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NONCROSSING PARTITIONS, BRUHAT ORDER AND

THE CLUSTER COMPLEX

PHILIPPE BIANE AND MATTHIEU JOSUAT-VERGÈS

Abstract. We introduce two order relations on finite Coxeter groups
which refine the absolute and the Bruhat order, and establish some
of their main properties. In particular we study the restriction of these
orders to noncrossing partitions and show that the intervals for these or-
ders can be enumerated in terms of the cluster complex. The properties
of our orders permit to revisit several results in Coxeter combinatorics,
such as the Chapoton triangles and how they are related, the enumera-
tion of reflections with full support, the bijections between clusters and
noncrossing partitions.

1. Introduction

Let W be a Coxeter group with S a simple system of generators. There
exists several natural order relations on W , namely the left or right weak
order, the Bruhat order and the absolute order (this last order is associated
to the length function with respect to the generating set of all reflections,
see below). Two elements v,w P W such that vw´1 is a reflection are always
comparable with respect to both the absolute and the Bruhat order. In this
paper we introduce two order relations on W , which we denote by Ă and
!, which encode this situation, namely for any pair v,w as above, such that
v ă w (here ă denotes the absolute order), we define v Ă̈ w if v ăB w (here
ăB is the Bruhat order) and v !̈ w if w ăB v, then extend Ă̈ and !̈ to
order relations on W by transitivity. We believe that these two orders are
important tools for understanding noncrossing partitions, clusters, and their
interrelations. Bessis [7, Section 6.4] suggested to study how the different
orders onW are related. The present paper can be considered as a first step
in this direction.

Some versions of the orders Ă and ! were considered before this work. An
order called ! on the set of classical noncrossing partitions was introduced
independently by Belinschi and Nica [6, 24] in the context of noncommuta-
tive probabilities, and by Senato and Petrullo [26] in order to study Kerov
polynomials. The notion of noncrossing partition can be defined in terms of
the geometry of the symmetric group [8] and it has been extended to general
Coxeter systems: a set of noncrossing partitions can be associated to some
Coxeter element c in W as NCpW, cq “ tw P W |w ď cu (see [7, 11]). The
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2 PHILIPPE BIANE AND MATTHIEU JOSUAT-VERGÈS

classical case corresponds to c being the cycle p1, . . . , nq in the symmetric
group Sn. In this context, the order Ă on NCpW, cq was introduced by the
second author in [21], with a different definition, in order to give a refined
enumeration of maximal chains in NCpW, cq.

After defining the two order relations Ă and !, we will consider the re-
striction of these orders to the set of noncrossing partitions and give a more
direct characterization of the pairs v,w P NCpW, cq with v Ă w or v ! w.
We will also introduce interval partitions for arbitrary finite Coxeter groups,
which generalize the classical interval partitions. These partitions play an
important role in this study. Then we will consider intervals for the two
orders. These turn out to be closely related to the cluster complex of Fomin
and Zelevinsky [19]. Originated from the theory of cluster algebras, the clus-
ter complex is a simplicial complex with vertex set the almost positive roots
of W (see Section 6 for details), associated to a standard Coxeter element
in a finite Coxeter group. Connections between noncrossing partitions and
the cluster complex were first observed via an identity called the F “ M

theorem, conjectured by Chapoton [14]. We will see that the introduction
of the two orders Ă and ! sheds new light on these relations. In particular
an explicit bijection between the facets of the cluster complex and the non-
crossing partitions associated with the same Coxeter element was given by
Reading [28], using the notion of c-sortable elements. Another bijection was
given in [12] in the case of bipartite Coxeter elements. We will recast this
last bijection in terms of the orders Ă and !, which will allow us to extend
it to arbitrary standard Coxeter elements, using the definition of the cluster
complex by Reading. We will also give a bijection between the intervals for
! and faces of the positive cluster complex. We also show that intervals of
height k for Ă are equienumerated with the faces of the cluster complex of
size n´k and give a bijective proof in the case where c is a bipartite Coxeter
element. Finally the orders ! and Ă will allow us to revisit the Chapoton
triangles, to give new proofs of their properties and to refine them.

This paper is organized as follows. In Section 2 we recall basic facts about
finite reflections groups, root systems and Coxeter elements. In Section 3
we define the noncrossing partitions and recall their main properties. We
also prove Proposition 3.5, showing a relation between between the Bruhat
order and the Kreweras complement on NCpW, cq, which plays a crucial role
in this work. Section 4 is the central part of this paper, in it we introduce
the two order relations Ă and !, which are the main subject of this paper,
we characterize these relations and obtain some of their basic properties.
We give a few examples in low rank in Section 5. In Section 6 we study
the cluster complex associated to a standard Coxeter element, as defined by
Reading [28]. This simplicial complex is defined with the help of a binary
relation for which we give a new characterization. We also recall facts about
nonnesting partitions and Chapoton triangles. In Section 7 we give some
enumerative properties of the intervals of the two order relations which ex-
hibit several connections with the cluster complex. In the following section,
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using the orders Ă and !, we generalize the bijection of [4] between non-
crossing partitions and maximal faces of the cluster complex to encompass
arbitrary standard Coxeter elements, then we use this to give a bijection
between intervals for the order ! and faces of the positive cluster complex.
The final section is devoted to some properties of the Chapoton triangles.

2. Finite Coxeter or real reflection groups

We fix notations, recall some basic facts about real reflection groups and
refer to [10, 20] for general information about these.

2.1. Finite reflection groups, roots, reflections and inversions.

2.1.1. Let V be a finite dimensional euclidian space and W Ă OpV q be a
finite real reflection group. Fix a fundamental chamber C, its unit inward
normals α1, . . . , αn are the simple positive roots and the associated set of
fundamental reflections S “ ts1, . . . , snu generates W , then pW,Sq is a Cox-
eter system. We denote by ℓ the length function associated to S. The set
of all reflections in W is denoted by T , it is a conjugacy class in W . Each
reflection t P T has a fixed hyperplane and the unit normal of this fixed hy-
perplane, which has positive inner product with C, is a positive root normal
to this hyperplane which we denote rptq. The set of positive roots Π is thus
in bijection with T . The chamber C is the dual cone of the positive span of
positive roots.

The set of negative roots is ´Π and the set of all roots is Π Y p´Πq.
The Bruhat order, denoted by ďB, is defined as the transitive closure of the
covering relations v ÌB w if vw´1 P T and ℓpvq ă ℓpwq. A left inversion (re-
spectively, right inversion) of w P W is a t P T such that ℓptwq ă ℓpwq
(respectively, ℓpwtq ă ℓpwq). The set of left (respectively, right) inver-
sions is denoted by InvLpwq (respectively, InvRpwq). Note that a bijection
InvLpwq Ñ InvRpwq is given by t ÞÑ w´1tw.

Proposition 2.1 ([10], Proposition 4.4.6). For w P W and t P T , we have:

w
`

rptq
˘

“
#

´rpwtw´1q if t is a right inversion of w,

rpwtw´1q otherwise.
(1)

In particular, t is a right inversion of w if and only if wprptqq P p´Πq and
a left inversion if and only if w´1prptqq P p´Πq.
Corollary 2.2. If t1, t2 P T commute then t1 P InvRpwq ô t1 P InvRpwt2q
i.e. w ďB wt1 ô wt2 ďB wt2t1.

If a simple reflection s P S is a right (repectively, left) inversion of w, it
is called a right (repectively, left) descent of w.

If w “ si1si2 . . . sir is a reduced expression for w then the r left inversions
of w are the reflections of the form

(2) psi1si2 . . . sil´1
qsilpsi1si2 . . . sil´1

q´1, l “ 1, . . . , r,
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and of course there is a similar formula for right inversions.
The support of w P W , denoted by supppwq, is the subset of S containing

the simple reflections appearing in some reduced expression of w. It does
not depend on the chosen reduced expression since any two of them are
related by a sequence of braid moves (see [10]). Equivalently, supppwq is
the smallest J such that w P WJ , see Section 2.2. We say that w has full
support, or that w is full, if supppwq “ S. Using the explicit formula in (2),
we have:

suppptq Ă supppwq
if t is a right or left inversion of w.

Remark 2.3. A root r P Π is in ∆ iff it cannot be written as a sum
ř

rPΠ crr

where the coefficients cv are ě 0 and at least two of them are nonzero. This
characterizes the set of simple roots in Π. Also, the simple roots form the
unique set of n positive roots having the property that the scalar product
of any pair is nonpositive, see [20].

2.1.2. Coxeter elements. A standard Coxeter element in pW,Sq is a prod-
uct si1 ¨ ¨ ¨ sin of all the simple reflections in some order. It is known that
all standard Coxeter elements are conjugate in W , but in general they do
not form a full conjugacy class. An element which is conjugated to some
standard Coxeter element is called a Coxeter element. In this paper we will
mostly consider standard Coxeter elements.

Lemma 2.4. If c is a standard Coxeter element and s P S a right or left
descent of c, then scs is also a standard Coxeter element. All standard
Coxeter elements are connected to each other via such transformations.

See [20, Section 3.16] for a proof.
Let S “ S` YS´ be a partition such that all si in S` commute and all si

in S´ commute (such a partition always exists), then the standard Coxeter
element c “ c`c´ where c˘ “ ś

sPS˘
s is called a bipartite Coxeter element.

2.1.3. Absolute length and the absolute order. The absolute length is the
length function associated to the generating set T :

(3) ℓT pwq “ mintk ě 0 |w can be expressed as a product of k reflectionsu.
This quantity has a geometric interpretation (see [11, Proposition 2.2]):

(4) ℓT pwq “ n´ dimpFixpwqq
where Fixpwq “ kerpw ´ Iq.

We call a factorization v “ v1 . . . vk in W minimal if

(5) ℓT pvq “ ℓT pv1q ` . . . ` ℓT pvkq.
The following elementary lemma is well known, cf. [7].

Lemma 2.5. Let v “ v1 . . . vk be a minimal factorization, then for any
subsequence i1 . . . il with 1 ď i1 ă . . . ă il ď k the factorization vi1 . . . vil is
minimal, moreover vi1 . . . vil ď v.
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Proof. If i1 “ 1, i2 “ 2, . . . , il “ l the statement is a simple consequence
of the triangle inequality for ℓT . In the general case observe that for any
i ă k the factorization v “ v1 . . . vi´1v̂iv̂i`1vi`2 . . . vk with v̂i “ vi`1 and
v̂i`1 “ v´1

i`1vivi`1 is again a minimal. Using this observation we can move
successively vi1 , vi2 , . . . , vil to the beginning and reduce to the first case. �

Remark 2.6. The preceding lemma implies that, contrary to the case of
reduced decomposition into simple reflections, in the case of a minimal fac-
torization into reflections every subword of a reduced word is reduced. In
order to avoid confusion, in this paper we will reserve the expressions “re-
duced word” and “subword” to the case of factorizations into simple re-
flections, related to the Bruhat order and reserve the expression “minimal
factorization” to the case of factorizations satisfying (5).

The absolute length (3) allows to define an order relation on W , the
absolute order denoted here by ď:

v ď w if ℓT pwq “ ℓT pv´1wq ` ℓT pvq.

In particular a cover relation for this order, denoted by v Ì w, holds if and
only if vw´1 P T and ℓT pvq “ ℓT pwq ´ 1. The following properties of the
absolute order are immediate or follow directly from Lemma 2.5.

Proposition 2.7. The absolute order is invariant under conjugation and
inversion, namely for all u, v, w P W one has

(6) v ď w ðñ v´1 ď w´1 ðñ uvu´1 ď uwu´1.

Let u, v, w P W be such that u ď v ď w then u´1v ď u´1w and u ď
uv´1w ď w.

2.2. Parabolic subgroups.

2.2.1. Let J Ă S, then the standard parabolic subgroupWJ is the subgroup
generated by J . If s P S we will also use the notation Wxsy for the parabolic
subgroup associated with Sztsu. A parabolic subgroup is any subgroup
conjugate to some WJ .

