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Abstract

A linearized multi-species collision operator valid for arbitrary masses and charges has been developed and imple-
mented in the gyrokinetic code GYSELA [9]. This operator has all the required properties : it conserves particles,
total momentum and energy, fulfills the Boltzmann H theorem and recovers neoclassical results. This operator takes
into account both pitch angle scattering and energy diffusion while operting in the

(
v‖, µ

)
phase space. Derivatives

with respect to the magnetic moment are treated using a projection on a set of orthogonal polynomials. The numerical
aspects of the implementation are detailed and a set of physical benchmarks allows a verification of the properties of
the operator.
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1. Introduction

The perpendicular transport in core fusion plasmas is domi-
nated by turbulent processes. Nevertheless, accounting for col-
lisions remains essential for several reasons. First, to a large
extent, collisions govern the level of large scale flows – both the
mean ion poloidal flow and turbulence-driven zonal flows – via
the friction on trapped particles. Second, neoclassical transport
can reveal dominant (or at least competitive) with respect to
turbulent transport in certain regimes such as transport barri-
ers, or for certain classes of particles such as heavy impurities
like tungsten. Third, collisions are essential for trapped elec-
tron which are often in a collisionnal regime. Finally, and more
fundamentally, collisions ensure the relaxation of the distribu-
tion function towards a Maxwellian. In turn, they are critical
for gyrokinetic simulations since they smooth out small scale
structures in velocity space, contributing to numerical stabil-
ity.

The full collision operator and its properties are well known
but its non linear character makes it impossible to use numer-
ically with present gyrokinetic codes. It is then necessary to
develop a linearized model of collision operator easier to handle
numerically. Different model operators have been developed in
the literature [1, 17, 10, 13]. Depending on its specificity, each
code chooses a different model. A PIC code like ORB5 [19]
uses a different operator than an Eulerian code like GENE [18]
, GKW [15] or GS2 [2]. In the framework of the GYSELA code,
one of the major difficulties is to write an operator in the vari-
ables

(
v‖, µ

)
whereas the collision operator is separable in the

set of variables
(
v,

v‖
v

)
. This difficulty has been overcome by

Esteve et al. in [7]. The collision operator is linearized around
unshifted Maxwellians and is gyroaveraged using the method
developed by Brizard [3]. It is valid for arbitrary species and

can be shown to fulfill all properties required for a model col-
lision operator. Its derivation and analytical validation can be
found in details in [7]. A simplified version of this operator has
been implemented in GYSELA and benchmarked against neo-
classical theory [8]. It uses the slow limit approximation (energy
and pitch-angle scattering are assumed equal) and removes all µ
derivatives. A particular consequence of these approximations
is that the implemented model is only valid for trace thermal
impurities. This article describes the treatement of the collision
operator without those two assumptions, hence alleviating the
former restrictions regarding the domain of validity.

The outline is the following. In part II we recall the impor-
tant results of the model derived by Esteve et al in [7]. Part III
is dedicated to the numerical implementation of the collision
operator. Part IV consists in a serie of tests which validate the
collision operator.

2. Presentation of the model

The model described here is derived directly from [7]. The
linearized collisional operator describing the collisions of species
a colliding on species b takes the form

Cab(Fa, Fb) = C0
ab(FM0a, FM0b) + C1

ab(Fa, Fb)

where FM0a represents the local unshifted Maxwellian with
density na and temperature Ta

FM0a(x,v, t) = na(x, t)

(
1

2πv2
Ta

)3/2

exp
(
−x2

a

)
The normalized speed has been used xa = v√

2vTa
,with

vTa =
√

Ta
ma

the thermal velocity.
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C0
ab represents the exchange of energy between the unshifted

Maxwellians

C0
ab(FM0a, FM0b) =

Tb − Ta
Tb

x2
aνE,abFM0a

Neglecting all finite Larmor radius effects, C1
ab is composed

of three terms

C1
ab(Fa, Fb) = Cv,ab(Fa) + Cd,ab(Fa) + C‖,ab(Fa, Fb)

Cv,ab is an operator acting on the norm of the velocity.
When written in the set of variables

(
v‖, v⊥

)
, it reads as fol-

lows:

Cv,ab (Fa) =
1

2v⊥

∂

∂v⊥

[
FM0aνv,abv

2
⊥

(
v⊥
∂gab
∂v⊥

+ v‖
∂gab
∂v‖

)]
+

1

2

∂

∂v‖

[
FM0aνv,abv‖

(
v⊥
∂gab
∂v⊥

+ v‖
∂gab
∂v‖

)]
Whereas Cd,ab modifies the direction of the velocity vector

(deflection)

Cd,ab (Fa) =
1

2v⊥

∂

∂v⊥

[
FM0aνd,abv⊥v‖

(
v‖
∂gab
∂v⊥

− v⊥
∂gab
∂v‖

)]
+

1

2

∂

∂v‖

[
FM0aνd,abv⊥

(
−v‖

∂gab
∂v⊥

+ v⊥
∂gab
∂v‖

)]
Finally the term C‖,ab ensures momentum exchange be-

tween species and the conservation of the total parallel mo-
mentum.

C‖,ab (Fa, Fb) = −νs,ab(v)

v2
Ta

v‖
(
U‖d,a − U‖ba

)
FM0a

The normalized distribution function has to be shifted to
ensure that Cv,ab and Cd,ab conserve momentum and energy

gab = fa −
v‖U‖d,a

v2
Ta

− x2
aqba with fa =

Fa
FM0a

More specifically, U‖d,a ensures that Cv,ab and Cd,ab con-
serve momentum.

v

v2
Ta

U‖d,a (v) =
3

2

ˆ
dξξfa with ξ =

v‖

v

Then in order to take into account momentum exchange
between species while keeping the total momentum constant, a
second velocity U‖ab is chosen as

