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We introduce two order relations on finite Coxeter groups which refine the absolute and the Bruhat order, and establish some of their main properties. In particular we study the restriction of these orders to noncrossing partitions and show that the intervals for these orders can be enumerated in terms of the cluster complex. The properties of our orders permit to revisit several results in Coxeter combinatorics, such as the Chapoton triangles and how they are related, the enumeration of reflections with full support, the bijections between clusters and noncrossing partitions.

Introduction

Let W be a Coxeter group with S a simple system of generators. There exists several natural order relations on W , namely the left or right weak order, the Bruhat order and the absolute order (this last order is associated to the length function with respect to the generating set of all reflections, see below). Two elements v, w P W such that vw ´1 is a reflection are always comparable with respect to both the absolute and the Bruhat order. In this paper we introduce two order relations on W , which we denote by Ă and !, which encode this situation, namely for any pair v, w as above, such that v ă w (here ă denotes the absolute order), we define v Ă ¨w if v ă B w (here ă B is the Bruhat order) and v !¨w if w ă B v, then extend Ă ¨and !¨to order relations on W by transitivity. We believe that these two orders are important tools for understanding noncrossing partitions, clusters, and their interrelations. Bessis [START_REF] Bessis | The dual braid monoid[END_REF]Section 6.4] suggested to study how the different orders on W are related. The present paper can be considered as a first step in this direction. Some versions of the orders Ă and ! were considered before this work. An order called ! on the set of classical noncrossing partitions was introduced independently by Belinschi and Nica [START_REF] Belinschi | Nica: η-series and a Boolean Bercovici-Pata bijection for bounded k-tuples[END_REF][START_REF] Nica | Non-crossing linked partitions, the partial order ! on N Cpnq, and the S-transform[END_REF] in the context of noncommutative probabilities, and by Senato and Petrullo [START_REF] Petrullo | Senato: Explicit formulae for Kerov polynomials[END_REF] in order to study Kerov polynomials. The notion of noncrossing partition can be defined in terms of the geometry of the symmetric group [START_REF] Biane | Some properties of crossings and partitions[END_REF] and it has been extended to general Coxeter systems: a set of noncrossing partitions can be associated to some Coxeter element c in W as N CpW, cq " tw P W | w ď cu (see [START_REF] Bessis | The dual braid monoid[END_REF][START_REF] Brady | Proceedings of the conference on geometric and combinatorial group theory, Part I[END_REF]). The classical case corresponds to c being the cycle p1, . . . , nq in the symmetric group S n . In this context, the order Ă on N CpW, cq was introduced by the second author in [START_REF] Josuat-Vergès | Refined enumeration of noncrossing chains and hook formulas[END_REF], with a different definition, in order to give a refined enumeration of maximal chains in N CpW, cq.

After defining the two order relations Ă and !, we will consider the restriction of these orders to the set of noncrossing partitions and give a more direct characterization of the pairs v, w P N CpW, cq with v Ă w or v ! w. We will also introduce interval partitions for arbitrary finite Coxeter groups, which generalize the classical interval partitions. These partitions play an important role in this study. Then we will consider intervals for the two orders. These turn out to be closely related to the cluster complex of Fomin and Zelevinsky [START_REF] Fomin | Cluster algebras. II. Finite type classification[END_REF]. Originated from the theory of cluster algebras, the cluster complex is a simplicial complex with vertex set the almost positive roots of W (see Section 6 for details), associated to a standard Coxeter element in a finite Coxeter group. Connections between noncrossing partitions and the cluster complex were first observed via an identity called the F " M theorem, conjectured by Chapoton [START_REF] Chapoton | Enumerative properties of generalized associahedra[END_REF]. We will see that the introduction of the two orders Ă and ! sheds new light on these relations. In particular an explicit bijection between the facets of the cluster complex and the noncrossing partitions associated with the same Coxeter element was given by Reading [START_REF] Reading | Clusters, Coxeter-sortable elements and noncrossing partitions[END_REF], using the notion of c-sortable elements. Another bijection was given in [START_REF] Brady | Non-crossing partition lattices in finite real reflection groups[END_REF] in the case of bipartite Coxeter elements. We will recast this last bijection in terms of the orders Ă and !, which will allow us to extend it to arbitrary standard Coxeter elements, using the definition of the cluster complex by Reading. We will also give a bijection between the intervals for ! and faces of the positive cluster complex. We also show that intervals of height k for Ă are equienumerated with the faces of the cluster complex of size n ´k and give a bijective proof in the case where c is a bipartite Coxeter element. Finally the orders ! and Ă will allow us to revisit the Chapoton triangles, to give new proofs of their properties and to refine them. This paper is organized as follows. In Section 2 we recall basic facts about finite reflections groups, root systems and Coxeter elements. In Section 3 we define the noncrossing partitions and recall their main properties. We also prove Proposition 3.5, showing a relation between between the Bruhat order and the Kreweras complement on N CpW, cq, which plays a crucial role in this work. Section 4 is the central part of this paper, in it we introduce the two order relations Ă and !, which are the main subject of this paper, we characterize these relations and obtain some of their basic properties. We give a few examples in low rank in Section 5. In Section 6 we study the cluster complex associated to a standard Coxeter element, as defined by Reading [START_REF] Reading | Clusters, Coxeter-sortable elements and noncrossing partitions[END_REF]. This simplicial complex is defined with the help of a binary relation for which we give a new characterization. We also recall facts about nonnesting partitions and Chapoton triangles. In Section 7 we give some enumerative properties of the intervals of the two order relations which exhibit several connections with the cluster complex. In the following section, using the orders Ă and !, we generalize the bijection of [START_REF] Athanasiadis | h-vectors of generalized associahedra and noncrossing partitions[END_REF] between noncrossing partitions and maximal faces of the cluster complex to encompass arbitrary standard Coxeter elements, then we use this to give a bijection between intervals for the order ! and faces of the positive cluster complex. The final section is devoted to some properties of the Chapoton triangles.

Finite Coxeter or real reflection groups

We fix notations, recall some basic facts about real reflection groups and refer to [START_REF] Björner | Combinatorics of Coxeter Groups[END_REF][START_REF] Humphreys | Reflection Groups and Coxeter Groups[END_REF] for general information about these.

2.1. Finite reflection groups, roots, reflections and inversions.

2.1.1. Let V be a finite dimensional euclidian space and W Ă OpV q be a finite real reflection group. Fix a fundamental chamber C, its unit inward normals α 1 , . . . , α n are the simple positive roots and the associated set of fundamental reflections S " ts 1 , . . . , s n u generates W , then pW, Sq is a Coxeter system. We denote by ℓ the length function associated to S. The set of all reflections in W is denoted by T , it is a conjugacy class in W . Each reflection t P T has a fixed hyperplane and the unit normal of this fixed hyperplane, which has positive inner product with C, is a positive root normal to this hyperplane which we denote rptq. The set of positive roots Π is thus in bijection with T . The chamber C is the dual cone of the positive span of positive roots.

The set of negative roots is ´Π and the set of all roots is Π Y p´Πq. The Bruhat order, denoted by ď B , is defined as the transitive closure of the covering relations v Ì B w if vw ´1 P T and ℓpvq ă ℓpwq. A left inversion (respectively, right inversion) of w P W is a t P T such that ℓptwq ă ℓpwq (respectively, ℓpwtq ă ℓpwq). The set of left (respectively, right) inversions is denoted by Inv L pwq (respectively, Inv R pwq). Note that a bijection Inv L pwq Ñ Inv R pwq is given by t Þ Ñ w ´1tw.

Proposition 2.1 ([10], Proposition 4.4.6). For w P W and t P T , we have:

w `rptq ˘" # ´rpwtw ´1q if t is a right inversion of w, rpwtw ´1q otherwise. (1)
In particular, t is a right inversion of w if and only if wprptqq P p´Πq and a left inversion if and only if w ´1prptqq P p´Πq.

Corollary 2.2. If t 1 , t 2 P T commute then t 1 P Inv R pwq ô t 1 P Inv R pwt 2 q i.e. w ď B wt 1 ô wt 2 ď B wt 2 t 1 .
If a simple reflection s P S is a right (repectively, left) inversion of w, it is called a right (repectively, left) descent of w.

If w " s i 1 s i 2 . . . s ir is a reduced expression for w then the r left inversions of w are the reflections of the form (2)

ps i 1 s i 2 . . . s i l´1 qs i l ps i 1 s i 2 . . . s i l´1 q ´1, l " 1, . . . , r,
and of course there is a similar formula for right inversions.

The support of w P W , denoted by supppwq, is the subset of S containing the simple reflections appearing in some reduced expression of w. It does not depend on the chosen reduced expression since any two of them are related by a sequence of braid moves (see [START_REF] Björner | Combinatorics of Coxeter Groups[END_REF]). Equivalently, supppwq is the smallest J such that w P W J , see Section 2.2. We say that w has full support, or that w is full, if supppwq " S. Using the explicit formula in (2), we have: suppptq Ă supppwq if t is a right or left inversion of w.

Remark 2.3. A root r P Π is in ∆ iff it cannot be written as a sum ř rPΠ c r r where the coefficients c v are ě 0 and at least two of them are nonzero. This characterizes the set of simple roots in Π. Also, the simple roots form the unique set of n positive roots having the property that the scalar product of any pair is nonpositive, see [START_REF] Humphreys | Reflection Groups and Coxeter Groups[END_REF].

Coxeter elements.

A standard Coxeter element in pW, Sq is a product s i 1 ¨¨¨s in of all the simple reflections in some order. It is known that all standard Coxeter elements are conjugate in W , but in general they do not form a full conjugacy class. An element which is conjugated to some standard Coxeter element is called a Coxeter element. In this paper we will mostly consider standard Coxeter elements. See [START_REF] Humphreys | Reflection Groups and Coxeter Groups[END_REF]Section 3.16] for a proof. Let S " S `Y S ´be a partition such that all s i in S `commute and all s i in S ´commute (such a partition always exists), then the standard Coxeter element c " c `c´w here c ˘" ś sPS ˘s is called a bipartite Coxeter element. 2.1.3. Absolute length and the absolute order. The absolute length is the length function associated to the generating set T :

(3) ℓ T pwq " mintk ě 0 | w can be expressed as a product of k reflectionsu. This quantity has a geometric interpretation (see [START_REF] Brady | Proceedings of the conference on geometric and combinatorial group theory, Part I[END_REF]Proposition 2.2]): [START_REF] Athanasiadis | h-vectors of generalized associahedra and noncrossing partitions[END_REF] ℓ T pwq " n ´dimpFixpwqq where Fixpwq " kerpw ´Iq.

We call a factorization

v " v 1 . . . v k in W minimal if (5) ℓ T pvq " ℓ T pv 1 q `. . . `ℓT pv k q.
The following elementary lemma is well known, cf. [START_REF] Bessis | The dual braid monoid[END_REF].

Lemma 2.5. Let v " v 1 . . . v k be a minimal factorization, then for any subsequence i 1 . . . i l with

1 ď i 1 ă . . . ă i l ď k the factorization v i 1 . . . v i l is minimal, moreover v i 1 . . . v i l ď v.
Proof. If i 1 " 1, i 2 " 2, . . . , i l " l the statement is a simple consequence of the triangle inequality for ℓ T . In the general case observe that for any

i ă k the factorization v " v 1 . . . v i´1 vi vi`1 v i`2 . . . v k with vi " v i`1 and vi`1 " v ´1 i`1 v i v i`1
is again a minimal. Using this observation we can move successively v i 1 , v i 2 , . . . , v i l to the beginning and reduce to the first case.

Remark 2.6. The preceding lemma implies that, contrary to the case of reduced decomposition into simple reflections, in the case of a minimal factorization into reflections every subword of a reduced word is reduced. In order to avoid confusion, in this paper we will reserve the expressions "reduced word" and "subword" to the case of factorizations into simple reflections, related to the Bruhat order and reserve the expression "minimal factorization" to the case of factorizations satisfying [START_REF] Barnard | Reading: Coxeter-biCatalan combinatorics[END_REF].

