
HAL Id: hal-01687438
https://hal.science/hal-01687438

Submitted on 18 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bohr’s correspondence principle for the renormalized
Nelson model

Zied Ammari, Marco Falconi

To cite this version:
Zied Ammari, Marco Falconi. Bohr’s correspondence principle for the renormalized Nelson model.
SIAM Journal on Mathematical Analysis, 2017, 49 (6), pp.5031-5095. �10.1137/17M1117598�. �hal-
01687438�

https://hal.science/hal-01687438
https://hal.archives-ouvertes.fr


BOHR’S CORRESPONDENCE PRINCIPLE FOR THE RENORMALIZED

NELSON MODEL.

ZIED AMMARI AND MARCO FALCONI

Abstract. In the mid Sixties Edward Nelson proved the existence of a consistent quantum field
theory that describes the Yukawa-like interaction of a non-relativistic nucleon field with a relativis-

tic meson field. Since then it is thought, despite the renormalization procedure involved in the

construction, that the quantum dynamics should be governed in the classical limit by a Schrödinger-
Klein-Gordon system with Yukawa coupling. In the present paper we prove this fact in the form of

a Bohr correspondence principle.
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(n)
∞ to H. 14

3. The classical system: S-KG equations. 15

3.1. Dressing. 15

3.2. Classical Hamiltonians. 18

3.3. Global existence results. 20

3.4. Symplectic character of Dχσ0
. 21

4. The classical limit of the renormalized Nelson model. 22

4.1. Scheme of the proof. 22

4.2. The integral formula for the dressed Hamiltonian. 23

4.3. The commutator [Ĥren,I ,W (ξ̃s)]. 25
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1. Introduction.

Modern theoretical physics explains how matter interacts with radiation and proposes phenomeno-

logical models of quantum field theory that in principle describe such fundamental interaction. Giving

a firm mathematical ground to these models is known to be a difficult task related to renormaliza-

tion theory [19, 36, 53, 54, 58, 66]. Since the fifties there were spectacular advances in these problems

culminating with the perturbative renormalization of quantum electrodynamics, the birth of the renor-

malization group method and the renormalizability of gauge field theories. Nevertheless, conceptual

mathematical difficulties remain as well as outstanding open problems, see [61, 74]. The purpose of

the present article is to study the quantum-classical correspondence for a simple renormalized model

of particles interacting with a scalar field: the Nelson model. We believe that the study of the relation-

ship between classical and quantum nonlinear field theories sheds light on the mathematical foundation

of renormalization theory. In particular, in the case considered here the renormalization procedure

turns out to be related to a normal form implemented by nonlinear symplectic transformations on the

classical phase-space. Interested reader may found a formal discussion concerning the possibility of a

different point of view on renormalization in an extended version of this article [6].

The so-called Nelson model is a system of Quantum Field Theory that has been widely studied from

a mathematical standpoint [see e.g. 1, 13–16, 21, 30, 34, 39, 43, 43–45, 67, 71, 78]. It consists of non-

relativistic spin zero particles interacting with a scalar boson field, and can be used to model various

systems of physical interest, such as nucleons interacting with a meson field. In the mid sixties Edward

Nelson rigorously constructed a quantum dynamic for this model free of ultraviolet (high energy)

cutoffs in the particle-field coupling, see [68]. This is done by means of a renormalization procedure:

roughly speaking, we need to subtract a divergent quantity from the Hamiltonian, so the latter can be

defined as a self-adjoint operator in the limit of the ultraviolet cutoff. The quantum dynamics is rather

singular in this case (renormalization is necessary); and the resulting generator has no explicit form

as an operator though it is unitarily equivalent to an explicit one. Since the work of Gross [56] and

Nelson [68] it is believed, but never proved, that the renormalized dynamics is generated by a canonical

quantization of the Schrödinger-Klein-Gordon (S-KG) system with Yukawa coupling. In other words,

the quantum fluctuations of the particle-field system are centered around the classical trajectories of

the Schrödinger-Klein-Gordon system at certain scale and the renormalization procedure preserves the

suitable quantum-classical correspondence as well as being necessary to define the quantum dynamics.

We give a mathematical formulation of such result in Theorem 1.1 in the form of a Bohr correspondence

principle. Consequently, our result justifies in some sense the use of the Schrödinger-Klein-Gordon

system as a model of nucleon-meson interaction [see e.g. 17, 18, 27, 40, 50, 70].

Recently, the authors of this paper have studied the classical limit of the Nelson model, in its

regularized version [5, 32]. We have proved that the quantum dynamic converges, when an effective

semiclassical parameter ε→ 0, towards a non-linear Hamiltonian flow on a classical phase space. This

flow is governed by a Schrödinger-Klein-Gordon system, with a regularized Yukawa-type coupling. To



BOHR’S CORRESPONDENCE IN THE NELSON MODEL 3

extend the classical-quantum correspondence to the system without ultraviolet cutoff, we rely on the

recent techniques elaborated in the mean-field approximation of many-body Schrödinger dynamics

in [8–11] as well as the result with cutoff [5]. As a matter of fact the renormalization procedure,

implemented by a dressing transform, generates a many-body Schrödinger dynamics in a mean-field

scaling (see for instance the recent results [24, 25, 72] and references therein). So it was convenient

that the mean-field approximation was derived with the same general techniques that allow to prove

equally the classical approximation for QFT models. The result is further discussed in Subsection 1.2,

and all the details and proofs are provided in Section 4.

For the sake of presentation, we collected the notations and basic definitions—used throughout the

paper—in the Subsection 1.1 below. In subsection 1.2 we present our main result on the classical-

quantum correspondence principle. The rest of the paper is organized as follows: in Section 2 we

review the basic properties of the quantum system and the usual procedure of renormalization with

some crucial uniform estimates; in Section 3 we analyze the classical S-KG dynamics and the classical

dressing transformation; in Section 4 we study in detail the classical limit of the renormalized Nelson

model, and prove our main Theorem 1.1.

1.1. Notations and general definitions.

* We fix once and for all ε̄,m0,M > 0. We also define the function ω(k) =
√
k2 +m2

0.

* The effective (semiclassical) parameter will be denoted by ε ∈ (0, ε̄).

* Let Z be a Hilbert space; then we denote by Γs(Z) the symmetric Fock space over Z. We

have that

Γs(Z) =

∞⊕
n=0

Z⊗sn with Z⊗s0 = C ,

where Z⊗sn is the n-fold symmetrized tensor product.

* Let X be an operator on a Hilbert space Z. We will usually denote by D(X) ⊂ Z its domain

of definition, and by Q(X) ⊂ Z the domain of definition of the corresponding quadratic form.

* Let S : Z ⊇ D(S)→ Z be a densely defined self-adjoint operator on Z. Its second quantization

dΓ(S) is the self-adjoint operator on Γs(Z) defined by

dΓ(S)|
D(S)⊗

alg
s n

= ε

n∑
k=1

1⊗ · · · ⊗ S︸︷︷︸
k

⊗ · · · ⊗ 1 ,

where D(S)⊗
alg
s n denotes the algebraic tensor product. In particular, the operator dΓ(1) is the

scaled number operator which we simply denote by N without stressing the ε-dependence.

* We denote by C∞0 (N) the subspace of finite particle vectors:

C∞0 (N) = {ψ ∈ Γs(Z) ; ∃n̄ ∈ N, ψ
∣∣
Z⊗sn = 0 ∀n > n̄} .

* Let U be a unitary operator on Z. We define Γ(U) to be the unitary operator on Γs(Z) given

by

Γ(U)|Z⊗sn =

n⊗
k=1

U .

If U = eitS is a one parameter group of unitary operators on Z, Γ(eitS) = ei
t
εdΓ(S).
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* On Γs(Z), we define the annihilation/creation operators a#(g), g ∈ Z, by their action on

f⊗n ∈ Z⊗sn (with a(g)f0 = 0 for any f0 ∈ Z⊗s0 = C):

a(g)f⊗n =
√
εn 〈g, f〉Z f⊗(n−1) ;

a∗(g)f⊗n =
√
ε(n+ 1) g ⊗s f⊗n .

They satisfy the Canonical Commutation Relations (CCR), [a(f), a∗(g)] = ε〈f, g〉Z .

If Z = L2(Rd) it is useful to introduce the operator valued distributions a#(x) defined by

a(g) =

∫
Rd
ḡ(x)a(x)dx , a∗(g) =

∫
Rd
g(x)a∗(x)dx .

* H = Γs(L
2(R3) ⊕ L2(R3)) ' Γs(L

2(R3)) ⊗ Γs(L
2(R3)). We denote by ψ#(x) and N1 the

annihilation/creation and number operators corresponding to the nucleons (conventionally

taken to be the first Fock space), by a#(k) and N2 the annihilation/creation and number

operators corresponding to the meson scalar field (second Fock space). In particular, we will

always use the following ε-dependent representation of the CCR if not specified otherwise:

[ψ(x), ψ∗(x′)] = εδ(x− x′) , [a(k), a∗(k′)] = εδ(k − k′) .

* We will sometimes use the following decomposition:

H =

∞⊕
n=0

Hn, with Hn =
(
L2(R3)

)⊗sn ⊗ Γs(L
2(R3)) .

We denote by T (n) := T
∣∣
Hn

the restriction to Hn of any operator T on H
* On H, the Segal quantization of L2(R3)⊕ L2(R3) 3 ξ = ξ1 ⊕ ξ2 is given by

R(ξ) =
(
ψ∗(ξ1) + ψ(ξ1) + a∗(ξ2) + a(ξ2)

)
/
√

2 ,

and therefore the Weyl operator becomes

W (ξ) = e
i√
2

(
ψ∗(ξ1)+ψ(ξ1)

)
e
i√
2

(
a∗(ξ2)+a(ξ2)

)
.

* Given a Hilbert space Z, we denote by L(Z) the C∗-algebra of bounded operators; by K(Z) ⊂
L(Z) the C∗-algebra of compact operators; and by L1(Z) ⊂ K(Z) the trace-class ideal.

* We denote classical Hamiltonian flows by boldface capital letters (e.g. E(·)); their correspond-

ing energy functional by script capital letters (e.g. E ).

* Let f ∈ S ′(Rd) be a tempered distribution. We denote by F(f)(k) its Fourier transform

F(f)(k) =
1

(2π)d/2

∫
Rd
f(x)e−ik·xdx .

* We denote by C∞0 (Rd) the infinitely differentiable functions of compact support. We denote

by Hs(Rd) the non-homogeneous Sobolev space:

Hs(Rd) =
{
f ∈ S ′(Rd) ,

∫
Rd

(1 + |k|2)s|F(f)(k)|2dk < +∞
}

;

and its “Fourier transform”

FHs(Rd) =
{
f ∈ S ′(Rd) , F−1f ∈ Hs(Rd)

}
.
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* Let Z be a Hilbert space. We denote by P(Z) the set of Borel probability measures on Z.

1.2. The classical limit of the renormalized Nelson model. The Schrödinger-Klein-Gordon

equations with Yukawa-like coupling is a widely studied system of non-linear PDEs in three dimen-

sion [see e.g. 17, 18, 27, 40–42, 50, 70]. This system can be written as:i∂tu = − ∆

2M
u+ V u+Au

(�+m2
0)A = −|u|2

;

where m0,M > 0 are real parameters and V is a non-negative potential that is confining or equal to

zero. Using the complex field α as a dynamical variable instead of A (see Equation (47) of Section 3),

the aforementioned dynamics can be seen as a Hamilton equation generated by the following energy

functional, densely defined on1 L2 ⊕ L2:

E (u, α) :=
〈
u,
(
− ∆

2M + V
)
u
〉

2
+ 〈α, ωα〉2 + 1

(2π)3/2

∫
R6

1√
2ω(k)

(
ᾱ(k)e−ik·x + α(k)eik·x

)
|u(x)|2dxdk .

With suitable assumptions on the external potential V , one proves the global existence of the associated

flow E(t); a detailed discussion can be found in Subsection 3.3 where the precise condition on V is given

by Assumption (AV ). So there is a Hilbert space2 D = Q(−∆ + V )⊕FH 1
2 (R3) densely imbedded in

L2⊕L2 such that there exists a classical flow E : R×D → D that solves the Schrödinger-Klein-Gordon

equation (S-KGα[Y]) written using the complex field α.

A question of significant interest, both mathematically and physically, is whether it is possible to

quantize the Schrödinger-Klein-Gordon dynamics with Yukawa coupling as a consistent theory that

describes quantum mechanically the particle-field interaction. As mentioned previously, E. Nelson rig-

orously constructed a self-adjoint operator satisfying in some sense the above requirement. Afterwards

the model was proved to satisfy some of the main properties that are familiar in the axiomatic ap-

proach to quantum fields, see [22]. Furthermore, asymptotic completeness was proved to be true in [4].

The problem of quantization of such infinite dimensional nonlinear dynamics is related to constructive

quantum field theory. The general framework is as follows.

Let Z be a complex Hilbert space with inner product 〈 · , · 〉. We define the associated symplectic

structure Σ(Z) as the pair {Y, B( · , · )} where Y is Z considered as a real Hilbert space with inner

product 〈 · , · 〉r = Re〈 · , · 〉, and B( · , · ) is the symplectic form defined by B( · , · ) = Im〈 · , · 〉. Fol-

lowing Segal [77], we define a (bosonic) quantization of the structure Σ(Z) any linear map R(·) from

Y to self-adjoint operators on a complex Hilbert space such that:

* The Weyl operator W (z) = eiR(z) is weakly continuous when restricted to any finite dimen-

sional subspace of Y;

* W (z1)W (z2) = e−
i
2B(z1,z2)W (z1 + z2) for any z1, z2 ∈ Y (Weyl’s relations).

When the dimension of Z is not finite, there are uncountably many irreducible unitarily inequivalent

Segal quantizations of Σ(Z) (or representation of Weyl’s relations). A representation of particular

relevance in physics is the so-called Fock representation [29, 35] on the symmetric Fock space Γs(Z).

Once this representation is considered there is a natural way to quantize polynomial functionals on Z
into quadratic forms on Γs(Z) according to the Wick or normal order (we briefly outline the essential

1Sometimes the shorthand notation L2 ⊕ L2 is used instead of L2(R3)⊕ L2(R3), if no confusion arises.
2If V = 0, D could be the whole space L2 ⊕ L2.
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features of Wick quantization on Section 4.3, the reader may refer to [8, 20, 31] for a more detailed

presentation).

Following these rules, the formal quantization of the classical energy E yields a quadratic form h

on the Fock space Γs(L
2 ⊕ L2) which plays the role of a quantum energy. The difficulty now lies on

the fact that the quadratic form h do not define straightforwardly a dynamical system (i.e. h may not

be related to a self-adjoint operator). Nevertheless, according to the work of Nelson it is possible in

our case to define for any σ0 ∈ R+, a renormalized self-adjoint operator Hren(σ0) associated in some

specific sense to h (see Section 2 for details). However, the relationship between the classical and the

quantum theory at hand is obscured by the renormalization procedure and it is unclear even formally if

the quantum dynamics generated by Hren(σ0) are still related to the original Schrödinger-Klein-Gordon

equation. Therefore, we believe that it is mathematically interesting to verify Bohr’s correspondence

principle for this model.

Bohr’s principle: ”The quantum system should reproduce, in the limit of large quan-

tum numbers, the classical behavior.”

This principle may be reformulated as follows. We make the quantization procedure dependent on

a effective parameter ε, that would converge to zero in the limit. The physical interpretation of ε is

of a quantity of the same order of magnitude as the Planck’s constant, that becomes negligible when

large energies and orbits are considered. In the Fock representation, we introduce the ε-dependence

in the annihilation and creation operator valued distributions ψ#(x) and a#(k), whose commutation

relations then become [ψ(x), ψ∗(x′)] = εδ(x− x′) and [a(k), a∗(k′)] = εδ(k − k′). If in the limit ε→ 0

the quantum unitary dynamics converges towards the Hamiltonian flow generated by the Schrödinger-

Klein-Gordon equation with Yukawa interaction, Bohr’s principle is satisfied.

If the phase space Z is finite dimensional, the quantum-classical correspondence has been proved in

the context of semiclassical or microlocal analysis, with the aid of pseudo-differential calculus, Wigner

measures or coherent states [see e.g. 3, 26, 28, 46, 47, 57, 59, 60, 63, 65, 75]. If Z is infinite dimensional,

the situation is more complicated, and there are fewer results for systems with unconserved number

of particles [5, 8, 12, 37, 38, 51]. The approach we adopt here makes use of the infinite-dimensional

Wigner measures introduced by Ammari and Nier [8, 9, 10, 11]. Remark that Wigner measures are

related to phase-space analysis and are in general an effective tool for the study of the classical limit.

Given a family of normal quantum states (%ε)ε∈(0,ε̄) on the Fock space, we say that a Borel probability

measure µ on Z is a Wigner measure associated to it if there exists a sequence (εk)k∈N ⊂ (0, ε̄) such

that εk → 0 and3

(1) lim
k→∞

Tr[%εkW (ξ)] =

∫
Z
ei
√

2Re〈ξ,z〉Zdµ(z) , ∀ξ ∈ Z .

We denote by M
(
%ε, ε ∈ (0, ε̄)

)
the set of Wigner measures associated to (%ε)ε∈(0,ε̄). Let e−i

t
εHren(σ0)

be the quantum dynamics on Γs(Z), Z = L2 ⊕ L2, then the time-evolved quantum states can be

written as (e−i
t
εHren(σ0)%εe

i tεHren(σ0))ε∈(0,ε̄). Bohr’s principle is satisfied if Wigner measures of time

evolved quantum states are exactly the push-forward, by the classical flow E(t), of the initial Wigner

3W (ξ) is the εk-dependent Weyl operator explicitly defined by (66).
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measures at time t = 0; i.e.

(2) M
(
e−i

t
εHren(σ0)%εe

i tεHren(σ0), ε ∈ (0, ε̄)
)

=
{

E(t)#µ , µ ∈M(%ε, ε ∈ (0, ε̄))
}
.

To ensure that M
(
%ε, ε ∈ (0, ε̄)

)
is not empty, it is sufficient to assume that there exist δ > 0 and

C > 0 such that, for any ε ∈ (0, ε̄), Tr[%εN
δ] < C; where N is the number operator of the Fock space

Γs(Z) with Z = L2⊕L2. Actually, we make the following more restrictive assumptions: Let (%ε)ε∈(0,ε̄)

be a family of normal states on Γs(L
2(R3)⊕ L2(R3)), then

∃C > 0 , ∀ε ∈ (0, ε̄) , ∀k ∈ N , Tr[%εN
k
1 ] ≤ Ck ;(A0)

∃C > 0 , ∀ε ∈ (0, ε̄) , Tr[%ε(N + U∗∞H0U∞)] ≤ C ;(Aρ)

where N1 is the nucleonic number operator, N = N1 + N2 the total number operator, H0 is the free

Hamiltonian defined by Equation (5) and U∞ is the unitary quantum dressing defined in Lemma 2.3.

As a matter of fact, it is possible in principle to remove Assumption (A0), but it has an important role

in connection with the parameter σ0 related to the renormalization procedure. This condition restricts

the considered states %ε to be at most with [C/ε] nucleons.

We are now in a position to state precisely our result: the Bohr’s correspondence principle holds

between the renormalized quantum dynamics of the Nelson model generated by Hren(σ0) and the

Schrödinger-Klein-Gordon classical flow generated by E . The operator Hren(σ0) is constructed in

Subsection 2.3 according to Definition 2.13. Recall that D = Q(−∆ + V )⊕FH 1
2 (R3).

Theorem 1.1. Let E : R×D → D be the Schrödinger-Klein-Gordon flow provided by Theorem 3.15

and solving the equation (S-KGα[Y]) with a potential V satisfying Assumption (AV ). Let (%ε)ε∈(0,ε̄)

be a family of normal states in Γs
(
L2(R3)⊕L2(R3)

)
that satisfies Assumptions (A0) and (Aρ). Then:

(i) There exists a σ0 ∈ R+ such that the dynamics e−i
t
εHren(σ0) is non-trivial on the states %ε.

(ii) M
(
%ε, ε ∈ (0, ε̄)

)
6= Ø .

(iii) For any t ∈ R,

(3) M
(
e−i

t
εHren(σ0)%εe

i tεHren(σ0), ε ∈ (0, ε̄)
)

=
{

E(t)#µ , µ ∈M
(
%ε, ε ∈ (0, ε̄)

)}
.

Furthermore, let (εk)k∈N ⊂ (0, ε̄) be a sequence such that limk→∞ εk = 0 and M
(
%εk , k ∈ N

)
= {µ},

i.e.: for any ξ ∈ L2 ⊕ L2,

lim
k→∞

Tr[%εkW (ξ)] =

∫
L2⊕L2

ei
√

2Re〈ξ,z〉dµ(z).

Then for any t ∈ R, M
(
e
−i tεkHren(σ0)

%εe
i tεk

Hren(σ0)
, k ∈ N

)
= {E(t)#µ}, i.e.:

(4) lim
k→∞

Tr
[
e
−i tεkHren(σ0)

%εke
i tεk

Hren(σ0)
W (ξ)

]
=

∫
L2⊕L2

ei
√

2Re〈ξ,z〉d(E(t)#µ)(z) , ∀ξ ∈ L2 ⊕ L2 .

Remark 1.2.

* The choice of σ0 is related to our Definition 2.13 of the renormalized dynamics and the local-

ization of states (%ε)ε∈(0,ε̄) satisfying Assumption (A0) (see Lemma 4.2). Actually, one can

take any σ0 ≥ 2K(C + 1 + ε̄) where K > 0 is a constant given in Theorem 2.10.
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* We remark that every Wigner measure µ ∈ M(%ε, ε ∈ (0, ε̄)), with (%ε)ε∈(0,ε̄) satisfying As-

sumption (Aρ) is a Borel probability measure on D equipped with its graph norm, hence the

push-forward by means of the classical flow E is well defined (see Section 4.4).