U‖ab =

〈
νs,abv

2U‖d,a
〉
a

〈νs,abv2〉a
A dimensionless parameter qab accounting for energy ex-

change between species is defined as

qab = Tb

〈
νE,ab

mav
2

2 fa

〉
a〈

νE,ab

(
mav2

2

)2
〉
a

The bracket corresponds to mean values in velocity space
< ... >=

´
d3v FM0a

na
... . Different frequencies appear in the

previous expressions. They are defined as follow :

• the Hirshman and Sigmar’s inter-species collision fre-
quency [12]

νHSab =
√

2
NbZ

2
b

NaZ2
a

νaa

• the velocity modulus diffusion rate

νv,ab (xa) = νHSab xba
Θ (xb)

x2
a

• the deflection frequency

νd,ab (xa) = νHSab xba
Ψ (xb)

x2
a

• the slowing-down frequency

νs,ab = νHSab

(
1 +

ma

mb

)
x3
baΘ(xb)

• the energy-loss rate is defined as

νE,ab = − 1

v4FM0a

∂

∂v

(
νv,abFM0av

5
)

Where the ratio between the thermal velocities is intro-
duced xba = vTa

vTb
. We also define the following functions

Ψ (x) =
3
√
π

4

1

x
[Φ (x)−G (x)]

Θ (x) =
3
√
π

2

G (x)

x

G (x) =
1

2x2

[
Φ (x)− xΦ

′
(x)
]

Φ (x) =
2√
π

ˆ x

0

dy exp
(
−y2

)
The function Φ is the error function and G is the Chan-

drasekhar function. The different frequencies normalized to
νHSab are plotted in figure (1)

Figure 1: Velocity dependance of the different frequencies
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3. Numerical implementation of the collision op-
erator

3.1. Separation of the different collision terms

The collision operator is difficult to treat as a whole. It is
much easier to split the different parts of the operator and treat
them separately with a time splitting scheme. The first step is
to discriminate the evolutions of FM0a and δFa via collisions.
The equation that needs to be solved is

∂Fa
∂t

=
∑
b

Cab (Fa, Fb)

which can be split as{
∂FM0a

∂t =
∑
b C

0
ab (FM0a, FM0b)

∂δFa
∂t =

∑
b C

1
ab (Fa, Fb)

The second equation of the system can be recast as the evo-
lution of the total distribution assuming that the Maxwellian
is unchanged. This alternative expression is valid as the evo-
lution of the Maxwellian is treated by the first equation. This
new expression is useful especially for the treatment of the µ
derivatives.

∂Fa
∂t

=
∑
b

C1
ab (Fa, Fb) with FM0a = cst

A second step is to separate the evolution of δFa in two
parts. Indeed, the evolution governed by Cv,ab + Cd,ab is dif-
ficult to treat as it includes µ derivatives. It will be treated
differently from C‖,ab which is easier to implement. In the end,
the problem can be split in three parts : the evolution of the
Maxwellian due to C0

ab, the evolution of the distribution func-
tion due to C‖,ab , and the evolution of the distribution function
due to Cv,ab + Cd,ab . The last two steps are performed by as-
suming that the Maxwellian FM0a remains constant.


∂FM0a

∂t =
∑
b C

0
ab (FM0a, FM0b)

∂Fa
∂t =

∑
b C‖,ab (Fa, Fb) (FM0a = cst)

∂Fa
∂t =

∑
b Cv,ab (Fa, Fb) + Cd,ab (Fa, Fb) (FM0a = cst)

(1)

3.2. Evolution of thermal energy

Here we detail how the thermal energy evolves due to colli-
sions. The effect of C0

ab is to exchange thermal energy between
Maxwellians. The thermal energy exchange is exactly known
in the case of Maxwellians. It is made of two contributions :
the first term corresponds to the thermal energy equirepartition
and the second one corresponds to the opposite of the work of
the friction force.

QM,ab = −3na
ma

ma +mb
νab (Ta − Tb)+namaνabV‖a

(
V‖a − V‖b

)
The evolution of thermal energy is governed by QM,ab

3

2
na
∂Ta
∂t

=
∑
b

QM,ab

which is equivalent to

∂Ta
∂t

=
∑
b

maνab

[
2

ma +mb
(Tb − Ta) +

2

3
V‖a

(
V‖a − V‖b

)]
(2)

This relation will be used to compute the evolution of the
Maxwellian distribution in eq.(1). Notice that the total (ther-
mal + kinetic) energy remains unaffected by the latter term, as
it should to preserve Galilean invariance.

3.3. Approximation of the distribution function
The quantities U‖ab and qab are difficult to compute nu-

merically . Indeed both include collision frequencies (νs,ab and
νE,ab) that depend on the mass ratio ma

mb
and the integrals are

then difficult to compute in the two limits ma
mb
� 1 and ma

mb
� 1.

An analytical approach is used to overcome this difficulty.

3.3.1. Development on a set of orthogonal polynomials
Following the method developped by Hirshman and Sigmar

[13], the distribution function is projected on a set of orthogonal
polynomials

F (v, θ, ϕc) =
∑
`,m

F`,m(v)Y`,m(θ, ϕc)

with ϕc the phase of the cyclotronic motion and Y`,m(θ, ϕc)
the spherical harmonics

Y`,m(θ, ϕc) = P`,m(ξ)eimϕc and cos θ = ξ =
v‖

v

As the method is used in a gyrokinetic approach only the
m = 0 component is kept :

F (v, θ) =
∑
`

F`(v)P`(ξ)

where P` are Legendre polynomials.
Then each component F`(v) is expanded in Laguerre poly-

nomials

F`(v) =
∑
j

(
v

2v2
Ta

)`
F (`)
j L

(`+ 1
2 )

j (x2
a)FM0a

with

F (`)
j =

〈
F`|L

(`+ 1
2 )

j

〉
=

2π3/2j!