The parabolic subgroups have the form

P “ tw P W : wpxq “ x for all x P Eu

for some subspace E Ă V , moreover if P is a parabolic subgroup and

FixpP q “ tx P V : wpxq “ x for all w P P u

then P is itself a reflection group in OpFixpP qKq. In particular, to each
w P W we can associate a parabolic subgroup Γpwq:

(7) Γpwq “ tv P W : Fixpwq Ă Fixpvqu.
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2.2.2. Simple generators and roots. Let P Ă W be a parabolic subgroup.
Then P is itself a reflection group, with reflection set T X P , and its roots
form a subset of those of W . A natural set of positive roots for P is
ΠpP q “ Π X P . Accordingly, there is a unique set of simple roots ∆pP q
(see Remark 2.3 above) and a set of simple reflections SpP q “ r´1p∆pP qq.
We have ∆pP q Ă Π. Note that ∆pP q Ă ∆ does not hold in general, this
only happens for standard parabolic subgroups.

Since there are several definitions of these sets ∆pP q or SpP q given in the
literature, in order to apply results from various references, it is in order to
check that they are all equivalent.

Remark 2.8. A set of positive roots is ∆pP q for some parabolic subgroup P
if and only if they are such that the scalar product of any pair is nonpositive.

Proposition 2.9. The simple reflections of P are the reflections t P T X P

satisfying InvRptq X P “ ttu.

Proof. A reflection t P P X T is simple as an element of P , if and only if it
has only one inversion as an element of P . Since InvRptq X P is the right
inversion set of t as an element of P , the result follows. �

Proposition 2.10. The set ∆pP q Ă ΠpP q is the unique simple system of
P such that the fundamental chamber of P contains that of W .

Proof. Since ΠpP q Ă Π, the positive span of ΠpP q is included in that of Π.
Taking the dual cone reverses inclusion, so the fundamental chamber of P
contains that of W . �

2.2.3. The Bruhat graph. The Bruhat graph on the vertex set W is defined
by putting an oriented arrow w Ñ v if vw´1 P T and ℓpvq ă ℓpwq. The
unoriented underlying graph is the Cayley graph of W with the reflections
as generating set.

Proposition 2.11 ([17]). Let pW,Sq be a Coxeter system and P a parabolic
subgroup, then the restriction of the Bruhat graph to P is the Bruhat graph
of P for its canonical generators.

In other words, if ďBP
is the Bruhat order on P and if v,w P P and vw´1

is a reflection then

v ďB w ðñ v ďBP
w.

This implies in particular that for v,w P P one has

v ďBP
w ùñ v ďB w.

The converse implication does not hold in general, see (10) below.

3. Noncrossing partitions

We refer to [1] for the general facts on this subject.
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3.1. Definition of noncrossing partitions. Let c be a standard Coxeter
element, then the set of noncrossing partitions associated to c, denoted by
NCpW, cq, is the set of all w P W such that w ď c. In the case where
W is the symmetric group Sn`1 with the Coxeter generators si “ pi, i ` 1q
and c “ s1 . . . sn is the cycle p1, 2, 3, . . . , n, n ` 1q one can associate to any
w P NCpW, cq the partition given by its cycle decomposition. This coincides
with the classical notion of noncrossing partition as defined by Kreweras,
see [22], [8]. In the sequel we denote by NCn the set of classical noncrossing
partitions.

Endowed with the order ď the set NCpW, cq is a lattice [11]. Since all
Coxeter elements are conjugate, the isomorphism class of this lattice struc-
ture does not depend on c. The map w ÞÑ Γpwq which associates a parabolic
subgroup to a noncrossing partition is injective, moreover one has

(8) v ď w ðñ Γpvq Ă Γpwq
(see for example [1, Section 5.1.3]). In particular, the codimension of the
fixed subspace, which is also the absolute length (see (4)) gives a rank func-
tion on NCpW, cq, which is a rank function for the lattice structure.

Parabolic subgroups can be considered as generalized set partitions so
that the map Γ gives a way to consider noncrossing partitions as particular
set partitions. In the classical case of noncrossing partitions of r1, ns for
all i ă j ă k ă l, putting t1 “ pi, kq, t2 “ pj, lq neither product t1t2 or
t2t1 belongs to NCn and this property characterizes the crossing of two
transpositions with disjoint supports. This leads to the following definition
of a property which will play an important role later.

Definition 3.1. (Bessis [7, Definition 2.1.1]). Two reflections t1, t2 are
called c-noncrossing if either t1t2 ď c or t2t1 ď c.

Remark 3.2.

i) Bessis uses the notation }c to denote this relation, however this con-
flicts with the use of the same notation by Reading [28] to denote
another relation. We will use Reading’s notation later on (see Defi-
nition 6.3) so we will just say that two reflections are c-noncrossing
when needed, without using a specific notation for this relation.

ii) Observe that if two reflections t1, t2 do not commute then one cannot
have both t1t2 ď c and t2t1 ď c (this follows from the fact that
Γpt1t2q “ Γpt2t1q “ xt1, t2y and the injectivity of w ÞÑ Γpwq on
NCpW, cq).

One can define noncrossing partitions in the same way when c is a (gen-
eral) Coxeter element, i.e. is conjugated to some standard Coxeter element.
Then any noncrossing partition w ď c is a Coxeter element of a parabolic
subgroup, see [7, Lemma 1.4.3]. However our results crucially depend on
properties of standard Coxeter elements, therefore in the following we will
only consider such Coxeter elements.
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Proposition 3.3. Let w P NCpW, cq, then there exists an indexing s1, . . . , sk
of the simple generators of Γpwq such that

w “ s1 ¨ ¨ ¨ sk.
Proof. This follows from results of Reading [28]. More precisely, Theo-
rem 6.1 from [28] shows that w is the product, in some order, of the so-called
cover reflections of a Coxeter-sortable element. By Lemma 3.1 of the same
reference these cover reflections are the simple generators of a parabolic
subgroup.

Alternatively, this follows from the results of Brady and Watt [12]. In
the case of a bipartite Coxeter element, [12, Proposition 5.1] gives a way
to compute a valid sk, reducing the problem to finding s1, . . . , sk´1, which
can be done inductively. Using Lemma 2.4, it remains only to see how
the result is transferred from c to scs where s is a left descent of c. Let
w “ s1 ¨ ¨ ¨ sk be the factorization of w P NCpW, cq as a product of simple
generators. If s R ts1, . . . , sku, we have sws “ pss1sq ¨ ¨ ¨ pssksq ď scs and the
factors form a simple system, otherwise we can assume s “ s1 and we have
sws “ s2 ¨ ¨ ¨ sks1 ď scs. �

In other words, each w P NCpW, cq is a standard Coxeter element of its
own parabolic subgroup Γpwq, considered as a reflection group. Observe that
this property actually depends only on w and not on the standard Coxeter
element c such that w ď c.

From iiq of Remark 3.2 we deduce

Proposition 3.4. Let c “ t1 . . . tn “ t11 . . . t
1
n be two minimal factorizations

of c into reflections, where t11, . . . , t
1
n is a permutation of t1, . . . , tn, then one

can pass from one factorization to the other by a succession of transpositions
of neighbourhing commuting reflections titj Ñ tjti.

Proof. By induction on n, the length of c. If t1 “ t11 then use the induction
hypothesis for the Coxeter element t1c P Γpt1cq. If t1 “ t1j with j ą 1 then

t1t
1
i ď c and t1it1 ď c for all i ă j therefore t1 commutes with all t1i with

i ă j and we can move it to the left to reduce to the preceding case. �

3.2. Generalized Catalan and Narayana numbers. The number of el-
ements of NCpW, cq is the generalized Catalan number CatpW q. If pW,Sq
is an irreducible system one has

CatpW q “
n
ź

i“1

h` ei ` 1

ei ` 1

where the ei are the exponents of W and h is the Coxeter number, i.e. the
order of c as a group element. Analogously the number of elements of
NCpW, cq of rank k is the generalized Narayana number NarkpW q, see
e.g. [1].

Let NCF pW, cq Ă NCpW, cq denote the set of noncrossing partitions with
full support. Its cardinality is the positive Catalan number Cat`pW q, given
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by

Cat`pW q “
n
ź

i“1

h` ei ´ 1

ei ` 1
.

The numbers CatpW q and Cat`pW q are related by inclusion-exclusion.
The positive Narayana number Nar`

k pW q is the number of noncrossing
partitions of rank k with full support. These numbers are related with
Narayana numbers by inclusion-exclusion.

Define the Fuß-Catalan numbers CatpkqpW q as

(9) CatpkqpW q “
n
ź

i“1

kh ` ei ` 1

ei ` 1
.

This is the number of chains w1 ď ¨ ¨ ¨ ď wk in NCpW, qq, see [14]. Note that
this is a polynomial in k. It can be seen as a rescaling of the polynomial

ÿ

wPW

tℓT pwq “
n
ź

i“1

p1 ` teiq.

3.3. The Kreweras complement. For any w P NCpW, cq one defines its
Kreweras complement as Kpwq “ w´1c. The map K is bijective, and an
anti-automorphism of the lattice structure on NCpW, cq. The map K is
not involutive, rather K2pwq “ c´1wc is an automorphism of NCpW, cq,ďq.
The inverse anti-automorphism of K is K´1pwq “ cw´1. We sometimes
denote Kc to mark the dependence on c.

The Kreweras complement has a remarkable compatibility with respect
to the Bruhat order, which will play a crucial role in this paper.

Proposition 3.5.

i) Let v,w P NCpW, cq with v Ì w, then we have:

v ąB w ùñ Kpvq ąB Kpwq.
ii) The converse result holds under a supplementary hypothesis: let

v,w P NCpW, cq with v Ì w, and suppose v has full support in
NCpW, cq, then we have:

Kpvq ąB Kpwq ùñ v ąB w.

Before the proof we need a lemma.

Lemma 3.6. Let w P NCpW, cq and let t be a reflection such that tw ă w

and tc ăB c, then tw ăB w. The same holds with right multiplication: if
wt ă w and ct ăB c, then wt ăB w.

Proof. Since tc ăB c it follows that tc is a subword of length n´1 of a reduced
expression for c therefore tc P Wxsy for some s P S and tc ă c, moreover s
is in the support of t since c R Wxsy. As t ă w ď c by Proposition 2.7 one

has tw ď tc therefore tw P Wxsy. One has t R Wxsy and t “ ptwqw´1 with

tw P Wxsy, therefore w
´1 R Wxsy and s belongs to the support of w. It follows
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that w cannot be obtained as a reduced subword of tw thus tw ăB w. The
case of right multiplication is analogous. �

Proof of Proposition 3.5. We first prove iq. Suppose that v “ tw for some
reflection, that v ă w and that w ăB v, then tc ąB c by Lemma 3.6. One
hasKpvq “ Kpwqc´1tc and rpc´1tcq “ c´1prptqq by Proposition 2.1 therefore
Kpwqprpc´1tcqq “ w´1prptqq P Π, again by Proposition 2.1 since tw ąB w.
It follows that c´1tc is not a right inversion for Kpwq and Kpvq ąB Kpwq.

Now we prove iiq. Let v “ tw ă w ď c for a reflection t. If tc ăB c

then tc P Wxsy for some s P S and tc ă c therefore v ă tc P Wxsy. We
deduce from this that, if v has full support, then tc ąB c. If Kpwq ăB Kpvq
then, again by Proposition 2.1 one has rpc´1tcq “ c´1prptqq and w´1prptqq “
Kpwqprpc´1tcqq P Π therefore t is not a left inversion for w and tw ąB w. �

3.4. An involutive automorphism for bipartite Coxeter elements.

Let c “ c`c´ be a bipartite Coxeter element.

Proposition 3.7. The map L defined by

Lpwq “ c`wc´

is an involutive anti-automorphism of the poset NCpW, cq.
Proof. The map L is the composition of the maps w Ñ w´1 which is an
isomorphism from NCpW, cq to NCpW, c´1q, the isomorphism w ÞÑ c`wc`

from NCpW, c´1q to NCpW, cq and the Kreweras map K which is an anti-
automorphism of NCpW, cq, therefore L is an anti-automorphism. The fact
that it is an involution follows from c2˘ “ e. �

We call the map L the bipartite complement on NCpW, cq.
Like the Kreweras complement, the bipartite complement is compatible

with the Bruhat order.