* Adopting a shorthand notation, the last assertion of the above theorem can be written as:

%εk → µ⇔
(
∀t ∈ R , e

−i tεkHren(σ0)
%εke

i tεk
Hren(σ0) → E(t)#µ

)
.

2. The quantum system: Nelson Hamiltonian.

In this section we define the quantum system of ”nucleons” interacting with a meson field, and

briefly review the standard renormalization procedure due to Nelson [68]. Since we are interested

in the classical limit and our original and dressed Hamiltonians depend on an effective parameter

ε ∈ (0, ε̄), it is necessary to check that several known estimates of the quantum theory are uniform

with respect to ε. This step is crucial and motivated our brief revisit of the Nelson renormalization

procedure.

On H = Γs(L
2(R3)) ⊗ Γs(L

2(R3)) we define the following free Hamiltonian as the positive self-

adjoint operator given by:

H0 =

∫
R3

ψ∗(x)
(
− ∆

2M + V (x)
)
ψ(x)dx+

∫
R3

a∗(k)ω(k)a(k)dk = dΓ(− ∆
2M + V ) + dΓ(ω) ,(5)

where V ∈ L2
loc(R

3,R+). We denote its domain of self-adjointness by D(H0). We denote by dΓ the

second quantization acting either on the first or second Fock space, when no confusion arises.

Now let χ ∈ C∞0 (R3); 0 ≤ χ ≤ 1 and χ ≡ 1 if |k| ≤ 1, χ ≡ 0 if |k| ≥ 2. Then, for all σ > 0

define χσ(k) = χ(k/σ); it will play the role of an ultraviolet cutoff in the interaction. The Nelson

Hamiltonian with cutoff has thus the form:

(6) Hσ = H0 + 1
(2π)3/2

∫
R3

ψ∗(x)
(
a∗
(
e−ik·x√

2ω
χσ
)

+ a
(
e−ik·x√

2ω
χσ
))
ψ(x)dx .

We will denote the interaction part by HI(σ) = Hσ −H0.

Remark 2.1. There is no loss of generality in the choice of χ as a radial function [see 4, Proposition

3.9].

The following proposition shows the self-adjointness of Hσ, see e.g. [5, Proposition 2.5] or [33].

Proposition 2.2. For any σ > 0, Hσ is essentially self-adjoint on D(H0) ∩ C∞0 (N).

To obtain a meaningful limit when σ → ∞, we use a dressing transformation, introduced in the

physics literature by Greenberg and Schweber [55] following the work of van Hove [80, 81]. The dressing

and the renormalization procedure are described in Sections 2.1 and 2.2 respectively. In Section 2.3

we discuss a possible extension of the renormalized Hamiltonian on Hn to the whole Fock space H.

The extension we choose is not the only possible one, however the choice is motivated by two facts:

other extensions should provide the same classical limit, and our choice Ĥren(σ0) is, in our opinion,

more consistent with the quantization procedure of the classical energy functional.

2.1. Dressing. The dressing transform was introduced as an alternative way of doing renormalization

in the Hamiltonian formalism, and has been utilized in a rigorous fashion in various situations [see e.g.
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48, 52, 58, 68]. For the Nelson Hamiltonian, it consists of a unitary transformation that singles out

the singular self-energy.

From now on, let 0 < σ0 < σ, with σ0 fixed. Then define:

gσ(k) = − i

(2π)3/2

1√
2ω(k)

χσ(k)− χσ0
(k)

k2

2M + ω(k)
;(7)

Eσ =
1

2(2π)3

∫
R3

1

ω(k)

(χσ − χσ0)2(k)
k2

2M + ω(k)
dk − 1

(2π)3

∫
R3

χσ(k)

ω(k)

(χσ − χσ0)(k)
k2

2M + ω(k)
dk .(8)

The dressing transformation is the unitary operator generated by (the dependence on σ0 will be

usually omitted):

(9) Tσ =

∫
R3

ψ∗(x)
(
a∗(gσe

−ik·x) + a(gσe
−ik·x)

)
ψ(x)dx .

The function gσ ∈ L2(R3) for all σ ≤ ∞; therefore it is possible to prove the following Lemma, e.g.

utilizing the criterion of [33].

Lemma 2.3. For any σ ≤ ∞, Tσ is essentially self-adjoint on C∞0 (N). We denote by Uσ(θ) the

corresponding one-parameter unitary group Uσ(θ) = e−i
θ
εTσ .

For the sake of brevity, we will write Uσ := Uσ(−1). We remark that Tσ and Hσ preserve the

number of “nucleons”, i.e.: for any σ ≤ ∞, σ′ <∞:

(10) [Tσ, N1] = 0 = [Hσ′ , N1] .

The above operators also commute in the resolvent sense. We are now in position to define the dressed

Hamiltonian

(11) Ĥσ := Uσ
(
Hσ − εN1Eσ

)
U∗σ .

The operator Ĥσ is self-adjoint for any σ <∞, since Hσ and N1 are commuting self-adjoint operators

and Uσ is unitary. The purpose is to show that the quadratic form associated with Ĥσ

∣∣
Hn

satisfies

the hypotheses of KLMN theorem, even when σ =∞, so it is possible to define uniquely a self-adjoint

operator Ĥ∞. In order to do that, we need to study in detail the form associated with Ĥ
(n)
σ .

By Equation (11), it follows immediately that

(12) Ĥ(n)
σ = εU (n)

σ

(
H

(n)
σ

ε
− (εn)Eσ

)
(U (n)

σ )∗ .

A suitable calculation [4, 68] yields:

Ĥ(n)
σ = H(n)

σ0
+ ε2

∑
i<j

Vσ(xi − xj) +
ε

2M

n∑
j=1

((
a∗(rσe

−ik·xj )2 + a(rσe
−ik·xj )2

)

+2a∗(rσe
−ik·xj )a(rσe

−ik·xj )− 2
(
Dxja(rσe

−ik·xj ) + a∗(rσe
−ik·xj )Dxj

))
;

(13)

where Dxj = −i∇xj and

rσ(k) = −ikgσ(k) ,
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(14) Vσ(x) = 2Re

∫
R3

ω(k)|gσ(k)|2e−ik·xdk − 4Im

∫
R3

ḡσ(k)

(2π)3/2

χσ(k)√
2ω(k)

e−ik·xdk .

It is also possible to write Ĥσ in its second quantized form as:

Ĥσ = H0 + ĤI(σ) ;(15)

ĤI(σ) = HI(σ0) +
1

2

∫
R6

ψ∗(x)ψ∗(y)Vσ(x− y)ψ(x)ψ(y)dxdy

+ 1
2M

∫
R3

ψ∗(x)

((
a∗(rσe

−ik·x)2 + a(rσe
−ik·x)2

)
+ 2a∗(rσe

−ik·x)a(rσe
−ik·x)

−2
(
Dxa(rσe

−ik·x) + a∗(rσe
−ik·x)Dx

))
ψ(x)dx .

(16)

Remark 2.4. The dressed interaction Hamiltonian ĤI(σ) contains a first term analogous to the

undressed interaction with cutoff, a second term of two-body interaction between nucleons, and a

more singular term that can be only defined as a form when σ =∞.

2.2. Renormalization. We will now define the renormalized self-adjoint operator Ĥ
(n)
∞ . A simple

calculation shows that Eσ → −∞ when σ → +∞; hence the subtraction of the self-energy in the

definition (11) of Ĥσ is necessary. It is actually the only renormalization necessary for this system. We

prove that the quadratic form associated with Ĥ
(n)
σ of Equation (13) has meaning for any σ ≤ ∞, and

the KLMN theorem [see 73, Theorem X.17] can be applied, with a suitable choice of σ0, and bounds

that are uniform with respect to ε ∈ (0, ε̄). Let us start with some preparatory lemmas:

Lemma 2.5. For any 0 ≤ σ ≤ ∞, the symmetric function Vσ satisfies:

(i) Vσ(1−∆)−1/2 ∈ L(L2(R3));

(ii) (1−∆)−1/2Vσ(1−∆)−1/2 ∈ K(L2(R3)).

In particular, Vσ ∈ Ls(R3) ∩ L3,∞(R3), for any s ∈ [2,+∞[.

Proof. It is sufficient to show [11, Corollary D.6] that Vσ ∈ L3,∞(R3) (weak-Lp spaces). Write Vσ =

V
(1)
σ + V

(2)
σ ,

V (1)
σ (x) = 2Re

∫
R3

ω(k)|gσ(k)|2e−ik·xdk = 2(2π)3/2ReF
(
ω|gσ|2

)
(x) ;(17)

V (2)
σ (x) = −2

√
2Im

∫
R3

ḡσ(k)

(2π)3/2

χσ(k)√
ω(k)

e−ik·xdk = −2
√

2ImF
(
ḡσ
χσ√
ω

)
(x) .(18)

•
[
V

(1)
σ

]
. For any σ ≤ ∞, ω|gσ|2 ∈ Ls

′
(R3), 1 ≤ s′ ≤ 2. Then V

(1)
σ ∈ Ls(R3) for any s ∈ [2,+∞];

furthermore V
(1)
σ ∈ C0(R3) (the space of continuous functions converging to zero at infinity).

Hence V
(1)
σ ∈ L3,∞(R3).

•
[
V

(2)
σ

]
. For any σ ≤ ∞, ḡσ

χσ√
ω
∈ Ls

′
(R3), 1 < s′ ≤ 2. Therefore V

(2)
σ ∈ Ls(R3) for any

s ∈ [2,+∞[. It remains to show that V
(2)
σ ∈ L3,∞(R3). Define f(k) ∈ L2(R3):

(19) f(k) :=
χσ(k)

ω(k)

(
χσ − χσ0

)
(k)

k2

2M + ω(k)
.

Then there is a constant c > 0 such that |V (2)
σ (x)| ≤ c|F(f)(x)|, where the Fourier transform is

intended to be on L2(R3). The function f is radial, so we introduce the spherical coordinates
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(r, θ, φ) ≡ k ∈ R3, such that the z-axis coincides with the vector x. We then obtain:

lim
R→+∞

∫
B(0,R)

f(k)e−ik·xdk = lim
R→+∞

∫ R

0

dr

∫ π

0

dθ

∫ 2π

0

dφ r2f(r)e−ir|x| cos θ sin θ

= 2π lim
R→+∞

∫ R

0

dr

∫ 1

−1

dy r2f(r)e−ir|x|y =
4π

|x|
lim

R→+∞

∫ R

0

f(r)r sin(r|x|)dr .

Since for any σ ≤ +∞, f(r)r ∈ L1(R) we can take the limit R→ +∞ and conclude:

(20) F(f)(x) =
4π

|x|

∫ +∞

0

f(r)r sin(r|x|)dr .

Therefore, for any x ∈ R3 r {0}, there exists a 0 < c̃ ≤ 4πc‖f(r)r‖L1(R) such that:

(21) |V (2)
σ (x)| ≤ c̃

|x|
.

Let λ be the Lebesgue measure in R3. Since
{
x : |V (2)

σ | > t
}
⊂
{
x : c̃

|x| > t
}

, there is a

positive C such that:

(22) λ
{
x : |V (2)

σ (x)| > t
}
≤ λ

{
x :

c̃

|x|
> t
}
≤ C

t3
.

Finally (22) implies V
(2)
σ ∈ L3,∞(R3).

a

Lemma 2.6. There exists c > 0 such that for any ε ∈ (0, ε̄), σ ≤ +∞:∥∥∥[(H0 + 1)−1/2Dxja(rσe
−ik·xj )(H0 + 1)−1/2

](n)
∥∥∥
L(Hn)

≤ c√
nε
‖ω−1/2rσ‖2 ;(23) ∥∥∥[(H0 + 1)−1/2a∗(rσe

−ik·xj )Dxj (H0 + 1)−1/2
](n)

∥∥∥
L(Hn)

≤ c√
nε
‖ω−1/2rσ‖2 .(24)

Moreover, (23) holds if we replace the left H0 by dΓ(− ∆
2M +V ) and the right H0 by dΓ(ω) and similarly

(24) holds if we replace the left H0 by dΓ(ω) and the right H0 by dΓ(− ∆
2M + V ).

Proof. Let Sn ≡ Sn ⊗ 1 be the symmetrizer on Hn (acting only on the {x1, . . . , xn} variables) and

Ψn ∈ Hn with n > 0. Then:

〈Ψn, dΓ(−∆)Ψn〉 = 〈Ψn, (nε)Sn(Dx1)2 ⊗ 1n−1Ψn〉 = (nε)〈Ψn, (Dxj )
2Ψn〉 .

Hence (nε)‖DxjΨn‖2 ≤
∥∥(dΓ(−∆) + 1

)1/2
Ψn

∥∥2
. It follows that

(25)
∥∥∥[Dxj

(
dΓ(−∆) + 1

)−1/2](n)
∥∥∥
L(Hn)

≤ 1√
nε

;
∥∥∥[(dΓ(−∆) + 1

)−1/2
Dxj

](n)
∥∥∥
L(Hn)

≤ 1√
nε

.

Using (25) we obtain for any Ψn ∈ Hn, with ‖Ψn‖ = 1:∥∥∥(H0 + 1)−1/2Dxja(rσe
−ik·xj )(H0 + 1)−1/2Ψn

∥∥∥ ≤ c√
nε

∥∥∥a(rσe
−ik·xj )

(
dΓ(ω) + 1

)−1/2
Ψn

∥∥∥
≤ c√

nε
‖ω−1/2rσ‖2 ;

where the last inequality follows from standard estimates on the Fock space [see 5, Lemma 2.1]. The

bound (24) is obtained by adjunction. a
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Lemma 2.7. There exists c > 0 such that for any ε ∈ (0, ε̄), σ ≤ +∞:∥∥∥[(H0 + 1)−1/2a∗(rσe
−ik·xj )a(rσe

−ik·xj )(H0 + 1)−1/2
](n)

∥∥∥
L(Hn)

≤ c‖ω−1/2rσ‖22 ;(26) ∥∥∥[(H0 + 1)−1/2
(
a∗(rσe

−ik·xj )
)2

(H0 + 1)−1/2
](n)

∥∥∥
L(Hn)

≤ c‖ω−1/4rσ‖22 ;(27) ∥∥∥[(H0 + 1)−1/2
(
a(rσe

−ik·xj )
)2

(H0 + 1)−1/2
](n)

∥∥∥
L(Hn)

≤ c‖ω−1/4rσ‖22 .(28)

The same bounds hold if H0 is replaced by dΓ(ω).

Proof. First of all observe that, since m0 > 0, there exists c > 0 such that, uniformly in ε ∈ (0, ε̄):∥∥∥(H0 + 1)−1/2
(
dΓ(ω) + 1

)1/2∥∥∥
L(H)

≤ c ;
∥∥∥(H0 + 1)−1/2(N2 + 1)1/2

∥∥∥
L(H)

≤ c .

Equation (26) is easy to prove:∥∥∥[(H0 + 1)−1/2a∗(rσe
−ik·xj )a(rσe

−ik·xj )(H0 + 1)−1/2
](n)

∥∥∥
L(Hn)

≤ c
∥∥∥[(dΓ(ω) + 1

)−1/2

a∗(rσe
−ik·xj )

](n)
∥∥∥
L(Hn)

·
∥∥∥[a(rσe

−ik·xj )
(
dΓ(ω) + 1

)−1/2](n)
∥∥∥
L(Hn)

≤ c‖ω−1/2rσ‖22 .

For the proof of (27) the reader may refer to [4, Lemma 3.3 (iv)]. Finally (28) follows from (27) by

adjunction. a

Lemma 2.8. There exists c(σ0) > 0 such that for any ε ∈ (0, ε̄) and λ ≥ 1:∥∥∥[(H0 + λ
)−1/2

HI(σ0)
(
H0 + λ

)−1/2](n)
∥∥∥
L(Hn)

≤ c(σ0)λ−1/2(nε) ;(29) ∥∥∥[(H0 + λ
)−1/2

ε2
∑
i<j

Vσ(xi − xj)
(
H0 + λ

)−1/2](n)
∥∥∥
L(Hn)

≤ c(σ0)λ−1/2
√
nε(1 + nε) .(30)

Proof. The inequality (29) can be proved by a standard argument on the Fock space [see e.g. 32,

Proposition IV.1].

To prove (30) we proceed as follows. First of all, by means of (i), Lemma 2.5 we can write:∥∥∥(−∆xi + λ
)−1/2

Vσ(xi − xj)
(
−∆xi + λ

)−1/2
∥∥∥
L(Hn)

≤ λ−1/2
∥∥∥Vσ(xi)

(
−∆xi + λ

)−1/2
∥∥∥
L(Hn)

≤ c(σ0)λ−1/2 .

Therefore Vσ(xi−xj) ≤ c(σ0)λ−1/2
(
−∆xi +λ

)
. Let Ψn ∈ Hn; using its symmetry, and some algebraic

manipulations we can write:〈
Ψn, ε

2
∑
i<j

Vσ(xi − xj)Ψn

〉
≤ c(σ0)(nε)2

〈
Ψn,

(
λ−1/2(Dx1)2 + λ1/2

)
Ψn

〉
= c(σ0)

〈
Ψn, N1

(
λ−1/2dΓ(D2

x) + λ1/2N1

)
Ψn

〉
≤ c(σ0)λ−1/2

[∥∥∥N1/2
1

(
dΓ(D2

x) + λ
)1/2

Ψn

∥∥∥2

+
∥∥∥N1

(
dΓ(D2

x) + λ
)1/2

Ψn

∥∥∥2]
≤ c(σ0)λ−1/2

〈
Ψn,

(
N1 +N2

1

)(
dΓ(D2

x) + λ
)
Ψn

〉
;

where the constant c(σ0) is redefined in each inequality. The result follows since N1 commutes with

dΓ(D2
x). a

Combining Lemmas 2.6, 2.7 and 2.8 together, we can prove easily the following proposition.
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Proposition 2.9. There exist c > 0 and c(σ0) > 0 such that for any ε ∈ (0, ε̄), λ ≥ 1, σ0 < σ ≤ +∞
and for any Ψ ∈ D(N1):∥∥∥(H0 + λ

)−1/2
ĤI(σ)

(
H0 + λ

)−1/2
Ψ
∥∥∥ ≤ [c(‖ω−1/2rσ‖22 + ‖ω−1/4rσ‖22 + ‖ω−1/2rσ‖2

)
+c(σ0)λ−1/2

]
·
∥∥∥(N1 + 1)Ψ

∥∥∥ .(31)

Consider now ĤI(σ)(n). It follows easily from Equation (31) above that for any σ0 < σ ≤ +∞, and

Ψn ∈ D(H
1/2
0 ) ∩Hn:∣∣∣〈Ψn, ĤI(σ)(n)Ψn

〉∣∣∣ ≤ [c(nε+ 1)
(
‖ω−1/2rσ‖22 + ‖ω−1/4rσ‖22 + ‖ω−1/2rσ‖2

)
+c(σ0)(nε+ 1)λ−1/2

]〈
Ψn, H

(n)
0 Ψn

〉
+λ
[
c(nε+ 1)

(
‖ω−1/2rσ‖22 + ‖ω−1/4rσ‖22 + ‖ω−1/2rσ‖2

)
+c(σ0)(nε+ 1)λ−1/2

]〈
Ψn,Ψn〉 .

(32)

Consider now the term
(
‖ω−1/2rσ‖22 +‖ω−1/4rσ‖22 +‖ω−1/2rσ‖2

)
; by definition of rσ, there exists c > 0

such that, uniformly in σ ≤ +∞:

(33) ‖ω−1/2rσ‖22 + ‖ω−1/4rσ‖22 + ‖ω−1/2rσ‖2 ≤ c
(
σ−2

0 + σ−1
0

)
.

Hence for any σ0 ≥ 1 there exist K > 0 (K = 2c), c(σ0) > 0 and C(n, ε, λ, σ0) > 0 such that (32)

becomes:∣∣∣〈Ψn, ĤI(σ)(n)Ψn

〉∣∣∣ ≤ [K(nε+1)
σ0

+ c(σ0)(nε+ 1)λ−1/2
]〈

Ψn, H
(n)
0 Ψn

〉
+ C(n, ε, λ, σ0)

〈
Ψn,Ψn〉 .(34)

Therefore choosing

(35) σ0 > 2K(nε+ 1)

and then λ >
(
2c(σ0)(nε + 1)

)2
, we obtain the following bound for any Ψn ∈ D(H

1/2
0 ) ∩ Hn, with

a < 1, b > 0 and uniformly in σ0 < σ ≤ +∞:

(36)
∣∣∣〈Ψn, ĤI(σ)(n)Ψn

〉∣∣∣ ≤ a〈Ψn, H
(n)
0 Ψn

〉
+ b
〈
Ψn,Ψn〉 .

Applying KLMN theorem, (36) proves the following result [see e.g. 4, 68, for additional details].

Theorem 2.10. There exists K > 0 such that, for any n ∈ N, and ε ∈ (0, ε̄) the following statements

hold:

(i) For any
(
2K(nε + 1)

)
< σ0 < σ ≤ +∞, there exists a unique self-adjoint operator Ĥ

(n)
σ with

domain D̂
(n)
σ ⊂ D

(
(H

(n)
0 )1/2

)
⊂ Hn associated to the symmetric form ĥ

(n)
σ (·, ·), defined for

any Ψ,Φ ∈ D
(
(H

(n)
0 )1/2

)
as:

(37) ĥ(n)
σ (Ψ,Φ) =

〈
Ψ, H

(n)
0 Φ

〉
+
〈
Ψ, ĤI(σ)(n)Φ

〉
.