The absolute length (3) allows to define an order relation on W , the absolute order denoted here by ď:

v ď w if ℓ T pwq " ℓ T pv ´1wq `ℓT pvq.
In particular a cover relation for this order, denoted by v Ì w, holds if and only if vw ´1 P T and ℓ T pvq " ℓ T pwq ´1. The following properties of the absolute order are immediate or follow directly from Lemma 2.5.

Proposition 2.7. The absolute order is invariant under conjugation and inversion, namely for all u, v, w P W one has [START_REF] Belinschi | Nica: η-series and a Boolean Bercovici-Pata bijection for bounded k-tuples[END_REF] v ď w ðñ v ´1 ď w ´1 ðñ uvu ´1 ď uwu ´1.

Let u, v, w P W be such that u ď v ď w then u ´1v ď u ´1w and u ď uv ´1w ď w.

Parabolic subgroups.

2.2.1. Let J Ă S, then the standard parabolic subgroup W J is the subgroup generated by J. If s P S we will also use the notation W xsy for the parabolic subgroup associated with Sztsu. A parabolic subgroup is any subgroup conjugate to some W J .

The parabolic subgroups have the form P " tw P W : wpxq " x for all x P Eu for some subspace E Ă V , moreover if P is a parabolic subgroup and FixpP q " tx P V : wpxq " x for all w P P u then P is itself a reflection group in OpFixpP q K q. In particular, to each w P W we can associate a parabolic subgroup Γpwq: [START_REF] Bessis | The dual braid monoid[END_REF] Γpwq " tv P W : Fixpwq Ă Fixpvqu.

Simple generators and roots.

Let P Ă W be a parabolic subgroup.

Then P is itself a reflection group, with reflection set T X P , and its roots form a subset of those of W . A natural set of positive roots for P is ΠpP q " Π X P . Accordingly, there is a unique set of simple roots ∆pP q (see Remark 2.3 above) and a set of simple reflections SpP q " r ´1p∆pP qq.

We have ∆pP q Ă Π. Note that ∆pP q Ă ∆ does not hold in general, this only happens for standard parabolic subgroups. Since there are several definitions of these sets ∆pP q or SpP q given in the literature, in order to apply results from various references, it is in order to check that they are all equivalent.

Remark 2.8. A set of positive roots is ∆pP q for some parabolic subgroup P if and only if they are such that the scalar product of any pair is nonpositive.

Proposition 2.9. The simple reflections of P are the reflections t P T X P satisfying Inv R ptq X P " ttu.

Proof. A reflection t P P X T is simple as an element of P , if and only if it has only one inversion as an element of P . Since Inv R ptq X P is the right inversion set of t as an element of P , the result follows.

Proposition 2.10. The set ∆pP q Ă ΠpP q is the unique simple system of P such that the fundamental chamber of P contains that of W . Proof. Since ΠpP q Ă Π, the positive span of ΠpP q is included in that of Π. Taking the dual cone reverses inclusion, so the fundamental chamber of P contains that of W . 2.2.3. The Bruhat graph. The Bruhat graph on the vertex set W is defined by putting an oriented arrow w Ñ v if vw ´1 P T and ℓpvq ă ℓpwq. The unoriented underlying graph is the Cayley graph of W with the reflections as generating set.

Proposition 2.11 ([17]). Let pW, Sq be a Coxeter system and P a parabolic subgroup, then the restriction of the Bruhat graph to P is the Bruhat graph of P for its canonical generators.

In other words, if ď B P is the Bruhat order on P and if v, w P P and vw

´1 is a reflection then v ď B w ðñ v ď B P w.
This implies in particular that for v, w P P one has

v ď B P w ùñ v ď B w.
The converse implication does not hold in general, see [START_REF] Björner | Combinatorics of Coxeter Groups[END_REF] below.

Noncrossing partitions

We refer to [START_REF] Armstrong | Generalized noncrossing partitions and combinatorics of Coxeter groups[END_REF] for the general facts on this subject.

3.1. Definition of noncrossing partitions. Let c be a standard Coxeter element, then the set of noncrossing partitions associated to c, denoted by N CpW, cq, is the set of all w P W such that w ď c. In the case where W is the symmetric group S n`1 with the Coxeter generators s i " pi, i `1q and c " s 1 . . . s n is the cycle p1, 2, 3, . . . , n, n `1q one can associate to any w P N CpW, cq the partition given by its cycle decomposition. This coincides with the classical notion of noncrossing partition as defined by Kreweras, see [START_REF] Kreweras | Sur les partitions non croisées d'un cycle[END_REF], [START_REF] Biane | Some properties of crossings and partitions[END_REF]. In the sequel we denote by N C n the set of classical noncrossing partitions.

Endowed with the order ď the set N CpW, cq is a lattice [START_REF] Brady | Proceedings of the conference on geometric and combinatorial group theory, Part I[END_REF]. Since all Coxeter elements are conjugate, the isomorphism class of this lattice structure does not depend on c. The map w Þ Ñ Γpwq which associates a parabolic subgroup to a noncrossing partition is injective, moreover one has [START_REF] Biane | Some properties of crossings and partitions[END_REF] v ď w ðñ Γpvq Ă Γpwq (see for example [START_REF] Armstrong | Generalized noncrossing partitions and combinatorics of Coxeter groups[END_REF]Section 5.1.3]). In particular, the codimension of the fixed subspace, which is also the absolute length (see ( 4)) gives a rank function on N CpW, cq, which is a rank function for the lattice structure. Parabolic subgroups can be considered as generalized set partitions so that the map Γ gives a way to consider noncrossing partitions as particular set partitions. In the classical case of noncrossing partitions of r1, ns for all i ă j ă k ă l, putting t 1 " pi, kq, t 2 " pj, lq neither product t 1 t 2 or t 2 t 1 belongs to N C n and this property characterizes the crossing of two transpositions with disjoint supports. This leads to the following definition of a property which will play an important role later. i) Bessis uses the notation } c to denote this relation, however this conflicts with the use of the same notation by Reading [START_REF] Reading | Clusters, Coxeter-sortable elements and noncrossing partitions[END_REF] to denote another relation. We will use Reading's notation later on (see Definition 6.3) so we will just say that two reflections are c-noncrossing when needed, without using a specific notation for this relation. ii) Observe that if two reflections t 1 , t 2 do not commute then one cannot have both t 1 t 2 ď c and t 2 t 1 ď c (this follows from the fact that Γpt 1 t 2 q " Γpt 2 t 1 q " xt 1 , t 2 y and the injectivity of w Þ Ñ Γpwq on N CpW, cq).

One can define noncrossing partitions in the same way when c is a (general) Coxeter element, i.e. is conjugated to some standard Coxeter element. Then any noncrossing partition w ď c is a Coxeter element of a parabolic subgroup, see [START_REF] Bessis | The dual braid monoid[END_REF]Lemma 1.4.3]. However our results crucially depend on properties of standard Coxeter elements, therefore in the following we will only consider such Coxeter elements. Proposition 3.3. Let w P N CpW, cq, then there exists an indexing s 1 , . . . , s k of the simple generators of Γpwq such that w " s 1 ¨¨¨s k .

Proof. This follows from results of Reading [START_REF] Reading | Clusters, Coxeter-sortable elements and noncrossing partitions[END_REF]. More precisely, Theorem 6.1 from [START_REF] Reading | Clusters, Coxeter-sortable elements and noncrossing partitions[END_REF] shows that w is the product, in some order, of the so-called cover reflections of a Coxeter-sortable element. By Lemma 3.1 of the same reference these cover reflections are the simple generators of a parabolic subgroup.

Alternatively, this follows from the results of Brady and Watt [START_REF] Brady | Non-crossing partition lattices in finite real reflection groups[END_REF]. In the case of a bipartite Coxeter element, [START_REF] Brady | Non-crossing partition lattices in finite real reflection groups[END_REF]Proposition 5.1] gives a way to compute a valid s k , reducing the problem to finding s 1 , . . . , s k´1 , which can be done inductively. Using Lemma 2.4, it remains only to see how the result is transferred from c to scs where s is a left descent of c. Let w " s 1 ¨¨¨s k be the factorization of w P N CpW, cq as a product of simple generators. If s R ts 1 , . . . , s k u, we have sws " pss 1 sq ¨¨¨pss k sq ď scs and the factors form a simple system, otherwise we can assume s " s 1 and we have sws " s 2 ¨¨¨s k s 1 ď scs.

In other words, each w P N CpW, cq is a standard Coxeter element of its own parabolic subgroup Γpwq, considered as a reflection group. Observe that this property actually depends only on w and not on the standard Coxeter element c such that w ď c.

From iiq of Remark 3. Proof. By induction on n, the length of c. If t 1 " t 1 1 then use the induction hypothesis for the Coxeter element t 1 c P Γpt 1 cq. If t 1 " t 1 j with j ą 1 then t 1 t 1 i ď c and t 1 i t 1 ď c for all i ă j therefore t 1 commutes with all t 1 i with i ă j and we can move it to the left to reduce to the preceding case.

Generalized Catalan and Narayana numbers.

The number of elements of N CpW, cq is the generalized Catalan number CatpW q. If pW, Sq is an irreducible system one has CatpW q "

n ź i"1 h `ei `1 e i `1
where the e i are the exponents of W and h is the Coxeter number, i.e. the order of c as a group element. Analogously the number of elements of N CpW, cq of rank k is the generalized Narayana number Nar k pW q, see e.g. [START_REF] Armstrong | Generalized noncrossing partitions and combinatorics of Coxeter groups[END_REF].

Let N CF pW, cq Ă N CpW, cq denote the set of noncrossing partitions with full support. Its cardinality is the positive Catalan number Cat `pW q, given by Cat `pW q "

n ź i"1 h `ei ´1 e i `1 .
The numbers CatpW q and Cat `pW q are related by inclusion-exclusion.

The positive Narayana number Nar k pW q is the number of noncrossing partitions of rank k with full support. These numbers are related with Narayana numbers by inclusion-exclusion.

Define the Fuß-Catalan numbers Cat pkq pW q as (9) Cat pkq pW q "

n ź i"1 kh `ei `1 e i `1 .
This is the number of chains w 1 ď ¨¨¨ď w k in N CpW, qq, see [START_REF] Chapoton | Enumerative properties of generalized associahedra[END_REF]. Note that this is a polynomial in k. It can be seen as a rescaling of the polynomial

ÿ wPW t ℓ T pwq " n ź i"1
p1 `te i q.

3.3. The Kreweras complement. For any w P N CpW, cq one defines its Kreweras complement as Kpwq " w ´1c. The map K is bijective, and an anti-automorphism of the lattice structure on N CpW, cq. The map K is not involutive, rather K 2 pwq " c ´1wc is an automorphism of N CpW, cq, ďq.

The inverse anti-automorphism of K is K ´1pwq " cw ´1. We sometimes denote K c to mark the dependence on c.

The Kreweras complement has a remarkable compatibility with respect to the Bruhat order, which will play a crucial role in this paper. Proposition 3.5.

i) Let v, w P N CpW, cq with v Ì w, then we have:

v ą B w ùñ Kpvq ą B Kpwq.
ii) The converse result holds under a supplementary hypothesis: let v, w P N CpW, cq with v Ì w, and suppose v has full support in N CpW, cq, then we have:

Kpvq ą B Kpwq ùñ v ą B w.
Before the proof we need a lemma.

Lemma 3.6. Let w P N CpW, cq and let t be a reflection such that tw ă w and tc ă B c, then tw ă B w. The same holds with right multiplication: if wt ă w and ct ă B c, then wt ă B w.

Proof. Since tc ă B c it follows that tc is a subword of length n´1 of a reduced expression for c therefore tc P W xsy for some s P S and tc ă c, moreover s is in the support of t since c R W xsy . As t ă w ď c by Proposition 2.7 one has tw ď tc therefore tw P W xsy . One has t R W xsy and t " ptwqw ´1 with tw P W xsy , therefore w ´1 R W xsy and s belongs to the support of w. It follows that w cannot be obtained as a reduced subword of tw thus tw ă B w. The case of right multiplication is analogous.

Proof of Proposition 3.5. We first prove iq. Suppose that v " tw for some reflection, that v ă w and that w ă B v, then tc ą B c by Lemma 3.6. One has Kpvq " Kpwqc ´1tc and rpc ´1tcq " c ´1prptqq by Proposition 2.1 therefore Kpwqprpc ´1tcqq " w ´1prptqq P Π, again by Proposition 2.1 since tw ą B w.