Γ(j + `+ 3
2 )

ˆ ∞
0

v`L
(`+ 1

2 )
j (x2

a)
F`(v)

na
v2dv

where L
(`+ 1

2 )
j is the generalized Laguerre polynomial of or-

der `+ 1
2 . Notice that the L

(`+ 1
2 )

j are chosen as functions of v2.
The underlying will is that the lowest order terms of the devel-
opment capture explicitely the two motion invariants E&Pϕ,
which are relevant at low collisionality. Indeed, (l = 1, j = 0)
scales like v‖, hence capturing the Pϕ, while (l = 0, j = 1) scales
like v2 which corresponds to the energy. Using these defintions
it is possible to show that

F (0)
0 = 1

F (0)
1 = 0

F (0)
2 =

2

15

(〈
x4
afa
〉
a
− 15

4

)
=

2

15

〈
x4
a (fa − 1)

〉
where fa = Fa

FM0a
is the normalized distribution function

3



F (1)
0 = 2V‖a

and

F (1)
1 = −

4q‖a

5naTa
= −4

5

〈
v‖

(
x2
a −

5

2

)
fa

〉
a

(3)

Then keeping only the first two polynomials in both direc-
tion, the normalized distribution function can be approximated
by

fa ' 1 +
v‖

v2
Ta

[
V‖a −

q‖a

naTa

(
1− 2x2

a

5

)]
(4)

3.3.2. Expression of C‖,ab
The C‖,ab term deals with momentum exchange between

different species. Indeed one can show that the rate of momen-
tum exchange of the total operator is given by

R‖ab = −namaνab
(
U‖ab − U‖ba

)
To evaluate the two quantities U‖d,a (v) and U‖ab the ap-

proximate distribution function (4) is used. It gives :

U‖d,a = V‖a −
q‖a

naTa

(
1− 2

5
x2
a

)
(5)

U‖ba = V‖b −
3

5

q‖b

nbTb

(
1

1 + x2
ba

)
and so

C‖,ab = νs,ab
ma

Ta
v‖FM0a

×
[
V‖b − V‖a +

q‖a

naTa

(
1− 2

5
x2
a

)
− 3

5

q‖b

nbTb

(
1

1 + x2
ba

)]
The collisional drag force becomes

R‖ab = −namaνab (6)

×
[
V‖a − V‖b −

3

5

q‖a

naTa

(
1

1 + x2
ab

)
+

3

5

q‖b

nbTb

(
1

1 + x2
ba

)]
For a Maxwellian, the result is exact and reduces to the

friction force :

R‖M,ab = −namaνab
[
V‖a − V‖b

]
To ensure this property, one needs q‖a = 0 for a Maxwellian

distribution function. Then the definition of q‖a is changed ac-
cordingly :

q‖a =
1

2

ˆ
d3vma

[(
v‖ − V‖a

)2
+ v2
⊥

] (
v‖ − V‖a

)
Fa

This new defintion is equivalent to the one used in eq.(3) in
the limit of small Mach number. It is the one used in [7].

A long but straightforward calculation allows one to show
that for the simplified distribution function (4) qab = 0. This
approximation will be used in the rest of this article. Then gab
becomes ga = fa −

mav‖U‖d,a
Ta

.

3.4. Treatement of the µ derivatives

Derivatives with respect to µ are present in the terms Cv,ab
and Cd,ab. The treatment of these derivatives by finite differ-
ences may be problematic if one wants to use a relatively low
resolution in the µ direction. An alternative method based on
a projection on orthogonal polynomials in µ is adopted. It al-
lows one to solve the problem while keeping a relatively low
resolution in the µ direction (typically Nµ = 64). The equation
solved with this method is

∂Fa
∂t

=
∑
b

Cv,ab (Fa, Fb) + Cd,ab (Fa, Fb)⇔
∂fa
∂t

=
∑
b

C̄ab

(7)

where we have defined the normalized collision operator

C̄ab(F ) =
Cv,ab(F )+Cd,ab(F )

FM0a
. This approach is possible because

a Maxwellian is in the kernel of Cv,ab + Cd,ab. This term can
be expressed differently to simplify its numerical treatment.

C̄ab(ga) = K1,ab
∂ga
∂v‖

+K2,ab
∂2ga
∂v2
‖

+K3,abu
∂2ga
∂v‖∂u

+K4,abu
∂ga
∂u

+ C̄m,ab(ga)

where u = µB
Ta

. Defining Dd,ab = 1
2νd,abv

2 and setting
B?‖ = B, it is possible to show that

K1,ab = v‖

[
1

v

∂Dd,ab

∂v
− Dd,ab

v2
Ta

]
+ v‖ (νv,ab − νd,ab)

(
2− x2

a

)
+

v‖v

2

∂ (νv,ab − νd,ab)
∂v

K2,ab = Dd,ab +
v2
‖

2
(νv,ab − νd,ab)

K3,ab = 2v‖ (νv,ab − νd,ab)

K4,ab =

(
1−

v2
‖

v2
Ta

)
(νv,ab − νd,ab) +

v2
‖

v

∂ (νv,ab − νd,ab)
∂v

C̄m,ab(ga) =
2

v2
TaFM0a

∂

∂u

[
FM0a

(
Dd,ab + v2

Tau (νv,ab − νd,ab)
)
u
∂ga
∂u

]
f is projected on a set of orthogonal polynomials:

fa(r, v‖, u, t) =
∑
l

α`,a(r, v‖, t)P`(u)

Projecting equation (7) on polynomial P` gives

∂α`,a
∂t

=
∑
b

〈
C̄ab (ga) |P`

〉
In practice, Laguerre polynomials are chosen. Thus it de-

fines the scalar product as

〈f |g〉 =

ˆ ∞
0

dxf (x) g (x)