The operator Ĥ
(n)
σ is bounded from below, with bound −bσ0(σ) (where |bσ0(σ)| is a bounded

increasing function of σ).

(ii) The following convergence holds in the norm topology of L(Hn):

(38) lim
σ→+∞

(z − Ĥ(n)
σ )−1 = (z − Ĥ(n)

∞ )−1 , for all z ∈ CrR.
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(iii) For any t ∈ R, the following convergence holds in the strong topology of L(Hn):

(39) s− lim
σ→+∞

e−i
t
ε Ĥ

(n)
σ = e−i

t
ε Ĥ

(n)
∞ .

Remark 2.11. The operator Ĥ
(n)
∞ can be decomposed only in the sense of forms, i.e.

(40) Ĥ(n)
∞ = H

(n)
0 u Ĥ

(n)
I (∞) ;

where u has to be intended as the form sum.

2.3. Extension of Ĥ
(n)
∞ to H. We have defined the self-adjoint operator Ĥ

(n)
∞ which depends in σ0

for each n ∈ N. Now we are interested in extending it to the whole space H. This can be done in

at least two different ways. However, we choose the one that is more suitable to interpret Ĥ∞ as the

Wick quantization of a classical symbol.

Let K be defined by Theorem 2.10. Then define N(ε, σ0) ∈ N by:

(41) N(ε, σ0) =
[σ0 − 2K

2Kε
− 1
]

;

where the square brackets mean that we take the integer part if the number within is positive, zero

otherwise.

Definition 2.12 (Ĥren(σ0)). Let 0 ≤ σ0 < +∞ be fixed. Then we define Ĥren(σ0) on H by:

(42) Ĥren(σ0)
∣∣
Hn

=

{
Ĥ(n)
∞ if n ≤ N(ε, σ0)

0 if n > N(ε, σ0)

where N(ε, σ0) is defined by (41). We may also write Ĥren(σ0) = H0uĤren,I(σ0) as a sum of quadratic

forms.

The operator Ĥren(σ0) is self-adjoint on H, with domain of self adjointness:

(43) D̂ren(σ0) =
{

Ψ ∈ H , Ψ
∣∣
Hn
∈ D̂(n)

∞ for any n ≤ N(ε, σ0)
}
.

Acting with the dressing operator U∞ defined in Lemma 2.3 (with the same fixed σ0 as for Ĥren(σ0)),

we can also define the undressed extension Hren(σ0).

Definition 2.13 (Hren(σ0)). Let 0 ≤ σ0 < +∞ be fixed. Then we define the following operator on H:

(44) Hren(σ0) = U∗∞(σ0)Ĥren(σ0)U∞(σ0) .

The operator Hren(σ0) is self-adjoint on H, with domain of self adjointness:

(45) Dren(σ0) =
{

Ψ ∈ H , Ψ
∣∣
Hn
∈ e− iεT

(n)
∞ D̂(n)

∞ for any n ≤ N(ε, σ0)
}
.

Remark 2.14. Let σ0 ≥ 0 be fixed. Then the Ĥσ given by (11) defines, in the limit σ → ∞, a

symmetric quadratic form ĥ∞ on D(H
1/2
0 ) ⊂ H. Also Ĥren(σ0) defines a quadratic form ĥren. We

have4:

(46) ĥ∞(1[0,N](N1) · , · ) = ĥren(1[0,N](N1) · , · ) .

However, we are not able to prove that there is a self-adjoint operator on H associated to ĥ∞, and it

is possible that there is none.

41[0,N](N1) is the orthogonal projector on
⊕N
n=0Hn.
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3. The classical system: S-KG equations.

In this section we define the Schrödinger-Klein-Gordon (S-KG) system, with initial data in a suitable

dense subset of L2(R3)⊕ L2(R3), that describes the classical dynamics of a particle-field interaction.

Then we introduce the classical dressing transformation (viewed itself as a dynamical system), and

then study the transformation it induces on the Hamiltonian functional. Finally, we discuss the global

existence of unique solutions of the classical equations, both in their original and dressed form.

The Yukawa coupling: The S-KG[Y] system (Schrödinger-Klein-Gordon with Yukawa interaction), or

undressed classical equations, is defined by:

(S-KG[Y])

i∂tu = − ∆

2M
u+ V u+Au

(�+m2
0)A = −|u|2

;

where V : R3 → R is an external potential. If we introduce the complex field α, defined by

A(x) = 1

(2π)
3
2

∫
R3

1√
2ω(k)

(
ᾱ(k)e−ik·x + α(k)eik·x

)
dk ,(47)

Ȧ(x) = − i

(2π)
3
2

∫
R3

√
ω(k)

2

(
α(k)eik·x − ᾱ(k)e−ik·x

)
dk ,(48)

we can rewrite (S-KG[Y]) as the equivalent system5:

(S-KGα[Y])


i∂tu = − ∆

2M
u+ V u+Au

i∂tα = ωα+
1√
2ω
F
(
|u|2
) .

The “dressed” coupling: The system that arises from the dressed interaction is quite complicated. We

will denote it by S-KG[D], and it has the following form6:

(S-KG[D])
i∂tu = − ∆

2M
u+ V u+ (W ∗ |u|2)u+ [(ϕ ∗A) + (ξ ∗ ∂tA)]u+

3∑
i=1

[(ρ(i) ∗A)∂(i) + (ζ(i) ∗A)2]u

(�+m2
0)A = −ϕ ∗ |u|2 + i

3∑
i=1

ρ(i) ∗ [(u∂(i)u)−
√

2M(ζ(i) ∗ ∂tA)]

where: V,W,ϕ : R3 → R with W,ϕ even; ξ : R3 → C, even; ρ : (R3)3 → C, odd; and ζ : (R3)3 → R,

odd. Obviously also (S-KG[D]) can be written as an equivalent system S-KGα[D], with unknowns u

and α (omitted here). As discussed in detail in Section 3.3, with a suitable choice of W , ϕ, ξ, ρ and ζ

the global well-posedness of (S-KG[D]) follows directly from the global well-posedness of (S-KG[Y]).

3.1. Dressing. We look for a classical correspondent of the dressing transformation U∞(θ). Since

U∞(θ) is a one-parameter group of unitary transformations on H, the classical counterpart of its

generator is expected to induce a non-linear evolution on the phase-space L2(R3) ⊕ L2(R3), using

the quantum-classical correspondence principle for systems with infinite degrees of freedom [see e.g.

5The two systems are equivalent since (1 + ως)Reα ∈ L2(R3) ⇔ A ∈ Hς+1/2(R3), (1 + ως)Imα ∈ L2(R3) ⇔ ∂tA ∈
Hς−1/2(R3). In (S-KGα[Y]) the unknowns are u and α.
6We denote by ∂(i) the derivative with respect to the i-th component of the variable x ∈ R3. Analogously, we denote

by v(i) the i-th component of a 3-dimensional vector v.
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8, 49, 59]. The resulting “classical dressing” Dg∞(θ) plays a crucial role in proving our results: on one

hand it is necessary to link the S-KG classical dynamics with the quantum dressed one; on the other

it is at the heart of the ”classical” renormalization procedure.

Let g ∈ L2(R3); define the following functional Dg : L2(R3)⊕ L2(R3)→ R,

(49) Dg(u, α) :=

∫
R6

(
g(k)ᾱ(k)e−ik·x + ḡ(k)α(k)eik·x

)
|u(x)|2dxdk .

The functional Dg induces the following Hamiltonian equations of motion:

(50)

{
i∂θu = Agu

i∂θα = gF (|u|2)
;

where

Ag(x) =

∫
R3

(
g(k)ᾱ(k)e−ik·x + ḡ(k)α(k)eik·x

)
dk ,(51)

F (|u|2)(k) =

∫
R3

e−ik·x|u(x)|2dx .(52)

Observe that for any g ∈ L2(R3) and x ∈ R3, Ag(x) ∈ R. This will lead to an explicit form for the

solutions of the Cauchy problem related to (50). The latter can be rewritten in integral form, for any

θ ∈ R:

(53)


uθ(x) = u0(x) exp

{
−i
∫ θ

0

(Ag)τ (x) dτ

}
αθ(k) = α0(k)− ig(k)

∫ θ

0

F (|uτ |2)(k) dτ

;

where (Ag)τ is defined by (51) with α replaced by ατ ; analogously we define Bg by (51) with α replaced

by β.

Lemma 3.1. Let s ≥ 0, s − 1
2 ≤ ς ≤ s + 1

2 ; (1 + ω
1
2 )g ∈ L2(R3). Also, let u, v ∈ Hs(R3) and

(1 + ως)α, (1 + ως)β ∈ L2(R3). Then there exist constants Cs, Cς > 0 such that:

‖(Ag −Bg)u‖Hs ≤ Cs max
w∈{u,v}

‖w‖Hs‖(1 + ω
1
2 )g‖2‖(1 + ως)(α− β)‖2 ,(54)

‖Ag(u− v)‖Hs ≤ Cs max
ζ∈{α,β}

‖(1 + ως)ζ‖2‖(1 + ω
1
2 )g‖2‖u− v‖Hs ,(55) ∥∥∥(1 + ως)g

∫
R3

e−ik·x
(
(u− v)v̄ + (ū− v̄)u

)
dx
∥∥∥

2
≤ Cς max

w∈{u,v}
‖w‖Hs‖(1 + ω

1
2 )g‖2‖u− v‖Hs .(56)

Proof. If s ∈ N, the results follow by standard estimates, keeping in mind that |k| ≤ ω(k) ≤ |k| +m0.

The bounds for non-integer s are then obtained by interpolation. a

Proposition 3.2. Let θ ∈ R, (u0, α0) ∈ L2 ⊕ L2. If (uθ, αθ) ∈ C0(R, L2 ⊕ L2) is a solution of (53),

then it is unique, i.e. any (vθ, βθ) ∈ C0(R, L2 ⊕ L2) that satisfies (53) is such that (vθ, βθ) = (uθ, αθ).

Proof. We have:

i

2
∂θ

(∥∥uθ − vθ∥∥2

2
+
∥∥αθ − βθ∥∥2

2

)
= Im

(〈
uθ − vθ,

(
(Ag)θ − (Bg)θ

)
uθ + (Bg)θ

(
uθ − vθ

)〉
2

+
〈
αθ − βθ, g

∫
R3

e−ik·x
(
(uθ − vθ)v̄θ + (ūθ − v̄θ)uθ

)
dx
〉

2

)
.
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The result hence is an application of the estimates of Lemma 3.1 with s = 0 and Gronwall’s Lemma. a

Now that we are assured that the solution of (53) is unique, we can construct it explicitly. Since

Ag(x) is real, it follows that for any θ ∈ R: |uθ| = |u0|. Therefore F (|uθ|2) = F (|u0|2), and

αθ(k) = α0(k)− iθg(k)F (|u0|2)(k) .

Substituting this explicit form in the expression for uθ, we obtain the solution for any (u0, α0) ≡
(u, α) ∈ L2(R3)⊕ L2(R3):

(57)


uθ(x) = u(x) exp

{
−iθAg(x) + iθ2Im

∫
R3

F (|u|2)(k)|g(k)|2eik·xdk
}

αθ(k) = α(k)− iθg(k)F (|u|2)(k)

.

This system of equations defines a non-linear symplectomorphism: the “classical dressing map” on

L2 ⊕ L2.

Definition 3.3. Let g ∈ L2(R3). Then Dg(·) : R×
(
L2 ⊕ L2

)
→ L2 ⊕ L2 is defined by (57) as:

Dg(θ)(u, α) = (uθ, αθ) .

The map Dg(·) is the Hamiltonian flow generated by Dg.

Using the explicit form (57) and Lemma 3.1, it is straightforward to prove some interesting prop-

erties of the classical dressing map. The results are formulated in the following proposition, after the

definition of useful classes of subspaces of L2 ⊕ L2.

Definition 3.4. Let s ≥ 0, s − 1
2 ≤ ς ≤ s + 1

2 . We define the spaces Hs(R3) ⊕ FHς(R3) ⊆
L2(R3)⊕ L2(R3):

Hs(R3)⊕FHς(R3) =
{

(u, α) ∈ L2(R3)⊕ L2(R3) , u ∈ Hs(R3) and F−1(α) ∈ Hς(R3)
}
.

Proposition 3.5. Let s ≥ 0, s− 1
2 ≤ ς ≤ s+ 1

2 ; and g ∈ FH 1
2 (R3). Then

Dg : R×
(
Hs ⊕FHς

)
→ Hs ⊕FHς ;

i.e. the flow preserves the spaces Hs ⊕FHς . Furthermore, it is a bijection with inverse
(
Dg(θ)

)−1
=

Dg(−θ). Hence the classical dressing is an Hamiltonian flow on Hs ⊕FHς .

Corollary 3.6. Let s ≥ 0, s− 1
2 ≤ ς ≤ s+ 1

2 , θ ∈ R, and g ∈ FH 1
2 (R3). Then there exists a constant

C(g, θ) > 0 and a λ(s) ∈ N∗ such that for any (u, α) ∈ Hs ⊕FHς :

(58) ‖Dg(θ)(u, α)‖Hs⊕FHς ≤ C(g, θ)‖(u, α)‖λ(s)
Hs⊕FHς .

Using the positivity of both −∆ and V , and Corollary 3.6 one also obtains the following result.

Corollary 3.7. Let V ∈ L2
loc(R

d,R+); and let Q(−∆ +V ) ⊂ L2(R3) be the form domain of −∆ +V .

Then for any 1
2 ≤ ς ≤

3
2 , and g ∈ FH 1

2 (R3):

Dg : R×
(
Q(−∆ + V )⊕FHς

)
→ Q(−∆ + V )⊕FHς .
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3.2. Classical Hamiltonians. In this section we define the classical Hamiltonian functionals that

generate the undressed and dressed dynamics on L2 ⊕ L2. Then we show that they are related by a

suitable classical dressing: the quantum procedure described in Section 2.2 is reproduced, in simplified

terms, on the classical level.

Definition 3.8 (E , Ê ). The undressed Hamiltonian (or energy) E is defined as the following real

functional on L2(R3)⊕ L2(R3):

E (u, α) :=
〈
u,
(
− ∆

2M + V
)
u
〉

2
+ 〈α, ωα〉2 + 1

(2π)3/2

∫
R6

1√
2ω(k)

(
ᾱ(k)e−ik·x + α(k)eik·x

)
|u(x)|2dxdk .

We denote by E0 the free part of the classical energy, namely

E0(u, α) =
〈
u,
(
− ∆

2M + V
)
u
〉

2
+ 〈α, ωα〉2 .

Let χσ0
∈ L∞(R3) ∩ FH−1/2(R3) such that χσ0

(k) = χσ0
(−k) for any k ∈ R3. Then (again as a real

functional on L2 ⊕ L2) the dressed Hamiltonian Ê is defined as7:

Ê (u, α) :=
〈
u,
(
− ∆

2M + V
)
u
〉

2
+ 〈α, ωα〉2 + 1

(2π)3/2

∫
R6

χσ0
(k)√

2ω(k)

(
ᾱ(k)e−ik·x + α(k)eik·x

)
|u(x)|2dxdk

+ 1
2M

∫
R9

(
r∞(k)ᾱ(k)e−ik·x + r̄∞(k)α(k)eik·x

)(
r∞(l)ᾱ(l)e−il·x + r̄∞(l)α(l)eil·x

)
|u(x)|2dxdkdl

− 2
MRe

∫
R6

r∞(k)ᾱ(k)e−ik·xū(x)Dxu(x)dxdk + 1
2

∫
R6

V∞(x− y)|u(x)|2|u(y)|2dxdy .

Remark 3.9. We denote by D(E ) ⊂ L2 ⊕ L2 the domain of definition of E , and by D(Ê ) ⊂ L2 ⊕ L2

the domain of definition of Ê . We have that D(E ) ⊃ C∞0 ⊕C∞0 and D(Ê ) ⊃ C∞0 ⊕C∞0 . Therefore both

E and Ê are densely defined, and D(E ) ∩D(Ê ) is dense in L2 ⊕ L2.

We are interested in the action of E and Ê on H1⊕FH 1
2 , since this emerges naturally as the energy

space of the system, at least when V = 0.

Lemma 3.10. Let θ ∈ R, g ∈ FH 1
2 (R3). Then for any u ∈ Q(V ) ∩ H1(R3), and α ∈ FH 1

2 (R3):

Dg(θ)(u, α) ∈ D(E ).

Proof. Let u ∈ Q(V ), and α ∈ L2(R3). Then

〈uθ, V uθ〉2 = 〈u, V u〉2 ;

where uθ is defined in Equation (57), and it is the first component of Dg(θ)(u, α). Also, for any

(u, α) ∈ H1 ⊕FH 1
2 we have that:∣∣∣∫

R6

|u(x)|2 1√
ω(k)

α(k)eik·xdxdk
∣∣∣ = C

∣∣∣∫
R3

1

|k|ω(k)

(
ω1/2α

)
(k)
(∫

R3

(
Dx|u(x)|2

)
eik·xdx

)
dk
∣∣∣

≤ 2C
∥∥∥ 1

|k|ω(k)

∥∥∥
2
‖ω1/2α‖2‖u‖2‖u‖H1 < +∞ .

The result then follows since Dg(θ) maps H1 ⊕FH 1
2 into itself by Proposition 3.5. a

7We recall that: g∞(k) = −i (2π)−3/2
√

2ω(k)

1−χσ0 (k)

k2

2M
+ω(k)

; V∞(x) = 2Re
∫
R3 ω(k)|g∞(k)|2e−ik·xdk −

4Im
∫
R3

ḡ∞(k)

(2π)3/2
1√

2ω(k)
e−ik·xdk . Also, Dx = −i∇x ; r∞(k) = −ikg∞(k) .
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The functional E is independent of g∞, while Ê depends on it. In addition, we know that g∞

has been fixed, at the quantum level, to renormalize the Nelson Hamiltonian, and it is the function

that appears in the generator of the dressing transformation U∞. Hence, since we are establishing

a correspondence between the classical and quantum theories, we expect it to be the function that

appears in the classical dressing too. Two features of g∞ are very important in the classical setting:

the first is that g∞ ∈ FH
1
2 (R3) for any χσ0 ∈ L∞∩FH−

1
2 ; the second is that it is an even function, i.e.

g∞(k) = g∞(−k) for any k ∈ R3. Using the first fact, one shows that Dg∞(·) maps the energy space

into itself (and that will be convenient when discussing global solutions); using the second property

we can simplify the explicit form of Dg∞(·).

Lemma 3.11. Let θ ∈ R, and g ∈ L2(R3). If g is an even or odd function, then the map Dg(θ)

defined by (57) becomes:

(59) Dg(θ)(u(x), α(k)) =
(
u(x)e−iθAg(x) , α(k)− iθg(k)F (|u|2)(k)

)
.

Proof. Consider I(x) :=
∫
R3 F (|u|2)(k)|g(k)|2eik·xdk. We will show that Ī(x) = I(x). We have that:

Ī(x) =

∫
R6

|u(x′)|2|g(k)|2e−ik·(x−x
′)dx′dk =

∫
R6

|u(x′)|2|g(−k)|2eik·(x−x
′)dx′dk .

Now if g is either even or odd, |g(−k)| = |g(k)|. Hence Ī(x) = I(x), therefore ImI(x) = 0. a

We conclude this section proving its main result: E and Ê are related by the Dg∞(1) classical

dressing8.

Proposition 3.12. For any u ∈ Q(V ) ∩ H1(R3), α ∈ FH 1
2 (R3), and for any χσ0 ∈ L∞(R3) ∩

FH− 1
2 (R3):

(1) (u, α) ∈ D(E );

(2) (u, α) ∈ D(Ê );

(3) Ê (u, α) = E ◦Dg∞(1)(u, α).

Remark 3.13. Relation (3) of Proposition 3.12 actually holds for any (u, α) ∈ Dg∞(−1)D(E ).

Remark 3.14. The Wick quantization of E yields the quadratic form 〈 · , H(n)
∞ · 〉Hn , that is not closed

and bounded from below for any n ∈ N∗. On the other hand, if χσ0 is the ultraviolet cutoff of Section 2,

then the Wick quantization of Ê yields directly the renormalized quadratic form 〈 · , Ĥ(n)
∞ · 〉Hn that is

closed and bounded from below for any n ≤ N(ε, σ0).

Proof of Proposition 3.12. The statement (1) is just an application of Lemma 3.10 when θ = 0. If (3)

holds formally, than (2) follows directly, since by Lemma 3.10 the right hand side of (3) is well defined.

It remains to prove that the relation (3) holds formally. This is done by means of a direct calculation,

8We recall again that g∞ = −i (2π)−3/2
√

2ω(k)

1−χσ0
(k)

k2

2M
+ω(k)

.
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that we will briefly outline here.