It follows that c ´1tc is not a right inversion for Kpwq and Kpvq ą B Kpwq. Now we prove iiq. Let v " tw ă w ď c for a reflection t. If tc ă B c then tc P W xsy for some s P S and tc ă c therefore v ă tc P W xsy . We deduce from this that, if v has full support, then tc ą B c. If Kpwq ă B Kpvq then, again by Proposition 2.1 one has rpc ´1tcq " c ´1prptqq and w ´1prptqq " Kpwqprpc ´1tcqq P Π therefore t is not a left inversion for w and tw ą B w. Proof. The map L is the composition of the maps w Ñ w ´1 which is an isomorphism from N CpW, cq to N CpW, c ´1q, the isomorphism w Þ Ñ c `wc from N CpW, c ´1q to N CpW, cq and the Kreweras map K which is an antiautomorphism of N CpW, cq, therefore L is an anti-automorphism. The fact that it is an involution follows from c 2

˘" e. We call the map L the bipartite complement on N CpW, cq. Like the Kreweras complement, the bipartite complement is compatible with the Bruhat order. Proposition 3.8.

i) Let v, w P N CpW, cq with v Ì w, then we have:

v ą B w ùñ Lpvq ą B Lpwq.
ii) Let v, w P N CpW, cq with v Ì w, and suppose that v has full support, then we have:

Lpvq ą B Lpwq ùñ v ą B w.
Proof. We first prove iq. Suppose that v " tw for some reflection t, that v ă w and w ă B v, then tc ą B c by Lemma 3.6. It follows, applying repeatedly Proposition 2.1, that t R S `and rpc `tc `q " c `prptqq. Applying the same reasoning to v " wpw ´1twq gives that cpw ´1twq ą B c and w ´1tw R S therefore, since w ´1prptqq " rpw ´1twq, one has rpc ´1 w ´twc ´q " c ´w´1 prptqq. One has Lpvq " c `tc `Lpwq and Lpwq ´1prpc `tc `q " rpc ´1 w ´twc ´q and c `tc ìs not a left inversion of Lpwq, thus Lpvq ą B Lpwq. We now prove iiq. Let v " tw ă w for some reflection t and suppose that v has full support. Arguing as in to the proof of iiq in Proposition 3.5 we get tc ą B c moreover let t 1 " v ´1tv then v " wt 1 and, similarly, ct 1 ą B c. In particular, t is not a left inversion of c `and t 1 is not a right inversion of c´. Suppose now that Lv ą B Lw i.e. c `vc ´ąB c `tvc ´then c `tc `is a left inversion of c `vc ´and, since c `prptqq is positive we see that c ´v´1 prptqq is a negative root. Since t 1 is not a right inversion of c ´we see that v ´1prptqq is a negative root therefore w " tv ă B v.

Interval partitions.

They form a natural subset of N CpW, cq defined as follows.

Definition 3.9. Given a Coxeter element c, an interval partition is an element of N CpW, cq whose associated parabolic group is standard, i.e. the interval partitions are the w P N CpW, cq such that Γpwq " W J for some J Ă S. We denote by IN T pW, cq the set of interval partitions of N CpW, cq.

Equivalently, w P W is an interval partition if and only if w ď B c. Since a reduced word for c contains each simple reflection exactly once, it is easy to see that each subword is a reduced word, therefore the orders ď and ď B coincide on IN T pW, cq and give it the structure of a Boolean lattice, isomorphic to the lattice of subwords of a reduced expression for c, or to the lattice of subsets of ∆, or of S.

One can check that, when W is the symmetric group with its canonical Coxeter generators and c is the cycle p1 . . . nq, the interval partitions coincide with the classical ones (cf. e.g. [START_REF] Speicher | Boolean convolution[END_REF]). Definition 3.10. For w P N CpW, cq we denote by w the largest interval partition below w and by w the smallest interval partition above w in pN CpW, cq, ďq.

The relative Kreweras complement of w with respect to w is Kpw, wq " w ´1w.

Since the restriction to IN T pW, cq of the abolute order is a lattice order the existence and uniqueness of w and w is immediate. One can also characterize w by its associated simple system: ∆pΓpwqq " ∆pΓpwqq X ∆pW q.

Analogously if J Ă S is the support of w, then the subword γ of c consisting of elements of J is the unique Coxeter element in N CpW, cq X W J and one has γ " w, moreover w has full support in Γpγq " W J . It is easy to see that the map w Þ Ñ w is a lattice homomorphism.

There is also a characterization of w as a maximum, which we leave to the reader to check. We now consider the upper ideal tw P N CpW, cq | w ě γu for certain interval partitions γ. Proposition 3.12. Let s P S be a left descent of c (i.e. sc ă B c).

i) Let w P N CpW, cq be such that s ď w, then sw P W xsy .

ii) The map v Þ Ñ sv is a lattice homomorphism from N CpW xsy , scq to N CpW, cq whose image is the subset tw P N CpW, cq|w ě su. There is a similar statement with right descents.

Proof. iq It follows from Proposition 2.7 that sw ď sc hence sw P N CpW xsy q.

iiq It is easy to see that if v P W xsy then ℓ T psvq " ℓ T pvq `1 which implies the result, using Proposition 2.7 to see that it is a homomorphism and the first statement to see that the map is surjective.

Finally the case of right descents follows by considering the order preserving isomorphism w Þ Ñ w ´1 from N CpW, cq to N CpW, c ´1q. Corollary 3.13. Let a be an initial subword of c and b be a final subword with ℓpaq`ℓpbq ď ℓpcq, then ab P IN T pW, cq and the set tw P N CpW, cq|ab ď wu is the image of the map v Þ Ñ avb from N CpW xaby , a ´1cb ´1q to N CpW, cq, which is a lattice homomorphism.

Proof. By induction on ℓpaq `ℓpbq using the preceding proposition.

In the bipartite case, one can say more. Proof. It is easy to see that L corresponds to the complementation map if on identitifes IN T pW, cq with the set of subsets of ∆ or S.

Since L is an involutive anti-automorphism one can see that, if γ P IN T pW, cq then L exchanges the sets tw|w " γu and tw|w " Lpγqu.

4. Two order relations on W 4.1. Definition of the orders. Consider a Coxeter system pW, Sq. For any covering relation of the absolute order v Ì w in W one has vw ´1 P T , therefore v and w are comparable for the Bruhat order, namely one has v ă B w if ℓpvq ă ℓpwq or w ă B v if ℓpwq ă ℓpvq. We introduce two order relations which encode this distinction by refining the absolute order. 

v Ì w in W define v Ă ¨w if v ă B w, v !¨w if w ă B v,
and extend these relations to order relations Ă and ! on W by transitive closure.

Since Ă ¨and !¨are included in Ì (seeing relations as sets of pairs), they are acyclic and their transitive closures Ă and ! are partial orders which are included in ď and whose cover relations are Ă ¨and !¨. This justifies the previous definition. Also the rank function for ď serves as a rank function for Ă and !.

The order Ă was introduced by the second author in [START_REF] Josuat-Vergès | Refined enumeration of noncrossing chains and hook formulas[END_REF] on the set N CpW, cq, while ! was introduced by Belinschi and Nica in [START_REF] Belinschi | Nica: η-series and a Boolean Bercovici-Pata bijection for bounded k-tuples[END_REF] in the case of classical noncrossing partitions, both with different definitions. We shall see below that they are specializations of our definitions.

Observe that, as an immediate consequence of the definitions, one has

v Ă w ùñ v ď w, v ď B w, v ! w ùñ v ď w, w ď B v.
The opposite implications, however, do not hold in general. Here is a counterexample in the symmetric group S 5 : take (in cycle notation) [START_REF] Björner | Combinatorics of Coxeter Groups[END_REF] v " p2, 4q, w " p1, 5qp2, 3, 4q.

We have v ď w, ℓpvq " 3 and ℓpwq " 9. There are two elements between v and w in the absolute order, which are p1, 5qp2, 4q and p2, 3, 4q. Their respective Coxeter lengths are 10 and 2, therefore we have:

v " p2, 4q Ă ¨p1, 5qp2, 4q !¨p1, 5qp2, 3, 4q " w, v " p2, 4q !¨p2, 3, 4q Ă ¨p1, 5qp2 , 3, 4q " w. 
It follows that v Ć w. On the other side, we have v ď B w and a shortest path in the Bruhat graph is (an arrow with label t represents multiplication by t on the right):

p1, 5qp2, 3, 4q ÝÑ p2, 4q.

The respective lengths of the elements in this path are 9, 8, 5, 4, 3. Note that v and w are both noncrossing partitions but the path goes through elements that are not noncrossing partitions. Let w P W and let Γpwq be the associated parabolic subgroup. Since the orders Ă and ! can be defined using only the Bruhat graph and the absolute order, it follows from Proposition 2.11 that, on the set tv P W | v ď wu the orders Ă and ! depend only on the Bruhat order on Γpwq (with its canonical system of generators).

In the sequel we shall mainly be interested in the restrictions of these order relations to N CpW, cq for some standard Coxeter element c. i) Let v, w P N CpW, cq with v Ì w, then we have:

v ! w ùñ Kpwq Ă Kpvq.
ii) Let v, w P N CpW, cq with v Ì w, and suppose v has full support in N CpW, cq, then we have:

Kpwq Ă Kpvq ùñ v ! w. ( 11 
)
Note that by taking the contraposition in iq of Proposition 4.2, we see that the same result holds with K ´1 instead of K. The situation is slightly different for iiq and we need another argument. The map ι : w Þ Ñ w ´1 leaves S and T invariant, preserves length, absolute length and support, moreover it sends N CpW, cq to N CpW, c ´1q. We have pι ˝Kc qpwq " ιpw ´1cq " c ´1w " c ´1ιpw ´1q " pK ´1 c ´1 ˝ιqpwq. Applying the map ι to Equation [START_REF] Brady | Proceedings of the conference on geometric and combinatorial group theory, Part I[END_REF] shows that iiq also holds with K ´1 instead of K. Using these remarks we can rephrase the proposition as follows. There are similar statements for the map L in the bipartite case, which we leave to the reader. Proof. If v Ă w then, as we saw, v ď w and v ď Bw w so that iq implies iiq. Suppose now that iiq holds. According to Proposition 3.3, write w as a product of the simple reflections of Γpwq, say w " s 1 ¨¨¨s k . Any v ď Bw w is the product of a subword s i 1 . . . , s i l and ∆pΓpvqq " ts i 1 , . . . , s i l u Ă ∆pΓpwqq so that iiq implies iiiq.

Finally if ∆pΓpvqq Ă ∆pΓpwqq then by taking the generated groups one has Γpvq Ă Γpwq and v ď w. If ℓ T pvq " ℓ T pwq´1 then vw ´1 P T therefore either v ă Bw w or w ă Bw v. Since ∆pΓpvqq Ă ∆pΓpwqq but ∆pΓpvqq ‰ ∆pΓpwqq there exists a simple reflection s P ∆pΓpwqqz∆pΓpvqq. As v is a product of reflections in ∆pΓpvqq it follows that w cannot be obtained as a subword of any reduced decomposition of v, therefore v ă Bw w and v is obtained by taking a subword of length k ´1 of the reduced decomposition w " s 1 ¨¨¨s k . The proof now follows by induction on the cardinality of ∆pΓpwqqz∆pΓpvqq, using the fact that the Bruhat graph of the subgroups Γpvq are obtained by restriction of the Bruhat graph of W (Proposition 2.11).

Property iiiq was the original definition of the order Ă on N CpW, cq in [START_REF] Josuat-Vergès | Refined enumeration of noncrossing chains and hook formulas[END_REF]. Since any subset of ∆pΓpwqq is a simple system in Γpwq we see that the lower ideal tv : v Ă wu is isomorphic to the boolean lattice of order rkpwq, in particular its cardinality is 2 rkpwq , moreover on this ideal the three order relations ď, ď Bw and Ă coincide.

Note that ∆pΓpwqq Ă ∆pΓpvqq if and only if SpΓpwqq Ă SpΓpvqq using the bijection between positive roots and reflections.