Proposition 3.8.

i) Let v,w P NCpW, cq with v Ì w, then we have:

v ąB w ùñ Lpvq ąB Lpwq.
ii) Let v,w P NCpW, cq with v Ì w, and suppose that v has full support,

then we have:

Lpvq ąB Lpwq ùñ v ąB w.

Proof. We first prove iq. Suppose that v “ tw for some reflection t, that v ă
w and w ăB v, then tc ąB c by Lemma 3.6. It follows, applying repeatedly
Proposition 2.1, that t R S` and rpc`tc`q “ c`prptqq. Applying the same
reasoning to v “ wpw´1twq gives that cpw´1twq ąB c and w´1tw R S´

therefore, since w´1prptqq “ rpw´1twq, one has rpc´1
w ´twc´q “ c´w

´1prptqq.
One has Lpvq “ c`tc`Lpwq and Lpwq´1prpc`tc`q “ rpc´1

w ´twc´q and c`tc`

is not a left inversion of Lpwq, thus Lpvq ąB Lpwq.
We now prove iiq. Let v “ tw ă w for some reflection t and suppose that

v has full support. Arguing as in to the proof of iiq in Proposition 3.5 we
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get tc ąB c moreover let t1 “ v´1tv then v “ wt1 and, similarly, ct1 ąB c.
In particular, t is not a left inversion of c` and t1 is not a right inversion of
c´. Suppose now that Lv ąB Lw i.e. c`vc´ ąB c`tvc´ then c`tc` is a left
inversion of c`vc´ and, since c`prptqq is positive we see that c´v

´1prptqq is
a negative root. Since t1 is not a right inversion of c´ we see that v´1prptqq
is a negative root therefore w “ tv ăB v. �

3.5. Interval partitions. They form a natural subset of NCpW, cq defined
as follows.

Definition 3.9. Given a Coxeter element c, an interval partition is an el-
ement of NCpW, cq whose associated parabolic group is standard, i.e. the
interval partitions are the w P NCpW, cq such that Γpwq “ WJ for some
J Ă S. We denote by INT pW, cq the set of interval partitions of NCpW, cq.

Equivalently, w P W is an interval partition if and only if w ďB c. Since
a reduced word for c contains each simple reflection exactly once, it is easy
to see that each subword is a reduced word, therefore the orders ď and
ďB coincide on INT pW, cq and give it the structure of a Boolean lattice,
isomorphic to the lattice of subwords of a reduced expression for c, or to the
lattice of subsets of ∆, or of S.

One can check that, when W is the symmetric group with its canonical
Coxeter generators and c is the cycle p1 . . . nq, the interval partitions coincide
with the classical ones (cf. e.g. [30]).

Definition 3.10. For w P NCpW, cq we denote by w the largest inter-
val partition below w and by w the smallest interval partition above w in
pNCpW, cq,ďq.

The relative Kreweras complement of w with respect to w is Kpw,wq “
w´1w.

Since the restriction to INT pW, cq of the abolute order is a lattice or-
der the existence and uniqueness of w and w is immediate. One can also
characterize w by its associated simple system:

∆pΓpwqq “ ∆pΓpwqq X ∆pW q.
Analogously if J Ă S is the support of w, then the subword γ of c consisting
of elements of J is the unique Coxeter element in NCpW, cq X WJ and one
has γ “ w, moreover w has full support in Γpγq “ WJ . It is easy to see that
the map w ÞÑ w is a lattice homomorphism.

There is also a characterization of w as a maximum, which we leave to
the reader to check.

Proposition 3.11. For w P NCpW, cq one has

w “ maxtη P INT pW, cq | η ďB wu.
We now consider the upper ideal tw P NCpW, cq |w ě γu for certain

interval partitions γ.
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Proposition 3.12. Let s P S be a left descent of c (i.e. sc ăB c).

i) Let w P NCpW, cq be such that s ď w, then sw P Wxsy.
ii) The map v ÞÑ sv is a lattice homomorphism from NCpWxsy, scq to

NCpW, cq whose image is the subset tw P NCpW, cq|w ě su.
There is a similar statement with right descents.

Proof. iq It follows from Proposition 2.7 that sw ď sc hence sw P NCpWxsyq.
iiq It is easy to see that if v P Wxsy then ℓT psvq “ ℓT pvq ` 1 which implies

the result, using Proposition 2.7 to see that it is a homomorphism and the
first statement to see that the map is surjective.

Finally the case of right descents follows by considering the order preserv-
ing isomorphism w ÞÑ w´1 from NCpW, cq to NCpW, c´1q. �

Corollary 3.13. Let a be an initial subword of c and b be a final subword
with ℓpaq`ℓpbq ď ℓpcq, then ab P INT pW, cq and the set tw P NCpW, cq|ab ď
wu is the image of the map v ÞÑ avb from NCpWxaby, a

´1cb´1q to NCpW, cq,
which is a lattice homomorphism.

Proof. By induction on ℓpaq ` ℓpbq using the preceding proposition. �

In the bipartite case, one can say more.

Proposition 3.14. Let c be a bipartite Coxeter element then the comple-
ment map L restricts to an involution on INT pW, cq.
Proof. It is easy to see that L corresponds to the complementation map if
on identitifes INT pW, cq with the set of subsets of ∆ or S. �

Since L is an involutive anti-automorphism one can see that, if γ P
INT pW, cq then L exchanges the sets tw|w “ γu and tw|w “ Lpγqu.

4. Two order relations on W

4.1. Definition of the orders. Consider a Coxeter system pW,Sq. For
any covering relation of the absolute order v Ì w in W one has vw´1 P T ,
therefore v and w are comparable for the Bruhat order, namely one has
v ăB w if ℓpvq ă ℓpwq or w ăB v if ℓpwq ă ℓpvq. We introduce two order
relations which encode this distinction by refining the absolute order.

Definition 4.1. For any covering relation v Ì w in W define

v Ă̈ w if v ăB w,

v !̈ w if w ăB v,

and extend these relations to order relations Ă and ! on W by transitive
closure.

Since Ă̈ and !̈ are included in Ì (seeing relations as sets of pairs), they
are acyclic and their transitive closures Ă and ! are partial orders which
are included in ď and whose cover relations are Ă̈ and !̈. This justifies the
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previous definition. Also the rank function for ď serves as a rank function
for Ă and !.

The order Ă was introduced by the second author in [21] on the set
NCpW, cq, while ! was introduced by Belinschi and Nica in [6] in the case
of classical noncrossing partitions, both with different definitions. We shall
see below that they are specializations of our definitions.

Observe that, as an immediate consequence of the definitions, one has

v Ă w ùñ v ď w, v ďB w,

v ! w ùñ v ď w, w ďB v.

The opposite implications, however, do not hold in general. Here is a coun-
terexample in the symmetric group S5: take (in cycle notation)

(10) v “ p2, 4q, w “ p1, 5qp2, 3, 4q.
We have v ď w, ℓpvq “ 3 and ℓpwq “ 9. There are two elements between
v and w in the absolute order, which are p1, 5qp2, 4q and p2, 3, 4q. Their
respective Coxeter lengths are 10 and 2, therefore we have:

v “ p2, 4q Ă̈ p1, 5qp2, 4q !̈ p1, 5qp2, 3, 4q “ w,

v “ p2, 4q !̈ p2, 3, 4q Ă̈ p1, 5qp2, 3, 4q “ w.

It follows that v Ć w. On the other side, we have v ďB w and a shortest
path in the Bruhat graph is (an arrow with label t represents multiplication
by t on the right):

p1, 5qp2, 3, 4q p1,3qÝÑ p1, 4, 2, 3, 5q p2,5qÝÑ p1, 4, 2qp3, 5q p3,5qÝÑ p1, 4, 2q p1,2qÝÑ p2, 4q.
The respective lengths of the elements in this path are 9, 8, 5, 4, 3. Note
that v and w are both noncrossing partitions but the path goes through
elements that are not noncrossing partitions.

Let w P W and let Γpwq be the associated parabolic subgroup. Since the
orders Ă and ! can be defined using only the Bruhat graph and the absolute
order, it follows from Proposition 2.11 that, on the set tv P W | v ď wu the
orders Ă and ! depend only on the Bruhat order on Γpwq (with its canonical
system of generators).

In the sequel we shall mainly be interested in the restrictions of these
order relations to NCpW, cq for some standard Coxeter element c.

4.2. The Kreweras complement. Using the orders Ă and ! we can re-
formulate Proposition 3.5.

Proposition 4.2.

i) Let v,w P NCpW, cq with v Ì w, then we have:

v ! w ùñ Kpwq Ă Kpvq.
ii) Let v,w P NCpW, cq with v Ì w, and suppose v has full support in

NCpW, cq, then we have:

Kpwq Ă Kpvq ùñ v ! w.(11)
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Note that by taking the contraposition in iq of Proposition 4.2, we see
that the same result holds with K´1 instead of K. The situation is slightly
different for iiq and we need another argument. The map ι : w ÞÑ w´1 leaves
S and T invariant, preserves length, absolute length and support, moreover
it sends NCpW, cq to NCpW, c´1q. We have

pι ˝ Kcqpwq “ ιpw´1cq “ c´1w “ c´1ιpw´1q “ pK´1
c´1 ˝ ιqpwq.

Applying the map ι to Equation (11) shows that iiq also holds with K´1 in-
stead of K. Using these remarks we can rephrase the proposition as follows.

Proposition 4.3. Let v,w P NCpW, cq with v Ì w. Then at least one of
the relations v Ă̈ w or Kpwq Ă̈ Kpvq holds. If both hold, neither v nor Kpwq
have full support.

There are similar statements for the map L in the bipartite case, which
we leave to the reader.

4.3. Characterization and properties of the order Ă on NCpW, cq.
We consider a Coxeter system pW,Sq and a standard Coxeter element c.

Proposition 4.4. Let v,w P NCpW, cq and denote by ďBw the Bruhat order
on Γpwq, then the three properties below are equivalent:

i) v Ă w,
ii) v ď w and v ďBw w,
iii) ∆pΓpvqq Ă ∆pΓpwqq.

Proof. If v Ă w then, as we saw, v ď w and v ďBw w so that iq implies iiq.
Suppose now that iiq holds. According to Proposition 3.3, write w as a

product of the simple reflections of Γpwq, say w “ s1 ¨ ¨ ¨ sk. Any v ďBw w is
the product of a subword si1 . . . , sil and ∆pΓpvqq “ tsi1 , . . . , silu Ă ∆pΓpwqq
so that iiq implies iiiq.

Finally if ∆pΓpvqq Ă ∆pΓpwqq then by taking the generated groups one has
Γpvq Ă Γpwq and v ď w. If ℓT pvq “ ℓT pwq´1 then vw´1 P T therefore either
v ăBw w or w ăBw v. Since ∆pΓpvqq Ă ∆pΓpwqq but ∆pΓpvqq ‰ ∆pΓpwqq
there exists a simple reflection s P ∆pΓpwqqz∆pΓpvqq. As v is a product of
reflections in ∆pΓpvqq it follows that w cannot be obtained as a subword of
any reduced decomposition of v, therefore v ăBw w and v is obtained by
taking a subword of length k´1 of the reduced decomposition w “ s1 ¨ ¨ ¨ sk.
The proof now follows by induction on the cardinality of ∆pΓpwqqz∆pΓpvqq,
using the fact that the Bruhat graph of the subgroups Γpvq are obtained by
restriction of the Bruhat graph of W (Proposition 2.11). �

Property iiiq was the original definition of the order Ă on NCpW, cq in
[21]. Since any subset of ∆pΓpwqq is a simple system in Γpwq we see that
the lower ideal tv : v Ă wu is isomorphic to the boolean lattice of order

rkpwq, in particular its cardinality is 2rkpwq, moreover on this ideal the three
order relations ď,ďBw and Ă coincide.
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Note that ∆pΓpwqq Ă ∆pΓpvqq if and only if SpΓpwqq Ă SpΓpvqq using the
bijection between positive roots and reflections.

Let now c be a standard Coxeter element, since Γpcq “ W and ∆pW q “ S

it follows that the interval partitions in INT pW, cq are exactly the noncross-
ing partitions w P NCpW, cq satisfying w Ă c.