E ◦Dg∞(1)(u, α) =
〈
ue−iAg∞ ,

Dx

2M
Dx

(
ue−iAg∞

)〉
2

+ 〈u, V u〉2 + 〈α, ωα〉2

+ 2Im〈α, ωg∞Fu〉2 +
1

(2π)3/2
2Re

∫
R6

1√
2ω(k)

ᾱ(k)e−ik·x|u(x)|2dxdk(a)

+ ‖ωg∞Fu‖22 +
1

(2π)3/2
2Im

∫
R6

1√
2ω(k)

g∞(k)Fu(k)eik·x|u(x)|2dxdk .(b)

After some manipulation, taking care of the ordering, the first term on the right hand side becomes:〈
ue−iAg∞ ,

Dx

2M
Dx

(
ue−iAg∞

)〉
2

=
〈
u,− ∆

2M
u
〉

2

+
1

2M
〈Ar∞u,Ar∞u〉2(c)

− i〈u,A k2

2M g∞
u〉2(d)

− 1

M

〈
u,

∫
R3

dk
(
Dxr̄∞(k)α(k)eik·x + r∞(k)ᾱ(k)e−ik·xDx

)
u
〉

2
.(e)

The proof is concluded making the following identifications (the other terms sum to the free part):

(a) + (d) =
1

(2π)3/2

∫
R6

χσ0√
2ω(k)

(
ᾱ(k)e−ik·x + α(k)eik·x

)
|u(x)|2dxdk ;

(b) =
1

2

∫
R6

V∞(x− y)|u(x)|2|u(y)|2dxdy ;

(c) =
1

2M

∫
R9

(
r∞(k)ᾱ(k)e−ik·x + r̄∞(k)α(k)eik·x

)(
r∞(l)ᾱ(l)e−il·x + r̄∞(l)α(l)eil·x

)
|u(x)|2dxdkdl ;

(e) = − 2

M
Re

∫
R6

r∞(k)ᾱ(k)e−ik·xū(x)Dxu(x)dxdk .

a

3.3. Global existence results. In this section we discuss uniqueness and global existence of the

classical dynamical system: using a well-known result on the undressed dynamics, we prove uniqueness

and existence also for the dressed system.

The Cauchy problem associated to E by the Hamilton’s equations is9 (S-KGα[Y]). Theorem 3.15

below is a straightforward extension of [27, 70] that includes a (confining) potential on the NLS

equation. As proved in [23, 69], the quadratic potential is the maximum we can afford to still have

Strichartz estimates and global existence in the energy space. Therefore we make the following standard

assumption on V :

Assumption AV . V ∈ C∞(R3,R+), and ∂αV ∈ L∞(R3) for any α ∈ N3, with |α| ≥ 2 (i.e. at most

quadratic positive confining potential).

Theorem 3.15 (Undressed global existence). Assume AV . Then there is a unique Hamiltonian flow

solving (S-KGα[Y]):

(60) E : R×
(
Q(−∆ + V )⊕FH 1

2 (R3)
)
→ Q(−∆ + V )⊕FH 1

2 (R3) .

9The Cauchy problem associated to Ê is equivalent to (S-KG[D]), setting: W = V∞, ϕ = (2π)−3/2F(χσ0 ), ξ =
(2π)−3/2
√

2M

(
F( k

2
√
ω
g∞)−F(i k

2

ω
g∞)

)
, ρ =

√
2

M
F(
√
ωkg∞), and ζ = i√

M
F( k√

ω
g∞).
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If V = 0, then there is a unique Hamiltonian flow

(61) E : R×
(
Hs(R3)⊕FHς(R3)

)
→ Hs(R3)⊕FHς(R3) .

for any 0 ≤ s ≤ 1, s− 1
2 ≤ ς ≤ s+ 1

2 .

Theorem 3.16 (Dressed global existence). Assume AV . Then for any χσ0
∈ L∞(R3) ∩ FH− 1

2 (R3),

there is a unique Hamiltonian flow:

(62) Ê : R×
(
Q(−∆ + V )⊕FH 1

2 (R3)
)
→ Q(−∆ + V )⊕FH 1

2 (R3) .

If V = 0, then there is a unique Hamiltonian flow

(63) Ê : R×
(
Hs(R3)⊕FHς(R3)

)
→ Hs(R3)⊕FHς(R3) .

for any 0 ≤ s ≤ 1, s− 1
2 ≤ ς ≤ s+ 1

2 . For any V that satisfies AV , the flows Ê and E are related by:

(64) Ê = Dg∞(−1) ◦E ◦Dg∞(1) , E = Dg∞(1) ◦ Ê ◦Dg∞(−1) .

Proof of Theorem 3.16. The theorem is a direct consequence of the global well-posedness result of

Theorem 3.15, the relation Ê = E ◦Dg∞(1) proved in Proposition 3.12, and the regularity properties

of the dressing proved in Proposition 3.5. a

3.4. Symplectic character of Dχσ0
. To complete our description of the Schrödinger-Klein-Gordon

system, we explicitly prove that the classical dressing is a (non-linear) symplectomorphism for the

real symplectic structure
{

(L2 ⊕ L2)R, Im〈 · , · 〉L2⊕L2

}
. We denote by dDg(θ)(u,α) ∈ L(L2 ⊕ L2) the

(Fréchet) derivative of Dg(θ) at the point (u, α) ∈ L2 ⊕ L2.

Proposition 3.17. Let g ∈ L2(R3) be an even or odd function. Then for any θ ∈ R, Dg(θ) is

differentiable at any point (u, α) ∈ L2(R3)⊕L2(R3). In addition, it satisfies for any (v1, β1), (v2, β2) ∈
L2(R3)⊕ L2(R3):

(65) Im〈dDg(θ)(u,α)(v1, β1),dDg(θ)(u,α)(v2, β2)〉L2⊕L2 = Im〈(v1, β1), (v2, β2)〉L2⊕L2 .

Proof. We recall that with the assumptions on g, Dg(θ) has the explicit form:

Dg(θ)(u(x), α(k)) =
(
u(x)e−iθAg(x) , α(k)− iθg(k)F (|u|2)(k)

)
;

where Ag and F are defined by Equations (51) and (52) respectively. The Fréchet derivative of Dg(θ)

is easily computed, and yields

dDg(θ)(u,α)(v(x), β(k)) =
( (
v(x)− iθBg(x)u(x)

)
e−iθAg(x) , β(k)− 2iθg(k)Re

(
F (ūv)(k)

) )
=
(

i(v, β) , ii(v, β)
)

;

where we recall that Bg(x) is Ag(x) with α substituted by β. Then we have:

Im〈i(v1, β1), i(v2, β2)〉L2 = Im〈v1, v2〉L2 + 2θRe
(
〈B(1)

g u, v2〉L2 − 〈v1, B
(2)
g u〉L2

)
,

Im〈ii(v1, β1), ii(v2, β2)〉L2 = Im〈β1, β2〉L2 + 2θRe
(
〈gReF (ūv1), β2〉L2 − 〈β1, gReF (ūv2)〉L2

)
.

The result then follows, noting that 〈gReF (ūv1), β2〉L2 = 〈v1, B
(2)
g u〉L2 and 〈β1, gReF (ūv2)〉L2 =

〈B(1)
g u, v2〉L2 . a
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4. The classical limit of the renormalized Nelson model.

In this section we discuss in detail the classical limit of the renormalized Nelson model, both dressed

and undressed, and prove the main result Theorem 1.1. A schematic outline of the proof is given in

Subsection 4.1 to improve readability. The Subsections from 4.2 to 4.6 are dedicated to prove the

convergence of the dressed dynamics. The obtained results are summarized by Theorem 4.26. In

Subsection 4.7 we study the classical limit of the dressing transformation. Finally, in Section 4.8 we

put all the pieces together to prove Theorem 1.1.

4.1. Scheme of the proof. First of all, let us explain the main ideas that are behind our proof

of Theorem 1.1. Since the explicit form of Hren(σ0) is not known, it seems a very hard task to

study directly the limit of a time-evolved family of states e−i
t
εHren(σ0) %ε e

i tεHren(σ0), at least using

established techniques. The introduction of the classical dressing, and the relation E = Dg∞(1) ◦ Ê ◦
Dg∞(−1) (Equation (64), proved in Theorem 3.16) play therefore a crucial role. Once we combine

them with the convergence of the quantum dressing to the classical dressing “as a dynamical system”,

see Proposition 4.25, we can relate the undressed and dressed dynamics throughout the entire limit

procedure. The final ingredient is the convergence of a family of states %ε(t) = e−i
t
ε Ĥren %ε e

i tε Ĥren

evolved with the quantum dressed dynamics to the corresponding Wigner measure Ê(t)#µ0 evolved

with the classical dressed dynamics. Despite being technically demanding, the proof of the latter

takes advantage of the explicit expression of the quadratic form ĥren(·, ·) = 〈 · , Ĥren · 〉 associated to

the dressed Hamiltonian. The lengthier part of the aforementioned proof is to control each term that

arises from the expansion of the quadratic form associated to [Ĥren,I ,W (ξ̃s)]: it is necessary to prove

that each associated classical symbol either is compact, or it can be approximated with a compact one.

In the light of the discussion above, the proof of Theorem 1.1 can be schematized through the

following steps.

(i) (Subsection 4.2). Express the average of the Weyl operator W (ξ) with respect to the dressed

time-evolved state %̃ε(t) = ei
t
εH0 %ε(t) e

−i tεH0 (in the interaction picture) as the integral formula

Tr
[
%̃ε(t)W (ξ)

]
= Tr

[
%εW (ξ)

]
+
i

ε

∫ t

0

Tr
[
%ε(s)[Ĥren,I ,W (ξ̃s)]

]
ds .

(ii) (Subsection 4.3). Characterize the quadratic form associated to [Ĥren,I ,W (ξ̃s)], in particu-

lar prove that the associated classical symbol can be approximated with a compact symbol

(Proposition 4.9).

(iii) (Subsections 4.4 and 4.5). Take the limit ε→ 0 in the integral formula of Step (i) (extracting a

common subsequence for all times), thus obtaining a time-dependent family (µ̃t)t∈R of Wigner

measures characterized by a transport equation

∂tµ̃t +∇T
(
V(t)µ̃t

)
= 0 .

(iv) (Subsection 4.6). The transport equation of Step (iii) is solved by E0(−t)#Ê(t)#µ0. Prove

that the family (µ̃t)t∈R can be uniquely identified with (E0(−t)#Ê(t)#µ0)t∈R provided that

%ε(0)→ µ0. This is achieved by applying a general uniqueness result for probability measure

solutions of transport equations proved in [7].
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(v) (Subsection 4.7). Prove that the dressed state e−i
θ
εT∞ %ε e

i θεT∞ converges when ε → 0 to

Dg∞(θ)#µ for any θ ∈ R, provided that %ε → µ.

(vi) (Subsection 4.8). Combine the results together, and use the relation E = Dg∞(1)◦Ê◦Dg∞(−1)

to prove that %ε → µ yields

e−i
t
εHren(σ0) %ε e

i tεHren(σ0) → E(t)#µ .

4.2. The integral formula for the dressed Hamiltonian. The results of this and the next sub-

section are similar in spirit to the ones previously obtained in [5, Section 3] for the Nelson model with

cutoff and in [11, Section 3] for the mean field problem. However, some additional care has to be taken,

for in this more singular situation the manipulations below are allowed only in the sense of quadratic

forms. We start with a couple of preparatory lemmas. The proof of the first can be essentially obtained

following [5, Lemma 6.1]; the second is an equivalent reformulation of Assumption (A0):

∃C > 0 , ∀ε ∈ (0, ε̄) , ∀k ∈ N , Tr[%εN
k
1 ] ≤ Ck .

We recall that the Weyl operator W (ξ), L2 ⊕ L2 3 ξ = ξ1 ⊕ ξ2, is defined as:

(66) W (ξ) = e
i√
2

(
ψ∗(ξ1)+ψ(ξ1)

)
e
i√
2

(
a∗(ξ2)+a(ξ2)

)
.

Lemma 4.1. For any ξ = ξ1⊕ ξ2 such that ξ1 ∈ Q(−∆ + V ) ⊂ H1 and ξ2 ∈ D(ω1/2) ≡ FH1/2, there

exists C(ξ) > 0 that depends only on ‖ξ1‖H1 and ‖ξ2‖FH1/2 , such that for any ε ∈ (0, ε̄):

‖H1/2
0 W (ξ)Ψ‖ ≤ C(ξ)‖(H0 + ε̄)1/2Ψ‖ , ∀Ψ ∈ Q(H0) ;

‖(H0 + 1)1/2(N1 + 1)1/2W (ξ)Ψ‖ ≤ C(ξ)‖(H0 + ε̄)1/2(N1 + ε̄)1/2Ψ‖ , ∀Ψ ∈ Q(H0) ∩Q(N1) .

In an analogous fashion, for any ξ ∈ L2 ⊕ L2, r > 0, there exist C(ξ) > 0 that depends only on ‖ξ1‖2
and ‖ξ2‖2, such that for any ε ∈ (0, ε̄):

‖(N1 +N2)r/2W (ξ)Ψ‖ ≤ C(ξ)‖(N1 +N2 + ε̄)r/2Ψ‖ , ∀Ψ ∈ Q(Nr
1 ) .

Lemma 4.2. Let (%ε)ε∈(0,ε̄) be a family of normal states on H. Then (%ε)ε∈(0,ε̄) satisfies Assump-

tion (A0) if and only if for any ε ∈ (0, ε̄) there exists a sequence (Ψi(ε))i∈N of orthonormal vectors in

H with non-zero components only in
⊕[C/ε]

n=0 Hn and a sequence (λi(ε))i∈N ∈ l1, with each λi(ε) > 0,

such that:

%ε =
∑
i∈N

λi(ε)|Ψi(ε)〉〈Ψi(ε)| .

The explicit ε-dependence of Ψi and λi will be often omitted.

Proof. We start assuming (A0). Let %ε =
∑
i∈N λi|Ψi〉〈Ψi| be the spectral decomposition of %ε. Then

Tr
[
%εN

k
1

]
=
∑
i∈N

λi〈Ψi, N
k
1 Ψi〉 ≤ Ck ⇒

∑
i∈N

λi〈Ψi, (N1/C)kΨi〉 ≤ 1 .
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Let 1[L,+∞)(N1) be the spectral projection of N1 on the interval [L,+∞); and choose L > C. Then it

follows that:

1 ≥ Tr
[
%ε1[L,+∞)(N1)(N1/C)k

]
=
∑
i∈N

λi〈Ψi,1[L,+∞)(N1)(N1/C)kΨi〉

≥
∑
i∈N

λi(L/C)k〈Ψi,1[L,+∞)(N1)Ψi〉 .

Therefore (L/C)k〈Ψi,1[L,+∞)(N1)Ψi〉 ≤ 1 for any k ∈ N and for any Ψi. Now (L/C)k diverges when

k → ∞, while 〈Ψi,1[L,+∞)(N1)Ψi〉 does not depend on k, so their product is uniformly bounded if

and only if 1[L,+∞)(N1)Ψi = 0 for any L > C. The result follows immediately, recalling that the

eigenvalues of N1 are of the form εn1, with n1 ∈ N.

The converse statement that Assumption (A0) follows if %ε =
∑
i∈N λi|Ψi〉〈Ψi|, with each Ψi with

at most [C/ε] particles is trivial to prove. a

In this subsection, we will consider only families of states (%ε)ε∈(0,ε̄) that satisfy Assumption (A0)

and the following assumption:

(A′ρ) ∃C > 0 , ∀ε ∈ (0, ε̄) , Tr[%ε(N1 +H0)] ≤ C .

Definition 4.3 (%ε(t), %̃ε(t)). We define the dressed time evolution of a state %ε to be

%ε(t) = e−i
t
ε Ĥren %ε e

i tε Ĥren ,

where the dependence on σ0 of Ĥren is omitted, and the σ0 is chosen such that the dynamics is non-

trivial on the whole subspace with at most [C/ε] nucleons (see Lemma 4.2 and the discussion in Sec-

tion 1.2). We also define the dressed evolution in the interaction picture to be

%̃ε(t) = ei
t
εH0 %ε(t) e

−i tεH0 .

To characterize the evolved Wigner measures corresponding to %̃ε(t), it is sufficient to study its

Fourier transform; this is done studying the evolution of Tr[%̃ε(t)W (ξ)] by means of an integral equation.

Proposition 4.4. Let (%ε)ε∈(0,ε̄) be a family of normal states on H satisfying Assumptions (A0)

and (A′ρ). Then for any t ∈ R, Q(−∆ + V )⊕D(ω1/2) 3 ξ = ξ1 ⊕ ξ2:

Tr
[
%̃ε(t)W (ξ)

]
= Tr

[
%εW (ξ)

]
+
i

ε

∫ t

0

Tr
[
%ε(s)[Ĥren,I ,W (ξ̃s)]

]
ds ,(67)

where ξ̃s = eis(−∆+V )ξ1 ⊕ e−isωξ2. The commutator [Ĥren,I ,W (ξ̃s)] has to be intended as a densely

defined quadratic form with domain Q(H0), or equivalently as an operator from Q(H0) to Q(H0)∗.

Proof. The family (%ε)ε∈(0,ε̄) satisfies Assumption (A0), therefore by Lemma 4.2:

Tr
[
%̃ε(t)W (ξ)

]
=
∑
i∈N

λi〈ei
t
εH0e−i

t
ε ĤrenΨi,W (ξ)ei

t
εH0e−i

t
ε ĤrenΨi〉 .

By Assumption (A′ρ), it follows that Ψi ∈ Q(H0) for any i ∈ N. Hence the right hand side is

differentiable in t by Lemma 4.1, since Q(H0) is the form domain of both H0 and Ĥren. Using the
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Duhamel formula and the fact that e−i
s
εH0W (ξ)ei

s
εH0 = W (ξ̃s), we then obtain:

Tr
[
%̃ε(t)W (ξ)

]
=
∑
i∈N

λi

(
〈Ψi,W (ξ)Ψi〉 +

i

ε

∫ t

0

〈e−i sε ĤrenΨi, [Ĥren,I ,W (ξ̃s)]e
−i sε ĤrenΨi〉ds

)
;

where [Ĥren,I ,W (ξ̃s)] makes sense as a quadratic form on Q(H0). The result is then obtained using

Lebesgue’s dominated convergence theorem on the right hand side, by virtue of Assumption (A′ρ) and

Lemma 4.1. a

4.3. The commutator [Ĥren,I ,W (ξ̃s)]. In this subsection we deal with the commutator [Ĥren,I ,W (ξ̃s)].

The goal is to show that each of its terms converges in the limit ε→ 0, either to zero or to a suitable

phase space symbol.

For convenience, we recall some terminology related to quantization procedures in infinite dimen-

sional phase spaces (see [8] for additional informations). Let Z be a Hilbert space (the classical phase

space). In the language of quantization, we call a densely defined functional A : D ⊂ Z → C a

(classical) symbol. We say that A is a polynomial symbol if there are densely defined bilinear forms

bp,q on Z⊗sp ×Z⊗sq, 0 ≤ p ≤ p̄, 0 ≤ q ≤ q̄ (with p, p̄, q, q̄ ∈ N) such that

(68) A (z) =
∑

0≤p≤p̄
0≤q≤q̄

bp,q(z
⊗p, z⊗q) .

The Wick quantized quadratic form (A )Wick on Γs(Z) is then obtained, roughly speaking, replacing

each z(·) with the annihilation operator valued distribution a(·); each z̄(·) with the creation operator

valued distribution a∗(·); and putting all the a∗(·) to the left of the a(·). We denote, with a straight-

forward notation, the class of all polynomial symbols on Z by
⊕alg

(p,q)∈N2 Qp,q(Z). If A : Z → C and

the bilinear forms bp,q(z
⊗p, z⊗q) in (68) can all be written as 〈z⊗q, b̃p,qz⊗p〉Z⊗sq for some bounded

(resp. compact) operator b̃p,q : Z⊗sp → Z⊗sq, we say that A is a bounded (resp. compact) polynomial

symbol. We denote the class of all bounded (resp. compact) polynomial symbols by
⊕alg

(p,q)∈N2 Pp,q(Z)(
resp.

⊕alg
(p,q)∈N2 P∞p,q(Z)

)
. We remark that E , Ê and Dg defined in Section 3 are all polynomial

symbols10 on L2 ⊕ L2.

Lemma 4.5. Let (%ε)ε∈(0,ε̄) satisfy the same assumptions as in Proposition 4.4. Then there exist

maps Bj(·) : Q(−∆ +V )⊕D(ω1/2)→
⊕alg

(p,q)∈N2 Qp,q
(
L2⊕L2

)
, j = 0, . . . , 3, such that for any t ∈ R,

ξ ∈ Q(−∆ + V )⊕D(ω1/2):

Tr
[
%̃ε(t)W (ξ)

]
= Tr

[
%εW (ξ)

]
+

3∑
j=0

εj
∫ t

0

Tr
[
%ε(s)W (ξ̃s)

(
Bj(ξ̃s)

)Wick
]
ds

= Tr
[
%εW (ξ)

]
+

3∑
j=0

εj
∫ t

0

Tr
[
%ε(s)W (ξ̃s)Bj(ξ̃s)

]
ds ;

(69)

where the
(
Bj(ξ̃s)

)Wick
make sense as densely defined quadratic forms. To simplify the notation, we

have set Bj(·) :=
(
Bj(·)

)Wick
.

10In L2(R3)⊕L2(R3), we adopt the notation z = (u, α); and to each u(x) it corresponds the operator valued distribution

ψ(x), to each α(k) the distribution a(k). The Wick quantization is again obtained by substituting each
(
u#(x), α#(k)

)
with

(
ψ#(x), a#(k)

)
, and using the normal ordering of creators to the left of annihilators.
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Proof. We only sketch the proof here since it follows the same lines as in [11, 62]. By (67), the only thing

we have to prove is that, in the sense of quadratic forms, i
ε [Ĥren,I ,W (ξ̃s)] =

∑3
j=0W (ξ̃s)Bj(ξ̃s). First

of all, we remark that Ĥren,I is the Wick quantization of a polynomial symbol11; i.e. Ĥren,I =
(
ÊI
)Wick

,

with

ÊI(u, α) =
1

(2π)3/2

∫
R6

χσ0√
2ω(k)

(
ᾱ(k)e−ik·x + α(k)eik·x

)
|u(x)|2dxdk

+
1

2M

∫
R9

(
r∞(k)ᾱ(k)e−ik·x + r̄∞(k)α(k)eik·x

)(
r∞(l)ᾱ(l)e−il·x

+r̄∞(l)α(l)eil·x
)
|u(x)|2dxdkdl

− 2

M
Re

∫
R6

r∞(k)ᾱ(k)e−ik·xū(x)Dxu(x)dxdk +
1

2

∫
R6

V∞(x− y)|u(x)|2|u(y)|2dxdy .