Let now c be a standard Coxeter element, since Γpcq " W and ∆pW q " S it follows that the interval partitions in IN T pW, cq are exactly the noncrossing partitions w P N CpW, cq satisfying w Ă c. As is clear from its definition the order Ă is not invariant under conjugation and one cannot, as in the case of the abolute order, reduce the study of Ă on N CpW, cq to the case where the Coxeter element c is bipartite. Actually we will see in Section 5 that, already for S 4 , the order type of the poset pN CpW, cq, Ăq does depend on the standard Coxeter element c.

4.4.

A simplification property. The following result it is similar to Proposition 2.7.

Lemma 4.6. Let t P T and u, v P N CpW, cq be such that u ď v Ă vt ď c then u Ă ut ď vt.

Proof. First one has u ď ut ď vt by Proposition 2.7. Observe that the statement of the lemma depends only on the absolute and the Bruhat orders inside the parabolic subgroup Γpvtq therefore we can assume that vt " c is a standard Coxeter element. Since ct Ă c there exists s P S such that ct is a standard Coxeter element in W xsy . It follows that u P W xsy and t R W xsy therefore ut R W xsy and ut cannot be obtained as a subword of a reduced expression of u, thus u ď B ut and u Ă ut. 4.5. pN CpW, cq, Ăq as a flag simplicial complex. We now define a symmetric binary relation on the set T of reflections such that pN CpW, cq, Ăq is the face poset of the associated flag simplicial complex. Recall that a simplicial complex is called a flag simplicial complex if, given vertices v 1 , . . . , v k , the set tv 1 , . . . , v k u is a face of the complex if and only if for all 1 ď i ă j ď n, the set tv i , v j u is a face. In order to define such a complex it is enough to a give the symmetric relation on the vertices: tv i , v j u is a face. Proof. The image of w is a subset of T and taking the subgroup generated by this subset gives Γpwq. Since the map Γ, restricted to N CpW, cq, is injective it follows w Þ Ñ SpΓpwqq is also injective. It remains to show that its image is ΞpW, cq.

Since SpΓpwqq is a simple system, the scalar product of any two of its elements is nonpositive. Moreover by Proposition 3.3, there is an indexing SpΓpwqq " ts 1 , . . . , s k u such that s 1 ¨¨¨s k ď c, consequently s i s j ď c if i ă j. It follows that s i c s j for all i ă j, therefore SpΓpwqq P ΞpW, cq.

It remains to show that the map is surjective. Let X P ΞpW, cq. Because xrptq|rpuqy ď 0 for all t, u P X, this is a simple system, i.e. X " SpP q for some parabolic subgroup P Ă W . Now consider a directed graph G defined as follows:

' its vertex set is X, ' there is an edge from t P X to u P X if xrptq|rpuqy ă 0 and tu ď c.

It is well defined because, xrptq|rpuqy ă 0 implies tu ‰ ut therefore, according to Remark 3.2, we cannot have both tu ď c and ut ď c. The undirected version of G is the Coxeter graph of P (without labels on the edges). Since P Ă W is finite, a classical argument implies that G is acyclic, so that it is possible to find an indexing X " ts 1 , . . . , s k u such that the existence of a directed edge s i Ñ s j implies i ă j. It follows that s i s j ď c for all 1 ď i ă j ď k.

Let us consider the case k " #X " 3, so suppose we have X " ts 1 , s 2 , s 3 u with s 1 s 2 ď c, s 1 s 3 ď c, and s 2 s 3 ď c. Since s 2 s 3 P N CpW, cq and this poset is a ranked lattice, the least upper bound of s 2 and s 3 is s 2 s 3 . On the other hand, by Proposition 2.7, we get s 2 , s 3 ď s 1 c therefore s 2 s 3 ď s 1 c, and consequently s 1 s 2 s 3 ď c, so that X " SpΓps 1 s 2 s 3 qq. The general case follows by induction on #X and this shows the surjectivity.

Chains in

N CpW, cq. A factorization c " t 1 . . . t n
where each t i is a reflection is minimal. The number of such minimal factorizations of the cycle c is (Deligne's formula):

n!h n |W | .
One can interpret this result as the counting of maximal chains in N CpW, cq. This number can be obtained from the leading term in k of Cat pkq pW q and the identity ś i pe i `1q " |W |. A refined enumeration of maximal chains in N CpW, cq using the relation Ă ¨was obtained in [START_REF] Josuat-Vergès | Refined enumeration of noncrossing chains and hook formulas[END_REF]. Definition 4.9 ([21]). For each maximal chain ̟ " pw i q 0ďiďn in N CpW, cq (i.e. we have rkpw i q " i and w i Ì w i`1 ), we define nirp̟q as the number of i P t0, . . . , n ´1u such that w i !¨w i`1 , and

M pW, qq " ÿ q nirp̟q
where we sum over ̟ maximal chain in N CpW, cq.

The second author showed in [START_REF] Josuat-Vergès | Refined enumeration of noncrossing chains and hook formulas[END_REF] that this polynomial is a rescaled version of Fuß-Catalan numbers Cat pkq pW q: M pW, qq " n!p1 ´qq n Cat p q 1´q q pW q. [START_REF] Brady | Non-crossing partition lattices in finite real reflection groups[END_REF] Note that the inverse relation is

Cat pkq pW q " 1 n! p1 `kq n M `W, k 1`k
ȃnd it follows from ( 12) and ( 9) that there exists a formula in terms of the degrees of the group:

M pW, qq " n! |W | n ź i"1 `di `qph ´di q ˘. (13) 
We use here the degrees d i " e i `1 rather than the exponents because the formula is more compact. The specialization M pW, 0q " n! is seen combinatorially: since interval partitions form a boolean lattice, the number of maximal chains in IN T pW, cq is n!.

Much more can be said in the case of the symmetric group. Let c be the long cycle p1, 2, 3, . . . , nq in S n . In [START_REF] Biane | Minimal factorizations of a cycle: a multivariate generating function[END_REF], we gave a multivariate generating function for maximal chains π 0 ă π 1 ă ¨¨¨ă π n´1 in the noncrossing partition lattice of the form [START_REF] Chapoton | Enumerative properties of generalized associahedra[END_REF] ÿ

π 0 ,π 1 ,...π n´1 wtpπ 0 , π 1 , . . . , π n´2 q " n´2 ź i"1 piX i `n ´iq
where the weight wt is the product of the X i over all i ě 1 such that π i Ć π i`1 . Let a " pa 1 , . . . , a r q where a i ě 2. A factorization c " z 1 . . . z r where z i is a cycle of length a i is said to be of type a. This exists only if ř r i"1 pa i 1q ě n ´1 and the factorization is minimal in case of equality. Again one can interpret such factorizations as chains π 0 ă π 1 . . . ă π r (where π i " z 1 . . . z i ; i ě 1) of a certain type in the lattice of noncrossing partitions. Using this interpretation and extending the definition of the weight wt in an obvious way, we obtained the following generating function over the set Fpaq of such chains: Theorem 4.10. Let b i " ř i j"1 pa j ´1q. We have:

(15) ÿ z 1 ...zrPF paq wtpz 1 . . . z r q " r´1 ź i"1 `Xi b i `n ´bi ˘.
It would be interesting to investigate the existence of similar formulas for other types. Proof. We have already noted that iq implies iiq.

If iiq holds then w can be obtained as a subword of a reduced decomposition of v in Γpwq. Since w has full support in Γpwq it follows that v has full support in Γpwq and iiiq holds.

Suppose now that iiiq holds, thus that v has full support in Γpwq. If ℓ T pvq " ℓ T pwq ´1 then either w ď Bw v or v ď Bw w. Since w is a Coxeter element in Γpwq (cf. Proposition 3.3)) if v ď Bw w then v cannot have full support. It follows that w ď Bw v therefore v ! w. If ℓ T pvq " ℓ T pwq´l, l ą 1 let x " Kpvq " wv ´1 be the Kreweras complement of v and let x " γ 1 . . . γ l be a reduced decomposition in Γpxq Ă Γpwq. The sequence x 0 " e, x 1 " γ 1 , . . . , x l " x satifies x 0 " e ď Bx x 1 ď Bx . . . ď Bx x l " x and the Bruhat graph of Γpxq is the restriction of the Bruhat graph of Γpwq therefore x 0 " e ď Bw x 1 ď Bw . . . ď Bw x l " x. Applying iiq of Proposition 4.2 and using induction on i, one has v !¨x ´1 l´i w for all i.

Let N C n be the set of classical noncrossing partitions, corresponding to the symmetric group and the cycle p1, . . . , nq as Coxeter element, then Belinschi and Nica [START_REF] Belinschi | Nica: η-series and a Boolean Bercovici-Pata bijection for bounded k-tuples[END_REF] defined an order relation ! on N C n by π ! ρ if π ď ρ and for every block B of ρ, the minimum and the maximum of B belong to the same block of π. It is easy to see that this agrees with our definition in this case.

Proposition 4.12. The poset pN CpW, cq, !q has 2 n connected components. They are the lower ideals [START_REF] Cuntz | On root posets for noncrystallographic root systems[END_REF] tw P N CpW, cq : w ! γu " tw P N CpW, cq : w " γu where γ runs through the 2 n interval partitions of W . In particular, interval partitions are the maximal elements for the order !.

Proof. From the characterization of ! in Theorem 4.11, we can see that the two sets on both sides of ( 16) are the same. Clearly, each lower ideal considered here is connected, so it remains to show that they cannot be connected with each other. Let v, w P N CpW, cq with v ! w, we thus have to show v " w, i.e. v and w have the same support. Since v ! w, we have w ď B v therefore supppwq Ă supppvq. If there exists s P supppvqz supppwq then w P W xsy and Γpvq Ă W xsy which contradicts v P Γpvq Ă Γpwq.

Since c is itself an interval partition, the poset pN CF pW, cq, !q is one of the connected components described in the previous proposition. We can call it the main connected component. The other connected components are of similar nature, since they can be seen as the main connected component of a standard parabolic subgroup. It is therefore enough to study the properties of the main connected component. Proposition 4.13. Let w P N CpW, cq, then the relative Kreweras complement v Ñ v ´1w defines a poset anti-isomorphism [START_REF] Dyer | On the "Bruhat graph" of a Coxeter system[END_REF] `tv P N CpW, cq : v " wu, ! ˘ÝÑ `tv P N CpW, cq : v Ă w ´1wu, Ă ˘.

Proof Proof. It was noted above the lower ideals for Ă are boolean. The result follows from the anti-isomorphism of the previous proposition, since boolean posets are anti-isomorphic to themselves.

Examples

In this section we show a few pictures of the symmetric groups which illustrate the main properties of our objects. The graph of the relation c

Cluster complex, nonnesting partitions and Chapoton triangles

6.1. The cluster complex. The cluster complexes were introduced by Fomin and Zelevinsky in [START_REF] Fomin | Cluster algebras. II. Finite type classification[END_REF] as dual to generalized associahedra, in relation with cluster algebras. In this paper we will use the notion of c-clusters as defined by Reading [28, Section 7], following Marsh, Reineke and Zelevinsky [START_REF] Marsh | Generalized associahedra via quiver representations[END_REF]. Let Φ ě´1 " p´∆q Y Π be the set of almost positive roots (see [START_REF] Fomin | Cluster algebras. II. Finite type classification[END_REF]).

Proposition 6.1 ([28]

). For each s P S, let σ s denote the bijection from Φ ě´1 to itself defined by:

σ s pαq " # α if α P p´∆qzt´rpsqu, spαq if α P Π Y t´rpsqu.
There exists a unique family of symmetric binary relations on Φ ě´1 indexed by standard elements, denoted by } c , such that: The definition of } c is not fully explicit and uniqueness relies on Lemma 2.4. A more direct characterization of } c is given in [START_REF] Ceballos | Stump: Subword complexes, cluster complexes, and generalized multi-associahedra[END_REF] using the subword complex. Another will be given in Proposition 6.6. Let us first review some results from [START_REF] Reading | Clusters, Coxeter-sortable elements and noncrossing partitions[END_REF][START_REF] Reading | Cambrian fans[END_REF]. Definition 6.3 ([28]). The c-cluster complex ΥpW, cq is the flag simplicial complex on the vertex set Φ ě´1 defined by the relation } c . A c-cluster is a maximal face of ΥpW, cq. This complex is pure, so that every c-cluster has dimension n. Clearly, the map σ s provides an isomorphism between ΥpW, cq and ΥpW, scsq if s P S is a left descent of c. So the isomorphism type of ΥpW, cq does not depend on c, see [START_REF] Reading | Clusters, Coxeter-sortable elements and noncrossing partitions[END_REF][START_REF] Reading | Cambrian fans[END_REF] for details.