Proposition 4.5. Let w P NCpW, cq and γ P INT pW, cq then

γ ď w ðñ γ Ă w.

Proof. If γ Ă w then obviously γ ď w. If γ ď w then Γpγq Ă Γpwq therefore
SpΓpγqq Ă Γpwq. Since the elements of SpΓpγqq are simple reflections in W
they are also simple reflections in Γpwq therefore SpΓpγqq Ă SpΓpwqq and
γ Ă w by iiiq of Proposition 4.4. �

As is clear from its definition the order Ă is not invariant under conjuga-
tion and one cannot, as in the case of the abolute order, reduce the study of
Ă on NCpW, cq to the case where the Coxeter element c is bipartite. Actu-
ally we will see in Section 5 that, already for S4, the order type of the poset
pNCpW, cq,Ăq does depend on the standard Coxeter element c.

4.4. A simplification property. The following result it is similar to Propo-
sition 2.7.

Lemma 4.6. Let t P T and u, v P NCpW, cq be such that u ď v Ă vt ď c

then u Ă ut ď vt.

Proof. First one has u ď ut ď vt by Proposition 2.7. Observe that the
statement of the lemma depends only on the absolute and the Bruhat orders
inside the parabolic subgroup Γpvtq therefore we can assume that vt “ c is
a standard Coxeter element. Since ct Ă c there exists s P S such that ct is
a standard Coxeter element in Wxsy. It follows that u P Wxsy and t R Wxsy

therefore ut R Wxsy and ut cannot be obtained as a subword of a reduced
expression of u, thus u ďB ut and u Ă ut. �

4.5. pNCpW, cq,Ăq as a flag simplicial complex. We now define a sym-
metric binary relation on the set T of reflections such that pNCpW, cq,Ăq is
the face poset of the associated flag simplicial complex. Recall that a sim-
plicial complex is called a flag simplicial complex if, given vertices v1, . . . , vk,
the set tv1, . . . , vku is a face of the complex if and only if for all 1 ď i ă j ď n,
the set tvi, vju is a face. In order to define such a complex it is enough to a
give the symmetric relation on the vertices: tvi, vju is a face.

Definition 4.7. Let  c be the binary relation on T such that t  c u if and
only if

‚ t, u are c-noncrossing (see Definition 3.1),
‚ xrptq|rpuqy ď 0.

Let ΞpW, cq denote the flag simplicial complex with vertex set T associated
to the relation  c.
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Theorem 4.8. The map w ÞÑ SpΓpwqq is a bijection from NCpW, cq onto
ΞpW, cq.

Proof. The image of w is a subset of T and taking the subgroup generated by
this subset gives Γpwq. Since the map Γ, restricted to NCpW, cq, is injective
it follows w ÞÑ SpΓpwqq is also injective. It remains to show that its image
is ΞpW, cq.

Since SpΓpwqq is a simple system, the scalar product of any two of its
elements is nonpositive. Moreover by Proposition 3.3, there is an indexing
SpΓpwqq “ ts1, . . . , sku such that s1 ¨ ¨ ¨ sk ď c, consequently sisj ď c if i ă j.
It follows that si  c sj for all i ă j, therefore SpΓpwqq P ΞpW, cq.

It remains to show that the map is surjective. Let X P ΞpW, cq. Because
xrptq|rpuqy ď 0 for all t, u P X, this is a simple system, i.e. X “ SpP q for
some parabolic subgroup P Ă W . Now consider a directed graph G defined
as follows:

‚ its vertex set is X,
‚ there is an edge from t P X to u P X if xrptq|rpuqy ă 0 and tu ď c.

It is well defined because, xrptq|rpuqy ă 0 implies tu ‰ ut therefore, accord-
ing to Remark 3.2, we cannot have both tu ď c and ut ď c. The undirected
version of G is the Coxeter graph of P (without labels on the edges). Since
P Ă W is finite, a classical argument implies that G is acyclic, so that
it is possible to find an indexing X “ ts1, . . . , sku such that the existence
of a directed edge si Ñ sj implies i ă j. It follows that sisj ď c for all
1 ď i ă j ď k.

Let us consider the case k “ #X “ 3, so suppose we have X “ ts1, s2, s3u
with s1s2 ď c, s1s3 ď c, and s2s3 ď c. Since s2s3 P NCpW, cq and this
poset is a ranked lattice, the least upper bound of s2 and s3 is s2s3. On
the other hand, by Proposition 2.7, we get s2, s3 ď s1c therefore s2s3 ď s1c,
and consequently s1s2s3 ď c, so that X “ SpΓps1s2s3qq. The general case
follows by induction on #X and this shows the surjectivity. �

4.6. Chains in NCpW, cq. A factorization

c “ t1 . . . tn

where each ti is a reflection is minimal. The number of such minimal fac-
torizations of the cycle c is (Deligne’s formula):

n!hn

|W | .

One can interpret this result as the counting of maximal chains in NCpW, cq.
This number can be obtained from the leading term in k of CatpkqpW q and
the identity

ś

ipei ` 1q “ |W |.
A refined enumeration of maximal chains in NCpW, cq using the relation

Ă̈ was obtained in [21].
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Definition 4.9 ([21]). For each maximal chain ̟ “ pwiq0ďiďn in NCpW, cq
(i.e. we have rkpwiq “ i and wi Ì wi`1), we define nirp̟q as the number of
i P t0, . . . , n´ 1u such that wi !̈ wi`1, and

MpW, qq “
ÿ

qnirp̟q

where we sum over ̟ maximal chain in NCpW, cq.
The second author showed in [21] that this polynomial is a rescaled version

of Fuß-Catalan numbers CatpkqpW q:
MpW, qq “ n!p1 ´ qqn Catp q

1´q
qpW q.(12)

Note that the inverse relation is

CatpkqpW q “ 1

n!
p1 ` kqnM

`

W, k
1`k

˘

and it follows from (12) and (9) that there exists a formula in terms of the
degrees of the group:

MpW, qq “ n!

|W |
n
ź

i“1

`

di ` qph ´ diq
˘

.(13)

We use here the degrees di “ ei ` 1 rather than the exponents because
the formula is more compact. The specialization MpW, 0q “ n! is seen
combinatorially: since interval partitions form a boolean lattice, the number
of maximal chains in INT pW, cq is n!.

Much more can be said in the case of the symmetric group. Let c be the
long cycle p1, 2, 3, . . . , nq in Sn. In [9], we gave a multivariate generating
function for maximal chains π0 ă π1 ă ¨ ¨ ¨ ă πn´1 in the noncrossing
partition lattice of the form

(14)
ÿ

π0,π1,...πn´1

wtpπ0, π1, . . . , πn´2q “
n´2
ź

i“1

piXi ` n´ iq

where the weight wt is the product of the Xi over all i ě 1 such that
πi Ć πi`1.

Let a “ pa1, . . . , arq where ai ě 2. A factorization c “ z1 . . . zr where zi
is a cycle of length ai is said to be of type a. This exists only if

řr
i“1pai ´

1q ě n ´ 1 and the factorization is minimal in case of equality. Again
one can interpret such factorizations as chains π0 ă π1 . . . ă πr (where
πi “ z1 . . . zi; i ě 1) of a certain type in the lattice of noncrossing partitions.
Using this interpretation and extending the definition of the weight wt in
an obvious way, we obtained the following generating function over the set
Fpaq of such chains:

Theorem 4.10. Let bi “
ři

j“1paj ´ 1q. We have:

(15)
ÿ

z1...zrPFpaq

wtpz1 . . . zrq “
r´1
ź

i“1

`

Xibi ` n´ bi
˘

.
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It would be interesting to investigate the existence of similar formulas for
other types.

4.7. Characterization and properties of the order !. The following
proposition is the analog, for the order !, of Proposition 4.4.

Proposition 4.11. Let v,w P NCpW, cq and denote by ďBw the Bruhat
order on Γpwq, then the three properties below are equivalent:

i) v ! w,
ii) v ď w and w ďBw v,
iii) v P Γpwq and v has full support as an element of Γpwq.

Proof. We have already noted that iq implies iiq.
If iiq holds then w can be obtained as a subword of a reduced decompo-

sition of v in Γpwq. Since w has full support in Γpwq it follows that v has
full support in Γpwq and iiiq holds.

Suppose now that iiiq holds, thus that v has full support in Γpwq. If
ℓT pvq “ ℓT pwq ´ 1 then either w ďBw v or v ďBw w. Since w is a Coxeter
element in Γpwq (cf. Proposition 3.3)) if v ďBw w then v cannot have full
support. It follows that w ďBw v therefore v ! w. If ℓT pvq “ ℓT pwq´l, l ą 1
let x “ Kpvq “ wv´1 be the Kreweras complement of v and let x “ γ1 . . . γl
be a reduced decomposition in Γpxq Ă Γpwq. The sequence x0 “ e, x1 “
γ1, . . . , xl “ x satifies x0 “ e ďBx x1 ďBx . . . ďBx xl “ x and the Bruhat
graph of Γpxq is the restriction of the Bruhat graph of Γpwq therefore x0 “
e ďBw x1 ďBw . . . ďBw xl “ x. Applying iiq of Proposition 4.2 and using
induction on i, one has v !̈ x´1

l´iw for all i. �

Let NCn be the set of classical noncrossing partitions, corresponding
to the symmetric group and the cycle p1, . . . , nq as Coxeter element, then
Belinschi and Nica [6] defined an order relation ! on NCn by π ! ρ if π ď ρ

and for every block B of ρ, the minimum and the maximum of B belong to
the same block of π. It is easy to see that this agrees with our definition in
this case.

Proposition 4.12. The poset pNCpW, cq,!q has 2n connected components.
They are the lower ideals

(16) tw P NCpW, cq : w ! γu “ tw P NCpW, cq : w “ γu
where γ runs through the 2n interval partitions of W . In particular, interval
partitions are the maximal elements for the order !.

Proof. From the characterization of ! in Theorem 4.11, we can see that
the two sets on both sides of (16) are the same. Clearly, each lower ideal
considered here is connected, so it remains to show that they cannot be
connected with each other. Let v,w P NCpW, cq with v ! w, we thus have
to show v “ w, i.e. v and w have the same support. Since v ! w, we have
w ďB v therefore supppwq Ă supppvq. If there exists s P supppvqz supppwq
then w P Wxsy and Γpvq Ă Wxsy which contradicts v P Γpvq Ă Γpwq. �
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Since c is itself an interval partition, the poset pNCF pW, cq,!q is one of
the connected components described in the previous proposition. We can
call it the main connected component. The other connected components are
of similar nature, since they can be seen as the main connected component of
a standard parabolic subgroup. It is therefore enough to study the properties
of the main connected component.

Proposition 4.13. Let w P NCpW, cq, then the relative Kreweras comple-
ment v Ñ v´1w defines a poset anti-isomorphism
(17)̀

tv P NCpW, cq : v " wu,!
˘

ÝÑ
`

tv P NCpW, cq : v Ă w´1wu,Ă
˘

.

Proof. If w has full support, i.e., w “ c, this follows from iiq of Propo-
sition 4.2. Otherwise, w has full support as an element of the standard
parabolic subgroup Γpwq. Note that we have

tv P NCpW, cq : v " wu Ă Γpwq
by Proposition 4.12. Therefore we can apply Proposition 4.2 in the subgroup
Γpwq which yields the result. �

Corollary 4.14. Upper ideals for ! are boolean posets.

Proof. It was noted above the lower ideals for Ă are boolean. The result
follows from the anti-isomorphism of the previous proposition, since boolean
posets are anti-isomorphic to themselves. �

5. Examples

In this section we show a few pictures of the symmetric groups which
illustrate the main properties of our objects.