(70)

We also recall, according to [8, Proposition 2.10 for bounded polynomial symbols] and [62, Proposition

2.1.30 for the general case], that essentially for any A ∈
⊕alg

(p,q)∈N2 Qp,q(L2⊕L2) the following formula

is true, in the sense of forms, for any suitably regular ξ ∈ L2 ⊕ L2:

(71) W ∗(ξ)
(
A
)Wick

W (ξ) =
(
A
(
·+ iε√

2
ξ
))Wick

.

Roughly speaking, the Weyl operators W (ξ) translate each creation/annihilation operator by ∓ iε√
2
ξ.

The result then follows immediately on the states %ε(s):

[Ĥren,I ,W (ξ̃s)] = W (ξ̃s)
(
W ∗(ξ̃s)Ĥren,IW (ξ̃s)− Ĥren,I

)
= W (ξ̃s)

(
ÊI(·+ iε√

2
ξ̃s)− ÊI(·)

)Wick

;

finally we define
∑3
j=0 ε

jBj(ξ)(z) = i
ε

(
ÊI(z + iε√

2
ξ)− ÊI(z)

)
, to factor out the ε-dependence. a

We state the next lemma without giving the tedious proof, that is based on the same type of

estimates given in Section 2.2 for the full operator Ĥren,I .

Lemma 4.6. For any j = 0, 1, 2, 3, ξ ∈ Q(−∆ + V )∩D(ω1/2) and C > 0, there exists Cj(ξ) > 0 such

that for any Φ,Ψ ∈ D(H
1/2
0 ) ∩D(N1), with Φ or Ψ in

⊕[C/ε]
n=0 Hn and for any s ∈ R and ε ∈ (0, ε̄):

(72) |〈Φ, Bj(ξ̃s)Ψ〉| ≤ Cj(ξ)‖(N1 +H0 + ε̄)1/2Φ‖ · ‖(N1 +H0 + ε̄)1/2Ψ‖ .

Thanks to this lemma we are now in a position to prove that the higher order terms in ε of

Equation (69) (namely those with j > 0) vanish in the limit ε→ 0.

Proposition 4.7. Let (%ε)ε∈(0,ε̄) satisfy Assumptions (A0) and (A′ρ); let ξ ∈ Q(−∆ + V ) ∩D(ω1/2).

Then the following limit holds for any t ∈ R:

(73) lim
ε→0

3∑
j=1

εj
∫ t

0

Tr
[
%ε(s)W (ξ̃s)Bj(ξ̃s)

]
ds = 0 .

Proof. By Lemma 4.2 we can write %ε =
∑
i λi|Ψi〉〈Ψi〉, where each Ψi has non-zero components only

in the subspace
⊕

n≤[C/ε]Hn, and each λi > 0. Assumption (A′ρ) then translates on the fact that each

11To be precise, we are considering here the quadratic form ĥren,I , defined and different from zero on the whole space

H, since it agrees with 〈 · , Ĥren,I · 〉 when restricted to vectors that belong to
⊕
n≤[C/ε]Hn (being here the case by

Lemma 4.2).
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Ψi is on the domain Q(H0) ∩ Q(N1), and in addition
∑
i λi〈Ψi, (N1 + H0)Ψi〉 ≤ C, uniformly with

respect to ε ∈ (0, ε̄). Therefore we can write∣∣∣∣∣
3∑
j=1

εj
∫ t

0

Tr
[
%ε(s)W (ξ̃s)Bj(ξ̃s)

]
ds

∣∣∣∣∣ ≤
3∑
j=1

εj
∑
i

λi

∫ t

0

∣∣∣∣〈W ∗(ξ̃s)e−i sε ĤrenΨi, Bj(ξ̃s)e
−i sε ĤrenΨi〉

∣∣∣∣ds .
Using now Lemma 4.6 and then Lemma 4.1 and the fact that N1 commutes with Ĥren we obtain∣∣∣∣∣

3∑
j=1

εj
∫ t

0

Tr
[
%ε(s)W (ξ̃s)Bj(ξ̃s)

]
ds

∣∣∣∣∣ ≤
3∑
j=1

εjCj(ξ)
∑
i

λi

∫ t

0

‖(N1 +H0 + ε̄)1/2W ∗(ξ̃s)e
−i sε ĤrenΨi‖

·‖(N1 +H0 + ε̄)1/2e−i
s
ε ĤrenΨi‖ds

≤
3∑
j=1

εjC(ξ)Cj(ξ)
∑
i

λi

∫ t

0

〈e−i sε ĤrenΨi, (N1 +H0 + ε̄)e−i
s
ε ĤrenΨi〉ds

≤
3∑
j=1

εjC(ξ)Cj(ξ)
∑
i

λi

(
t〈Ψi, (N1 + ε̄)Ψi〉 +

∫ t

0

〈e−i sε ĤrenΨi, H0e
−i sε ĤrenΨi〉ds

)
.

Now we consider the term 〈e−i sε ĤrenΨi, H0e
−i sε ĤrenΨi〉. First of all we write it as

〈e−i sε ĤrenΨi, H0e
−i sε ĤrenΨi〉 = 〈e−i sε ĤrenΨi, (Ĥren − Ĥren,I)e

−i sε ĤrenΨi〉

=

[C/ε]∑
n=0

〈e−i sε Ĥ
(n)
∞ Ψ

(n)
i ,

(
Ĥ(n)
∞ − Ĥ(n)

I (∞)
)
e−i

s
ε Ĥ

(n)
∞ Ψ

(n)
i 〉

=

[C/ε]∑
n=0

〈Ψ(n)
i , Ĥ(n)

∞ Ψ
(n)
i 〉 − 〈e

−i sε Ĥ
(n)
∞ Ψ

(n)
i , Ĥ

(n)
I (∞)e−i

s
ε Ĥ

(n)
∞ Ψ

(n)
i 〉

≤
[C/ε]∑
n=0

(∣∣∣〈Ψ(n)
i , Ĥ(n)

∞ Ψ
(n)
i 〉

∣∣∣ +
∣∣∣〈e−i sε Ĥ(n)

∞ Ψ
(n)
i , Ĥ

(n)
I (∞)e−i

s
ε Ĥ

(n)
∞ Ψ

(n)
i 〉

∣∣∣) .

(74)

The idea now is to use the bound of Equation (36) on
∣∣∣〈e−i sε Ĥ(n)

∞ Ψ
(n)
i , Ĥ

(n)
I (∞)e−i

s
ε Ĥ

(n)
∞ Ψ

(n)
i 〉

∣∣∣. The

crucial point is that since we have chosen σ0 such that the dynamics is non-trivial for any n ≤ [C/ε],

it follows that there exist an a < 1 and a b <∞ both independent of ε and n such that the bound (36)

holds for any n ≤ [C/ε]. Therefore we obtain

〈e−i sε ĤrenΨi, H0e
−i sε ĤrenΨi〉 ≤ a〈e−i

s
ε ĤrenΨi, H0e

−i sε ĤrenΨi〉 + b〈Ψi,Ψi〉

+

[C/ε]∑
n=0

∣∣∣〈Ψ(n)
i , Ĥ(n)

∞ Ψ
(n)
i 〉

∣∣∣ .(75)

Now since a < 1, we may take it to the left hand side and use again (36) on
∣∣∣〈Ψ(n)

i , Ĥ
(n)
∞ Ψ

(n)
i 〉

∣∣∣:
〈e−i sε ĤrenΨi, H0e

−i sε ĤrenΨi〉 ≤
1

1− a
〈Ψi, H0Ψi〉 +

2b

1− a
〈Ψi,Ψi〉 .(76)
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Finally, since the state is normalized (i.e.
∑
i λi〈Ψi,Ψi〉 = 1), we conclude:∣∣∣∣∣

3∑
j=1

εj
∫ t

0

Tr
[
%ε(s)W (ξ̃s)Bj(ξ̃s)

]
ds

∣∣∣∣∣ ≤ t
3∑
j=1

εjC(ξ)Cj(ξ)
∑
i

λi

(
〈Ψi, N1Ψi〉 + 1

1−a 〈Ψi, H0Ψi〉

+( 2b
1−a + ε̄)〈Ψi,Ψi〉

)
≤ t

3∑
j=1

εjC(ξ)Cj(ξ)

((
1 + 1

1−a

)∑
i

λi〈Ψi, (N1 +H0)Ψi〉 + 2b
1−a + ε̄

)

≤ t
3∑
j=1

εjC(ξ)Cj(ξ)

((
1 + 1

1−a

)
C + 2b

1−a + ε̄

)
.

The right hand side has no implicit dependence on ε, so it converges to zero when ε→ 0. a

By the same argument used from (74) to (76) above, we can prove the following useful lemma.

Lemma 4.8. If a family of states (%ε)ε∈(0,ε̄) satisfies Assumptions (A0) and (A′ρ), then for any t ∈ R,(
%ε(t)

)
ε∈(0,ε̄)

and
(
%̃ε(t)

)
ε∈(0,ε̄)

satisfy Assumptions (A0) and (A′ρ). In particular, there exist a(C) < 1

and b(C) > 0 such that uniformly on ε ∈ (0, ε̄):

Tr[%ε(t)N
k
1 ] ≤ Ck , ∀k ∈ N ;(77)

Tr[%ε(t)(N1 +H0)] ≤ 1

1− a(C)
C +

2b(C)

1− a(C)
;(78)

and the same bounds hold for
(
%̃ε(t)

)
ε∈(0,ε̄)

.

It remains to study the limit of the B0(·)-term in (69). As already pointed out in Lemma 4.5, we

know that B0 is a Wick quantization. More precisely, there exist a densely defined map from the

one-particle space to polynomial symbols in
⊕

(p,q)∈{(i,j)|0≤i,j≤2;2≤i+j≤3}Qp,q
(
L2 ⊕ L2

)
. In order to

apply the convergence results of Ammari and Nier [8], we need to show that the symbol of B0 may be

approximated by a compact one, with an error that vanishes in the limit ε→ 0.

To improve readability, we will write B0(ξ) in a schematic fashion. The precise structure of each

term will be discussed and analyzed in the proof of the sequent proposition. In addition, as seen in

Equation (16), the dressed interaction quadratic form ĤI(∞) can be split in three terms: the first

is just the interaction term HI(σ0) of the Nelson model with cutoff (with σ replaced by σ0), whose

classical limit has been analyzed by the authors in [5]; the second is a “mean-field” term for the

nucleons, of the same type as the ones analyzed by Ammari and Nier in [11]; the last one has a

structure similar to the interaction part of the Pauli-Fierz model [see e.g. 14–16, 79], and thus will

be called of “Pauli-Fierz type”. We will concentrate on the analysis of the Pauli-Fierz type terms of

B0, while for a precise treatment of the others the reader may refer to [5, 11]. In order to highlight

the different parts of B0(ξ) = B0(ξ1, ξ2), we will underline with different style and color the Nelson,
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. . . . . . . . . . .mean-field and Pauli-Fierz type terms:

B0(ξ1, ξ2) =
(
B0(ξ1, ξ2)

)Wick
= (a∗ + a)(ξ1ψ

∗ − ξ̄1ψ) + Im(ξ2)ψ∗ψ + ξ̄1ψ
∗ψψ − ξ1ψ∗ψ∗ψ. . . . . . . . . . . . . . . . . . . .

+(a∗a∗ + aa+ a∗a)(ξ1ψ
∗ − ξ̄1ψ) + (ξ2a

∗ − ξ̄2a)ψ∗ψ + (a∗Dx +Dxa)(ψ∗ξ1 − ξ̄1ψ)

+ψ∗Dxξ2ψ − ψ∗ξ̄2Dxψ .

(79)

Proposition 4.9. There exists a family of maps (B
(m)
0 )m∈N such that:

* For any m ∈ N

B
(m)
0 (·) : Q(−∆ + V )⊕D(ω3/4)→

⊕
(p,q)∈{(i,j)|0≤i,j≤2;2≤i+j≤3}

P∞p,q
(
L2 ⊕ L2

)
;

* For any ξ ∈ Q(−∆ +V )⊕D(ω3/4), there exist a sequence
(
C(m)(ξ)

)
m∈N that depends only on

‖ξ‖
Q(−∆+V )⊕D(ω3/4)

such that limm→∞ C(m) = 0; and such that for any two vectors Φ,Ψ ∈
H ∩D(N1), and for any ε ∈ (0, ε̄):∣∣∣〈(H0 + 1)−1/2Φ,

(
B0(ξ)−B

(m)
0 (ξ)

)Wick
(H0 + 1)−1/2Ψ

〉∣∣∣ ≤ C(m)(ξ)
∥∥(N1 + ε̄)1/2Φ

∥∥
·
∥∥(N1 + ε̄)1/2Ψ

∥∥ .(80)

Remark 4.10. Contrarily to what it was previously assumed throughout Section 4, in this proposition

we need additional regularity on ξ2, namely ξ2 ∈ D(ω3/4) ⊂ D(ω1/2). This will not be a problem in

the following, since we will extend our results to any ξ ∈ L2(R3)⊕L2(R3) by a density argument, and

D(ω3/4) is still dense in L2(R3).

Proof of Proposition 4.9. To prove the proposition, we need to analyze each term of Equation (79),

and prove that either it has a compact symbol or it can be approximated by one, in a way that (80)

holds. The analysis for Nelson terms has been carried out in [5, Proposition 3.11 and Lemma 3.15]. In

addition, using Lemma 2.5 we see that V∞ satisfies the hypotheses of the mean field potentials in [11],

therefore (80) holds also for the . . . . . . . . . . .mean-field terms [see in particular Section 3.2 of 11]. For the sake of

completeness, we explicitly write the Nelson and mean field part of Equation (79):

(a∗ + a)(ξ1ψ
∗ − ξ̄1ψ) = − 1√

2(2π)3/2

∫
R3

(
a∗
(
e−ik·x√

2ω
χσ0

)
+ a
(
e−ik·x√

2ω
χσ0

))(
ξ1(x)ψ∗(x)− ξ̄1(x)ψ(x)

)
dx ;

Im(ξ2)ψ∗ψ = − 1√
2(2π)3/2

∫
R6

(
χσ0

(k)√
2ω(k)

(
ξ2(k)eik·x − ξ̄2(k)e−ik·x

))
ψ∗(x)ψ(x)dxdk ;

ξ̄1ψ
∗ψψ − ξ1ψ∗ψ∗ψ. . . . . . . . . . . . . . . . . . . .

= 1√
2

∫
R6

V∞(x− y)
(
ξ̄1(y)ψ∗(x)ψ(x)ψ(y)− ξ1(y)ψ∗(x)ψ∗(y)ψ(x)

)
dxdy .

It remains to study the terms of Pauli-Fierz type. This is done in six parts; in each part we group

terms that are either adjoint of each other, or can be treated in a similar fashion.

Part 1 (ξ̄1aaψ, ξ1a
∗a∗ψ∗).

ξ̄1aaψ = − 1
2
√

2M

∫
R3

(
a
(
r∞e

−ik·x))2

ξ̄1(x)ψ(x)dx .

We recall that r∞ ∼ kg∞, where gσ is defined by (7) for any σ ≤ ∞. Let ξ̄1ααu be the symbol12

associated to ξ̄1aaψ, i.e. ξ̄1aaψ = (ξ̄1ααu)Wick. Now, since r∞ /∈ L2(R3), we cannot expect that

12We recall that for the Nelson model Z = L2(Rd)⊕ L2(Rd), thus we denote the variable z by u⊕ α.
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ξ̄1ααu is defined for any u, α ∈ L2(R3), and therefore that it is a compact symbol. We introduce the

approximated symbol ξ̄1ααu
(m) defined by

ξ̄1aaψ
(m) = (ξ̄1ααu

(m))Wick = − 1
2
√

2M

∫
R3

(
a
(
rσme

−ik·x))2

ξ̄1(x)ψ(x)dx ,

with (σm)m∈N ⊂ R such that limm→∞ σm = ∞. First of all, we prove that (80) holds for ξ̄1aaψ −
ξ̄1aaψ

(m):∣∣∣〈(H0 + 1)−1/2Φ, (ξ̄1aaψ − ξ̄1aaψ(m))(H0 + 1)−1/2Ψ
〉∣∣∣ ≤ 1

2
√

2M
‖ξ1‖2

∥∥(dΓ(ω) + 1)1/2

(H0 + 1)−1/2Φ
∥∥

· sup
x∈R3

∥∥(dΓ(ω) + 1)−1/2
(
a
(
(r∞ − rσm)e−ik·x

))2

(dΓ(ω) + 1)−1/2

(dΓ(ω) + 1)1/2(H0 + 1)−1/2(N1 + ε)1/2Ψ
∥∥ .

We use (28) of Lemma 2.7 and the fact that (dΓ(ω) + 1)1/2(H0 + 1)−1/2 is bounded with norm smaller

than one to obtain∣∣∣〈(H0 + 1)−1/2Φ, (ξ̄1aaψ − ξ̄1aaψ(m))(H0 + 1)−1/2Ψ
〉∣∣∣ ≤ c

2
√

2M
‖ξ1‖2‖ω−1/4(r∞ − rσm)‖22

∥∥Φ
∥∥

·
∥∥(N1 + ε̄)1/2Ψ

∥∥
≤ C(m)(ξ1)

∥∥(N1 + ε̄)1/2Φ
∥∥ · ∥∥(N1 + ε̄)1/2Ψ

∥∥ ,
with C(m)(ξ1) = C(ε̄, ξ1)‖ω−1/4(r∞ − rσm)‖22 for some C(ε̄, ξ1) > 0. The sequence

(
C(m)(ξ1)

)
m∈N

converges to zero since by our choice of (σm)m∈N:

lim
m→∞

‖ω−1/4(r∞ − rσm)‖22 = 0 .

It remains to show that ξ̄1ααu
(m) is a compact symbol. Such symbol can be written as

ξ̄1ααu
(m) = − 1

2
√

2M

∫
R9

ξ̄1(x)r̄σm(k)r̄σm(k′)ei(k+k′)·xα(k)α(k′)u(x)dxdkdk′ .

Now we can define an operator b̃ααu :
(
L2 ⊕ L2

)⊗s3 → C in the following way. Let the maps π1, π2 :

L2(R3) ⊕ L2(R3) → L2(R3) be the projections on the first and second space respectively. Then we

define the operator b̃ααu as:

b̃ααu : (u, α)⊗3 ∈
(
L2 ⊕ L2

)⊗s3 −→
π2⊗π2⊗π1

α(k)α(k′)u(x) ∈ L2(R9) −→ 〈f, ααu〉L2(R9) ∈ C ;

where f(k, k′, x) = − 1
2
√

2M
ξ̄1(x)r̄σm(k)r̄σm(k′)ei(k+k′)·x ∈ L2(R9). Therefore b̃ααu is bounded and

finite rank, and therefore compact. The proof for the corresponding adjoint term

ξ1a
∗a∗ψ∗ = − 1

2
√

2M

∫
R3

(
a∗
(
r∞e

−ik·x))2

ξ1(x)ψ∗(x)dx

can be obtained directly from the above, using the following approximation with compact symbol:

ξ1a
∗a∗ψ∗(m) = (ξ1ᾱᾱū

(m))Wick = − 1
2
√

2M

∫
R3

(
a∗
(
rσme

−ik·x))2

ξ1(x)ψ∗(x)dx .

Part 2 (ξ1aaψ
∗, ξ̄1a

∗a∗ψ).

ξ1aaψ
∗ = − 1

2
√

2M

∫
R3

(
a
(
r∞e

−ik·x))2

ξ1(x)ψ∗(x)dx .
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Again we approximate this term by

ξ1aaψ
∗(m) = (ξ1ααū

(m))Wick = − 1
2
√

2M

∫
R3

(
a
(
rσme

−ik·x))2

ξ1(x)ψ∗(x)dx

as above. The proof that it satisfies (80) is perfectly analogous as the one for the previous term.

Therefore we only prove that ξ1ααū
(m) is a compact symbol. We define an operator bααū :

(
L2 ⊕

L2
)⊗s2 → L2 ⊕ L2 by

b̃ααū : (u, α)⊗2 ∈
(
L2 ⊕ L2

)⊗s2 −→
π2⊗π2

α(k)α(k′) ∈ L2(R6)

−→
c̃ααū

(∫
R6

f̄(k, k′, ·)α(k)α(k′)dkdk′ ⊕ 0

)
∈ L2 ⊕ L2 ;

where f(k, k′, x) = − 1
2
√

2M
ξ1(x)rσm(k)rσm(k′)e−i(k+k′)·x. By definition, we have that

ξ1ααū
(m) = 〈(u, α), b̃ααū(u, α)⊗2〉L2⊕L2 .

It is easily seen that the operator c̃ααū is bounded. It is in fact compact: let βj ⇀ β in L2(R6) be a

weakly convergent (bounded) sequence such that max
{(

supj‖βj‖L2(R6)

)
, ‖β‖L2(R6)

}
= X <∞; then∥∥c̃ααū(β − βj)

∥∥
L2⊕L2 =

∥∥〈f(k, k′, x), (β − βj)(k, k′)〉L2
k,k′ (R

6)

∥∥
L2
x(R3)

−→
j→∞

0 ,

by Lebesgue’s dominated convergence theorem, using the uniform bound∣∣∣〈f(k, k′, x), (β − βj)(k, k′)〉2L2
k,k′ (R

6)

∣∣∣ ≤ ‖f(k, k′, x)‖2L2
k,k′ (R

6)

(
‖β‖2L2(R6) + ‖βj‖2L2(R6)

)
≤ 2X

8M2 ‖rσm‖42|ξ1(x)|2 ∈ L1
x(R3) .