' if α, β P ´∆, then α } c β, ' if α P ´∆
The face generating function with respect to cardinality is:

ÿ F PΥpW,cq x #F " n ÿ k"0 Nar k pW qx n´k p1 `xq k . ( 18 
)
In particular, taking the coefficient of x n shows that the number of clusters is CatpW q. Moreover (18) implies that the integers Nar k pW q are the entries of the h-vector of ΥpW, cq. Definition 6.4. The positive part of ΥpW, cq, denoted by Υ `pW, cq, is the flag simplicial complex with vertex set Π and compatibility relation } c .

Clearly, Υ `pW, cq is a (full) subcomplex of ΥpW, cq. Note that it may happen that Υ `pW, c 1 q and Υ `pW, c 2 q are not isomorphic if c 1 , c 2 are two different standard Coxeter elements. The face generating function with respect to cardinality is:

ÿ F PΥ `pW,cq x #F " n ÿ k"0 Nar k pW qx n´k p1 `xq k . ( 19 
)
In particular, taking the coefficient of x n shows that the number of positive c-clusters is Cat `pW q and the integers Nar k pW q are the entries of the hvector of Υ `pW, cq.

We give a direct characterization of } c in Proposition 6.6 below. It is an extension of Brady and Watt's results in the bipartite case [START_REF] Brady | Non-crossing partition lattices in finite real reflection groups[END_REF] to any standard Coxeter element. We begin with a lemma. Lemma 6.5. Suppose s P S is a left descent of c, and let t P T ztsu. Then the following two conditions are equivalent:

' xrpsq|rptqy ě 0, and s, t are c-noncrossing (see Definition 3.1), ' s R supppstsq.

Proof. We begin by showing that the first condition implies the second one. ùñ, case 1: st ď c. By Proposition 3.12, we have t ď sc and t P W xsy therefore s R suppptq and xrpsq|rptqy ď 0. Since we already have xrpsq|rptqy ě 0, we get xrpsq|rptqy " 0, which means st " ts. Then s R supppstsq follows from s R suppptq since sts " t. ùñ, case 2: ts ď c. We have ℓ T ptsq " 2 since s ‰ t, therefore s ď ts. By Proposition 3.12, we get sts ď sc P W xsy . It follows that s R supppstsq. ðù, case 1: st " ts. First note that we have xrpsq|rptqy " 0 in this case, so in particular it is ě 0. Then, we have sts " t so s R suppptq. It follows that t ď sc and st ď c by Proposition 3.12. ðù, case 2: st ‰ ts. We have sts P W xsy , so ts " spstsq ď c by Proposition 3.12. Also, from sts P W xsy we get xrpsq|rpstsqy ď 0. Since s is in the orthogonal group, it preserves the scalar product and we get xsprpsqq|sprpstsqqy ď 0, hence x´rpsq|rptqy ď 0 and xrpsq|rptqy ě 0 as needed.

Using the above lemma we can now give a more explicit characterization of the relation } c . Proposition 6.6. Let α, β P Π, then α } c β if and only if the following two conditions hold:

' r ´1pαq, r ´1pβq are c-noncrossing, ' xα|βy ě 0.

Proof. Let us introduce a family of binary relations }c on Φ ě´1 by: ' if α, β P Π one has α }c β if and only if xα|βy ě 0 and r ´1pαq, r ´1pβq are c-noncrossing, ' otherwise, α }c β if and only if α } c β.

We show that the relations }c satisfy the rules of } c given in Definition 6.1. By uniqueness it follows that }c " } c . The first two points in Definition 6.1 are obviously satisfied by the family }c therefore we just need to show that they satisfy the third point. Let s be a left descent of c and α, β P Φ ě´1 . Case 1: α, β P p´∆qzt´rpsqu. We have then σ s pαq " α, σ s pβq " β, it follows that α }c β and σ s pαq }scs σ s pβq both hold. Case 2: α P p´∆qztrpsqu, β " ´rpsq. One has α }c β, σ s pαq " α, σ s pβq " ´β ą 0 and ´α R suppp´βq " tsu therefore σ s pαq }scs σ s pβq.

Case 3:

α, β P Πztrpsqu. In this case, one has σ s pαq " spαq and σ s pβq " spβq. Since s P OpV q preserves the scalar product, xα|βy " xσ s pαq|σ s pβqy, moreover r ´1pσ s pαqq " sr ´1pαqs and r ´1pσ s pβqq " sr ´1pβqs therefore r ´1pσ s pαqqr ´1pσ s pβqq " sr ´1pαqr ´1pβqs and the conclusion follows since ď is invariant under conjugation. Case 4: α " ´rpsq, β P Πztrpsqu. This case follows from Lemma 6.5 putting s " r ´1pαq and t " sr ´1pβqs. Case 5: α " rpsq, β P Πztrpsqu. Again use Lemma 6.5 for s " r ´1pαq and t " r ´1pβq.

Since the relations } c and }c are symmetric we have covered all cases.

By Proposition 3.3, if w ď c then w is a standard Coxeter element of Γpwq so that the complex ΥpΓpwq, wq is well defined. An interesting consequence of Proposition 6.6 is that for t 1 , t 2 P ΠpΓpwqq, we have tt 1 , t 2 u P ΥpΓpwq, wq if and only if tt 1 , t 2 u P ΥpW, cq. This will be used in Proposition 8.10 to show that any positive face in ΥpW, cq is a cluster in ΥpΓpwq, wq for some w ď c, a result which is easily extended to all faces.

Note the similarity between Proposition 6.6 and Definition 4.7 therefore between the two flag simplicial complexes Υ `pW, cq and ΞpW, cq. Their vertex sets are respectively T and Π, and are in bijection via the map r, besides this the only difference is the required sign of the scalar product. Despite this they have very different properties: unlike Υ `pW, cq, the simplicial complex ΞpW, cq is not pure and its topology can be rather complicated.

Eventually, the following result will be useful: Proposition 6.7. If F P Υ `pW, cq, there is an indexing F " tα 1 , . . . , α k u such that rpα 1 q ¨¨¨rpα k q ď c.

Proof. It is sufficient to check this statement for k " n and rpα 1 q ¨¨¨rpα n q " c. This case follows from [13, Proposition 2.8].

Alternatively, this follows from the work of Brady and Watt [START_REF] Brady | Non-crossing partition lattices in finite real reflection groups[END_REF]. In the case where c is a bipartite Coxeter element, [12, Note 3.3] implies the result. It remains to show that this is preserved under the moves c Ñ scs as in Lemma 2.4. We omit details. 6.2. The relation } c and the orders Ă and !. In the simply laced case (i.e. types A n , D n and E n in the classification), using Proposition 6.6 the compatibility relation } c on Π can be completely rephrased in terms of the orders Ă and !, without using roots or even the group structure. This relies on three observations: ' Each rank 2 parabolic subgroup has type A 2 or A 2 1 in the classification. For any pair of distinct reflections in such a subgroup, we can take the product in some order to get a given Coxeter element. It means that the condition tu ď c or ut ď c for t, u P T is equivalent to the existence of v ď c such that rkpvq " 2, and t ď v, u ď v.

' The condition xrptq|rpuqy ą 0 means that tt, uu is not the simple system of Γpvq, so it is equivalent to the fact that either t ! v or u ! v (with v as above). ' The condition xrptq|rpuqy " 0 means tu " ut, it is equivalent to the fact that the interval re, tus ď contains only e, t, u, tu. It follows that α } c β is equivalent to:

' r ´1pαq and r ´1pβq have a least upper bound v of rank 2, ' Either re, vs ď " te, r ´1pαq, r ´1pβq, vu, or r ´1pαq ! v or r ´1pβq ! v.

6.3. Nonnesting partitions. When W is a Weyl group, we have an associated root poset, defined in terms of the crystallographic root system of W . We defined roots to be unit vectors, which is not convenient for crystallographic root system, so we only sketch the definition here and refer to [20, Chapter 2.9]. The idea is to allow to have roots of different lengths, so we consider positive numbers pa α q αPΠ and assume that the vectors a α α satisfies, for all α, β P Π: 2xa α α|a β βy xa β β|a β βy P Z.

Definition 6.8. The partial order ď on Π is defined by α ď β if a β β ´aα α is a linear combination of simple roots with nonnegative coefficients and pΠ, ďq is called the root poset of W . We denote N N pW q the set of antichains of pΠ, ďq, and such an antichain is called a nonnesting partition.

In the case where W is not a Weyl group (i.e. one of I 2 pmq, H 3 , and H 4 in the classification), it is possible to define ad hoc posets having all the required properties of a root poset. See [1, Section 5.4.1] and [START_REF] Cuntz | On root posets for noncrystallographic root systems[END_REF] for more details on this subject. All our results are valid using these "noncrystallographic root posets".

Just as N CpW, cq and ΥpW, cq, the set N N pW q is a flag simplicial complex. Its vertex set is Π, and two vertices are compatible if they are not comparable in the root poset. This complex is not pure. Definition 6.9. The support of a nonnesting partition A is: supppAq " tδ P ∆ : Dα P A, δ ď αu.

It is similar to the notion of support a group element w P W , so there should be no confusion. For example, note that for A P N N pW q, we have s R supppAq if and only if π P N N pW xsy q. 6.4. Enumeration of full reflections. The number of t P T with full support is Nar 1 pW q. Chapoton [START_REF] Chapoton | Sur le nombre de réflexions pleines dans les groupes de coxeter finis[END_REF] obtained the formula [START_REF] Humphreys | Reflection Groups and Coxeter Groups[END_REF] Nar

1 pW q " nh |W | n ź i"2 pe i ´1q
by a case by case verification, and he also conjectured a representation theoretical interpretation. We show that this formula can be obtained from the properties of !.

By Proposition 4.11, a reflection t P T is full if and only if t ! c, which is equivalent to the existence of a maximal chain e Ă ¨w1 !¨w 2 !¨¨¨¨!¨w n " c [START_REF] Josuat-Vergès | Refined enumeration of noncrossing chains and hook formulas[END_REF] with t " w 1 in N CpW, cq. Note that these maximal chains are those with the maximal number of !¨, as we have e Ă ¨t for t P T . So their number is the dominant coefficient in [START_REF] Ceballos | Stump: Subword complexes, cluster complexes, and generalized multi-associahedra[END_REF]. Noticing that d n `qph ´dn q " h is a constant, this dominant coefficient is:

n!h |W | n´1 ź i"1 ph ´di q. ( 22 
)
The number of maximal chains as in ( 21) is also pn ´1q! times the number of full reflections: for a given w 1 the possible choices for w 2 , . . . , w n are the maximal chains in rw 1 , cs ! which is a boolean lattice of rank n ´1 by Corollary 4.14 and their number is pn ´1q!. To get the right hand side of ( 20) from [START_REF] Kreweras | Sur les partitions non croisées d'un cycle[END_REF] divided by pn ´1q!, it remains only to use the equalities d i " e i `1, h ´ei " e n`1´i .

Fomin and Reading in [START_REF] Fomin | Reading: Generalized cluster complexes and Coxeter combinatorics[END_REF]Section 13.4] asked for a better combinatorial way to relate full reflections with objects counted by Fuß-Catalan numbers (k-noncrossing partitions, generalized clusters, see [START_REF] Armstrong | Generalized noncrossing partitions and combinatorics of Coxeter groups[END_REF]). Our derivation of the formula does not give a full answer but recasts the problem in a more general form: have a better combinatorial way to relate Fuß-Catalan objects and the generating function M pw, qq, thus explaining the relation [START_REF] Brady | Non-crossing partition lattices in finite real reflection groups[END_REF]. 6.5. Chapoton triangles. The F -, M -and H-triangles are polynomials in two variables defined respectively in terms of ΥpW, cq, the Möbius function of N CpW, cq, and N N pW q. The F " M and H " M theorems state that these polynomials are related to each other by invertible substitutions (there is an F " H theorem as an immediate consequence of the other two). They were conjectured by Chapoton in [START_REF] Chapoton | Sur le nombre de réflexions pleines dans les groupes de coxeter finis[END_REF] and [START_REF] Chapoton | Enumerative properties of generalized associahedra[END_REF], respectively, and proved by Athanasiadis [START_REF] Athanasiadis | On some enumerative aspects of generalized associahedra[END_REF] and Thiel [START_REF] Thiel | On the H-triangle of generalised nonnesting partitions[END_REF], respectively. See also [START_REF] Armstrong | Generalized noncrossing partitions and combinatorics of Coxeter groups[END_REF] for generalizations. The F -triangle is the polynomial:

F px, yq " ÿ F PΥpW,cq
x #pF Xp´∆qq y #pF XΠq .