4



3.5. Evolution equation of the distribution function com-
ponents

3.5.1. Projection of ga on Laguerre polynomials
The first step is to compute the projection of ga on Laguerre

polynomials. The same approximation as the one used in the
computation of C‖,ab is considered (eq.5). In that case

ga = fa −
mav‖U‖d,a

Ta
= fa + P0(u)κ0,a + P1(u)κ1,a

with

κ0,a = −

{
mav‖

Ta

[
V‖a −

q‖a

naTa

(
3

5
−
mav

2
‖

5Ta

)]}

and

κ1,a =
2mav‖q‖a

5naT 2
a

So ga can be easily projected on Laguerre polynomials

ga =
∑
i

α
′

i,aPi

with {
α′i,a = αi,a + κi,a if i < 2

α′i,a = αi,a otherwise

3.5.2. Expression of the Cv + Cd part of the operator
Using the properties of Laguerre polynomials, and summing

over the species, eq.(7) can be written

∂α`,a
∂t

=
∑
j

[
α

′

j,aN
jl
0,a +

∂α
′

j,a

∂v‖
N jl

1,a +
∂2α

′

j,a

∂v2
‖
N jl

2,a

]
(8)

with

N jl
0,a =

∑
b

〈
jK4,ab (Pj − Pj−1) + C̄m,ab(Pj)|Pl

〉
N jl

1,a =
∑
b

〈K1,abPj + jK3,ab (Pj − Pj−1) |Pl〉

N jl
2,a =

∑
b

〈K2,abPj |Pl〉

At this stage, these quantities remain somewhat too intri-
cate to be computed analytically. Using the definitions given
in the previous part and defining the following quantities

PjP` =

j+∑̀
i=0

Cij`u
i

L
(0)
i,ab =

〈
Dd,ab

v2
Ta

|ui
〉

L
(1)
i,ab =

〈
1

v

∂Dd,ab

∂v
|ui
〉

L
(2)
i,ab =

〈
νv,ab − νd,ab|ui

〉

L
(3)
i,ab =

〈
v

2

∂ (νv,ab − νd,ab)
∂v

|ui
〉

L
(4)
i,ab =

〈
v2
Ta

v

∂ (νv,ab − νd,ab)
∂v

|ui
〉

it can be shown that

N jl
0,a = j

∑
b

j+∑̀
i=0

Cij`

 −2L
(0)
i,ab + 2L

(1)
i,ab +

(
3− v2‖

v2Ta

)
L

(2)
i,ab

−2L
(2)
i+1,ab +

(
2 +

v2‖
v2Ta

)
L

(4)
i,ab



− j
∑
b

j+`−1∑
i′=0

Ci
′

j−1,`

 2L
(1)
i′,ab +

(
3− v2‖

v2Ta

)
L

(2)
i′,ab

+

(
2 +

v2‖
v2Ta

)
L

(4)
i′,ab



N jl
1,a = v‖

∑
b

j+∑̀
i=0

Cij`

 −L(0)
i,ab + L

(1)
i,ab +

(
2 + 2j − v2‖

2v2Ta

)
L

(2)
i,ab

−L(2)
i+1,ab + L

(3)
i,ab


− v‖

∑
b

j+`−1∑
i′=0

Ci
′

j−1,`2jL
(2)
i′,ab

N jl
2,a =

∑
b

j+∑̀
i=0

Cij`v
2
Ta

[
L

(0)
i,ab +

v2
‖

2v2
Ta

L
(2)
i,ab

]

3.5.3. Computation of the scalar products
Integrating by parts, it is possible to show thatL(1)

0,ab = −Dd,ab(v‖,u=0)
v2Ta

+ L
(0)
0,ab

L
(1)
i,ab = L

(0)
i,ab − iL

(0)
i−1,ab for i > 0

L
(3)
0,ab =

v2‖
2v2Ta

[
L

(2)
0,ab − (νv,ab − νd,ab)

(
v‖, u = 0

)]
+ L

(2)
1,ab − L

(2)
0,ab

L
(3)
i,ab =

v2‖
2v2Ta

[
L

(2)
i,ab − iL

(2)
i−1,ab

]
+ L

(2)
i+1,ab − (i+ 1)L

(2)
i,ab for i > 0

{
L

(4)
0,ab = L

(2)
0,ab − (νv,ab − νd,ab)

(
v‖, u = 0

)
L

(3)
i,ab = L

(2)
i,ab − iL

(2)
i−1,ab for i > 0

The only last difficulty is then to compute L
(0)
i,ab and L

(2)
i,ab.

Unfortunately, the v dependences of νv,ab and νd,ab prevent one
to compute these scalar products analytically without approx-
imation. On the other hand a numerical approach would be
too costly. A solution consists in fitting the v dependence of
Dd,ab and (νv,ab − νd,ab) by suitable functions that enable an
analytic computation of the scalar products. The following fits
are made 

Dd,ab
v2Ta

= 0.75
√
π√

x2
a+ 9π

16

(
vTa
vTb

)2
νHSab

νv,ab-νd,ab = − 0.75
√
π(

x2
a+2.1

(
vTa
vTb

)2
)3/2 ν

HS
ab

The fits are given respectively in figures 2 and 3 for the self
collision case which is the most sensitive one.
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Figure 2: Fitting for Dd,ab
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Figure 3: Fitting for νv,ab − νd,ab
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Thanks to these fits, the scalar products can be approxi-
mated by analytical expressions :

L
(0)
i,ab = 0.75

√
πνHSab I

(0)
i

(
v2
‖

2v2
Ta

+
9π

16

v2
Tb

v2
Ta

)

L
(2)
i,ab = −0.75

√
πνHSab I

(1)
i

(
v2
‖

2v2
Ta

+ 2.1
v2
Tb

v2
Ta

)

With

I
(n)
i (x) =

ˆ ∞
0

du
uie−u

(u+ x)
n+1/2

It can be shown that

I
(n)
i (x) = ex

i∑
k=0

(
i
k

)
(−x)

i−k
Jk−n (x)

where

Ji (x) =

ˆ ∞
x

du e−uui−1/2

which can be easily computed by recurrence.