5.1. The case of S3.

p12q

p123q p132q

p23q

e

p13q

The Cayley graph of S3
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Permutations are denoted by their nontrivial cycles, e is the identity element.
The Bruhat graph is obtained by orienting the edges downwards.

p12q

p123q p132q

p23q

e

p13q

The orders Ă and ! on S3 and on NC3

p12q

p123q

p23q

e

p13q

The cover relations of Ă̈ are in black, those of !̈ are in red. Note that the
underlying undirected graph on S3 is the Cayley graph.

p12q

p13q

p23q
The graph of the relation  c

5.2. The case of S4.

5.2.1. c “ p1234q.
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p1234q

pq

p123q

p12q

p12qp34q

p23q

p234q

p34q

p124q

p24q

p134q

p13q

p14qp23q

p14q

The order relations Ă and ! on NC4

p12q p34q

p23q

p14q

p24q p13q

The graph of the relation  c

5.2.2. Here we change the Coxeter element for the bipartite element c “
p12qp34qp23q “ p1243q and see that the graphs of  c and of Ă for p1234q and
p1243q are not isomorphic.
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p1243q

e

p123q

p12q

p12qp34q

p23q

p243q

p34q

p124q

p24q

p143q

p13q

p13qp24q

p14q

The order relations Ă and ! on NCpS4, p1243qq

p12q p34q

p23q

p14q

p24q p13q

The graph of the relation  c

6. Cluster complex, nonnesting partitions and Chapoton

triangles

6.1. The cluster complex. The cluster complexes were introduced by
Fomin and Zelevinsky in [19] as dual to generalized associahedra, in relation
with cluster algebras. In this paper we will use the notion of c-clusters as
defined by Reading [28, Section 7], following Marsh, Reineke and Zelevinsky
[23].

Let Φě´1 “ p´∆q Y Π be the set of almost positive roots (see [19]).
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Proposition 6.1 ([28]). For each s P S, let σs denote the bijection from
Φě´1 to itself defined by:

σspαq “
#

α if α P p´∆qzt´rpsqu,
spαq if α P Π Y t´rpsqu.

There exists a unique family of symmetric binary relations on Φě´1 indexed
by standard Coxeter elements, denoted by }c, such that:

‚ if α, β P ´∆, then α }c β,
‚ if α P ´∆ and β P Π, then α }c β if and only if rp´αq R suppprpβqq,
‚ if s P S is a left descent of c, then α }c β ðñ σspαq }scs σspβq.

Remark 6.2. Recall Remark 3.2 i) on the use of the symbol }c.
The definition of }c is not fully explicit and uniqueness relies on Lemma 2.4.

A more direct characterization of }c is given in [13] using the subword com-
plex. Another will be given in Proposition 6.6. Let us first review some
results from [28, 29].

Definition 6.3 ([28]). The c-cluster complex ΥpW, cq is the flag simplicial
complex on the vertex set Φě´1 defined by the relation }c. A c-cluster is a
maximal face of ΥpW, cq.

This complex is pure, so that every c-cluster has dimension n. Clearly,
the map σs provides an isomorphism between ΥpW, cq and ΥpW, scsq if s P S
is a left descent of c. So the isomorphism type of ΥpW, cq does not depend
on c, see [28, 29] for details.

The face generating function with respect to cardinality is:

ÿ

FPΥpW,cq

x#F “
n
ÿ

k“0

NarkpW qxn´kp1 ` xqk.(18)

In particular, taking the coefficient of xn shows that the number of clusters
is CatpW q. Moreover (18) implies that the integers NarkpW q are the entries
of the h-vector of ΥpW, cq.
Definition 6.4. The positive part of ΥpW, cq, denoted by Υ`pW, cq, is the
flag simplicial complex with vertex set Π and compatibility relation }c.

Clearly, Υ`pW, cq is a (full) subcomplex of ΥpW, cq. Note that it may
happen that Υ`pW, c1q and Υ`pW, c2q are not isomorphic if c1, c2 are two
different standard Coxeter elements. The face generating function with re-
spect to cardinality is:

ÿ

FPΥ`pW,cq

x#F “
n
ÿ

k“0

Nar`
k pW qxn´kp1 ` xqk.(19)

In particular, taking the coefficient of xn shows that the number of positive
c-clusters is Cat`pW q and the integers Nar`

k pW q are the entries of the h-
vector of Υ`pW, cq.
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We give a direct characterization of }c in Proposition 6.6 below. It is
an extension of Brady and Watt’s results in the bipartite case [12] to any
standard Coxeter element. We begin with a lemma.

Lemma 6.5. Suppose s P S is a left descent of c, and let t P T ztsu. Then
the following two conditions are equivalent:

‚ xrpsq|rptqy ě 0, and s, t are c-noncrossing (see Definition 3.1),
‚ s R supppstsq.

Proof. We begin by showing that the first condition implies the second one.
ùñ, case 1: st ď c. By Proposition 3.12, we have t ď sc and t P Wxsy

therefore s R suppptq and xrpsq|rptqy ď 0. Since we already have xrpsq|rptqy ě
0, we get xrpsq|rptqy “ 0, which means st “ ts. Then s R supppstsq follows
from s R suppptq since sts “ t.
ùñ, case 2: ts ď c. We have ℓT ptsq “ 2 since s ‰ t, therefore s ď ts. By
Proposition 3.12, we get sts ď sc P Wxsy. It follows that s R supppstsq.
ðù, case 1: st “ ts. First note that we have xrpsq|rptqy “ 0 in this case,
so in particular it is ě 0. Then, we have sts “ t so s R suppptq. It follows
that t ď sc and st ď c by Proposition 3.12.
ðù, case 2: st ‰ ts. We have sts P Wxsy, so ts “ spstsq ď c by
Proposition 3.12. Also, from sts P Wxsy we get xrpsq|rpstsqy ď 0. Since
s is in the orthogonal group, it preserves the scalar product and we get
xsprpsqq|sprpstsqqy ď 0, hence x´rpsq|rptqy ď 0 and xrpsq|rptqy ě 0 as
needed. �

Using the above lemma we can now give a more explicit characterization
of the relation }c.
Proposition 6.6. Let α, β P Π, then α }c β if and only if the following two
conditions hold:

‚ r´1pαq, r´1pβq are c-noncrossing,
‚ xα|βy ě 0.

Proof. Let us introduce a family of binary relations }̂c on Φě´1 by:

‚ if α, β P Π one has α }̂c β if and only if xα|βy ě 0 and r´1pαq, r´1pβq
are c-noncrossing,

‚ otherwise, α }̂c β if and only if α }c β.
We show that the relations }̂c satisfy the rules of }c given in Definition 6.1.

By uniqueness it follows that }̂c “ }c. The first two points in Definition 6.1

are obviously satisfied by the family }̂c therefore we just need to show that
they satisfy the third point. Let s be a left descent of c and α, β P Φě´1.
Case 1: α, β P p´∆qzt´rpsqu. We have then σspαq “ α, σspβq “ β, it

follows that α }̂c β and σspαq }̂scs σspβq both hold.

Case 2: α P p´∆qztrpsqu, β “ ´rpsq. One has α }̂c β, σspαq “ α,

σspβq “ ´β ą 0 and ´α R suppp´βq “ tsu therefore σspαq }̂scs σspβq.
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Case 3: α, β P Πztrpsqu. In this case, one has σspαq “ spαq and
σspβq “ spβq. Since s P OpV q preserves the scalar product, xα|βy “
xσspαq|σspβqy, moreover r´1pσspαqq “ sr´1pαqs and r´1pσspβqq “ sr´1pβqs
therefore r´1pσspαqqr´1pσspβqq “ sr´1pαqr´1pβqs and the conclusion fol-
lows since ď is invariant under conjugation.
Case 4: α “ ´rpsq, β P Πztrpsqu. This case follows from Lemma 6.5
putting s “ r´1pαq and t “ sr´1pβqs.
Case 5: α “ rpsq, β P Πztrpsqu. Again use Lemma 6.5 for s “ r´1pαq and
t “ r´1pβq.

Since the relations }c and }̂c are symmetric we have covered all cases. �

By Proposition 3.3, if w ď c then w is a standard Coxeter element of Γpwq
so that the complex ΥpΓpwq, wq is well defined. An interesting consequence
of Proposition 6.6 is that for t1, t2 P ΠpΓpwqq, we have tt1, t2u P ΥpΓpwq, wq
if and only if tt1, t2u P ΥpW, cq. This will be used in Proposition 8.10 to
show that any positive face in ΥpW, cq is a cluster in ΥpΓpwq, wq for some
w ď c, a result which is easily extended to all faces.

Note the similarity between Proposition 6.6 and Definition 4.7 therefore
between the two flag simplicial complexes Υ`pW, cq and ΞpW, cq. Their ver-
tex sets are respectively T and Π, and are in bijection via the map r, besides
this the only difference is the required sign of the scalar product. Despite this
they have very different properties: unlike Υ`pW, cq, the simplicial complex
ΞpW, cq is not pure and its topology can be rather complicated.

Eventually, the following result will be useful:

Proposition 6.7. If F P Υ`pW, cq, there is an indexing F “ tα1, . . . , αku
such that rpα1q ¨ ¨ ¨ rpαkq ď c.

Proof. It is sufficient to check this statement for k “ n and rpα1q ¨ ¨ ¨ rpαnq “
c. This case follows from [13, Proposition 2.8].

Alternatively, this follows from the work of Brady and Watt [12]. In the
case where c is a bipartite Coxeter element, [12, Note 3.3] implies the result.
It remains to show that this is preserved under the moves c Ñ scs as in
Lemma 2.4. We omit details. �

6.2. The relation }c and the orders Ă and !. In the simply laced case
(i.e. types An, Dn and En in the classification), using Proposition 6.6 the
compatibility relation }c on Π can be completely rephrased in terms of the
orders Ă and !, without using roots or even the group structure. This relies
on three observations:

‚ Each rank 2 parabolic subgroup has type A2 or A2
1 in the classifica-

tion. For any pair of distinct reflections in such a subgroup, we can
take the product in some order to get a given Coxeter element. It
means that the condition tu ď c or ut ď c for t, u P T is equivalent
to the existence of v ď c such that rkpvq “ 2, and t ď v, u ď v.
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‚ The condition xrptq|rpuqy ą 0 means that tt, uu is not the simple
system of Γpvq, so it is equivalent to the fact that either t ! v or
u ! v (with v as above).

‚ The condition xrptq|rpuqy “ 0 means tu “ ut, it is equivalent to the
fact that the interval re, tusď contains only e, t, u, tu.

It follows that α }c β is equivalent to:

‚ r´1pαq and r´1pβq have a least upper bound v of rank 2,
‚ Either re, vsď “ te, r´1pαq, r´1pβq, vu, or r´1pαq ! v or r´1pβq ! v.

6.3. Nonnesting partitions. When W is a Weyl group, we have an as-
sociated root poset, defined in terms of the crystallographic root system of
W . We defined roots to be unit vectors, which is not convenient for crys-
tallographic root system, so we only sketch the definition here and refer to
[20, Chapter 2.9]. The idea is to allow to have roots of different lengths,
so we consider positive numbers paαqαPΠ and assume that the vectors aαα
satisfies, for all α, β P Π:

2xaαα|aββy
xaββ|aββy P Z.

Definition 6.8. The partial order ď on Π is defined by α ď β if aββ´aαα is
a linear combination of simple roots with nonnegative coefficients and pΠ,ďq
is called the root poset of W . We denote NNpW q the set of antichains of
pΠ,ďq, and such an antichain is called a nonnesting partition.

In the case whereW is not a Weyl group (i.e. one of I2pmq, H3, and H4 in
the classification), it is possible to define ad hoc posets having all the required
properties of a root poset. See [1, Section 5.4.1] and [16] for more details on
this subject. All our results are valid using these “noncrystallographic root
posets”.

Just as NCpW, cq and ΥpW, cq, the set NNpW q is a flag simplicial com-
plex. Its vertex set is Π, and two vertices are compatible if they are not
comparable in the root poset. This complex is not pure.