The H-triangle is the polynomial:

Hpx, yq " ÿ APN N pW q

x #pAX∆q y #pAXpΠz∆qq .

There exist slightly different conventions in the literature for these polynomials. Here and also for related polynomials in the sequel, we always take a convention ensuring that they have nonnegative integer coefficients, and total degree n.

The F " M and H " M theorems relates the three polynomials as follows:

F px, yq " p1 `yq n H ´x 1`y , y 1`y ¯" p1 `xq n M ´x 1`x , y´x 1`x ¯, (23) 
Hpx, yq " p1 ´yq n F ´x 1´y , y 1´y ¯" p1 `x ´yq n M ´x 1`x´y , y´x 1`x´y ¯,

M px, yq " p1 `yq n H ´x 1`y , y`x 1`y ¯" p1 ´xq n F ´x 1´x , y`x 1´x ¯.

See [START_REF] Athanasiadis | On some enumerative aspects of generalized associahedra[END_REF][START_REF] Chapoton | Enumerative properties of generalized associahedra[END_REF][START_REF] Chapoton | Sur le nombre de réflexions pleines dans les groupes de coxeter finis[END_REF][START_REF] Thiel | On the H-triangle of generalised nonnesting partitions[END_REF] for details. Note that all these relations suggest considering homogeneous polynomials in three variables, rather than only two variables. Then the relations become mere shifts of the variables. This idea will be used in Section 9.

Also, the polynomials satisfy a symmetry property. By the self-duality of N CpW, cq one has [START_REF] Petrullo | Senato: Explicit formulae for Kerov polynomials[END_REF] M px, yq " x n M p 1 x , 1 y q. and, using ( 23), [START_REF] Panyushev | Ad-nilpotent ideals of a Borel subalgebra: generators and duality[END_REF] F px, yq " p´1q n F p´1 ´x, ´1 ´yq, Hpx ´1, yq " y n Hp y x ´1, 1 y q. From the definition, it can be seen that these polynomials contains Catalan, positive Catalan, Narayana, and positive Narayana numbers as special cases. Let us also mention another interesting specialization: Hp´1, 1q is the double-positive Catalan number introduced in [START_REF] Barnard | Reading: Coxeter-biCatalan combinatorics[END_REF], more generally the coefficients of Hp´1, yq are the double-positive Narayana numbers. See [START_REF] Barnard | Reading: Coxeter-biCatalan combinatorics[END_REF]Proposition 4.6] for the interpretation in terms of nonnesting partitions. Using [START_REF] Marsh | Generalized associahedra via quiver representations[END_REF], we have Hp´1, yq " p1 ´yq n F `´1 1´y , 1 1´y ȃnd the latter expression can be interpreted as the local h-polynomial of Υ `pW, cq, see [START_REF] Barnard | Reading: Coxeter-biCatalan combinatorics[END_REF]Remark 4.7] and Athanasiadis and Savvidou [START_REF] Athanasiadis | The local h-vector of the cluster subdivision of a simplex[END_REF].

7. Intervals for Ă and ! and the cluster complex 7.1. Intervals for Ă.

7.1.1. Counting intervals. If v, w P N CpW, cq and v Ă w we denote by rv, ws Ă the interval consisting of all x P N CpW, cq such that v Ă x Ă w. Define the height of an interval rv, ws Ă by rkpwq ´rkpvq. The identity e is the smallest element in N CpW, cq for Ă moreover, if w has rank r we have seen that the interval re, ws Ă is a boolean lattice with 2 r elements therefore, if r ě k the number of elements v Ă w with rkpwq ´rkpvq " k is equal to `r k ˘. Since the number of elements of N CpW, cq of rank r is Nar r pW q, we have the following (here n is the rank of W ). In the case of the symmetric group S n , the total number of intervals for Ă is the small Schröder number s n , defined by

ÿ ně0 s n z n " 1 `x ´?1 ´6x `x2 4x .
7.1.2. Relation with the cluster complex and the associahedron. We now relate pN CpW, cq, Ăq with the cluster complex ΥpW, cq and the associahedron, a polytope whose face complex is dual to ΥpW, cq [START_REF] Fomin | Cluster algebras. II. Finite type classification[END_REF]. It is known that the h-vector of the associahedron is equal to the sequence of W -Narayana numbers, see [START_REF] Athanasiadis | h-vectors of generalized associahedra and noncrossing partitions[END_REF] (or (18), using the duality). The next statement follows readily from [START_REF] Reading | Clusters, Coxeter-sortable elements and noncrossing partitions[END_REF] and the relation between the f -and h-vectors.

Proposition 7.2. The number intervals of height k for Ă is equal to the number of faces of dimension k of the W -associahedron, or to the number of faces of cardinality n ´k of the cluster complex.

For particular values of k there are bijective proofs of the equality in Proposition 7.2.

' For k " n: there is a unique interval of height n which is IN T pW, cq and a unique face of dimension n in the associahedron. ' For k " 0: the number of vertices of the associahedron is equal to number of non-crossing partitions, or W -Catalan number, which is also the number of intervals of height 0 for Ă. Bijective proofs of this fact have appeared in the litterature, see Section 8. ' For k " n´1: the number of intervals of height n´1 for Ă is equal to the number of almost positive roots, which is the number of vertices of the cluster complex. Indeed this is easy to check directly since these intervals fall into two categories:

the intervals re, πs where π P N CpW, cq has rank n ´1. The Kreweras complement gives a bijection between this set and the elements of rank 1 in N CpW, cq which are the reflections, in bijection with the positive roots. -the intervals rs, cs Ă where s P S which are in bijection with the negative simple roots.

Observe that the study of the order Ă leads naturally to the notion of almost positive root, which is fundamental to the theory of clusters.

It would be interesting to give a bijective proof of Proposition 7.2 for other values of k. In the case of a bipartite Coxeter element, we will give, in Section 8.3, a bijection between faces of size n ´k of the cluster complex and intervals of height k for Ă. 7.2. Intervals for !. In the case of the symmetric group S n with the standard Coxeter element c " p1, 2, . . . , nq, the number of intervals v ! w was computed in [START_REF] Nica | Non-crossing linked partitions, the partial order ! on N Cpnq, and the S-transform[END_REF] and [START_REF] Petrullo | Senato: Explicit formulae for Kerov polynomials[END_REF], its is the so-called large Schröder number S n´1 defined by

ÿ ně0 S n z n " 1 ´x ´?1 ´6x `x2 2x .
They are related to small Schröder numbers by S n " 2s n if n ě 1.

In the general case we will again show a connection with the cluster complex. Refining the enumeration of intervals, we consider a two variable polynomial: [START_REF] Reading | Cambrian fans[END_REF] Ipx, yq " ÿ v,wPN CpW,cq v!w

x rkpvq y rkpwq´rkpvq .

It turns out to be related with the polynomial M px, yq as follows.

Theorem 7.3. We have:

Ipx, yq " M px ´y, yq, M px, yq " Ipx `y, yq.

To prove that, first consider, for w P N CpW, cq: Proof. The case w " c is sufficient, because we can see w itself as a standard Coxeter element of Γpwq and prove the identity in this subgroup. Then I c pxq is the rank generating function of N CF pW, cq, it is therefore given by the positive Narayana numbers and it remains to prove:

n ÿ k"1 Nar k p1 `xq k " p´1q n ÿ vPN CpW,cq µpv, cqp´xq rkpvq .
The right hand side is, using Kreweras complement:

ÿ vPN CpW,cq µpe, Kpvqqp´xq rkpvq " ÿ vPN CpW,cq µpe, vqp´xq n´rkpvq " x n M p0, 1 x q.
This is also x n F p0, 1 x q, via (23). The h-vector of Υ `pW, cq is given by positive Narayana numbers, see [START_REF] Fomin | Cluster algebras. II. Finite type classification[END_REF], and we get the equality.

Recall that w is the interval partition such that Γpwq " W J and it is indeed a standard Coxeter element of W J . In the case of the bipartite Coxeter element, the bijection that we obtain is actually the inverse of the bijection in [START_REF] Athanasiadis | h-vectors of generalized associahedra and noncrossing partitions[END_REF]. Let us write w and Kpwq as products of their associated simple generators as in Proposition 3.3:

w " s 1 ¨¨¨s k , Kpwq " s k`1 ¨¨¨s n ,
then one has c " s 1 ¨¨¨s n , and, using (2), Φ W,c pwq " tt 1 , . . . , t n u where:

t i " # ps k s k´1 ¨¨¨s k`2´i qs k`1´i ps k s k´1 ¨¨¨s k`2´i q ´1 if 1 ď i ď k, ps k`1 s k`2 ¨¨¨s i´1 qs i ps k`1 s k`2 ¨¨¨s i´1 q ´1 if k `1 ď i ď n.
It follows that Ψ W,c pwq " trpt 1 q, . . . , rpt n qu Ă Π.

Theorem 8.2. The map Ψ W,c is a bijection from N CF pW, cq to the set of c-clusters in Υ `pW, cq.

First observe that, by a straightforward computation:

t 1 ¨¨¨t k " w, t k`1 ¨¨¨t n " Kpwq, t 1 ¨¨¨t n " c.
Lemma 8.3. Let w P N CF pW, cq of rank k, t i as above, and let 1 ď i ď k and k `1 ď j ď n. Then we have wt i Ă ¨w, t j Kpwq Ă ¨Kpwq, and w !¨wt j .

Proof. An easy computation gives wt i " s 1 ¨¨¨s k´i s k`2´i ¨¨¨s k , whence the first inequality. The second is obtained similarly. The third one follows the second one by applying iiq of Proposition 4.2, using the fact that w has full support.

Lemma 8.4. Let i, j be such that either 1 ď i ă j ď k or k `1 ď i ă j ď n. Then we have: xrpt i q|rpt j qy ě 0.

Proof. We can focus on the case 1 ď i ă j ď k, the other one is obtained similarly but with s k`1 , . . . , s n instead of s 1 , . . . , s k . Using Proposition 2.1, we have rpt i q " rps k ¨¨¨s k`1´i ¨¨¨s k q " s k ¨¨¨s k`2´i `rps k`1´i q " ´sk ¨¨¨s k`1´i `rps k`1´i q ˘.

The second equality follows from the fact that s k`1´i R Inv R ps k ¨¨¨s k`2´i q since they have disjoint support in Γpwq. Similarly, rpt j q " rps k ¨¨¨s k`1´j ¨¨¨s k q " s k ¨¨¨s k`1´i `rps k´i ¨¨¨s k´j ¨¨¨s k´i q ˘.

Since s k ¨¨¨s k`1´i preserves the scalar product, it remains to show that xrps k`1´i q|rps k´i ¨¨¨s k`1´j ¨¨¨s k´i qy ď 0.

This follows from the fact that s 1 , . . . , s k is a simple system, since the root rps k´i ¨¨¨s k`1´j ¨¨¨s k´i q is a positive linear combination of the roots rps k´i q, . . . , rps k`1´j q.

Lemma 8.5. Let v P N CpW, cq with rkpvq " n ´2, and let x 1 , x 2 P T such that c " vx 1 x 2 . Suppose v Ă ¨vx 1 !¨c. Then xrpx 1 q|rpx 2 qy ě 0.

Proof. The cardinality of supppvq is at least n ´2 since rkpvq " n ´2. We treat separately its possible values. Case 1: # supppvq " n.