3.6. Numerical implementation

3.6.1. Numerical schemes
An explicit scheme is used to compute the evolution of the

distribution function due to C0
ab and C‖ab. Eq.(8) is solved with

a Crank-Nicholson scheme [5] for stability reasons. The resolu-
tion of the Crank-Nicholson is detailed here : the problem can
be written in a vectorized form

∂α

∂t̂
= Tα+ S

with

α =



:

α
(k)
0

α
(k)
1

:

α
(k)
Npol−1

α
(k+1)
0

:


and 0 ≤ k ≤ kmax,

T =



B0 C0 0 0 0 0 0
A1 B1 C1 0 0 0 0
0 A2 B2 C2 0 0 0
0 0 . . . 0 0
0 0 0 . . . 0
0 0 0 0 . . Ckmax−1

0 0 0 0 0 Akmax Bkmax


where Npol is the number of Laguerre polynomials that are

kept, k is the index associated with the v‖ direction, and the
Ak, Bk, Ck are square blocks of size Npol. Their respective
components are 

a
(k)
lj = − N̂

jl(k)
1,a

2∆v‖
+

N̂
jl(k)
2,a

∆v2‖

b
(k)
lj = N̂

jl(k)
0,a − 2

N̂
jl(k)
2,a

∆v2‖

c
(k)
lj =

N̂
jl(k)
1,a

2∆v‖
+

N̂
jl(k)
2,a

∆v2‖

and

S =



:

S
(k)
0 = κ

(k)
0,aN̂

jl
0,a +

∂κ
(k)
0,a

∂v̂‖
N̂ jl

1,a +
∂2κ

(k)
0,a

∂v̂2‖
N̂ jl

2,a

S
(k)
1 = κ

(k)
1,aN̂

jl
1,a +

∂κ
(k)
1,a

∂v̂‖
N̂ jl

1,a +
∂2κ

(k)
1,a

∂v̂2‖
N̂ jl

2,a

S
(k)
2 = 0

:

S
(k)
Npol−1 = 0

:


The Cranck Nicholson scheme is split in the following way

(
I − ∆t

4 T
n
)
α̃ =

(
I + ∆t

4 T
n
)
αn

˜̃α = α̃+ ∆tSn(
I − ∆t

4 T
n
)
αn+1 =

(
I + ∆t

4 T
n
)

˜̃α

where n stands for the time index and I is the identity
matrix. The scheme is split for stability reason. Indeed, the
tridiagonal by blocks inversion problem can be solved thanks
to a LU decomposition valid only if the left hand side matrix
is diagonal dominant. This condition gives a limit on the time
step for collision as the dominant off diagonal term is propor-
tionnal to ∆t

∆v2‖
. Interestingly the splitting allows for a time step

twice bigger than the one without splitting.
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3.6.2. Numerical implementation of conservation proper-
ties

Due to numerical approximations, conservation properties
are not perfectly satisfied. We present here a method used to
improve these conservation laws. It is used to correct only the
C1 part. Indeed the way C0 is treated automatically satisfies
conservation properties. All fluid quantities without indices
correspond to the initial values. The ones noted with the prime
correspond to values after the use of C1. Finally the quanti-
ties with two primes are corrected values. The procedure is the
following, in chronological order :

i)we correct the density by simply applying an homothety
on the distribution function

F ′′ =
F ′n

n′

ii) the parallel velocity and the temperature are then cor-
rected simultanously by removing the Maxwellian after colli-
sions F ′M and adding a new Maxwellian F ′′M with the corrected
moments defined as{

V ′′‖a = V‖a + ∆t
∑
b
R‖ab
nama

T ′′a = Ta

The corrected parallel velocity comes from the momentum
evolution equation

nama

∂V‖a

∂t
=
∑
b

R‖ab

where the exchange rate of momentum is given by (6). The
temperature has to be kept constant T ′′ = T to be consistent
with the development made in section 3.3.2. Indeed, one can
show that the exchange rate of energy due to C1

ab is :

W 1
ab = W‖ab +Wv,ab +Wd,ab

with W‖ab the work of the drag force

W‖ab = V‖aR‖ab

and

Wv,ab +Wd,ab =
3TaTbnamaνab
ma +mb

(
qba
Ta
− qab
Tb

)
= 0 as qab = 0

It follows that the energy evolution of species a due to the
C1 part is then given by

3

2
na

∂Ta
∂t

∣∣∣∣
C1

+ namaV‖a
∂V‖a

∂t
=
∑
b

W 1
ab ⇒

∂Ta
∂t

∣∣∣∣
C1

= 0

4. Validation of the collision operator

4.1. Tests of the collision operator alone

To validate the collision operator, a first step is to make
conservation and relaxation tests by solving collisions only, i.e.
without the effects of trajectories

∂fa
∂t

=
∑
b

Cab

In this section critical physical properties of the collision op-
erator are tested : conservation properties, relaxation toward
the Maxwellian and its dynamics and the exchange rates of
momentum and energy between species. All the results shown
here are obtained with a discretization of (Nv‖ , Nµ) = (128, 64)
which is the optimal discretization for this operator. For these
simulations, the collisionality of the main species is ν? = 1.
For the single species cases, the time step in GYSELA is
∆t = 100ωci. For the multispecies cases performed with deu-
terium as first species and tungsten as second species, the time
step is reduced to take into account that the collisionality of
the impurity is higher than the one of the main species. These
tests are performed without gyroaverage to be consistent with
the fact that FLR effects are not included in the present version
of the collision operator.

4.1.1. Single species tests
Conservation laws are tested by initializing a Maxwellian

that belongs to the kernel of the operator and should there-
fore remain constant in time. After approximately one collision
time, the following conservation are observed for an initial mach
number M‖ = 0 :

∆n

n
' 7 · 10−7 ∆p‖ ' 10−9 ∆E

E
' 6 · 10−6

For an initial Mach number of M‖ = 1 comparable con-
servation properties are found. This means than the collision
operator can be used for Mach numbers M‖ ≤ 1 without any
breakdown of its conservation properties.

Relaxation toward the Maxwellian has been tested by ini-
tialazing two different distribution functions. For the parallel
direction, the initial distribution function is chosen as

Fa = FM0a

(
1 +

mav
2
‖

2Ta

)

For the perpendicular direction, the initial distribution
function is

Fa = FM0a

(
1 +

mav
2
⊥

2Ta

)
The results are shown on figure (4) . As expected a relax-

ation toward the Maxwellian is observed in both cases after a
few collision times.

