the CIs contain zero.

9.3 Results on the NOAC data set

Figure 7 shows the point estimates and 95% CIs yielded by the different TMLE and C-

TMLE estimators built on the NOAC data set.

We observe more variability in the results than in those presented in section 9.2.

The various TMLE and C-TMLEs exhibit similar results, with a non-significant shift to the 

right for the latter. All the CIs contain zero.

9.4 Results on the Vytorin data set

Figure 8 shows the point estimates and 95% CIs yielded by the different TMLE and C-

TMLEs built on the Vytorin data set.

The various TMLE and C-TMLEs exhibit similar results, with a non-significant shift to the 

right for the latter. All the CIs contain zero.

10 Discussion

Robust inference of a low-dimensional parameter in a large semi-parametric model 

traditionally relies on external estimators of infinite-dimensional features of the distribution 

of the data. Typically, only one of the latter is optimized for the sake of constructing a well-

behaved estimator of the low-dimensional parameter of interest. For instance, the targeted 

minimum loss (TMLE) estimator of the average treatment effect (ATE) (3) relies on an 

external estimator Qn
0 of the conditional mean Q̄

0 of the outcome given binary treatment and 

baseline covariates, and on an external estimator gn of the PS g0. Only Qn
0 is optimized/

updated into Qn
∗ based on gn in such a way that the resulting substitution estimator of the 

ATE can be used, under mild assumptions, to derive a narrow confidence interval with a 

given asymptotic level.

There is room for optimization in the estimation of g0 for the sake of achieving a better bias-

variance trade-off in the estimation of the ATE. This is the core idea driving the general C-

TMLE template. It uses a targeted penalized loss function to make smart choices in 

determining which variables to adjust for in the estimation of g0, only adjusting for variables 
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that have not been fully exploited in the construction of Qn
0, as revealed in the course of a 

data-driven sequential procedure.

The original instantiation of the general C-TMLE template was presented as a greedy 

forward stepwise algorithm. It does not scale well when the number p of covariates increases 

drastically. This motivated the introduction of novel instantiations of the C-TMLE general 

template where the covariates are pre-ordered. Their time complexity is (p) as opposed to 

the original (p2), a remarkable gain. We proposed two pre-ordering strategies and 

suggested a rule of thumb to develop other meaningful strategies. Because it is usually 

unclear a priori which pre-ordering strategy to choose, we also introduced a SL-C-TMLE 

algorithm that enables the data-driven choice of the better pre-ordering given the problem at 

hand. Its time complexity is (p) as well.

The C-TMLE algorithms used in our data analyses have been implemented in Julia and are 

publicly available at https://lendle.github.io/TargetedLearning.jl/. We undertook five 

simulation studies. Four of them involved fully synthetic data. The last one involved partially 

synthetic data based on a real electronic health database and the implementation of a hdPS 

method for dimension reduction widely used for the statistical analysis of claims codes data. 

In Section 8, we compare the computational times of variants of C-TMLE algorithms. We 

also showcase the use of C-TMLE algorithms on three real electronic health database. In all 

analyses involving electronic health databases, the greedy C-TMLE algorithm was 

unacceptably slow. Judging from the simulation studies, our scalable C-TMLE algorithms 

work well, and so does the SL-C-TMLE algorithm.

This article focused on ATE with a binary treatment. In future work, we will adapt the 

theory and practice of scalable C-TMLE algorithms for the estimation of the ATE with 

multi-level or continuous treatment by employing a working marginal structural model. We 

will also extend the analysis to address the estimation of other classical parameters of 

interest.
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Appendix 1. C-TMLE software

A flexible Julia software package implementing all C-TMLE algorithms described in this 

article is publicly available at https://lendle.github.io/TargetedLearning.jl/. The website 

contains detailed documentation and a tutorial for researchers who do not have experience 

with Julia.