Therefore, since c̃ααū is compact and π2 ⊗ π2 is bounded, it follows that b̃ααū is compact. Again, that

implies the result holds also for the adjoint term

ξ̄1a
∗a∗ψ = − 1

2
√

2M

∫
R3

(
a∗
(
r∞e

−ik·x))2

ξ̄1(x)ψ(x)dx .

Part 3 (ξ̄1a
∗aψ, ξ1a

∗aψ∗).

ξ̄1a
∗aψ = − 1√

2M

∫
R3

a∗
(
r∞e

−ik·x)a(r∞e−ik·x)ξ̄1(x)ψ(x)dx ,

ξ1a
∗aψ∗ = − 1√

2M

∫
R3

a∗
(
r∞e

−ik·x)a(r∞e−ik·x)ξ1(x)ψ∗(x)dx .

The proof for this couple of terms goes on exactly like the previous one, i.e. approximating r∞ with

rσm and showing that the corresponding operator c̃ᾱαu is compact, for it maps weakly convergent

sequences into strongly convergent ones.

Part 4 (ξ̄2aψ
∗ψ, ξ2a

∗ψ∗ψ).

ξ̄2aψ
∗ψ = −

√
2i
M

∫
R6

Im
(
ξ2(k′)r̄∞(k′)eik

′·x)a(r∞e−ik·x)ψ∗(x)ψ(x)dxdk′ .

We approximate it by the symbol ξ̄2αūu
(m) defined by:

ξ̄2aψ
∗ψ(m) = (ξ̄2αūu

(m))Wick = −
√

2i
M

∫
R6

ψ∗(x)χm(Dx)Im
(
ξ2(k′)r̄∞(k′)eik

′·x)a(rσme−ik·x)
ψ(x)dxdk′ ;
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where χm is the smooth cut-off function defined at the beginning of Section 2, while rσm is the usual

regularization of r∞ defined above. First of all we check that the approximation satisfies (80). By the

chain rule, two parts have to be checked:∣∣∣〈(H0 + 1)−1/2Φ, (ξ̄2aψ
∗ψ − ξ̄2aψ∗ψ(m))(H0 + 1)−1/2Ψ

〉∣∣∣ ≤ √2(2π)3/2

M

(
∣∣∣〈(H0 + 1)−1/2Φ,

∫
R3

dx ψ∗(x)
(
1− χm(Dx)

)
ImF−1

(
ξ2r̄∞

)
(x)a

(
r∞e

−ik·x)ψ(x)(H0 + 1)−1/2Ψ
〉∣∣∣

+
∣∣∣〈(H0 + 1)−1/2Φ,

∫
R3

dx ψ∗(x)χm(Dx)ImF−1
(
ξ2r̄∞

)
(x)a

(
(r∞ − rσm)e−ik·x

)
ψ(x)(H0 + 1)−1/2Ψ

〉∣∣∣) ;

and we will consider them separately. For the first part we have:∣∣∣〈(H0 + 1)−1/2Φ,

∫
R3

dx ψ∗(x)
(
1− χm(Dx)

)
ImF−1

(
ξ2r̄∞

)
(x)a

(
r∞e

−ik·x)ψ(x)(H0 + 1)−1/2Ψ
〉∣∣∣

≤
∞∑
n=0

nε
∣∣∣〈(H

(n)
0 + 1)−1/2Φn, (1− χm(Dx1))ImF−1

(
ξ2r̄∞

)
(x1)a

(
r∞e

−ik·x1
)
(H

(n)
0 + 1)−1/2Ψn

〉
Hn

∣∣∣
≤
∞∑
n=0

nε
∥∥(1−D2

x)−1/2
(
1− χm(Dx)

)∥∥
L(L2(R3))

·
∥∥F−1(ξ2r̄∞)

∥∥
∞ ·
∥∥ω−1/2r∞

∥∥
2

·
∥∥(1−D2

x1
)1/2(H

(n)
0 + 1)−1/2Φn

∥∥
Hn
·
∥∥dΓ(ω)1/2(H

(n)
0 + 1)−1/2Ψn

∥∥
Hn

≤ (1 + ε̄)‖ξ2‖FH1/2 ·
∥∥ω−1/2r∞

∥∥2

2
·
∥∥(1−D2

x)−1/2
(
1− χm(Dx)

)∥∥
L(L2(R3))

·
∥∥(N1 + ε̄)1/2Φ

∥∥ · ∥∥N1/2
1 Ψ

∥∥ ;

where in the last inequality we have utilized the following bound:

nε
∥∥(1−D2

x1
)1/2(H

(n)
0 + 1)−1/2Φn

∥∥2

Hn
=
〈
Φn, (H

(n)
0 + 1)−1/2dΓ(1−∆)(H

(n)
0 + 1)−1/2Φn

〉
Hn

≤
∥∥N1/2

1 Φn
∥∥
Hn

+
∥∥dΓ(−∆)1/2(H

(n)
0 + 1)−1/2Φn

∥∥
Hn
≤ (1 + ε̄)

∥∥(N1 + ε̄)1/2Φn
∥∥
Hn

.

So the first part satisfies (80), since

lim
m→∞

∥∥(1−D2
x)−1/2

(
1− χm(Dx)

)∥∥
L(L2(R3))

= 0 .

A similar procedure for the second part yields∣∣∣〈(H0 + 1)−1/2Φ,

∫
R3

dx ψ∗(x)χm(Dx)ImF−1
(
ξ2r̄∞

)
(x)a

(
(r∞ − rσm)e−ik·x

)
ψ(x)(H0 + 1)−1/2Ψ

〉∣∣∣
≤ ‖ξ2‖FH1/2 ·

∥∥ω−1/2r∞
∥∥

2
·
∥∥ω−1/2(r∞ − rσm)

∥∥
2

∥∥N1/2
1 Φ

∥∥ · ∥∥N1/2
1 Ψ

∥∥ ;

i.e. it satisfies (80), for limm→∞‖ω−1/2(r∞ − rσm)‖2 = 0. Now it remains to show that ξ̄2αūu
(m) is a

compact symbol:

ξ̄2αūu
(m) = − (2π)3/2

√
2i

M

∫
R6

ū(x)χm(Dx)ImF−1
(
ξ2r̄∞

)
(x)r̄σm(k)eik·xα(k)u(x)dxdk .

As for the previous terms, we define an operator bαūu :
(
L2 ⊕ L2

)⊗s2 → L2 ⊕ L2 by

b̃αūu : (u, α)⊗2 ∈
(
L2 ⊕ L2

)⊗s2 −→
π2⊗π1

α(k)u(x) ∈ L2(R6) −→
c̃αūu

(
f ′(x,Dx)u(x)⊕ 0

)
∈ L2 ⊕ L2 ;

where f ′(x,Dx) = − (2π)3
√

2i
M χm(Dx)F−1

(
r̄σmα

)
(x)ImF−1

(
ξ2r̄∞

)
(x). We can easily prove that f ′ :

L2(R3) → L2(R3) is a compact operator. The cutoff function χm ∈ L∞0 (R3) by hypothesis13.

13We denote by L∞0 (R3) the set of bounded functions on R3 that vanish at infinity.
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Now both r̄σmα and ξ2r̄∞ belong to L1(R3), since rσm , α, ω
1/2ξ2, ω

−1/2r∞ ∈ L2(R3). Therefore

F−1
(
r̄σmα

)
ImF−1

(
ξ2r̄∞

)
∈ L∞0 (R3), hence f ′(x,Dx) ∈ K(L2(R3)). It immediately follows that b̃αūu

is compact, and the proof is complete. As usual, this result implies the one for the adjoint term

ξ2a
∗ψ∗ψ = −

√
2i
M

∫
R6

Im
(
ξ2(k′)r̄∞(k′)eik

′·x)a∗(r∞e−ik·x)ψ∗(x)ψ(x)dxdk′ .

Part 5 (Dxaξ̄1ψ, a∗Dxψ
∗ξ1, Dxaψ

∗ξ1, a∗Dxξ̄1ψ).

Dxaξ̄1ψ = 1√
2M

∫
R3

ξ̄1(x)Dxa
(
r∞e

−ik·x)ψ(x)dx .

The approximated symbol Dxaξ̄1ψ
(m) is given by

Dxaξ̄1ψ
(m) = 1√

2M

∫
R3

ξ̄1(x)Dxa
(
rσme

−ik·x)ψ(x)dx .

First of all we prove that (80) is satisfied. Given Φ ∈ H, we denote by Φn,p its restriction to the

subspace Hn,p =
(
L2(R3)

)⊗sn
⊗
(
L2(R3)

)⊗sp
with n nucleons and p mesons. We also denote by

Xn = {x1, . . . , xn} a set of variables, dXn = dx1 · · · dxn the corresponding Lebesgue measure (and

analogously for Kp, dKp). The proof is obtained by a direct calculation on the Fock space as follows:∣∣∣∣〈(H0 + 1)−1/2Φ,

∫
R3

ξ̄1(x)Dxa
(
(r∞ − rσm)e−ik·x

)
ψ(x)dx(H0 + 1)−1/2Ψ

〉∣∣∣∣
=

∣∣∣∣ ∞∑
n,p=0

ε
√

(n+ 1)(p+ 1)

∫
R(n+p+2)d

(
(H0 + 1)−1/2Φ

)
n,p

(Xn;Kp)ξ̄1(x)Dx(r̄∞ − r̄σm)(k)eik·x

(
(H0 + 1)−1/2Ψ

)
n+1,p+1

(x,Xn; k,Kp)dxdXndkdKp

∣∣∣∣
≤

∞∑
n,p=0

√
ε(n+ 1)

∣∣∣∣∫
R(n+p+2)d

(
(H0 + 1)−1/2Φ

)
n,p

(Xn;Kp)Dxξ1(x)
r∞−rσm√

ω
(k)eik·x

√
ε(p+ 1)ω(k)

(
(H0 + 1)−1/2Ψ

)
n+1,p+1

(x,Xn; k,Kp)dxdXndkdKp

∣∣∣∣
≤

∞∑
n,p=0

√
ε(n+ 1)

∥∥(−∆ + V )1/2ξ1
∥∥

2
·
∥∥ω−1/2(r∞ − rσm)

∥∥
2
·
∥∥(H0 + 1)−1/2Φn,p

∥∥
Hn,p

·
∥∥eik·x√ε(p+ 1)ω(k1)(H0 + 1)−1/2Ψn+1,p+1(Xn+1;Kp+1)

∥∥
Hn+1,p+1

≤
∥∥(−∆ + V )1/2ξ1

∥∥
2
·
∥∥ω−1/2(r∞ − rσm)

∥∥
2
·
∥∥(N1 + ε̄)1/2Φ

∥∥ · ∥∥Ψ
∥∥ ;

where in the last bound we have used Schwarz’s inequality and the fact that pω(k1) ≡
∑p
j=1 ω(kj)

when acting on vectors of Hn,p. Now, since limm→∞
∥∥ω−1/2(r∞ − rσm)

∥∥
2

= 0, Equation (80) holds

with C(m)(ξ1) = 1√
2M

∥∥(−∆ + V )1/2ξ1
∥∥

2
·
∥∥ω−1/2(r∞ − rσm)

∥∥
2
. It remains to show that the classical

symbol

Dxαξ̄1u
(m) = 1√

2M

∫
R6

ξ̄1(x)Dxα(k)r̄σm(k)eik·xu(x)dxdk

is compact. Here we have written Dxαξ̄1u
(m) = 〈ξ1, Dxv〉2, with vx(x) = (2π)3/2

√
2M
F−1

(
αr̄σm

)
(x)u(x);

and that is defined for any v ∈ Ḣ1(R3). However, since ξ1 ∈ Q(−∆ + V ) ⊂ H1(R3) and Dx is

self-adjoint, we can write Dxαξ̄1u
(m) = 〈Dxξ1, v〉2 for any v ∈ L2(R3). It follows that Dxαξ̄1u

(m) is

defined for any u, α ∈ L2(R3), since α, rσm ∈ L2 implies αr̄σm ∈ L1, and therefore F−1
(
αr̄σm

)
∈ L∞.
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It follows that the operator b̃Dxαu :
(
L2 ⊕ L2

)⊗s2 → C defined as

b̃Dxαu : (u, α)⊗2 ∈
(
L2 ⊕ L2

)⊗s2 −→
π2⊗π1

α(k)u(x) ∈ L2(R6) −→ 〈f ′′, αu〉L2(R6) ∈ C ,

with f ′′(x, k) = 1√
2M

(Dxξ1)(x)rσm(k)e−ik·x, is bounded and finite rank, and therefore compact.

a∗Dxξ̄1ψ = 1√
2M

∫
R3

ξ̄1(x)a∗
(
r∞e

−ik·x)Dxψ(x)dx .

Again, the approximated symbol a∗Dxξ̄1ψ is given by

a∗Dxξ̄1ψ
(m) = 1√

2M

∫
R3

ξ̄1(x)a∗
(
rσme

−ik·x)Dxψ(x)dx .

Equation (80) is satisfied, and the proof follows the same guidelines as the one for the previous term

Dxaξ̄1ψ. We give the compactness proof for the symbol

ᾱDxξ̄1u
(m) = 1√

2M

∫
R6

ξ̄1(x)ᾱ(k)rσm(k)e−ik·xDxu(x)dxdk .

We rewrite it as ᾱDxξ̄1u
(m) = 〈(u, α), b̃ᾱDxu(u, α)〉L2⊕L2 , with b̃ᾱDxu : L2 ⊕ L2 → L2 ⊕ L2 defined as

b̃ᾱDxu : (u, α) ∈ L2 ⊕ L2 −→
π1

u(x) ∈ L2(R3) −→
c̃ᾱDxu

(
0 ⊕ f ′′′(k)

)
∈ L2 ⊕ L2 ,

where f ′′′(k) = 1√
2M

rσm(k)
(
k〈eik·xξ1, u〉L2

x
+ 〈eik·xDxξ1, u〉L2

x

)
. Now suppose that uj ⇀ u is a weakly

convergent (bounded) sequence with bound X. It follows that, uniformly in j,

|f ′′′j (k)|2 =
∣∣∣ 1√

2M
rσm(k)

(
k〈eik·xξ1, uj〉L2

x
+ 〈eik·xDxξ1, uj〉L2

x

)∣∣∣2
≤ 1

2M2X
2|rσm(k)|2(k2 + 1)‖ξ1‖2H1 ∈ L1

k(R3) .

In addition, limj→∞|f ′′′(k) − f ′′′j (k)|2 = 0; therefore c̃ᾱDxu is a compact operator by Lebesgue’s

dominated convergence theorem. So b̃ᾱDxu is compact. The proofs above extend immediately to the

adjoint terms

a∗Dxψ
∗ξ1 = 1√

2M

∫
R3

ψ∗(x)a∗
(
r∞e

−ik·x)Dxξ1(x)dx ;

Dxaψ
∗ξ1 = 1√

2M

∫
R3

ψ∗(x)Dxa
(
r∞e

−ik·x)ξ1(x)dx .

Part 6 (ψ∗Dxξ2ψ, ψ∗ξ̄2Dxψ).

ψ∗Dxξ2ψ = (2π)3/2

√
2M

∫
R3

ψ∗(x)DxF−1
(
ξ2r̄∞

)
(x)ψ(x)dx .

The approximated symbol, as for the terms of point 4, contains χm(Dx):

ψ∗Dxξ2ψ
(m) = (2π)3/2

√
2M

∫
R3

ψ∗(x)χm(Dx)DxF−1
(
ξ2r̄∞

)
(x)ψ(x)dx .
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As usual, we start proving that (80) holds. We remark that this is the only term where we need

ξ2 ∈ D(ω3/4) instead of D(ω1/2).∣∣∣∣〈(H0 + 1)−1/2Φ,

∫
R3

ψ∗(x)
(
1− χm(Dx)

)
DxF−1

(
ξ2r̄∞

)
(x)ψ(x)dx(H0 + 1)−1/2Ψ

〉∣∣∣∣
≤
∞∑
n=0

nε

∣∣∣∣〈(H0 + 1)−1/2Φn,
(
1− χm(Dx1

)
)
Dx1
F−1

(
ξ2r̄∞

)
(x1)(H0 + 1)−1/2Ψn

〉∣∣∣∣
≤
∞∑
n=0

nε
∥∥(1−∆)−1/2

(
1− χm(Dx)

)∥∥
L(L2(R3))

·
(∥∥F−1

(
ξ2r̄∞

)∥∥
∞ +

∥∥F−1
(
kξ2r̄∞

)∥∥
∞

)
·
∥∥(1−∆x1)1/2(H0 + 1)−1/2Φn

∥∥
Hn
·
(∥∥Dx1(H0 + 1)−1/2Ψn

∥∥
Hn

+
∥∥(H0 + 1)−1/2Ψn

∥∥
Hn

)
≤ 2
∥∥(1−D2

x)−1/2
(
1− χm(Dx)

)∥∥
L(L2(R3))

·
∥∥ω3/4ξ2

∥∥
2
·
∥∥ω−1/4r∞

∥∥
2
·
∥∥Φ
∥∥·(∥∥(N1 + ε̄)1/2Ψ

∥∥ +
∥∥Ψ
∥∥) ;

hence the result follows with

C(m)(ξ2) = 2
√

2(2π)3/2

M

∥∥(1−D2
x)−1/2

(
1− χm(Dx)

)∥∥
L(L2(R3))

∥∥ω3/4ξ2
∥∥

2

∥∥ω−1/4r∞
∥∥

2
,

since limm→∞
∥∥(1−D2

x)−1/2
(
1− χm(Dx)

)∥∥
L(L2(R3))

= 0. It remains to show that the symbol

ūDxξ2u
(m) = (2π)3/2

√
2M

∫
R3

ū(x)χm(Dx)DxF−1
(
ξ2r̄∞

)
(x)u(x)dx

is compact. We introduce the operator b̃ūDxu : L2 ⊕ L2 → L2 ⊕ L2 such that ūDxξ2u
(m) =

〈(u, α), b̃ūDxu(u, α)〉L2⊕L2 :

b̃ūDxu : (u, α) ∈ L2 ⊕ L2 −→
π1

u(x) ∈ L2(R3) −→
c̃ūDxu

(
f ′′′′(x,Dx)u(x) ⊕ 0

)
∈ L2 ⊕ L2 ,

where f ′′′′(x,Dx) = (2π)3/2

√
2M

Dx χm(Dx)F−1
(
ξ2r̄∞

)
(x). Now f ′′′′(x,Dx) is a compact operator: both

xχm(x) and F−1
(
ξ2r̄∞

)
(x) are in L∞0 (R3). Therefore b̃ūDxu is compact. The proof extends immedi-

ately to the adjoint term

ψ∗ξ̄2Dxψ = (2π)3/2

√
2M

∫
R3

ψ∗(x)F
(
ξ̄2r∞

)
(x)Dxψ(x)dx .

a

4.4. Defining the time-dependent family of Wigner measures. The last tool we need in order

to take the limit ε → 0 of the integral formula (69) are Wigner measures. Throughout this section,

we will leave some statements unproven; the reader may refer to [8, Section 6] for the proofs, and

a detailed discussion of Wigner measures properties. We recall the definition of a Wigner measure

associated with a family of states on H = Γs
(
L2(R3)⊕ L2(R3)

)
.

Definition 4.11. Let (%ε)ε∈(0,ε̄) ⊂ L1
(
H
)

be a family of normal states; µ ∈ P
(
L2 ⊕ L2

)
a Borel

probability measure. We say that µ is a Wigner (or semiclassical) measure associated to (%ε)ε∈(0,ε̄), or

in symbols µ ∈ M
(
%ε, ε ∈ (0, ε̄)

)
, if there exist a sequence (εk)k∈N ⊂ (0, ε̄) such that limk→∞ εk = 0

and

(81) lim
k→∞

Tr
[
%εkW (ξ)

]
=

∫
L2⊕L2

ei
√

2Re〈ξ,z〉L2⊕L2dµ(z) , ∀ξ ∈ L2 ⊕ L2 .
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We remark that the right-hand side is essentially the Fourier transform of the measure µ, so considering

the sequence (εk)k∈N there is at most one probability measure that could satisfy (81). If (81) is satisfied,

we say that to the sequence (%εk)k∈N corresponds a single Wigner (or semiclassical) measure µ, or

simply %εk → µ.

First of all, it is necessary to ensure that such a definition of Wigner measures is meaningful, i.e.

that under suitable conditions the set of Wigner measures M associated to a family of states is not

empty. Since m0 > 0, it turns out that Assumption (A′ρ) is sufficient. Assumption (Aρ) would be

sufficient as well, even if we will not use it for the moment.

Lemma 4.12. Let (%ε)ε∈(0,ε̄) be a family of normal states on H, that satisfies Assumptions (A′ρ) and

(A0). Then for any t ∈ R:

(i) M
(
%ε(t), ε ∈ (0, ε̄)

)
6= Ø ; M

(
%̃ε(t), ε ∈ (0, ε̄)

)
6= Ø .

(ii) Any µ ∈M
(
%ε(t), ε ∈ (0, ε̄)

)
or in M

(
%̃ε(t), ε ∈ (0, ε̄)

)
14 satisfies:

µ
(
Bu(0,

√
C) ∩Q(−∆ + V )⊕D(ω1/2)

)
= 1

(iii) Moreover ∫
z=(u,α)∈L2⊕L2

‖(−∆ + V )1/2u‖22 + ‖α‖2FH1/2 dµ(z) < +∞ .

We recall that Bu(0,
√
C) =

{
(u, α) ∈ L2 ⊕ L2, ‖u‖2 ≤

√
C
}

.