Figure 4: Relaxation in velocity space

To investigate the dynamical relaxation to the Maxwellian,
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a case with T‖ 6= T⊥ and
T‖−T⊥
Ta

� 1 is launched

Fa = na

(
ma

2πT‖a

)1/2
ma

2πT⊥a
exp

(
−
mav

2
‖

2T‖a
− mav

2
⊥

2T⊥a

)

where Ta =
T‖a+2T⊥a

3 . Then at first order in
T‖−T⊥
Ta

� 1

fa = 1 +
T‖a − T⊥a

3Ta

1

v2
Ta

(
v2
‖ −

v2
⊥
2

)
Integrating ∂tfa, weighted by the energy, over the velocity

space leads to :

d ln
(
T‖ − T⊥

)
dt

=
16

15
√
π

ˆ ∞
0

dxe−x
2

x6

(
νv +

3

2
νd

)
This integral can be computed either with the actual ex-

pressions of νv and νd or their approximate values :
d ln(T‖−T⊥)

dt = −0.80νaa for actual expressions
d ln(T‖−T⊥)

dt = −0.78νaa for fitted values

The discrepancy is small, thus validating the relevance of
the fitting represented in figures (2) and (3). The prediction
for the actual expressions of νv and νd is used as a theoretical
prediction and compared with GYSELA results in figure (5). A
mismatch of 15% percent is found. This discrepancy is accept-
able as most of physics phenomena studied with gyrokinetic
codes are independent of the isotropisation rate.

Figure 5: Time evolution of T‖ and T⊥

4.1.2. Test with two species
The exchange rates of parallel momentum and energy be-

tween two Maxwellians are respectively

R‖,Mab = −namaνab
(
V‖a − V‖b

)
QM,ab = −3

nama

ma +mb
νab (Ta − Tb)

It is then easy to show that

d ln
(
V‖a − V‖b

)
dt

= − (νab + νba)

d ln (Ta − Tb)
dt

= −2
maνab +mbνba

ma +mb

These two relations have been checked. The results for the
velocities are shown in fig.6 and for temperature in fig.7. The
agreement is within one percent.

Figure 6: Relaxation V‖ two species

Figure 7: Relaxation T two species

4.2. Neoclassical test

The intrinsic properties of the collision operator reported in
the previous section are mandatory but relatively easy to sat-
isfy. A more challenging test is provided by neoclassical theory.
For the single species case, the poloidal rotation and heat dif-
fusion coefficient can be compared with theoretical predictions
in a pure axisymmetric case, i.e. without any instability. For
the two species case, the radial flux of a trace impurity is com-
pared with the neoclassical prediction. These tests allow one to
test, different parts of the collision operator depending on the
collisionality regime and the number of species. These tests are
useful as the results are sensitive to the details of the collision
operator.

4.2.1. Neoclassical validation in the single species case
The neoclassical theory is tested by filtering out non ax-

isymmetric components of the electrical potential. Especially,
this filtering removes turbulence. Four simulations are per-
formed with a scan in ν? going from 10−2 to 10. The
phase space grid used for these simulations is

(
r, θ, φ, v‖, µ

)
=

(256, 256, 32, 128, 64). The dimension of the tokamak that is
simulated is fixed by ρ? = 150 and the inverse aspect ratio
ε = 0.31 at midradius. The collisionnal time step depends on ν?
and the numerical time step is adapted consistently to keep the
same temporal resolution of collisions. In the single species neo-
classical theory, two quantities are of utmost importance : the
poloidal rotation and heat diffusivity. These two quantities are
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compared with theoretical predictions to validate GYSELA’s
operator.

In neoclassical theory, the poloidal velocity is tied to the
thermal gradient by the relation vθ = kneo (ν?, ε)

∇T
eB . Theoret-

ical predictions of kneo are accurate in the banana and Pfirsch-
Schlüter regimes and approximate in the plateau regime. The
sign of the poloidal velocity is expected to depend on the colli-
sionality regime : rotation in the the ion diamagnetic direction
(kneo > 0) is expected in the banana regime and the opposite
(kneo < 0) in the Pfirsch-Schlüter regime. The transition is ex-
pected to take place in the plateau regime. A model inspired
from Hirshman Sigmar is given by Kim [14] and predicts kneo
in all collisionality regimes including corrections due to finite
aspect ratio ε. This theoretical prediction is used to bench-
mark GYSELA’s operator. The results are shown in figure (8).
The shape of the curve is the same and the inversion of sign
takes place in the plateau regime as expected by theory. The
agreement is better for the banana regime where the theoretical
prediction is more accurate.

Another important quantity predicted by neoclassical the-
ory is the thermal diffusion coefficient χneo. Even if neoclassical
transport is subdominant as compared to the turbulent one for
the main species, it can be important for heavy impurities like
tungsten and for the main species close to transport barriers
where turbulent transport is reduced. To check their validity,
GYSELA results are compared with the Chang-Hinton predic-
tion [4] valid in all collisionality regimes . The results are shown
in the figure (9). Again a satisfactory agreement with analytical
prediction is found.

Figure 8: Comparison of kneo predicted by theory with GYSELA
results

Figure 9: Comparison of χneo predicted by theory with GYSELA
results

4.2.2. Neoclassical validation in the two species case
Neoclassical transport is expected to be dominant for heavy

impurities. In this framework, the following tests are performed
for tungsten as the second species in the trace limit (α =
nzZ

2
z

niZ2
i
� 1) for simplicity. In fusion plasmas, tungsten is only

partially stripped and its ionization state should depends on the
spatial location. But only one charge state is allowed in the cur-
rent version of the GYSELA code. Thus a fixed charge is chosen
for the tungsten ZW = 40. The main species is deuterium in the
banana regime ν?D = 0.1. Tungsten is therefore in the Pfirsch

Schlüter regime as ν?W '
√

2Z2
W

√
mD
mW

ν?D ' 236ν?D = 23, 6.