Definition 6.9. The support of a nonnesting partition A is:

supppAq “ tδ P ∆ : Dα P A, δ ď αu.
It is similar to the notion of support a group element w P W , so there

should be no confusion. For example, note that for A P NNpW q, we have
s R supppAq if and only if π P NNpWxsyq.
6.4. Enumeration of full reflections. The number of t P T with full
support is Nar`

1 pW q. Chapoton [15] obtained the formula

(20) Nar`
1 pW q “ nh

|W |
n
ź

i“2

pei ´ 1q

by a case by case verification, and he also conjectured a representation the-
oretical interpretation. We show that this formula can be obtained from the
properties of !.
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By Proposition 4.11, a reflection t P T is full if and only if t ! c, which is
equivalent to the existence of a maximal chain

e Ă̈ w1 !̈ w2 !̈ ¨ ¨ ¨ !̈ wn “ c(21)

with t “ w1 in NCpW, cq. Note that these maximal chains are those with
the maximal number of !̈, as we have e Ă̈ t for t P T . So their number
is the dominant coefficient in (13). Noticing that dn ` qph ´ dnq “ h is a
constant, this dominant coefficient is:

n!h

|W |
n´1
ź

i“1

ph ´ diq.(22)

The number of maximal chains as in (21) is also pn´ 1q! times the number
of full reflections: for a given w1 the possible choices for w2, . . . , wn are
the maximal chains in rw1, cs! which is a boolean lattice of rank n ´ 1 by
Corollary 4.14 and their number is pn ´ 1q!. To get the right hand side
of (20) from (22) divided by pn ´ 1q!, it remains only to use the equalities
di “ ei ` 1, h´ ei “ en`1´i.

Fomin and Reading in [18, Section 13.4] asked for a better combinatorial
way to relate full reflections with objects counted by Fuß-Catalan numbers
(k-noncrossing partitions, generalized clusters, see [1]). Our derivation of
the formula does not give a full answer but recasts the problem in a more
general form: have a better combinatorial way to relate Fuß-Catalan objects
and the generating function Mpw, qq, thus explaining the relation (12).

6.5. Chapoton triangles. The F -,M - and H-triangles are polynomials in
two variables defined respectively in terms of ΥpW, cq, the Möbius function
of NCpW, cq, and NNpW q. The F “ M and H “ M theorems state that
these polynomials are related to each other by invertible substitutions (there
is an F “ H theorem as an immediate consequence of the other two). They
were conjectured by Chapoton in [15] and [14], respectively, and proved by
Athanasiadis [2] and Thiel [31], respectively. See also [1] for generalizations.

Definition 6.10. Let µ denote the Möbius function of NCpW, cq. The
M -triangle is the polynomial:

Mpx, yq “
ÿ

α,βPNCpW,cq
αďβ

µpα, βqxrkpαqp´yqrkpβq´rkpαq.

The F -triangle is the polynomial:

F px, yq “
ÿ

FPΥpW,cq

x#pFXp´∆qqy#pFXΠq.

The H-triangle is the polynomial:

Hpx, yq “
ÿ

APNNpW q

x#pAX∆qy#pAXpΠz∆qq.
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There exist slightly different conventions in the literature for these poly-
nomials. Here and also for related polynomials in the sequel, we always take
a convention ensuring that they have nonnegative integer coefficients, and
total degree n.

The F “ M and H “ M theorems relates the three polynomials as
follows:

F px, yq “ p1 ` yqnH
´

x
1`y

, y
1`y

¯

“ p1 ` xqnM
´

x
1`x

, y´x
1`x

¯

,(23)

Hpx, yq “ p1 ´ yqnF
´

x
1´y

, y
1´y

¯

“ p1 ` x´ yqnM
´

x
1`x´y

, y´x
1`x´y

¯

,(24)

Mpx, yq “ p1 ` yqnH
´

x
1`y

, y`x
1`y

¯

“ p1 ´ xqnF
´

x
1´x

, y`x
1´x

¯

.(25)

See [2, 14, 15, 31] for details. Note that all these relations suggest considering
homogeneous polynomials in three variables, rather than only two variables.
Then the relations become mere shifts of the variables. This idea will be
used in Section 9.

Also, the polynomials satisfy a symmetry property. By the self-duality of
NCpW, cq one has

(26) Mpx, yq “ xnMp 1
x
, 1
y

q.
and, using (23),

(27) F px, yq “ p´1qnF p´1 ´ x,´1 ´ yq, Hpx´ 1, yq “ ynHp y
x

´ 1, 1
y

q.
From the definition, it can be seen that these polynomials contains Cata-

lan, positive Catalan, Narayana, and positive Narayana numbers as special
cases. Let us also mention another interesting specialization: Hp´1, 1q is
the double-positive Catalan number introduced in [5], more generally the
coefficients of Hp´1, yq are the double-positive Narayana numbers. See [5,
Proposition 4.6] for the interpretation in terms of nonnesting partitions.
Using (23), we have

Hp´1, yq “ p1 ´ yqnF
`

´1
1´y

, 1
1´y

˘

and the latter expression can be interpreted as the local h-polynomial of
Υ`pW, cq, see [5, Remark 4.7] and Athanasiadis and Savvidou [3].

7. Intervals for Ă and ! and the cluster complex

7.1. Intervals for Ă.

7.1.1. Counting intervals. If v,w P NCpW, cq and v Ă w we denote by
rv,wsĂ the interval consisting of all x P NCpW, cq such that v Ă x Ă w.
Define the height of an interval rv,wsĂ by rkpwq ´ rkpvq. The identity e is
the smallest element in NCpW, cq for Ă moreover, if w has rank r we have
seen that the interval re, wsĂ is a boolean lattice with 2r elements therefore,
if r ě k the number of elements v Ă w with rkpwq ´ rkpvq “ k is equal to
`

r
k

˘

. Since the number of elements of NCpW, cq of rank r is NarrpW q, we
have the following (here n is the rank of W ).
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Proposition 7.1. The number of intervals of height k for Ă is equal to

(28)
n
ÿ

r“k

NarpW, rq
ˆ

r

k

˙

.

In the case of the symmetric group Sn, the total number of intervals for
Ă is the small Schröder number sn, defined by

ÿ

ně0

snz
n “ 1 ` x´

?
1 ´ 6x ` x2

4x
.

7.1.2. Relation with the cluster complex and the associahedron. We now re-
late pNCpW, cq,Ăq with the cluster complex ΥpW, cq and the associahedron,
a polytope whose face complex is dual to ΥpW, cq [19]. It is known that
the h-vector of the associahedron is equal to the sequence of W -Narayana
numbers, see [4] (or (18), using the duality). The next statement follows
readily from (28) and the relation between the f - and h-vectors.

Proposition 7.2. The number intervals of height k for Ă is equal to the
number of faces of dimension k of the W -associahedron, or to the number
of faces of cardinality n´ k of the cluster complex.

For particular values of k there are bijective proofs of the equality in
Proposition 7.2.

‚ For k “ n: there is a unique interval of height n which is INT pW, cq
and a unique face of dimension n in the associahedron.

‚ For k “ 0: the number of vertices of the associahedron is equal to
number of non-crossing partitions, or W -Catalan number, which is
also the number of intervals of height 0 for Ă. Bijective proofs of
this fact have appeared in the litterature, see Section 8.

‚ For k “ n´1: the number of intervals of height n´1 for Ă is equal to
the number of almost positive roots, which is the number of vertices
of the cluster complex. Indeed this is easy to check directly since
these intervals fall into two categories:

– the intervals re, πs where π P NCpW, cq has rank n ´ 1. The
Kreweras complement gives a bijection between this set and
the elements of rank 1 in NCpW, cq which are the reflections,
in bijection with the positive roots.

– the intervals rs, csĂ where s P S which are in bijection with the
negative simple roots.

Observe that the study of the order Ă leads naturally to the notion of almost
positive root, which is fundamental to the theory of clusters.

It would be interesting to give a bijective proof of Proposition 7.2 for
other values of k. In the case of a bipartite Coxeter element, we will give,
in Section 8.3, a bijection between faces of size n´ k of the cluster complex
and intervals of height k for Ă.
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7.2. Intervals for !. In the case of the symmetric group Sn with the
standard Coxeter element c “ p1, 2, . . . , nq, the number of intervals v ! w

was computed in [24] and [26], its is the so-called large Schröder number
Sn´1 defined by

ÿ

ně0

Snz
n “ 1 ´ x´

?
1 ´ 6x ` x2

2x
.

They are related to small Schröder numbers by Sn “ 2sn if n ě 1.
In the general case we will again show a connection with the cluster com-

plex. Refining the enumeration of intervals, we consider a two variable
polynomial:

(29) Ipx, yq “
ÿ

v,wPNCpW,cq
v!w

xrkpvqyrkpwq´rkpvq.

It turns out to be related with the polynomial Mpx, yq as follows.

Theorem 7.3. We have:

Ipx, yq “ Mpx ´ y, yq, Mpx, yq “ Ipx` y, yq.(30)

To prove that, first consider, for w P NCpW, cq:

(31) Iwpxq “
ÿ

vPNC
v!w

xrkpvq

and

(32) Mwpxq “ p´1qrkpwq
ÿ

vPNC
vďw

µpv,wqp´xqrkpvq.

Proposition 7.4. We have Iwpx` 1q “ Mwpxq.

Proof. The case w “ c is sufficient, because we can see w itself as a standard
Coxeter element of Γpwq and prove the identity in this subgroup. Then Icpxq
is the rank generating function of NCF pW, cq, it is therefore given by the
positive Narayana numbers and it remains to prove:

n
ÿ

k“1

Nar`
k p1 ` xqk “ p´1qn

ÿ

vPNCpW,cq

µpv, cqp´xqrkpvq.

The right hand side is, using Kreweras complement:
ÿ

vPNCpW,cq

µpe,Kpvqqp´xqrkpvq “
ÿ

vPNCpW,cq

µpe, vqp´xqn´rkpvq “ xnMp0, 1
x

q.

This is also xnF p0, 1
x

q, via (23). The h-vector of Υ`pW, cq is given by positive
Narayana numbers, see (19), and we get the equality. �
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Proof of Theorem 7.3. Using Proposition 7.4, we have:

Ipx, yq “
ÿ

wPNCpW,cq

Iwpx
y

qyrkpwq “
ÿ

wPNCpW,cq

Mwpx
y

´ 1qyrkpwq “ Mpx´ y, yq.

�

Combining Equations (25) and (30), we obtain the relations between
Ipx, yq and Hpx, yq:

Ipx, yq “ p1 ` yqnH
ˆ

x´ y

1 ` y
,

x

1 ` y

˙

,

Hpx, yq “ p1 ` x´ yqnI
ˆ

y

1 ` x´ y
,

y ´ x

1 ` x´ y

˙

,

and the relations between Ipx, yq and F px, yq:

Ipx, yq “ p1 ´ x` yqnF
ˆ

x´ y

1 ´ x` y
,

x

1 ´ x` y

˙

,

F px, yq “ p1 ` xqnI
ˆ

y

1 ` x
,
y ´ x

1 ` x

˙

.

In particular, Ipx, xq “ F p0, xq gives the following:

Corollary 7.5. We have
ÿ

v,wPNCpW,cq
v!w

xrkpwq “
ÿ

FPΥ`pW,cq

x#F .

In particular, the number of intervals v ! w in NCpW, cq is #Υ`pW, cq.
We will give a bijective proof of the latter fact in the next section.

8. The bijection between positive faces of the cluster complex

and intervals

In order to give a bijection between Υ`pW, cq and intervals v ! w in
NCpW, cq, an important ingredient is a bijection between clusters and non-
crossing partitions. Such bijections have been described by Reading [28] and
Athanasiadis et al. [4]. Although the one from [4] was only stated in the
case of a bipartite Coxeter element, it turns out to be particularly adapted
to the present situation as it can be rephrased in terms of the orders Ă and
!. In fact, using properties of ! and Ă we will extend the bijection to cover
the case of all standard Coxeter elements.

8.1. The bijection between clusters and noncrossing partitions. We
give here a bijection ΨW,c between NCF pW, cq and clusters in Υ`pW, cq.
Note that it is straightforward to extend such a bijection to a bijection from
NCpW, cq to clusters in ΥpW, cq: if w P NCpW, cq with J “ supppwq, then
the image of w is

ΨWJ ,wpwq Y t´rpsq : s R Ju.
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Recall that w is the interval partition such that Γpwq “ WJ and it is indeed
a standard Coxeter element of WJ . In the case of the bipartite Coxeter
element, the bijection that we obtain is actually the inverse of the bijection
in [4, Sections 5-6].

Definition 8.1. Let w P NCpW, cq then we define

ΦW,cpwq “
`

InvRpwq X Γpwq
˘

Y
`

InvLpKpwqq X ΓpKpwqq
˘

Ă T,

ΨW,cpwq “ rpΦW,cpwqq Ă Π.