Proof. By (78) of Lemma 4.8, we see that %ε(t) and %̃ε(t) satisfy (A0) and (A′ρ) at any time. Now

(i) follows by [8, Theorem 6.2] and (ii) by (iii) and [10, Lemma 2.14]. The third point is essentially

a consequence of [11, Lemma 3.12]. However the latter result requires more regularity on the states

%ε. So we indicate here how to adapt the argument to our case. It is enough to assume t = 0 and

{µ} = M
(
%ε, ε ∈ (0, ε̄)

)
. The operators − ∆

2M + V and ω are positive (self-adjoint). So one can find

non-decreasing sequences of finite rank operators Ak and Bk that converge weakly to − ∆
2M +V and ω

respectively. In particular

bWick
k = dΓ(Ak)⊗ 1 + 1⊗ dΓ(Bk) ≤ dΓ(− ∆

2M
+ V )⊗ 1 + 1⊗ dΓ(ω) = H0 ,

where bk(u, α) = 〈u,Aku〉 + 〈α,Bkα〉 ∈ P∞1,1(L2 ⊕ L2). Let Pk and Qk be the orthogonal projec-

tions on Ran(Ak) and Ran(Bk) respectively. Using the Fock space decomposition Γs(L
2 ⊕ L2) ≡

Γs(PkL
2 ⊕ QkL

2) ⊗ Γs(P
⊥
k L

2 ⊕ Q⊥k L
2) where P⊥k = 1 − Pk and Q⊥k = 1 − Qk; one can write

bWick
k ≡ (bk)Wick

|Γs(PkL2⊕QkL2) ⊗ 1Γs(P⊥k L
2⊕Q⊥k L2) and %ε ≡ %̂ε. Hence

Tr
[
%εb

Wick
k

]
= Tr

[
%̂εb

Wick
|Γs(PkL2⊕QkL2) ⊗ 1Γs(P⊥k L

2⊕Q⊥k L2)

]
= TrΓs(PkL2⊕QkL2)

[
%kεb

Wick
k

]
,

where %kεj is a given reduced density matrix which is trace-class in Γs(PkL
2 ⊕QkL2). So the problem

is in some sense reduced to finite dimension. Now using Wick calculus (in finite dimension) bWick
k

can be written as an Anti-Wick operator by moving all the a∗ to the right of a. So, one obtains

bWick
k = bA−Wick

k + εT with T (dΓ(Pk ⊕ Qk) + 1)−1 is bounded uniformly with respect to ε ∈ (0, ε̄).

14In this section, we have used mostly the notation D(ω1/2); however D(ω1/2) = FH1/2, where the latter is defined in

Definition 3.4.
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Hence

lim
ε→0

TrΓs(PkL2⊕QkL2)

[
%kεb

A−Wick
k

]
= lim
ε→0

TrΓs(PkL2⊕QkL2)

[
%kεb

Wick
k

]
≤ lim
ε→0

Tr
[
%εH0

]
≤ C .

For details on the Anti-Wick quantization we refer the reader to [8]; in particular it is a positive

quantization (see e.g. [8, Proposition 3.6]). Hence, we see that

TrΓs(PkL2⊕QkL2)

[
%kε(bk,χ)A−Wick

]
≤ TrΓs(PkL2⊕QkL2)

[
%kεb

A−Wick
k

]
where bk,χ(u, α) = χ(u)〈u,Aku〉 + χ(α)〈α,Bkα〉 for any cutoff function χ ∈ C∞0 (R3), 0 ≤ χ ≤ 1.

Finally [8, Theorem 6.2] gives∫
z=(u,α)∈L2⊕L2

bk,χ(u, α) dµ(z) = lim
ε→0

Tr
[
%ε(bk,χ)A−Wick

]
= lim
ε→0

TrΓs(PkL2⊕QkL2)

[
%kεb

A−Wick
k

]
≤ C ,

and the monotone convergence theorem proves (iii). a

As we said above, our aim is to take the limit εk → 0 on the integral equation (69), for a suitable

sequence contained in (0, ε̄). We may suppose that the sequence (εk)k∈N is chosen in such a way that

there exist µ0 ∈M
(
%ε, ε ∈ (0, ε̄)

)
such that (81) holds, i.e. M

(
%εk , k ∈ N

)
= {µ0}. However, nothing

a priori ensures that the sequence, or one of its subsequences (εki)i∈N ⊂ (εk)k∈N, is such that for any

t ∈ R:

lim
i→∞

Tr
[
%̃εki (t)W (ξ)

]
=

∫
L2⊕L2

ei
√

2Re〈ξ,z〉dµ̃t(z) , ∀ξ ∈ L2(R3)⊕ L2(R3) ;

where µ̃t : R→ P
(
L2 ⊕L2

)
is a map such that µ̃0 = µ0. The possibility of extracting such a common

subsequence is crucial, since the integral equation involves all measures from zero to an arbitrary time

t. To prove it is possible, we exploit the uniform continuity properties of Tr
[
%̃ε(t)W (ξ)

]
in both t and

ξ, proved in the following lemma.

Lemma 4.13. Let (%ε)ε∈(0,ε̄) be a family of quantum states on H that satisfies Assumptions (A0) and

(A′ρ). Then the family of functions (t, ξ) 7→ G̃ε(t, ξ) := Tr
[
%̃ε(t)W (ξ)

]
is uniformly equicontinuous on

bounded subsets of R×
(
Q(−∆ + V )⊕D(ω1/2)

)
.

Proof. Let (t, ξ), (s, η) ∈ R ×
(
Q(−∆ + V ) ⊕ D(ω1/2)

)
. Without loss of generality, we may suppose

that s ≤ t. We write∣∣∣G̃ε(t, ξ)− G̃ε(s, η)
∣∣∣ ≤ ∣∣∣G̃ε(t, η)− G̃ε(s, η)

∣∣∣ +
∣∣∣G̃ε(t, ξ)− G̃ε(t, η)

∣∣∣ ;

and define X1 :=
∣∣∣G̃ε(t, η) − G̃ε(s, η)

∣∣∣, X2 :=
∣∣∣G̃ε(t, ξ) − G̃ε(t, η)

∣∣∣. Consider X1; we get by standard

manipulations and Lemma 4.2:

X1 ≤
3∑
j=0

εj
∑
i∈N

λi

∫ t

s

∣∣∣〈e−i sε ĤrenΨi,W
( ˜(η)s

)
Bj
( ˜(η)s

)
e−i

s
ε ĤrenΨi

〉∣∣∣ds .
Now using Lemma 4.6 we obtain

X1 ≤
3∑
j=0

εjCj(η)
∑
i∈N

λi

∫ t

s

∥∥∥(N1 +H0 + ε̄)1/2W ∗
( ˜(η)s

)
e−i

s
ε ĤrenΨi

∥∥∥
·
∥∥∥(N1 +H0 + ε̄)1/2e−i

s
ε ĤrenΨi

∥∥∥ds ;
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then using Lemma 4.1, and the fact that
∥∥ ˜(η1)s

∥∥
H1 =

∥∥η1

∥∥
H1 ,

∥∥ ˜(η2)s
∥∥
FH1/2 =

∥∥η2

∥∥
FH1/2 we get

X1 ≤ C(η)

3∑
j=0

εjCj(η)

∫ t

s

Tr
[
%ε(s)(N1 +H0 + ε̄)

]
ds

≤ |t− s|C(η)

3∑
j=0

ε̄jCj(η)
(

C
1−a(C) + 2b(C)

1−a(C) + ε̄
)

;

where in the last inequality we used Equation (78) of Lemma 4.8. Now let’s consider X2; a standard

manipulation using Weyl’s relation yields

X2 ≤
∥∥∥(ei ε2 Im〈ξ,η〉L2⊕L2W (ξ − η)− 1

)
(N1 +N2 + 1)−1

∥∥∥
L
(

Γs(L2⊕L2)
)Tr

[
%̃ε(t)(N1 +N2 + 1)

]
.

Now we use the estimate in [8, Lemma 3.1] and obtain

X2 ≤ ‖ξ − η‖L2⊕L2

(
ε̄‖η‖L2⊕L2 + 1

)
Tr
[
%̃ε(t)(N1 +N2 + 1)

]
≤ ‖ξ − η‖L2⊕L2

(
ε̄‖η‖L2⊕L2 + 1

)(
C

1−a(C) + 2b(C)
1−a(C) + 1

)
,

where in the last inequality we used again Equation (78) of Lemma 4.8, keeping in mind that N2 ≤
dΓ(ω) ≤ H0. a

Now using Lemma 4.13 with the estimates on X1, X2 above and a diagonal extraction argument,

we prove the following proposition. We omit the proof since it is similar to [11, Proposition 3.9].

Proposition 4.14. Let (%ε)ε∈(0,ε̄) be a family of quantum states on H that satisfies Assumptions (A0)

and (A′ρ). Then for any sequence (εk)k∈N ⊂ (0, ε̄) with limk→∞ εk = 0, there exists a subsequence

(εki)i∈N such that there exists a map µt : R→ P
(
L2 ⊕ L2

)
verifying the following statements:

%εki (t)→ µt , ∀t ∈ R ;(82)

%̃εki (t)→ µ̃t , ∀t ∈ R , with µ̃t = E0(−t)#µt ;(83)

%εki (t)W (ξ̃t)→ µξ,t , ∀t ∈ R and ∀ξ ∈ L2 ⊕ L2 , with dµξ,t(z) = ei
√

2Re〈ξ̃t,z〉dµt(z) ;(84)

where E0(t)z = e−it(−∆+V )u⊕ e−itωα is the Hamiltonian flow associated with the free classical energy

E0, and ξ̃t = E0(−t)ξ. Moreover, µt and µ̃t are both Borel probability measures on Q(−∆ + V ) ⊕
D(ω1/2).

4.5. The classical limit of the integral formula. We are finally ready to discuss the limit ε → 0

of the integral formula (69). As a final preparation, we state a couple of preliminary lemmas. The first

is a slight improvement of [8, Theorem 6.13]. The second can be easily proved by standard estimates
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on the symbol B
(m)
0 (ξ) which we recall for convenience:

B
(m)
0 (ξ)(u, α) = 2i

√
2
〈

ReF
(χσ0 ᾱ√

2ω

)
(x), Im

(
ξ̄1u
)
(x)
〉

2
+ i
√

2
〈
u(x), χm(Dx)Im

(
F
(χσ0 ξ̄2√

2ω

))
(x)u(x)

〉
2

+i
√

2Im
〈
u(x),

(
χm(D(·))V∞ ∗ ξ̄1u

)
(x)u(x)

〉
2

+ i(2π)3/2

2M Im
〈
ξ1(x),

(
F−1(r̄σmα)2 + F(rσm ᾱ)2

+F−1(r̄σmα)F(rσm ᾱ)
)

(x)u(x)
〉

2

− 2
√

2(2π)3

M Im
〈
u(x), χm(Dx)Im

(
F−1(r̄∞ξ2)

)
(x)F−1(r̄σmα)(x)u(x)

〉
2

− i
√

2(2π)3/2

M Im
〈
ξ1(x), DxF−1(r̄σmα)(x)u(x)

〉
2
− i
√

2(2π)3/2

M Im
〈
ξ1(x),F(rσm ᾱ)(x)Dxu(x)

〉
2

+ i
√

2(2π)3/2

M Im
〈
u(x), χm(Dx)DxF−1(r̄∞ξ2)(x)u(x)

〉
2
.

(85)

Lemma 4.15. Let (εj)j∈N ⊂ (0, ε̄), limj→∞ εj = 0, and δ > 0. Furthermore, let (%εj )j∈N be a

sequence of normal states in H such that for some C(δ) > 0,

(86)
∥∥∥(N1 +N2)δ/2%εj (N1 +N2)δ/2

∥∥∥
L1(L2⊕L2)

≤ C(δ) ,

uniformly in ε ∈ (0, ε̄). Suppose that %εj → µ ∈ P(L2 ⊕ L2) then the following statement is true:(
∀A ∈

⊕
(p,q)∈N2

p+q<2δ

P∞p,q
(
L2 ⊕ L2

)
, lim
j→∞

Tr
[
%εj (A )Wick

]
=

∫
L2⊕L2

A (z)dµ(z)

)
.

Proof. By linearity it is enough to assume A ∈ P∞p,q
(
L2 ⊕ L2

)
for (p, q) ∈ N2 with p + q < 2δ. Let

(PR)R>0 be an increasing family of finite rank orthogonal projections on L2 such that the strong limit

s− limR→+∞ PR = 1 holds. Let AR(z) := A (PR ⊕ PRz) for any z ∈ L2 ⊕ L2. One writes∣∣∣∣Tr
[
%εj (A )Wick

]
−
∫
L2⊕L2

A (z)dµ(z)

∣∣∣∣ ≤ ∣∣∣Tr
[
%εj (A )Wick

]
− Tr

[
%εj (AR)Wick

]∣∣∣(87)

+

∣∣∣∣Tr
[
%εj (AR)Wick

]
−
∫
L2⊕L2

AR(z)dµ(z)

∣∣∣∣(88)

+

∣∣∣∣∫
L2⊕L2

AR(z)dµ(z)−
∫
L2⊕L2

A (z)dµ(z)

∣∣∣∣ .(89)

Using standard number estimates and the regularity of the states (%εj )j , one shows∣∣∣Tr
[
%εj (A −AR)Wick

]∣∣∣ ≤ ||(N1 +N2)δ/2%εj (N1 +N2)δ/2||L1(L2⊕L2) ||Ã − ÃR|| ,

where Ã and ÃR denote the compact operators satisfying A (z) = 〈z⊗q, Ã z⊗p〉 and AR(z) = 〈z⊗q, ÃRz
⊗p〉

respectively. Since ÃR = (PR⊕PR)⊗qÃ (PR⊕PR)⊗p and Ã is compact, one shows that limR→+∞ ||Ã −
ÃR|| = 0. So the right hand side of (87) can be made arbitrary small by choosing R large enough.

According to [8, Theorem 6.2], the regularity of (%εj )j insures the bound∫
L2⊕L2

||z||2δL2⊕L2 dµ(z) ≤ C(δ) .

Hence by dominated convergence the right hand side of (89) can also be made arbitrary small when R

is large enough since A (z) and AR(z) are both bounded by c||z||p+qL2⊕L2 and AR(z) converges pointwise

to A (z).
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To handle the right hand side of (88), we use a further regularization. Let χ ∈ C∞0 (R), 0 ≤ χ ≤ 1,

χ(x) = 1 in a neighborhood of 0 and χm(x) = χ( xm ) for m > 0. Recall that the Fock space has the

decomposition Γs(L
2 ⊕ L2) ≡ Γs(PRL

2 ⊕ PRL2) ⊗ Γs(P
⊥
R L

2 ⊕ P⊥R L2) where P⊥R = 1 − PR. In this

representation A Wick
R ≡ (AR)Wick

|Γs(PRL2⊕PRL2) ⊗ 1Γs(P⊥R L
2⊕P⊥R L2) and %εj ≡ %̂εj . Hence using reduced

density matrices %Rεj that are normalized positive trace-class operators in Γs(PRL
2⊕PRL2), one writes

Tr
[
%εj (AR)Wick

]
= Tr

[
%̂εj (AR)Wick

|Γs(PRL2⊕PRL2) ⊗ 1Γs(P⊥R L
2⊕P⊥R L2)

]
= TrΓs(PRL2⊕PRL2)

[
%Rεj (AR)Wick

]
.

As in the proof of Lemma 4.12, the Wick calculus gives that (AR)Wick can be written as an Anti-Wick

operator by moving all the a∗ to the right of a. So, one obtains (AR)Wick = (AR)A−Wick + εT with

T (dΓ(PR ⊕ PR) + 1)−
p+q

2 is bounded uniformly with respect to ε ∈ (0, ε̄). We refer the reader to [8]

where Weyl and Anti-Wick quantization are explained for “cylindrical” symbols. Hence

lim
j→∞

Tr
[
%εj (AR)Wick

]
= lim
j→∞

TrΓs(PRL2⊕PRL2)

[
%Rεj (AR)Wick

]
= lim
j→∞

TrΓs(PRL2⊕PRL2)

[
%Rεj (AR)A−Wick

]
.

Now we define χm,R(z) := χm(|PR ⊕ PRz|2) and %R,mεj := χm,R(z)Weyl %Rεj χm,R(z)Weyl. So one writes∣∣∣∣Tr
[
%Rεj (A )A−Wick

]
−
∫
L2⊕L2

A (z)dµ(z)

∣∣∣∣ ≤ ∣∣∣∣Tr
[
(%Rεj − %

R,m
εj )(A )A−Wick

]∣∣∣∣(90)

+

∣∣∣∣Tr
[
%R,mεj (AR)A−Wick

]
−
∫
χ2
m,R(z)AR(z)dµ(z)

∣∣∣∣(91)

+

∣∣∣∣∫ χ2
m,R(z)AR(z)dµ(z)−

∫
AR(z)dµ(z)

∣∣∣∣ ,(92)

where the traces are on the Fock space Γs(PRL
2 ⊕ PRL2) and the integrals are over L2 ⊕ L2. By

dominated convergence the right hand side of (92) tends to 0 when m → ∞ at fixed R. The right

hand side of (90) can be made arbitrary small when m→∞ using the following decomposition

(%R,mεj − %Rεj ) = (χWeyl
m,R − 1) %Rεj χ

Weyl
m,R︸ ︷︷ ︸

(A)

+ %Rεj (χWeyl
m,R − 1)︸ ︷︷ ︸
(B)

,

which gives Tr
[
(A) (AR)A−Wick

]
= Tr

[
T1T2T3T4

]
and a similar expression for (B) with

T1 = (NR + 1)
p+q

4 (χWeyl
m,R − 1)(NR + 1)−

δ
2 , T2 = (NR + 1)

δ
2 %Rεj (NR + 1)

δ
2

T3 = (NR + 1)−
δ
2χWeyl

m,R (NR + 1)
p+q

4 , T4 = (NR + 1)−
p+q

4 (AR)A−Wick(NR + 1)−
p+q

4 ,

where NR = dΓ(PR ⊕ PR). The Weyl-Hörmander Pseudo-differential calculus gives that T1 →m→∞ 0

in norm (since δ > p+q) and that Ti, i = 2, 3, 4, are uniformly bounded with respect j ∈ N and m > 0

at fixed R (see e.g. [8, Proposition 3.2 and 3.3]).

To complete the proof, we remark that Tr
[
%R,mεj (AR)A−Wick

]
= Tr

[
%Rεj χ

Weyl
m,R (AR)A−Wick χWeyl

m,R

]
.

So again by pseudo-differential calculus we know that (AR)A−Wick = (AR)Weyl + ε b(ε)Weyl with b(ε)

belonging to the Weyl–Hörmander class symbol SPR⊕PR(〈z〉p+q−2, dz
2

〈z〉2 ) uniformly in ε (see [8, Section

3.2 and 3.4]). Therefore

lim
j→∞

Tr
[
%R,mεj (AR)A−Wick

]
= lim
j→∞

Tr
[
%Rεj χ

Weyl
m,R (AR)Weyl χWeyl

m,R

]
,
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since (dΓ(PR⊕PR)+1)−(q+p)/2 b(ε)Weyl (dΓ(PR⊕PR)+1)−(p+q)/2 is uniformly bounded with respect to

ε. The Weyl-Hörmander pseudo-differential calculus gives χWeyl
m,R (AR)Weyl χWeyl

m,R = (χ2
m,RAR)Weyl +

ε c(ε)Weyl with c(ε) ∈ SPR⊕PR(1, dz2) uniformly in ε (see e.g. [8, Proposition 3.2]). Hence, according

to [8, Theorem 6.2] one obtains

lim
j→∞

Tr
[
%R,mεj (AR)A−Wick

]
= lim
j→∞

Tr
[
%εj (χ2

m,R AR)Weyl
]

=

∫
L2⊕L2

χ2
m,R(z)AR(z)dµ(z) .

This yields the intended bound on (88) and completes the proof. a

Lemma 4.16. There exists C(σ0) > 0 depending only on σ0 ∈ R+ such that the following bound holds

for B
(m)
0 uniformly in m ∈ N:

∣∣∣B(m)
0 (ξ)(u, α)

∣∣∣ ≤ C(σ0)‖ξ‖L2⊕L2

(
‖u‖22 + ‖(−∆ + V )1/2u‖22 + ‖α‖2FH1/2 + ‖u‖2 · ‖(−∆ + V )1/2u‖22

+‖u‖2 · ‖α‖2FH1/2 + ‖u‖2 · ‖(−∆ + V )1/2u‖2 · ‖α‖FH1/2

)
.

(93)

It follows that:

* For any ξ ∈ L2 ⊕ L2, for any (u, α) ∈ Q(−∆ + V ) ⊕ D(ω1/2), limm→∞B
(m)
0 (ξ)(u, α) =

B0(ξ)(u, α) ; and therefore the bound (93) holds also for B0.

* For any m ∈ N, B
(m)
0 (·),B0(·) are are jointly continuous with respect to ξ ∈ L2 ⊕ L2 and

(u, α) ∈ Q(−∆ + V )⊕D(ω1/2).

Recall that for any σ0 ≥ 2K(C+1+ ε̄) there exists b > 0 such that the operator Ĥren(σ0)+ b is non-

negative uniformly for ε ∈ (0, ε̄). Let (%ε)ε∈(0,ε̄) be a family of normal states on Γs(L
2(R3)⊕L2(R3)),

we consider the additional assumption:

∃C > 0 , ∀ε ∈ (0, ε̄) , Tr[%ε (Ĥren(σ0) + b)2] ≤ C ;(A′′ρ)

Proposition 4.17. Let (%ε)ε∈(0,ε̄) ⊂ L1(H) be a family of normal states that satisfy Assumptions (A0),

(A′ρ) and (A′′ρ) such that15 σ0 ≥ 2K(C + 1 + ε̄). Then:

(i) For any sequence (εk)k∈N ⊂ (0, ε̄) converging to zero, there exist a subsequence (εkι)ι∈N and a map

µt : R→ P
(
L2 ⊕ L2

)
such that %εkι (t)→ µt and %̃εkι (t)→ µ̃t = E0(−t)#µt , for any t ∈ R .