A derivation of the theoretical prediction for trace impu-
rity transport in the Pfirsch-Schlütter regime can be found in
[12]. We recall here only the main steps. The starting point
is to link the radial flux of particles to the collisional friction
force. The easiest way to do it is to use the toroidal momentum
conservation equation for species s

∂tLϕ,s + ∂ψΠΨ
ϕ,s = Ze

(
ΓΨ
s − ΓΨ

E,s

)
+

〈
I

B
R‖,s

〉
Ψ

with

Lϕ,s = ms

ˆ
dτuϕFs

ΠΨ
ϕ,s = ms

ˆ
dτuϕFsv

Ψ

ΓΨ
E,s =

ˆ
dτFs∂ϕφ̄

ΓΨ
s =

ˆ
dτFsv

Ψ = 〈Γ⊥,s · ∇Ψ〉Ψ

Where uϕ = I
B v‖ and φ̄ is the gyro-averaged electric poten-

tial Here dτ = d3v dθdϕ
B·∇θ is the phase space volume element in

between two magnetic surfaces Ψ and Ψ+dΨ and 〈...〉Ψindicates
the flux surface average. R‖,s is the total collisional drag force
R‖,s =

∑
s′ R‖,ss′ which is linked to the V‖i and q‖i via the

equation (6). Finally these parallel quantities can be linked to
radial gradients of densities and temperature in two steps. The
first step consists in linking the perpendicular components of
velocity V⊥i and heat flux q⊥i to the gradients of densities and
temperature. Neglecting poloidal asymmetries, one can show
that

V ⊥i =
B ×∇Ψ

B2
ωi (Ψ) where ωi (Ψ) =

1

niZie

∂pi
∂Ψ

+
∂φ

∂Ψ

q⊥i =
5

2

pi
ZieB2

∂Ti
∂Ψ

B ×∇Ψ (9)

Then assuming stationary flows, one can use the incom-
pressibility of the flow (∇ (nV ) = 0) and the incompressibility
of the heat flux (∇q = 0) to link the perpendicular components
to the parallel ones:

V‖i =

〈
BV‖i

〉
Ψ
B

〈B2〉Ψ
− ωi (Ψ) I (Ψ)

(
1

B
− B

〈B2〉Ψ

)

q‖i =

〈
Bq‖i

〉
Ψ
B

〈B2〉Ψ
− 5

2

pi
Zie

∂Ti
∂Ψ

I (Ψ)

(
1

B
− B

〈B2〉Ψ

)
(10)

Then using eq.(6) one can compute the parallel exchange
of momentum between species due to collisions
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R‖zi = νzi
mzTz,eqI

Ze

(
1

B
− B

〈B2〉Ψ

)
nz,eq

×
[
∂ lnnz,eq
∂Ψ

− Zz
Zi

∂ lnni,eq
∂Ψ

−Htheo
Zz
Zi

∂ lnTeq
∂Ψ

]
where the contribution of parallel heat flux of the impurity

has been dropped due the mass ratio between impurity and the
main species. Then putting all together, and noticing that all
terms which do not involve radial gradients cancel out in virtue
of parallel force balance, one recovers the usual expression for
impurity flux due to neoclassical physics

Γz = −nZDtheo

[
∇nz
nz
− Z∇ni

ni
−HtheoZ

∇T
T

]
Where Γz is a modified impurity flux

Γz =
dr

dΨ

[
ΓΨ
z − ΓΨ

E,z −
1

Zze

(
∂tLϕ,z + ∂ψΠΨ

ϕ,z

)]
It is often assumed that Γz ' dr

dΨΓΨ
z = 〈Γ⊥,z · ∇r〉Ψ. But

in the simulations, the contribution of the other terms are non-
vanishing and they need to be taken into account for a precise
comparison between simulation and theoretical prediction.

Recovering the expected neoclassical expression of the ther-
mal screening coefficient Htheo reveals as a stringent test of both
the Vlasov part (the left hand side of the gyrokinetic equation,
governing the trajectories) and the collision operator. More
precisely, the final value – and sign – of Htheo results from a
partial compensation between two different contributions: the
one coming from the parallel velocities of both species (' 1),
and the other one coming from the parallel heat flux of the
main ions

(
' − 3

2

)
.

In this framework, the accurate computation of q‖i is a
critical issue. As a matter of fact, its neoclassical expres-
sion eq.(10) results from the incompressibility of the total flux
∇ · qi = 0. The transverse flux q⊥i computed in GYSELA is
in perfect agreement with the neoclassical prediction, eq.(9).
Conversely, the present accuracy of the energy balance does
not reveal sufficient to recover the expected expression of q‖i:
while the poloidal shape is properly recovered, the magnitude
is not. Ongoing efforts are conducted to solve this issue. Notice
however that this issue is not related to the collision operator,
although it impacts neoclassical transport. Indeed, it deals with
the treatment of the Vlasov part of the gyrokinetic equation.
For the time being, the solution to overcome this difficulty is
to impose that the parallel heat flux takes the expected value
eq.(10) in the collision operator. This has been used to get the
following results.

The diffusion coefficient and the screening factor in the
Pfirsch-Schlütter regime with trace impurities are given re-
spectively by Dtheo = 2q2 ρ2

i νiz/α and Htheo ' −0.5 +
0.29/

(
0.59 + 1.34g-2

)
with g = ν?i ε

3/2 [12]. To test this pre-
diction we assume that the flux computed in GYSELA takes
the general form

Γgysz = −nZDgys

[
∇nz
nz
−KgysZ

∇ni
ni
−HgysZ

∇T
T

]
Then one only needs to determine Dgys, Kgys and Hgys and

to compare them with their analytical prediction Dtheo, 1 and

Htheo . To do so, two simulations are used. The first one with
∇T ' 0 is used to compute Dgys and Kgys. Radial density
profiles are chosen to get a radial scan of ∇nznz

(ρ) − Z∇nini
(ρ)

around zero. Recording Γz/nz (ρ), it is possible to plot Γz/nz
as a function of ∇nznz

−Z∇nini
, using the global character of GY-

SELA and the local behaviour of neoclassical transport. The
result of this simulation is given in fig.10. The good linear fit
gives confidence in the dependence of the flux of tungsten on
the density gradients of both species. The discrepancy with the
theoretical prediction for Kgys is of few percents and the one
on the diffusion coefficient Dgys is below 15%.