In addition to the two pre-ordering methods described in Section 5, the software accepts any 

user-defined ranking algorithm. The software also offers several options to decrease the 

computational time of the scalable C-TMLE algorithms. The “Pre-Ordered” search strategy 

has an optional argument k which defaults to 1. At each step, the next k available ordered 

covariates are added to the model used to estimate g0. Large k can speed up the procedure 

when there are many covariates. However, this approach is prone to over-fitting, and may 

miss the optimal solution.

An early stopping criteria that avoids computing and cross-validating the complete model 

containing all p covariates can also save unnecessary computations. A “patience” argument 

accelerates the training phase by setting the number of steps to carry out after having found a 

local optimum. To prepare Section 7.1, argument “patience” was set to 10. More details are 

provided in that section.

a. Well-specified model for Q0.
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b. Mis-specified model for Q̄
0.
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Figure 1. 
Simulation 1: Box plot of the ATE estimates with well/mis-specified models for Q ̄

0. The 

green lines indicate the true parameter value. (a) Well specified model for Q̄
0. (b) Mis-

specified model for Q̄
0.
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Figure 2. 
Simulation 2: Box plot of the ATE estimates with well/mis-specified models for Q ̄

0. The 

green line indicates the true parameter value. (a) Well specified model for Q̄
0. (b) Mis-

specified model for Q̄
0.
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Figure 3. 
Simulation 3: Box plot of the ATE estimates with well/mis-specified models for Q ̄

0. The 

green line indicates the true parameter value.
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Figure 4. 
Simulation 4: Box plot of the ATE estimates with mis-specified model for Q̄

0. (a) Median 

computational time (across 10 replications for each point), with n = 1, 000 fixed and p 
varying. (b) Median computational time (across 10 replications for each point), with varying 

n and fixed p = 20.
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Figure 5. 
Computational times of the C-TMLE algorithms with greedy search and pre-ordering. (a) 

Median computational time (across 10 replications for each point), with n=1, 000 fixed and 

p varying and (b) Median computational time (across 10 replications for each point), with 

varying n and fixed p=20.

Ju et al. Page 33

Stat Methods Med Res. Author manuscript; available in PMC 2018 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Point estimates and 95% CIs yielded by the different TMLE and C-TMLE estimators built 

on the NSAID data set.
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Figure 7. 
Point estimates and 95% CIs yielded by the different TMLE and C-TMLEs built on the 

NOAC data set.
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Figure 8. 
Point estimates and 95% CIs yielded by the different TMLE and C-TMLEs built on the 

Vytorin data set.
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Table 4

Simulation study 4 – performance of the various estimators across 1000 simulated data sets of sample size 

1000.

Mis-specified model for Q̄0

bias se MSE

A-IPTW 4.49 0.84 20.88

IPTW 2.97 0.87 9.60

MLE 12.68 0.47 161.20

TMLE 1.31 1.21 3.17

greedy C-TMLE 0.25 1.01 1.27

logRank C-TMLE 0.36 0.88 0.90

partRank C-TMLE 0.32 0.92 0.95

SL-C-TMLE 0.37 0.88 0.90

Note: Omitted in the table, the performance of the unadjusted estimator was an order of magnitude worse than the performance of the other 
estimators.
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Table 5

Point estimates and 95% CIs of TMLE and C-TMLE estimators for the partially synthetic data simulation 

study.

Model for Q̄0 Estimate CI Processing time

TMLE Well specified 0.202 (0.193, 0.212) 0.6s

Mis-specified 0.203 (0.193, 0.213) 0.6s

C-TMLE, Greedy Well specified 0.205 (0.196, 0.213) 618.7s

Mis-specified 0.214 (0.205, 0.223) 1101.2s

C-TMLE, logistic ordering Well specified 0.205 (0.196, 0.213) 57.4s

Mis-specified 0.211 (0.202, 0.219) 125.6s

C-TMLE, partial correlation ordering Well specified 0.205 (0.197, 0.213) 22.5s

Mis-specified 0.211 (0.202, 0.219) 149.0s

SL-C-TMLE Well specified 0.205 (0.197, 0.213) 69.8s

Mis-specified 0.211 (0.202, 0.219) 264.3s
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