Then v P N CF pW, cq, so that we can apply Proposition 4.2 to the relation v Ă ¨vx 1 . We get x 2 !¨x 1 x 2 , therefore x 1 , x 2 is not a simple system in Γpx 1 x 2 q, and xrpx 1 q|rpx 2 qy ą 0. Case 2: # supppvq " n ´1.

Since v is not full, there exists an interval partition v 1 such that v Ì v 1 Ă ¨c. With v 1 " vx 3 and c " v 1 x 4 , we have vx 3 x 4 " c, v Ì vx 3 Ă ¨c, and x 3 x 4 " x 1 x 2 . Since # supppvq " n ´1 ą rkpvq, we see that v is not an interval partition, so that v !¨vx 3 . By Proposition 4.2, we get Kpvx 3 q Ă ¨Kpvq, i.e., x 4 Ă ¨x3 x 4 . Now by Lemma 4.6, v !¨vx 3 Ă ¨vx 3 x 4 implies x 3 ď vx 3 Ă ¨vx 3 x 4 and x 3 Ă ¨x3 x 4 therefore x 3 and x 4 are the simple generators of Γpx 3 x 4 q.

If tx 1 , x 2 u ‰ tx 3 , x 4 u, we get xrpx 1 q|rpx 2 qy ą 0 by uniqueness of the simple system tx 3 , x 4 u. Otherwise, we have x 1 " x 4 , indeed x 1 ‰ x 3 since v Ă ¨vx 1 and v !¨vx 3 . It follows that x 2 " x 3 , and x 3 x 4 " x 1 x 2 becomes x 2 x 1 " x 1 x 2 so that xrpx 1 q|rpx 2 qy " 0. Case 3: # supppvq " n ´2.

To avoid multiple indices, assume that the simple reflections of W are indexed so that c " s 1 ¨¨¨s n . Let J " supppvq " Szti, ju (with i ă j) then v has length ℓ T pvq " n ´2 and v P W J therefore v is the Coxeter element of W J " Γpvq. It follows that v is an interval partition and v " s 1 ¨¨¨ŝ i ¨¨¨ŝ j ¨¨¨s n (where s i and s j are omitted). Let x 3 " s n ¨¨¨s j`1 s j´1 ¨¨¨s i ¨¨¨s j´1 s j`1 ¨¨¨s n , x 4 " s n ¨¨¨s j ¨¨¨s n .

then vx 3 x 4 " c and x 3 x 4 " x 1 x 2 . By an argument similar to that in the previous lemma, we have xrpx 3 q|rpx 4 qy " xrps j´1 ¨¨¨s i ¨¨¨s j´1 q|rps j qy ď 0 therefore x 3 and x 4 are the simple generators of Γpx 1 x 2 q. The end of the proof is as in the previous case (here x 1 ‰ x 3 because vx 1 !¨c and vx 3 Ă c).

Lemma 8.6. We have xrpt i q|rpt j qy ě 0 if 1 ď i ď k and k `1 ď j ď n.

Proof. By Lemma 8.3, we have wt i Ă ¨w !¨wt j . Then we can apply Lemma 8.5 in the subgroup Γpwt j q to get the result.

Proposition 8.7. We have Ψpwq P Υ `pW, cq.

Proof. We use the criterion in Proposition 6.6. Since t 1 ¨¨¨t n " c, we have t i t j ď c if i ă j. The conditions on the scalar product are given by the previous lemmas. So rpt i q } c rpt j q holds for 1 ď i ă j ď n and the result follows.

Let us now describe the inverse map. Let F " tt 1 , . . . , t n u be a face of the positive cluster complex then, by Proposition 6.7 we can assume that the t i are ordered so that t 1 . . . t n " c moreover, by Proposition 3.4 all orderings of the t i such that this property holds true are obtained from this ordering by applying commutation relations among the t i . As before we let u i " t 1 . . . t i . Lemma 8.8. If u i´1 ! u i Ă u i`1 then t i t i`1 " t i`1 t i .

Proof. By Proposition 4.6 one has t i Ă t i t i`1 . Applying the Kreweras complement in Γpu i`1 q and iq of Proposition 4.2 we obtain t i`1 Ă t i t i`1 . It follows that t i , t i`1 form a simple system in Γpt i t i`1 q and xrpt i q|rpt i`1 qy ď 0. Since t i } c t i`1 we have xrpt i q|rpt i`1 qy ě 0 , it follows that xrpt i q|rpt i`1 qy " 0 and t i , t i`1 commute. Lemma 8.9. Let t, t 1 P T be such that tt 1 " t 1 t and w ĺ p1q wt ĺ p2q wt 1 t then w ĺ p2q wt 1 ĺ p1q wt 1 t, where ĺ p1q , ĺ p2q denotes any combination of the orders Ă, !.

Proof. This follows from Corollary 2.2.

Using lemmas 8.8 and 8.9 we can use commutation relations between the t i to move all the ! to the right and assume that, for some k, one has e Ă u 1 Ă u 2 Ă . . . Ă u k ! u k`1 ! . . . ! u n " c. Moreover, by Proposition 3.4, k and u k are uniquely determined by this requirement. It is then easy to check that tt 1 , . . . , t k u " Inv R pu k q X Γpu k q and tt k`1 , . . . , t n u " Inv L pKpu k qq X ΓpKpu k qq therefore Ψ W,c pu k q " F . Proposition 8.13. We have: ÿ F PΥ `pW,cq y sqrpF q z #F " ÿ α,βPN CpW,cq α!β y rkpαq z rkpβq .

However, this identity is not related to the F " M theorem in a straightforward way, as the left hand side is seemingly unrelated to the polynomial F px, yq. This will be clarified in Section 9.

8.3. Bijection between faces of the cluster complex and intervals for Ă in the case of a bipartite Coxeter elements. When c " c `c´i s a bipartite Coxeter element, one can give a bijection between the intervals for Ă and faces of the cluster complex. For this we need a preliminary result.

Let u ! v then, by applying Proposition 3.8, we get Lv Ă Lu. It follows that SpΓpLvqq Ă SpΓpLuqq. Let w P ΓpLuq be the element corresponding to the set SpΓpLuqqzSpΓpLvqq then one has w Ă Lu. Let us denote by ψpu, vq the pair px, yq " pw, Luq. It is clear that the pair pu, vq can be retrieved from px, yq therefore the map ψ is injective.

Proposition 8.14. The map ψ yields a bijection between intervals u ! v and intervals x Ă y such that x " e.

Proof. Let u ! v and pw, Luq " ψpu, vq, we prove that w " e. Assume on the opposite that w ‰ e then there exists s P S such that s P SpΓpwqq Ă SpΓpLuqq and s R SpΓpLvqq " SpΓpLuqqzSpΓpwqq. Since s ď Lu one has sLu ď Lu and pLuqs ď Lu. It follows easily that u P W xsy and s P SpΓpvqq which contradicts u ! v. This proves that ψ maps intervals u ! v to intervals x Ă y with x " e.

Conversely, let x Ă y be such that x " e and let z be the element of Γpyq corresponding to SpΓpyqqzSpΓpxqq then z Ă y. Let us prove that Ly ! Lz, it will follow from the construction that px, yq " ψpLy, Lzq and therefore that ψ is surjective. Let J be the support of Ly then one has Ly P W J and one can write y " c J c `pc J `Lyc J ´qc J c ´with obvious notations: e.g. c J `is the product of simple reflections in J X S `, etc. Since pc J `Lyc J ´q P W J is follows that for s P J c one has s P SpΓpyqq moreover since x " e one has s R SpΓpxqq therefore s P SpΓpzqq. It follows that z " c J c `ωc J c ´with ω P W J moreover ω Ă c J `Lyc J ´since z Ă y. Since Ly has full support in W J we can apply iiq of Proposition 3.8 in the group W J and conclude that Lz " c J `ωc J

´! Ly as claimed.

Let γ be an interval partition, corresponding to the parabolic subgroup W J then one can write γ " γ `γ´a ccording to the bipartite decomposition. Let v P N CpW, cq be such that v " γ, then v " γ `v1 γ ´where v 1 P N CpW J c , Lγq moreover this gives a bijection between N CpW J c , Lγq and the set of v such that v " γ.

Using the bijection ψ ´1 and composing with the bijection between intervals for ! and faces of the positive cluster complex we get a bijection between intervals v Ă w for Ă with v " e and faces of the positive cluster complex Υ `pW, cq. It is an easy exercize to check that an interval of height k corresponds to a face of size n ´k. This bijection is then easily extended to a bijection between intervals of Ă and faces of ΥpW, cq if v " γ add the set J to the face in Υ `pW J c , c J c q. 9. Generalized F " M and H " M theorems We show in this section that the relations between F -, H-, and Mpolynomials can be proved and even generalized using the I-polynomial counting intervals for the order !. Here we consider homogeneous polynomials on variables px s q sPS indexed by the simple reflections of W , and y, z. Note that the existence of multivariate analog of the identities was suggested by Armstrong [START_REF] Armstrong | Generalized noncrossing partitions and combinatorics of Coxeter groups[END_REF]Open problem 5.3.5].

In general we denote x the set of x variables, leaving the index set implicit. Moreover x `A denote that all the x variables are shifted by A, and x is replaced by an expression to mean that all x variables are specialized to this expression, etc. Let It is straightforward to check that they are all polynomials of total degree n. For example, note that we have sqrpf q ď #pF X Πq for F P ΥpW, cq by definition of sqr, so the power of z in Fpx, y, zq is nonnegative, and we have rkpαq ď # supppαq for α P N CpW, cq so the polynomials Ipx, y, zq and Mpx, y, zq have degree at most n. The 2-variable polynomials from Section 6.5 are obtained as special cases, though by different specializations:

Ipx
(33) F px, yq " Fpx, y, yq, Hpx, yq " Hpx, y, 1q, M py, zq " Mp1, y, zq, Ipy, zq " Ip1, y, zq.

Theorem 9.1. Fpx, y, zq " Ipx `1, y, zq.

Lemma 2 . 4 .

 24 If c is a standard Coxeter element and s P S a right or left descent of c, then scs is also a standard Coxeter element. All standard Coxeter elements are connected to each other via such transformations.

3. 4 .

 4 An involutive automorphism for bipartite Coxeter elements. Let c " c `c´b e a bipartite Coxeter element. Proposition 3.7. The map L defined by Lpwq " c `wc ís an involutive anti-automorphism of the poset N CpW, cq.

Proposition 3 . 11 .

 311 For w P N CpW, cq one has w " maxtη P IN T pW, cq | η ď B wu.

Proposition 3 . 14 .

 314 Let c be a bipartite Coxeter element then the complement map L restricts to an involution on IN T pW, cq.

Definition 4 . 1 .

 41 For any covering relation

4. 2 .

 2 The Kreweras complement. Using the orders Ă and ! we can reformulate Proposition 3.5. Proposition 4.2.

Proposition 4 . 3 .

 43 Let v, w P N CpW, cq with v Ì w. Then at least one of the relations v Ă ¨w or Kpwq Ă ¨Kpvq holds. If both hold, neither v nor Kpwq have full support.

4. 3 .

 3 Characterization and properties of the order Ă on N CpW, cq. We consider a Coxeter system pW, Sq and a standard Coxeter element c. Proposition 4.4. Let v, w P N CpW, cq and denote by ď Bw the Bruhat order on Γpwq, then the three properties below are equivalent: i) v Ă w, ii) v ď w and v ď Bw w, iii) ∆pΓpvqq Ă ∆pΓpwqq.

Proposition 4 . 5 .

 45 Let w P N CpW, cq and γ P IN T pW, cq then γ ď w ðñ γ Ă w. Proof. If γ Ă w then obviously γ ď w. If γ ď w then Γpγq Ă Γpwq therefore SpΓpγqq Ă Γpwq. Since the elements of SpΓpγqq are simple reflections in W they are also simple reflections in Γpwq therefore SpΓpγqq Ă SpΓpwqq and γ Ă w by iiiq of Proposition 4.4.

Definition 4 . 7 .

 47 Let c be the binary relation on T such that t c u if and only if ' t, u are c-noncrossing (see Definition 3.1), ' xrptq|rpuqy ď 0. Let ΞpW, cq denote the flag simplicial complex with vertex set T associated to the relation c .

Theorem 4 . 8 .

 48 The map w Þ Ñ SpΓpwqq is a bijection from N CpW, cq onto ΞpW, cq.

4. 7 .