Figure 10: Measurement of Dgys and Kgys

The second step consists in a simulation with ∇nznz
−Z∇nini

=
0 . In this case the flux is expected to be directly proportional
to the temperature gradient Γz = −nZDgysHgysZ

∇T
T as the

previous simulation has shown that Kgys ' 1. Using also the
fact that the diffusion coefficient is close to the theoretical pre-
diction, we can replace Dgys by Dtheo in the previous expression
and then directly measure Hgys using a method similar to the
one presented previously. The result is given in fig.11. Again
a discrepancy of few percent is found between results from the
code and theoretical prediction.

Figure 11: Measurement of the screening factor Hgys
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4.3. Zonal flow damping

Zonal flows are known to control the level of turbulence by
tearing apart vortices [6]. The main damping mechanism for
these flows comes from collisional friction. It is then critical
to get the correct damping rate of zonal flows to predict the
right level of turbulence. Collisionless plasmas are known to
exhibit linearly undamped axisymmetric φ00 [16]. Hinton and
Rosenbluth [11] have predicted the collisional damping of this
residual flow.

φ00(t)

φ00(t = 0)
= exp

(
β2

α2
t

)
erfc

(
β

α

√
t

)

+ erf (ν0t)α
B2
θ

B2

 1.8 (ν0t)
5/9

exp
(
− (3ν0t)

2/3
)

+1 + 1.4
ε exp (−νdt)


Where α = 1 + 1.6 q

2

√
ε

is the collisionless residual, β =

3πq2ν̄1/2

εΛ3/2 , Λ = λ ln
(

16
(
ε
ν̄t

)1/2)
with λ ' 1 and some frequencies

associated with collisions are defined as ν̄ = 0.61νii, ν0 = 1.9νii,
νd = νii

0.64
√
ε
. The initial time corresponds to the case where all

GAM oscillations have been Landau damped. Details on GAM
oscillation and damping can be found in the literature [20, 17].
The first term corresponds to the fast collisional smoothing of
the distribution function in the trapping boundary layer. The
last term is the contribution from high-energy ions which have
small collision frequencies and thus dominate the long time be-
haviour. An extra term erf (ν0t) has been added in front of the
last term of the right hand side to ensure the relation also holds
for initial time.

The collisional damping of the residual can be tested by first
launching a collisionless simulation, waiting for GAM damping
and then adding collisions. A good agreement is found between
predicted and computed φ00 decay once collisions are activated
as can be seen in figure 12. To have a better match, the value
of λ has been adjusted (λ = 1.04).

Figure 12: Collisional damping of φ00

5. Conclusion

A new multi-species collision operator has been imple-
mented and tested in the gyrokinetic code GYSELA. It is valid
for species of arbitrary mass and charge. It is peculiar as it acts
directly in the

(
v‖, µ

)
set of coordinates. The main properties

have been tested successfully. Firstly the intrinsic properties
of the operator have been validated : conservation properties,
exchange rates, relaxation to the Maxwellian. Secondly, the
neoclassical physics for single and two species have been been
compared successfully with theoretical predictions. These tests
are sensitive to details of the collision operator and thus give a
set of stringent criterion to test any collision operator. Finally
the collisional damping of zonal flows has been recovered.

This new collision operator allows the GYSELA code
to study more accurately trapped electron modes turbulence
which have been recently added to the code. Moreover, it al-
lows one the study of multi-species plasmas with no restriction
on the relative concentration between species.

Aknowledgements

This work was granted access to the national HPC
ressources of OCCIGEN/CINES and European machine ded-
icated to fusion Marconi/CINECA. This work has been carried
out within the framework of the EUROfusion Consortium and
has received funding from the Euratom research and training
programme 2014-2018 under grant agreement No 633053 for
the project WP17-ENR-CEA-02. The views and opinions ex-
pressed herein do not necessarily reflect those of the European
Commission.

Appendix : Numerical aspects

In this appendix, we detail the choice of the main numer-
ical parameters used for the collision operator. The first step
is the number of polynomials Npol kept for the projection in
the µ direction. For this choice, the most stringent test is to
retrieve kneo in the single species case. The minimal number of
polynomials to have the expected poloidal rotation is Npol = 3.
Once the number of polynomials is set, one has to choose the
discretization in the µ direction. A necessary condition for the
projection to work properly is to ensure the orthogonality of
the polynomials and so to check the condition∥∥∥∥δij − ˆ due−uPi(u)Pj(u)

∥∥∥∥� 1 for any i,j

One can show that the optimal choice for the number of
points in the µ direction is Nµ = 64 and the optimal value for
the the upper limit in the µ direction is µmax ' 16T

B . The
number of points in the v‖ direction is less critical in terms
of numerical cost. 128 points reveal sufficient for the collision
operator.

The last point is to choose the collisional time step ∆tcoll.
Indeed in order to save computational ressource, the collision
operator can be used on a different time scale as the the rest of
the code GYSELA. Of course, the collisional time step ∆tcoll
has to be proportional to (max (ν?s ))

−1
where ν?s is the colli-

sionality of the s species .
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[8] Estève, D., Sarazin Y. Garbet X. Grandgirard V. Breton S.
Donnel P. Asahi Y. Bourdelle C. Dif-Pradalier G. Ehrlacher
C. Emeriau C. Ghendrih P. Gillot C. Latu G. Passeron C.
2017. Self-consistent gyrokinetic modeling of neoclassical and
turbulent impurity transport. Nuclear Fusion.

[9] Grandgirard, V., Abiteboul, J., Bigot, J., Cartier-Michaud,
T., Crouseilles, N., Dif-Pradalier, G., Ehrlacher, Ch., Es-
teve, D., Garbet, X., Ghendrih, Ph., Latu, G., Mehrenberger,
M., Norscini, C., Passeron, Ch., Rozar, F., Sarazin, Y., Son-
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