Let us write w andKpwq as products of their associated simple generators
as in Proposition 3.3:

w “ s1 ¨ ¨ ¨ sk, Kpwq “ sk`1 ¨ ¨ ¨ sn,

then one has

c “ s1 ¨ ¨ ¨ sn,
and, using (2),

ΦW,cpwq “ tt1, . . . , tnu
where:

ti “
#

psksk´1 ¨ ¨ ¨ sk`2´iqsk`1´ipsksk´1 ¨ ¨ ¨ sk`2´iq´1 if 1 ď i ď k,

psk`1sk`2 ¨ ¨ ¨ si´1qsipsk`1sk`2 ¨ ¨ ¨ si´1q´1 if k ` 1 ď i ď n.

It follows that

ΨW,cpwq “ trpt1q, . . . , rptnqu Ă Π.

Theorem 8.2. The map ΨW,c is a bijection from NCF pW, cq to the set of
c-clusters in Υ`pW, cq.

First observe that, by a straightforward computation:

t1 ¨ ¨ ¨ tk “ w,

tk`1 ¨ ¨ ¨ tn “ Kpwq,
t1 ¨ ¨ ¨ tn “ c.

Lemma 8.3. Let w P NCF pW, cq of rank k, ti as above, and let 1 ď i ď k

and k ` 1 ď j ď n. Then we have wti Ă̈ w, tjKpwq Ă̈ Kpwq, and w !̈ wtj .

Proof. An easy computation gives wti “ s1 ¨ ¨ ¨ sk´isk`2´i ¨ ¨ ¨ sk, whence the
first inequality. The second is obtained similarly. The third one follows the
second one by applying iiq of Proposition 4.2, using the fact that w has full
support. �

Lemma 8.4. Let i, j be such that either 1 ď i ă j ď k or k`1 ď i ă j ď n.
Then we have:

xrptiq|rptjqy ě 0.
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Proof. We can focus on the case 1 ď i ă j ď k, the other one is obtained
similarly but with sk`1, . . . , sn instead of s1, . . . , sk. Using Proposition 2.1,
we have

rptiq “ rpsk ¨ ¨ ¨ sk`1´i ¨ ¨ ¨ skq “ sk ¨ ¨ ¨ sk`2´i

`

rpsk`1´iq
˘

“ ´sk ¨ ¨ ¨ sk`1´i

`

rpsk`1´iq
˘

.

The second equality follows from the fact that sk`1´i R InvRpsk ¨ ¨ ¨ sk`2´iq
since they have disjoint support in Γpwq. Similarly,

rptjq “ rpsk ¨ ¨ ¨ sk`1´j ¨ ¨ ¨ skq
“ sk ¨ ¨ ¨ sk`1´i

`

rpsk´i ¨ ¨ ¨ sk´j ¨ ¨ ¨ sk´iq
˘

.

Since sk ¨ ¨ ¨ sk`1´i preserves the scalar product, it remains to show that

xrpsk`1´iq|rpsk´i ¨ ¨ ¨ sk`1´j ¨ ¨ ¨ sk´iqy ď 0.

This follows from the fact that s1, . . . , sk is a simple system, since the root
rpsk´i ¨ ¨ ¨ sk`1´j ¨ ¨ ¨ sk´iq is a positive linear combination of the roots rpsk´iq,
. . . , rpsk`1´jq. �

Lemma 8.5. Let v P NCpW, cq with rkpvq “ n´ 2, and let x1, x2 P T such
that c “ vx1x2. Suppose v Ă̈ vx1 !̈ c. Then xrpx1q|rpx2qy ě 0.

Proof. The cardinality of supppvq is at least n ´ 2 since rkpvq “ n ´ 2. We
treat separately its possible values.
Case 1: #supppvq “ n.

Then v P NCF pW, cq, so that we can apply Proposition 4.2 to the relation
v Ă̈ vx1. We get x2 !̈ x1x2, therefore x1, x2 is not a simple system in
Γpx1x2q, and xrpx1q|rpx2qy ą 0.
Case 2: #supppvq “ n´ 1.

Since v is not full, there exists an interval partition v1 such that v Ì
v1 Ă̈ c. With v1 “ vx3 and c “ v1x4, we have vx3x4 “ c, v Ì vx3 Ă̈ c,
and x3x4 “ x1x2. Since # supppvq “ n ´ 1 ą rkpvq, we see that v is
not an interval partition, so that v !̈ vx3. By Proposition 4.2, we get
Kpvx3q Ă̈ Kpvq, i.e., x4 Ă̈ x3x4. Now by Lemma 4.6, v !̈ vx3 Ă̈ vx3x4
implies x3 ď vx3 Ă̈ vx3x4 and x3 Ă̈ x3x4 therefore x3 and x4 are the simple
generators of Γpx3x4q.

If tx1, x2u ‰ tx3, x4u, we get xrpx1q|rpx2qy ą 0 by uniqueness of the
simple system tx3, x4u. Otherwise, we have x1 “ x4, indeed x1 ‰ x3 since
v Ă̈ vx1 and v !̈ vx3. It follows that x2 “ x3, and x3x4 “ x1x2 becomes
x2x1 “ x1x2 so that xrpx1q|rpx2qy “ 0.
Case 3: #supppvq “ n´ 2.

To avoid multiple indices, assume that the simple reflections of W are
indexed so that c “ s1 ¨ ¨ ¨ sn. Let J “ supppvq “ Szti, ju (with i ă j)
then v has length ℓT pvq “ n ´ 2 and v P WJ therefore v is the Coxeter
element of WJ “ Γpvq. It follows that v is an interval partition and v “
s1 ¨ ¨ ¨ ŝi ¨ ¨ ¨ ŝj ¨ ¨ ¨ sn (where si and sj are omitted). Let

x3 “ sn ¨ ¨ ¨ sj`1sj´1 ¨ ¨ ¨ si ¨ ¨ ¨ sj´1sj`1 ¨ ¨ ¨ sn, x4 “ sn ¨ ¨ ¨ sj ¨ ¨ ¨ sn.
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then vx3x4 “ c and x3x4 “ x1x2. By an argument similar to that in the
previous lemma, we have

xrpx3q|rpx4qy “ xrpsj´1 ¨ ¨ ¨ si ¨ ¨ ¨ sj´1q|rpsjqy ď 0

therefore x3 and x4 are the simple generators of Γpx1x2q. The end of the
proof is as in the previous case (here x1 ‰ x3 because vx1 !̈ c and vx3 Ă̈
c). �

Lemma 8.6. We have xrptiq|rptjqy ě 0 if 1 ď i ď k and k ` 1 ď j ď n.

Proof. By Lemma 8.3, we have wti Ă̈ w !̈ wtj . Then we can apply
Lemma 8.5 in the subgroup Γpwtjq to get the result. �

Proposition 8.7. We have Ψpwq P Υ`pW, cq.

Proof. We use the criterion in Proposition 6.6. Since t1 ¨ ¨ ¨ tn “ c, we have
titj ď c if i ă j. The conditions on the scalar product are given by the
previous lemmas. So rptiq }c rptjq holds for 1 ď i ă j ď n and the result
follows. �

Let us now describe the inverse map. Let F “ tt1, . . . , tnu be a face of the
positive cluster complex then, by Proposition 6.7 we can assume that the ti
are ordered so that t1 . . . tn “ c moreover, by Proposition 3.4 all orderings of
the ti such that this property holds true are obtained from this ordering by
applying commutation relations among the ti. As before we let ui “ t1 . . . ti.

Lemma 8.8. If ui´1 ! ui Ă ui`1 then titi`1 “ ti`1ti.

Proof. By Proposition 4.6 one has ti Ă titi`1. Applying the Kreweras com-
plement in Γpui`1q and iq of Proposition 4.2 we obtain ti`1 Ă titi`1. It
follows that ti, ti`1 form a simple system in Γptiti`1q and xrptiq|rpti`1qy ď 0.
Since ti }c ti`1 we have xrptiq|rpti`1qy ě 0 , it follows that xrptiq|rpti`1qy “ 0
and ti, ti`1 commute. �

Lemma 8.9. Let t, t1 P T be such that tt1 “ t1t and w ĺp1q wt ĺp2q wt1t then
w ĺp2q wt1 ĺp1q wt1t, where ĺp1q,ĺp2q denotes any combination of the orders
Ă,!.

Proof. This follows from Corollary 2.2. �

Using lemmas 8.8 and 8.9 we can use commutation relations between the
ti to move all the ! to the right and assume that, for some k, one has

e Ă u1 Ă u2 Ă . . . Ă uk ! uk`1 ! . . . ! un “ c.

Moreover, by Proposition 3.4, k and uk are uniquely determined by this
requirement. It is then easy to check that tt1, . . . , tku “ InvRpukq X Γpukq
and ttk`1, . . . , tnu “ InvLpKpukqq X ΓpKpukqq therefore ΨW,cpukq “ F .
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8.2. The bijection between faces and intervals. Consider a positive
face F “ tt1, . . . , tku P Υ`pW, cq. By Proposition 6.7 we can assume that
the elements are indexed so that t1 ¨ ¨ ¨ tk ď c.

Proposition 8.10. Let w “ t1 ¨ ¨ ¨ tk, then F is a cluster in Υ`pΓpwq, wq.
Proof. First note that Υ`pΓpwq, wq is well defined by Proposition 3.3. We
have titj ď w if i ă j since w “ t1 ¨ ¨ ¨ tk. Moreover, we have xrptiq|rptjqy ě 0
since F P Υ`pW, cq. So F P Υ`pΓpwq, wq by Proposition 6.6, and it is a
cluster since #F “ ℓT pwq is the rank of Γpwq. �

Theorem 8.11. With the notation as above, the map

F ÞÑ
`

Ψ´1
Γpwq,wpF q, w

˘

is a bijection from Υ`pW, cq to the set of pairs v,w P NCpW, cq such that
v ! w.

Proof. First note that Ψ´1
Γpwq,wpF q is well defined by Proposition 8.10. By

properties of the bijection Ψ, we have Ψ´1
Γpwq,wpF q P NCF pΓpwq, wq. By

Proposition 4.11, this means Ψ´1
Γpwq,wpF q ! w.

We can describe the inverse bijection. To a pair v,w P NCpW, cq such
that v ! w, we associate ΨΓpwq,wpvq. Once we know that Ψ is a bijection, it
is clear that we have two inverse bijections. �

The construction can be made more explicit. Let ui “ t1 ¨ ¨ ¨ ti for 0 ď i ď
k. Up to some commutation among the ti, we can assume

u0 Ă̈ ¨ ¨ ¨ Ă̈ uj !̈ uj`1 !̈ ¨ ¨ ¨ !̈ uk.

Then the image of F is puj , ukq. In the other direction, let v,w P NCpW, cq
with v ! w, rkpvq “ j and rkpwq “ k. We write v and v´1w as a product of
their associated simple reflections:

v “ s1 ¨ ¨ ¨ sj , v´1w “ sj`1 ¨ ¨ ¨ sk.
Then the inverse image of pv,wq is tt1, . . . , tku where we define t1, . . . , tk as
in the definition of Ψ:

ti “
#

sj ¨ ¨ ¨ sj`1´i ¨ ¨ ¨ sj if 1 ď i ď j,

sj`1 ¨ ¨ ¨ sk`1`j´i ¨ ¨ ¨ sj`1 if j ` 1 ď i ď k.

Also, an immediate consequence of the construction is the following.

Definition 8.12. Let F P Υ`pW, cq, and write F “ tt1, . . . , tku such that
t1 ¨ ¨ ¨ tk ď c. Then we define (number of “square” relations):

sqrpF q “ #
 

i : 0 ď i ă k and t1 ¨ ¨ ¨ ti Ă̈ t1 ¨ ¨ ¨ ti`1

(

.

This map is extended to F P ΥpW, cq by requiring sqrpF q “ sqrpF X Πq.
By Lemma 8.8 the number sqrpF q does not depend on the way we order

F , as long as t1 ¨ ¨ ¨ tk ď c.
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Proposition 8.13. We have:
ÿ

FPΥ`pW,cq

ysqrpF qz#F “
ÿ

α,βPNCpW,cq
α!β

yrkpαqzrkpβq.