 7 Characterization and properties of the order !. The following proposition is the analog, for the order !, of Proposition 4.4. Proposition 4.11. Let v, w P N CpW, cq and denote by ď Bw the Bruhat order on Γpwq, then the three properties below are equivalent: i) v ! w, ii) v ď w and w ď Bw v, iii) v P Γpwq and v has full support as an element of Γpwq.

5. 1 .The Cayley graph of S 3 p13qThe graph of the relation c 5 . 2 .The graph of the relation c 5 . 2 . 2 .

 1352522 The case of S 3 .Permutations are denoted by their nontrivial cycles, e is the identity element. The Bruhat graph is obtained by orienting the edges downwards.The orders Ă and ! on S 3 and on N C 3 of Ă ¨are in black, those of !¨are in red. Note that the underlying undirected graph on S 3 is the Cayley graph. The case of S 4 .5.2.1. c " p1234q.Here we change the Coxeter element for the bipartite element c " p12qp34qp23q " p1243q and see that the graphs of c and of Ă for p1234q and p1243q are not isomorphic. Ă and ! on N CpS 4 ,

Definition 6 . 10 .

 610 Let µ denote the Möbius function of N CpW, cq. The M -triangle is the polynomial: M px, yq " ÿ α,βPN CpW,cq αďβ µpα, βqx rkpαq p´yq rkpβq´rkpαq .

Proposition 7 . 1 .

 71 The number of intervals of height k for Ă is equal to

Proposition 7 . 4 .

 74 We have I w px `1q " M w pxq.

Definition 8 . 1 .

 81 Let w P N CpW, cq then we defineΦ W,c pwq " `Inv R pwq X Γpwq ˘Y `Inv L pKpwqq X ΓpKpwqq ˘Ă T, Ψ W,c pwq " rpΦ W,c pwqq Ă Π.

noncrossing if either t 1 t 2 ď c or t 2 t 1 ď c.

  

	Definition 3.1. (Bessis [7, Definition 2.1.1]). Two reflections t 1 , t 2 are
	called c-Remark 3.2.

  . If w has full support, i.e., w " c, this follows from iiq of Proposition 4.2. Otherwise, w has full support as an element of the standard parabolic subgroup Γpwq. Note that we have

tv P N CpW, cq : v " wu Ă Γpwq by Proposition 4.12. Therefore we can apply Proposition 4.2 in the subgroup Γpwq which yields the result. Corollary 4.14. Upper ideals for ! are boolean posets.

  and β P Π, then α } c β if and only if rp´αq R suppprpβqq, ' if s P S is a left descent of c, then α } c β ðñ σ s pαq } scs σ s pβq. Remark 6.2. Recall Remark 3.2 i) on the use of the symbol } c .

  , y, zq " ÿ

		α,βPN CpW,cq	˜ź sPSz supppβq	x s	¸yrkpαq z rkpβq´rkpαq ,
		α!β				
	Fpx, y, zq "	ÿ F PΥpW,cq ˜ź δPF Xp´∆q	x rpδq	¸´y z	¯sqrpF q	z #F XΠ ,
	Mpx, y, zq "	ÿ α,βPN CpW,cq	µpα, βq ˜ź sPSz supppβq	x s	¸yrkpαq p´zq rkpβq´rkpαq ,
		αďβ				
	Hpx, y, zq "	ÿ APN N pW q ˜ź δPAX∆	´xrpδq z	¯¸´y z	¯#AXpΠz∆q	z # supppAq .
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M w p x y ´1qy rkpwq " M px ´y, yq.

Combining Equations ( 25) and [START_REF] Speicher | Boolean convolution[END_REF], we obtain the relations between Ipx, yq and Hpx, yq: In particular, Ipx, xq " F p0, xq gives the following: Corollary 7.5. We have ÿ v,wPN CpW,cq v!w

x rkpwq " ÿ F PΥ `pW,cq

x #F .

In particular, the number of intervals v ! w in N CpW, cq is #Υ `pW, cq.

We will give a bijective proof of the latter fact in the next section.

The bijection between positive faces of the cluster complex and intervals

In order to give a bijection between Υ `pW, cq and intervals v ! w in N CpW, cq, an important ingredient is a bijection between clusters and noncrossing partitions. Such bijections have been described by Reading [START_REF] Reading | Clusters, Coxeter-sortable elements and noncrossing partitions[END_REF] and Athanasiadis et al. [START_REF] Athanasiadis | h-vectors of generalized associahedra and noncrossing partitions[END_REF]. Although the one from [START_REF] Athanasiadis | h-vectors of generalized associahedra and noncrossing partitions[END_REF] was only stated in the case of a bipartite Coxeter element, it turns out to be particularly adapted to the present situation as it can be rephrased in terms of the orders Ă and !. In fact, using properties of ! and Ă we will extend the bijection to cover the case of all standard Coxeter elements.

8.1. The bijection between clusters and noncrossing partitions. We give here a bijection Ψ W,c between N CF pW, cq and clusters in Υ `pW, cq. Note that it is straightforward to extend such a bijection to a bijection from N CpW, cq to clusters in ΥpW, cq: if w P N CpW, cq with J " supppwq, then the image of w is Ψ W J ,w pwq Y t´rpsq : s R Ju.

8.2.

The bijection between faces and intervals. Consider a positive face F " tt 1 , . . . , t k u P Υ `pW, cq. By Proposition 6.7 we can assume that the elements are indexed so that t 1 ¨¨¨t k ď c.

Proposition 8.10. Let w " t 1 ¨¨¨t k , then F is a cluster in Υ `pΓpwq, wq.

Proof. First note that Υ `pΓpwq, wq is well defined by Proposition 3.3. We have t i t j ď w if i ă j since w " t 1 ¨¨¨t k . Moreover, we have xrpt i q|rpt j qy ě 0 since F P Υ `pW, cq. So F P Υ `pΓpwq, wq by Proposition 6.6, and it is a cluster since #F " ℓ T pwq is the rank of Γpwq.

Theorem 8.11. With the notation as above, the map

Γpwq,w pF q, w ȋs a bijection from Υ `pW, cq to the set of pairs v, w P N CpW, cq such that v ! w.

Proof. First note that Ψ ´1 Γpwq,w pF q is well defined by Proposition 8.10. By properties of the bijection Ψ, we have Ψ ´1 Γpwq,w pF q P N CF pΓpwq, wq. By Proposition 4.11, this means Ψ ´1 Γpwq,w pF q ! w.

We can describe the inverse bijection. To a pair v, w P N CpW, cq such that v ! w, we associate Ψ Γpwq,w pvq. Once we know that Ψ is a bijection, it is clear that we have two inverse bijections.

The construction can be made more explicit. Let u i " t 1 ¨¨¨t i for 0 ď i ď k. Up to some commutation among the t i , we can assume

Then the image of F is pu j , u k q. In the other direction, let v, w P N CpW, cq with v ! w, rkpvq " j and rkpwq " k. We write v and v ´1w as a product of their associated simple reflections:

Then the inverse image of pv, wq is tt 1 , . . . , t k u where we define t 1 , . . . , t k as in the definition of Ψ:

Also, an immediate consequence of the construction is the following. Definition 8.12. Let F P Υ `pW, cq, and write F " tt 1 , . . . , t k u such that t 1 ¨¨¨t k ď c. Then we define (number of "square" relations): sqrpF q " # i : 0 ď i ă k and t 1 ¨¨¨t i Ă ¨t1 ¨¨¨t i`1

( .

This map is extended to F P ΥpW, cq by requiring sqrpF q " sqrpF X Πq.

By Lemma 8.8 the number sqrpF q does not depend on the way we order F , as long as t 1 ¨¨¨t k ď c.

Proof. First, note that Fpx, y, zq " ÿ JĂS ˜ź sPJ x s ¸FW SzJ p0, y, zq.

Also, expanding the products in Ipx `1, y, zq gives: So it suffices to prove Fp0, y, zq " Ip1, y, zq, which is the content of Proposition 8.13.

Theorem 9.2. Mpx, y, zq " Ipx, y `z, zq.

Proof. This follows from Proposition 7.4. In I β p y z `1q " M β p y z q, multiply both sides by `śsPSz supppβq x s ˘zrkpβq and sum over β P N CpW, cq.

Theorem 9.3. Hpx, y, zq " Ipx ´y `1, y, z ´1q.

Proof. First write the expansion:

It follows:

Hpx `y, y, zq "

" ÿ JĂ∆ ˜ź δPJ x rpδq ¸HW Szr ´1pJ q py, y, zq.

In the proof of the previous theorem, we have seen that Ipx `1, y, zq admits a similar expansion on the x-variables. Consequently, Ipx `1, y, z ´1q also admits a similar expansion, and it remains to show that Hpy, y, zq " Ip1, y, z ´1q.

On one side we have:

Nar k pW I qy k z #I´k .

On the other side, 

where the last equality follows from the binomial theorem, since the β such that β " α form a boolean lattice whose maximal element is α, by Proposition 4.13 and Corollary 4.14. This sum can again be expressed in terms of the numbers Nar k pW I q, so that Hpy, y, zq " Ip1, y, z ´1q.

By combining the previous theorems, we get relations between F-, H-, and M-polynomials:

Fpx, y, zq " Hpx `y, y, z `1q, (35)

The next property is best seen on the H-polynomial. Proposition 9.4. Hpx ´1, y, zq is homogeneous of degree n.

Proof. An element A P N N pW q can be uniquely written A 1 Y A 2 where A 1 X ∆ " ∅ and A 2 Ă ∆z supppA 1 q. Note that # supppAq " # supppA 1 q `#A 2 . For a fixed A 1 , any subset A 2 Ă ∆z supppA 1 q is valid, so that the sum over A 2 factorizes and gives:

After a change of variables x Ñ x ´1, the latter expression is homogeneous. Since Hpx ´1, y, zq is obtained by summing over A 1 , it is too.

This homogeneity implies that the 3-variable polynomial Hpx, y, zq can be expressed in terms of the 2-variable polynomial Hpy, zq " Hp1, y, zq. It also implies that the F-, I-, and M-polynomials also become homogeneous after suitable shifts in the variables. So the other 3-variable polynomials can also be expressed in terms of their 2-variable specialization from Section 6.5.

To recover the F " M identity in Section 6.5 from the present results, first use the homogeneity of Fpx ´1, y, z ´1q (obtained from the previous proposition together with (35)) to write: Fpx ´1, y, z ´1q " x n Fp0, y

x , z x ´1q, then the substitution px, zq Ñ px `1, y `1q gives: Fpx, y, yq " p1 `xq n Fp0, y 1`x , y´x 1`x q " p1 `xq n Mp1, x 1`x , y´x 1`x q where the last equality comes from (34). Then using (33), we recover the relation between F px, yq and M px, yq in [START_REF] Marsh | Generalized associahedra via quiver representations[END_REF]. Similarly, the homogeneity of Hpx ´1, y, zq gives:

(37) Hpx ´1, y, zq " z n Hp x z ´1, y z , 1q. Then the substitution px, zq Ñ px `y `1, y `1q gives: Hpx `y, y, y `1q " p1 `yq n Hp x 1`y , y 1`y , 1q. Using (35) on the left hand side, then (33), we recover the relation between F px, yq and Hpx, yq in [START_REF] Marsh | Generalized associahedra via quiver representations[END_REF]. Proposition 9.5. Hpx ´1, y, zq is symmetric in y and z.

Proof. Similar to the expansions we have seen in this section, we have: Hpx, y, zq " ÿ JĂS ˜ź sPJ

x s ¸HW SzJ p0, y, zq.

So we can just prove that Hp0, y, zq is symmetric. By (37), we have Hp0, y, zq " z n Hp 1 z ´1, y z , 1q " z n Hp 1 z ´1, y z q. By ( 27), the latter is equal to y n Hp 1 y ´1, z y q, which is precisely the same up to exchanging y and z.

It is natural to look for an involution on nonnesting partitions that would prove the symmetry of Hpx, y, zq. This is the subject of conjectures by Panyushev [27, Conjecture 6.1], see also [START_REF] Chapoton | Sur le nombre de réflexions pleines dans les groupes de coxeter finis[END_REF]Section 5]. To our knowledge this is still an open problem.