However, this identity is not related to the F “ M theorem in a straight-
forward way, as the left hand side is seemingly unrelated to the polynomial
F px, yq. This will be clarified in Section 9.

8.3. Bijection between faces of the cluster complex and intervals

for Ă in the case of a bipartite Coxeter elements. When c “ c`c´ is
a bipartite Coxeter element, one can give a bijection between the intervals
for Ă and faces of the cluster complex. For this we need a preliminary result.

Let u ! v then, by applying Proposition 3.8, we get Lv Ă Lu. It follows
that SpΓpLvqq Ă SpΓpLuqq. Let w P ΓpLuq be the element corresponding to
the set SpΓpLuqqzSpΓpLvqq then one has w Ă Lu. Let us denote by ψpu, vq
the pair px, yq “ pw,Luq. It is clear that the pair pu, vq can be retrieved
from px, yq therefore the map ψ is injective.

Proposition 8.14. The map ψ yields a bijection between intervals u ! v

and intervals x Ă y such that x “ e.

Proof. Let u ! v and pw,Luq “ ψpu, vq, we prove that w “ e. Assume on
the opposite that w ‰ e then there exists s P S such that s P SpΓpwqq Ă
SpΓpLuqq and s R SpΓpLvqq “ SpΓpLuqqzSpΓpwqq. Since s ď Lu one has
sLu ď Lu and pLuqs ď Lu. It follows easily that u P Wxsy and s P SpΓpvqq
which contradicts u ! v. This proves that ψ maps intervals u ! v to
intervals x Ă y with x “ e.

Conversely, let x Ă y be such that x “ e and let z be the element of Γpyq
corresponding to SpΓpyqqzSpΓpxqq then z Ă y. Let us prove that Ly ! Lz,
it will follow from the construction that px, yq “ ψpLy,Lzq and therefore
that ψ is surjective. Let J be the support of Ly then one has Ly P WJ and
one can write y “ cJ

c

` pcJ`LycJ´qcJc

´ with obvious notations: e.g. cJ` is the

product of simple reflections in J XS`, etc. Since pcJ`LycJ´q P WJ is follows
that for s P Jc one has s P SpΓpyqq moreover since x “ e one has s R SpΓpxqq
therefore s P SpΓpzqq. It follows that z “ cJ

c

` ωcJ
c

´ with ω P WJ moreover

ω Ă cJ`Lyc
J
´ since z Ă y. Since Ly has full support in WJ we can apply iiq

of Proposition 3.8 in the group WJ and conclude that Lz “ cJ`ωc
J
´ ! Ly as

claimed. �

Let γ be an interval partition, corresponding to the parabolic subgroup
WJ then one can write γ “ γ`γ´ according to the bipartite decomposi-
tion. Let v P NCpW, cq be such that v “ γ, then v “ γ`v

1γ´ where
v1 P NCpWJc , Lγq moreover this gives a bijection between NCpWJc , Lγq
and the set of v such that v “ γ.

Using the bijection ψ´1 and composing with the bijection between in-
tervals for ! and faces of the positive cluster complex we get a bijection
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between intervals v Ă w for Ă with v “ e and faces of the positive cluster
complex Υ`pW, cq. It is an easy exercize to check that an interval of height
k corresponds to a face of size n´ k. This bijection is then easily extended
to a bijection between intervals of Ă and faces of ΥpW, cq if v “ γ add the
set J to the face in Υ`pWJc , cJcq.

9. Generalized F “ M and H “ M theorems

We show in this section that the relations between F -, H-, and M -
polynomials can be proved and even generalized using the I-polynomial
counting intervals for the order !. Here we consider homogeneous polyno-
mials on variables pxsqsPS indexed by the simple reflections of W , and y, z.
Note that the existence of multivariate analog of the identities was suggested
by Armstrong [1, Open problem 5.3.5].

In general we denote x the set of x variables, leaving the index set implicit.
Moreover x ` A denote that all the x variables are shifted by A, and x is
replaced by an expression to mean that all x variables are specialized to this
expression, etc.

Let

Ipx, y, zq “
ÿ

α,βPNCpW,cq
α!β

˜

ź

sPSz supppβq

xs

¸

yrkpαqzrkpβq´rkpαq,

Fpx, y, zq “
ÿ

FPΥpW,cq

˜

ź

δPFXp´∆q

xrpδq

¸

´y

z

¯sqrpF q
z#FXΠ,

Mpx, y, zq “
ÿ

α,βPNCpW,cq
αďβ

µpα, βq
˜

ź

sPSz supppβq

xs

¸

yrkpαqp´zqrkpβq´rkpαq,

Hpx, y, zq “
ÿ

APNNpW q

˜

ź

δPAX∆

´xrpδq

z

¯

¸

´y

z

¯#AXpΠz∆q
z#supppAq.

It is straightforward to check that they are all polynomials of total degree
n. For example, note that we have sqrpfq ď #pF X Πq for F P ΥpW, cq
by definition of sqr, so the power of z in Fpx, y, zq is nonnegative, and we
have rkpαq ď #supppαq for α P NCpW, cq so the polynomials Ipx, y, zq and
Mpx, y, zq have degree at most n.

The 2-variable polynomials from Section 6.5 are obtained as special cases,
though by different specializations:

(33)
F px, yq “ Fpx, y, yq, Hpx, yq “ Hpx, y, 1q,
Mpy, zq “ Mp1, y, zq, Ipy, zq “ Ip1, y, zq.

Theorem 9.1. Fpx, y, zq “ Ipx` 1, y, zq.
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Proof. First, note that

Fpx, y, zq “
ÿ

JĂS

˜

ź

sPJ

xs

¸

FWSzJ
p0, y, zq.

Also, expanding the products in Ipx ` 1, y, zq gives:

Ipx` 1, y, zq “
ÿ

α,βPNCpW,cq
α!β

ÿ

JĂSz supppβq

˜

ź

sPJ

xs

¸

yrkpαqzrkpβq´rkpαq

“
ÿ

JĂS

ÿ

α,βPNCpW,cq, α!β
supppβqĂSzJ

˜

ź

sPJ

xs

¸

yrkpαqzrkpβq´rkpαq

“
ÿ

JĂS

˜

ź

sPJ

xs

¸

IWSzJ
p1, y, zq.

So it suffices to prove Fp0, y, zq “ Ip1, y, zq, which is the content of Propo-
sition 8.13. �

Theorem 9.2. Mpx, y, zq “ Ipx, y ` z, zq.

Proof. This follows from Proposition 7.4. In Iβpy
z

` 1q “ Mβpy
z

q, multiply

both sides by
`
ś

sPSz supppβq xs
˘

zrkpβq and sum over β P NCpW, cq. �

Theorem 9.3. Hpx, y, zq “ Ipx´ y ` 1, y, z ´ 1q.

Proof. First write the expansion:

ź

δPAX∆

´xrpδq ` y

z

¯

“
ÿ

JĂAX∆

´y

z

¯#pAX∆qzJ ź

δPJ

´xrpδq

z

¯

.

It follows:

Hpx` y, y, zq “
ÿ

APNNpW q

ÿ

JĂAX∆

˜

ź

δPJ

´xrpδq

z

¯

¸

´y

z

¯#pAzJq
z#supppAq

“
ÿ

JĂ∆

˜

ź

δPJ

xrpδq

¸

ÿ

APNNpW q
JĂA

´y

z

¯#pAzJq
z#supppAq´#J

“
ÿ

JĂ∆

˜

ź

δPJ

xrpδq

¸

HW
Szr´1pJq

py, y, zq.

In the proof of the previous theorem, we have seen that Ipx ` 1, y, zq ad-
mits a similar expansion on the x-variables. Consequently, Ipx` 1, y, z ´ 1q
also admits a similar expansion, and it remains to show that Hpy, y, zq “
Ip1, y, z ´ 1q.
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On one side we have:

Hpy, y, zq “
ÿ

APNNpW q

y#Az#supppAq´#A “
ÿ

IĂS

#I
ÿ

k“1

Nar`
k pWIqykz#I´k.

On the other side,

Ip1, y, z ´ 1q “
ÿ

α,βPNCpW,cq
α!β

yrkpαqpz ´ 1qrkpβq´rkpαq

“
ÿ

αPNCpW,cq

yrkpαqz#supppαq´rkpαq,

where the last equality follows from the binomial theorem, since the β such
that β " α form a boolean lattice whose maximal element is α, by Proposi-
tion 4.13 and Corollary 4.14. This sum can again be expressed in terms of
the numbers Nar`

k pWIq, so that Hpy, y, zq “ Ip1, y, z ´ 1q. �

By combining the previous theorems, we get relations between F-, H-,
and M-polynomials:

Fpx, y, zq “ Mpx ` 1, y ´ z, zq,(34)

Fpx, y, zq “ Hpx ` y, y, z ` 1q,(35)

Hpx, y, zq “ Mpx ´ y ` 1, y ´ z ` 1, z ´ 1q.(36)

The next property is best seen on the H-polynomial.

Proposition 9.4. Hpx´ 1, y, zq is homogeneous of degree n.

Proof. An element A P NNpW q can be uniquely written A1 YA2 where A1 X
∆ “ ∅ and A2 Ă ∆z supppA1q. Note that # supppAq “ #supppA1q ` #A2.
For a fixed A1, any subset A2 Ă ∆z supppA1q is valid, so that the sum over
A2 factorizes and gives:

ÿ

APNNpW q
AXpΠz∆q“A1

˜

ź

δPAX∆

´xrpδq

z

¯

¸

´y

z

¯#AXpΠz∆q
z#supppAq

“
˜

ź

δP∆z supppA1q

p1 ` xrpδqq
¸

´y

z

¯#A1

z#supppA1q.

After a change of variables x Ñ x´1, the latter expression is homogeneous.
Since Hpx´ 1, y, zq is obtained by summing over A1, it is too. �

This homogeneity implies that the 3-variable polynomial Hpx, y, zq can
be expressed in terms of the 2-variable polynomial Hpy, zq “ Hp1, y, zq. It
also implies that the F-, I-, and M-polynomials also become homogeneous
after suitable shifts in the variables. So the other 3-variable polynomials can
also be expressed in terms of their 2-variable specialization from Section 6.5.
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To recover the F “ M identity in Section 6.5 from the present results,
first use the homogeneity of Fpx ´ 1, y, z ´ 1q (obtained from the previous
proposition together with (35)) to write:

Fpx´ 1, y, z ´ 1q “ xnFp0, y
x
, z
x

´ 1q,
then the substitution px, zq Ñ px ` 1, y ` 1q gives:

Fpx, y, yq “ p1 ` xqnFp0, y
1`x

, y´x
1`x

q “ p1 ` xqnMp1, x
1`x

, y´x
1`x

q
where the last equality comes from (34). Then using (33), we recover the
relation between F px, yq and Mpx, yq in (23). Similarly, the homogeneity of
Hpx´ 1, y, zq gives:

(37) Hpx´ 1, y, zq “ znHpx
z

´ 1, y
z
, 1q.

Then the substitution px, zq Ñ px ` y ` 1, y ` 1q gives:

Hpx` y, y, y ` 1q “ p1 ` yqnHp x
1`y

, y
1`y

, 1q.
Using (35) on the left hand side, then (33), we recover the relation between
F px, yq and Hpx, yq in (23).

Proposition 9.5. Hpx´ 1, y, zq is symmetric in y and z.

Proof. Similar to the expansions we have seen in this section, we have:

Hpx, y, zq “
ÿ

JĂS

˜

ź

sPJ

xs

¸

HWSzJ
p0, y, zq.

So we can just prove that Hp0, y, zq is symmetric. By (37), we have

Hp0, y, zq “ znHp1
z

´ 1, y
z
, 1q “ znHp1

z
´ 1, y

z
q.

By (27), the latter is equal to ynHp 1
y

´ 1, z
y

q, which is precisely the same up

to exchanging y and z. �

It is natural to look for an involution on nonnesting partitions that would
prove the symmetry of Hpx, y, zq. This is the subject of conjectures by
Panyushev [27, Conjecture 6.1], see also [15, Section 5]. To our knowledge
this is still an open problem.
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