(ii) The action of e−i
t
ε Ĥren(σ0) is non-trival on the states %ε.

(iii) The Fourier transform of µ̃(·) satisfies the following transport equation ∀ξ ∈ L2 ⊕ L2:

(94)∫
L2⊕L2

ei
√

2Re〈ξ,z〉dµ̃t(z) =

∫
L2⊕L2

ei
√

2Re〈ξ,z〉dµ0(z) +

∫ t

0

(∫
L2⊕L2

B0(ξ̃s)(z)e
i
√

2Re〈ξ̃s,z〉dµs(z)

)
ds ;

where the right hand side makes sense since B0(ξ̃t)(z)e
i
√

2Re〈ξ̃t,z〉 ∈ L∞t
(
R, L1

z

[
L2 ⊕ L2, dµt(z)

])
for

any ξ ∈ L2 ⊕ L2.

Proof. The first part of the proposition (i)− (ii) is just a partial restatement of Proposition 4.14. We

discuss the last assertion in (iii) about B0(ξ̃t)(z)e
i
√

2Re〈ξ̃t,z〉 , before proving (94). Recall the fact that

15We recall that C appears in Assumption (A0) and σ0 in Definition 2.12 of Ĥren(σ0). The condition σ0 ≥ K(C + 1)

ensures that the dressed dynamics is non-trivial on
⊕[C/ε]
n=0 Hn and hence non-trivial on the state %ε according to Lemma

4.2.
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for any ξ ∈ L2 ⊕ L2 and for any t ∈ R, ‖ξ̃t‖L2⊕L2 = ‖ξ‖L2⊕L2 . Using bound (93) of Lemma 4.16 we

obtain, setting Q(−∆ + V )⊕D(ω1/2) 3 z = (u, α):∣∣∣B0(ξ̃t)(z)e
i
√

2Re〈ξ̃t,z〉
∣∣∣ ≤ C(σ0)‖ξ‖L2⊕L2

(
‖u‖22 + ‖(−∆ + V )1/2u‖22 + ‖α‖2FH1/2

+‖u‖2 · ‖(−∆ + V )1/2u‖22 + ‖u‖2 · ‖α‖2FH1/2 + ‖u‖2 · ‖(−∆ + V )1/2u‖2 · ‖α‖FH1/2

)
.

Now µt ∈M
(
%ε(t), ε ∈ (0, ε̄)

)
, therefore by Lemma 4.12, µt

(
Bu(0,

√
C)∩Q(−∆ + V )⊕D(ω1/2)

)
= 1

for any t ∈ R. Then it follows that there exists C(C) > 0 such that∣∣∣∣∫
L2⊕L2

B0(ξ̃t)(z)e
i
√

2Re〈ξ̃t,z〉dµt(z)

∣∣∣∣ ≤ C(C)‖ξ‖L2⊕L2

∫
L2⊕L2

(
‖(−∆ + V )1/2u‖22 + ‖α‖2FH1/2

)
dµt(z)

≤ C(C)‖ξ‖L2⊕L2J(t) ;

where J(t) < ∞ by Lemma 4.12. Actually, using the fact that the bound (78) is independent of t, it

is easily proved that J(t) does not depend on t as well, i.e. J(t) ∈ L∞(R).

We prove (94) by successive approximations. Consider Tr
[
%̃εkι (t)W (ξ)

]
, ξ ∈ L2 ⊕ L2. We can

approximate ξ with (ξ(l))l∈N ⊂ Q(−∆ + V ) ⊕ D(ω3/4), since the latter is dense in L2 ⊕ L2, and

liml→∞ Tr
[
%̃εkι (t)

(
W (ξ)−W (ξ(l))

)]
= 0 uniformly in εkι by Lemma 4.13. Now, for Tr

[
%̃εkι (t)W (ξ(l))

]
the integral equation (69) holds. Proposition 4.14 implies that %̃εkι (t)→ µ̃t = E0(t)#µt, for any t ∈ R.

Therefore the left-hand side of (69) converges when ι → ∞ to
∫
L2⊕L2 e

i
√

2Re〈ξ(l),z〉dµ̃t(z); and that

in turn converges when l → ∞ to
∫
L2⊕L2 e

i
√

2Re〈ξ,z〉dµ̃t(z) by dominated convergence theorem. In

addition,

lim
ι→∞

3∑
j=1

εj
∫ t

0

Tr
[
%εkι (s)W ( ˜ξ(l)

s)Bj(
˜ξ(l)
s)
]
ds = 0 ;

by Proposition 4.7. It remains to show the convergence of the B0 term in (69). We approximate B0

by the compact B
(m)
0 , because using Lemma 4.2 and (80) of Proposition 4.9 we obtain∣∣∣Tr

[
%εkι (s)W ( ˜ξ(l)

s)
(
B0( ˜ξ(l)

s)−B
(m)
0 ( ˜ξ(l)

s)
)]∣∣∣ ≤∑

i∈N
λi

∣∣∣〈W ∗( ˜ξ(l)
s)e
−i s

εkι
Ĥren

Ψi,
(
B0( ˜ξ(l)

s)

−B(m)
0 ( ˜ξ(l)

s)
)
e
−i s

εkι
Ĥren

Ψi

〉∣∣∣
≤
∑
i∈N

λiC
(m)( ˜ξ(l)

s)
∥∥∥(H0 + 1)1/2(N1 + ε̄)1/2W ∗( ˜ξ(l)

s)e
−i s

εkι
Ĥren

Ψi

∥∥∥
·
∥∥∥(H0 + 1)1/2(N1 + ε̄)1/2e

−i s
εkι

Ĥren
Ψi

∥∥∥ .
Now, using the fact that C(m)( ˜ξ(l)

s) depends only on ‖ ˜ξ(l)
s‖Q(−∆+V )⊕D(ω3/4)

= ‖ξ(l)‖
Q(−∆+V )⊕D(ω3/4)

and Lemma 4.1 we obtain∣∣∣Tr
[
%εkι (s)W ( ˜ξ(l)

s)
(
B0( ˜ξ(l)

s)−B
(m)
0 ( ˜ξ(l)

s)
)]∣∣∣ ≤∑

i∈N
λiC

(m)(ξ(l))C(ξ(l))
∥∥∥(H0 + 1)1/2e

−i s
εkι

Ĥren

(N1 + ε̄)1/2Ψi

∥∥∥2

.

We then use Equation (78) of Lemma 4.8:∣∣∣Tr
[
%εkι (s)W ( ˜ξ(l)

s)
(
B0( ˜ξ(l)

s)−B
(m)
0 ( ˜ξ(l)

s)
)]∣∣∣ ≤∑

i∈N
λiC

(m)(ξ(l))C(ξ(l))(C + ε̄) 1
1−a(C)C + 2b(C)

1−a(C) .
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The right hand side goes to zero when m→∞ uniformly with respect to εkι and s by Proposition 4.9,

and therefore

lim
m→∞

∫ t

0

Tr
[
%εkι (s)W ( ˜ξ(l)

s)
(
B0( ˜ξ(l)

s)−B
(m)
0 ( ˜ξ(l)

s)
)]
ds = 0 .

So the next step is to prove

lim
ι→∞

Tr
[
%εkι (s)W ( ˜ξ(l)

s)
(
B

(m)
0 ( ˜ξ(l)

s)
)Wick]

=

∫
L2⊕L2

B
(m)
0 (ξ̃(l)

s )(z) ei
√

2Re〈ξ̃(l)
s ,z〉dµs(z).

This statement follows by applying Lemma 4.15 with δ = 2 and by checking the assumption

(95) ||(N1 +N2) %εkι (s)W ( ˜ξ(l)
s) (N1 +N2)||L1(L2⊕L2) ≤ C ,

uniformly in kι for some C > 0. In fact (95) holds true by Assumptions (A0)-(A′′ρ), the Higher order

estimate of Proposition A.4 and Lemma 4.1. Remark that while %εkι (s)W ( ˜ξ(l)
s) is not a non-negative

trace-class operator, one can still apply Lemma 4.15. In fact, one can write

Tr
[
%εkι (s)W ( ˜ξ(l)

s) B
(m)
0 ( ˜ξ(l)

s)
]

= Tr
[
W (η)%εkι (s)W (η) A Wick

]
,

for some A ∈
⊕

p+q<4 P∞p,q
(
L2 ⊕ L2

)
and with η = 1

2
˜ξ(l)
s. Remark now that W (η)%εkι (s)W (η)

decomposes explicitly into a linear combination of non-negative trace-class operators satisfying all the

assumption (86) of Lemma 4.15. Note that the Wigner measures of %εkι (s)W ( ˜ξ(l)
s) are identified

through (84). Hence the dominated convergence theorem yields:

lim
ι→∞

∫ t

0

Tr
[
%εkι (s)W ( ˜ξ(l)

s)B
(m)
0 ( ˜ξ(l)

s)
]
ds =

∫ t

0

(∫
L2⊕L2

B
(m)
0 ( ˜ξ(l)

s)(z)e
i
√

2Re〈 ˜ξ(l)
s,z〉dµs(z)

)
ds .

By Lemma 4.16, limm→∞B
(m)
0 ( ˜ξ(l)

s)(z) = B0( ˜ξ(l)
s)(z), so by dominated convergence theorem

lim
m→∞

∫ t

0

(∫
L2⊕L2

B
(m)
0 ( ˜ξ(l)

s)(z)e
i
√

2Re〈 ˜ξ(l)
s,z〉dµs(z)

)
ds =

∫ t

0

(∫
L2⊕L2

B0( ˜ξ(l)
s)(z)e

i
√

2Re〈 ˜ξ(l)
s,z〉dµs(z)

)
ds .

Above it is possible to apply the dominated convergence theorem due to a reasoning analogous to the

one done at the beginning of this proof: roughly speaking, we have that B
(m)
0 ( ˜ξ(l)

t)(z)e
i
√

2Re〈 ˜ξ(l)
t,z〉 ∈

L∞t

(
R, L1

z

[
L2 ⊕ L2, dµt(z)

])
uniformly with respect to m ∈ N. In an analogous fashion we finally

obtain

lim
l→∞

∫ t

0

(∫
L2⊕L2

B0( ˜ξ(l)
s)(z)e

i
√

2Re〈 ˜ξ(l)
s,z〉dµs(z)

)
ds =

∫ t

0

(∫
L2⊕L2

B0(ξ̃s)(z)e
i
√

2Re〈ξ̃s,z〉dµs(z)

)
ds .

a

Corollary 4.18. The transport equation (94) may be rewritten as∫
L2⊕L2

ei
√

2Re〈ξ,z〉dµ̃t(z) =

∫
L2⊕L2

ei
√

2Re〈ξ,z〉dµ0(z)(96)

+i
√

2

∫ t

0

(∫
L2⊕L2

ei
√

2Re〈ξ,z〉Re〈ξ,V(s)(z)〉L2⊕L2 dµ̃s(z)

)
ds ;

with the vector field V(t)(z) = −iE0(−t) ◦ ∂z̄
(
Ê − E0

)
◦ E0(t)(z). In addition µ̃t = E0(−t)#Ê(t)#µ0

is a solution of Equation (96).
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Proof. It is proved by direct calculation, since µt
(
Q(−∆ + V ) ⊕ FH1/2

)
= 1 for any t ∈ R by

Lemma 4.12; and Ê(t),E0(t) are globally well-defined on this space (for Ê(t), it is proved in Theo-

rem 3.16; for E0(t) it is trivial). The second point is proved by differentiating with respect to time

and using Lemma 4.16 and Lemma 4.12 (iii). a

4.6. Uniqueness of solutions for the transport equation. As discussed in Corollary 4.18, the

dressed flow yields in the classical limit a solution of the transport equation (96). The second part

of the same corollary suggests that it is important to study uniqueness properties of (96): it is by

means of uniqueness that we can close the argument and reach a satisfactory characterization of the

dynamics of classical states (Wigner measures). This subsection is devoted to prove that the family

of Wigner measures µ̃t of Proposition 4.17 satisfies sufficient conditions, induced by the properties of

(%ε)ε∈(0,ε̄), to be uniquely identified with E0(−t)#Ê(t)#µ0. We use an optimal transport technique

initiated by Ambrosio, Gigli, and Savaré [2] then extended by Ammari and Nier [11] to propagation

of Wigner measures; and imporved recently by Ammari and Liard [7] (see also [62, 64]).

In order to do that, we need to introduce a suitable topology on P
(
L2⊕L2

)
. Let (ej)j∈N ⊂ L2⊕L2

be an orthonormal basis. Then

(97) dw(z1, z2) =

(∑
j∈N

|〈z1 − z2, ej〉L2⊕L2 |2

(1 + j)2

)1/2

,

where z1, z2 ∈ L2 ⊕ L2, defines a distance on L2 ⊕ L2. The topology induced by
(
L2 ⊕ L2, dw

)
is

homeomorphic to the weak topology on bounded sets.

Definition 4.19 (Weak narrow convergence of probability measures). Let (µi)i∈N ⊂ P
(
L2 ⊕ L2

)
.

Then (µi)i∈N weakly narrowly converges to µ ∈ P
(
L2 ⊕ L2

)
, in symbols µi

n
⇀ µ, if

∀f ∈ Cb
((
L2 ⊕ L2, dw

)
,R
)
, lim
i→∞

∫
L2⊕L2

f(z)dµi(z) =

∫
L2⊕L2

f(z)dµ(z) ;

where Cb
((
L2⊕L2, dw

)
,R
)

is the space of bounded continuous real-valued functions on
(
L2⊕L2, dw

)
.

It is actually more convenient to use cylindrical functions to prove narrow continuity properties.

We define below two useful spaces of smooth cylindrical functions on L2 ⊕ L2.

Definition 4.20 (Spaces of cylindrical functions). Let f : L2 ⊕ L2 → R. Then f ∈ Scyl
(
L2 ⊕ L2

)
if there exists an orthogonal projection p : L2 ⊕ L2 → L2 ⊕ L2, dim(Ran p) = d < ∞, and a rapidly

decrease function g in the Schwartz space S(Ran p), such that

∀z ∈ L2 ⊕ L2 , f(z) = g(pz) .

Analogously, if g ∈ C∞0 (Ran p), then f ∈ C∞0,cyl
(
L2⊕L2

)
, the cylindrical smooth functions with compact

support.

We remark that neither Scyl
(
L2⊕L2

)
nor C∞0,cyl

(
L2⊕L2

)
possess a vector space structure. Finally,

for cylindrical Schwartz functions we define the Fourier transform:

F [f ](η) =

∫
Ranp

e−2πiRe〈η,z〉L2⊕L2 f(z)dLp(z) ,
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where dLp denotes integration with respect to the Lebesgue measure on Ran p. The inversion formula

is then

f(z) =

∫
Ranp

e2πiRe〈η,z〉L2⊕L2F [f ](η)dLp(η) .

With these definitions in mind, we can prove the following lemma.

Lemma 4.21. Let (%ε)ε∈(0,ε̄) ⊂ L1(H) be a family of normal states that satisfies Assumptions (A0),

(A′ρ) and (A′′ρ); µ̃t : R → P
(
L2 ⊕ L2

)
such that for any t ∈ R , µ̃t ∈ M

(
%̃ε(t), ε ∈ (0, ε̄)

)
. If, in

addition, µ̃t satisfies the integral equation (96), then the following statements are true:

* For any t ∈ R, and for any (ti)i∈R ⊂ R such that limi→∞ ti = t,

µ̃ti
n
⇀ µ̃t ;

i.e. µ̃t is a weakly narrowly continuous map in P(L2 ⊕ L2).

* The map µ̃t solves the transport equation 16

∂tµ̃t +∇T
(
V(t)µ̃t

)
= 0

in the weak sense, i.e.

(98) ∀f ∈ C∞0,cyl
(
R×

(
L2 ⊕ L2

))
,

∫
R

∫
L2⊕L2

(
∂tf + Re〈∇f,V(t)〉L2⊕L2

)
dµ̃tdt = 0 .

Proof. Let f ∈ Scyl
(
L2 ⊕ L2

)
. Fubini’s theorem gives∫

L2⊕L2

f(z)dµ̃t(z) =

∫
Ranp

F [f ](ξ)

(∫
L2⊕L2

e2πiRe〈ξ,z〉dµ̃t(z)

)
dLRanp(ξ) ,

where dLRanp is the Lebesgue measure on Ran p and F(f)(ξ) =
∫

Ranp
f(z)e−2πiRe〈ξ,z〉dLRanp(z).

Now we define G̃0(t, ξ) :=
∫
L2⊕L2 e

2πiRe〈ξ,z〉dµ̃t(z). Hence Equation (94) of Proposition 4.17 gives

(99) G̃0(t, ξ)− G̃0(s, ξ) =

∫ t

s

(∫
L2⊕L2

B0(ξ̃τ )(z)ei
√

2Re〈ξ̃τ ,z〉dµτ (z)

)
dτ ;

and this proves that t 7→ G̃0(t, ξ) is continuous for any ξ ∈ L2 ⊕ L2 since the integrand in the right

hand side of (99) is bounded with respect to τ by Proposition 4.17. Remark that G̃0(t, ξ) is bounded

by one for any (t, ξ) ∈ R × (L2 ⊕ L2). Therefore the map t 7→
∫
L2⊕L2 f(z)dµ̃t(z) is continuous for

any f ∈ Scyl
(
L2 ⊕ L2

)
. Finally, by an argument analogous to the one used at the beginning of the

proof of Proposition 4.17, it is easy to prove that
∫
L2⊕L2‖z‖2L2⊕L2dµ̃t(z) ∈ L∞t (R). In fact, we know

that µ̃t

(
Bu(0,

√
C)∩Q(−∆ + V )⊕D(ω1/2)

)
= 1 by Lemma 4.12; and if z = (u, α) then the functions

α 7→ ‖α‖22 ≤ ‖α‖2FH1/2 , belong to L1
z

[
L2 ⊕ L2, dµ̃t(z)

]
uniformly in t by Lemmas 4.12 and 4.8. Then

it follows that µ̃t is weakly narrowly continuous by [2, Lemma 5.1.12 - f], thus proving the first point.

Now we prove the second point by a similar argument as in [11] which we reproduce here for

completeness. Let g ∈ C∞0,cyl
(
L2 ⊕ L2

)
; we integrate Equation (96) with respect to the measure

F [g](η)dLp obtaining∫
L2⊕L2

g(z)dµ̃t(z) =

∫
L2⊕L2

g(z)dµ̃0(z) + 2πi

∫ t

0

∫
Ranp

(∫
L2⊕L2

Re〈η,V(s)(z)〉L2⊕L2dµ̃s(z)

)
F [g](η)dLp(η)ds .

16Recall that V(t)(z) = −iE0(−t) ◦ ∂z̄
(
Ê − E0

)
◦E0(t)(z).
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Let ∇g be the differential of g : L2 ⊕ L2 → R, where here L2 ⊕ L2 is considered as a real Hilbert

space with scalar product Re〈·, ·〉L2⊕L2 . Then, by Fubini’s theorem and the properties of the Fourier

transform, we get∫
L2⊕L2

g(z)dµ̃t(z) =

∫
L2⊕L2

g(z)dµ̃0(z) +

∫ t

0

∫
L2⊕L2

Re〈∇g(z),V(s)(z)〉L2⊕L2dµ̃s(z)ds .

By Lebesgue’s differentiation theorem (with respect to t), we obtain

∂t

∫
L2⊕L2

g(z)dµ̃t(z)−
∫
L2⊕L2

Re〈∇g(z),V(t)(z)〉L2⊕L2dµ̃t(z) = 0 .

Equation (98) is then obtained for f(t, z) = ϕ(t)g(z), multiplying by ϕ(t) ∈ C∞0 (R,R), integrating

with respect to t, and finally using integration by parts. The result for a generic f ∈ C∞0,cyl
(
R× (L2 ⊕

L2)
)

follows immediately: f(t, z) = g(t,pz) for some g ∈ C∞0
(
R × Ran p

)
, and the latter can be

approximated by a sequence
(
gj(t,pz)

)
j∈N
⊂ C∞0 (R)

alg
⊗ C∞0 (Ran p). a

We need to check an hypothesis on the vector field V(t)(z) = −iE0(−t) ◦ ∂z̄
(
Ê − E0

)
◦E0(t)(z) to

prove the sought uniqueness result. This is done in the following lemma.

Lemma 4.22. Let (%ε)ε∈(0,ε̄) ⊂ L1(H) be a family of normal states that satisfies Assumptions (A0)

and (A′ρ); µ̃t : R → P
(
L2 ⊕ L2

)
such that for any t ∈ R , µ̃t ∈ M

(
%̃ε(t), ε ∈ (0, ε̄)

)
. Then

‖V(t)(z)‖L2⊕L2 ∈ L∞t

(
R, L1

z

[
L2 ⊕ L2, dµt(z)

])
, i.e. the norm of the vector field is integrable with

respect to µ̃t, uniformly in t ∈ R.

Proof. By Equation (93) of Lemma 4.16 and the definition of V(t) we have that for any ξ ∈ L2 ⊕ L2:∣∣∣Re〈ξ,V(t)(z)〉
∣∣∣ ≤ C(σ0)‖ξ‖L2⊕L2

(
‖u‖22 + ‖(−∆ + V )1/2u‖22 + ‖α‖2FH1/2 + ‖u‖2 · ‖(−∆ + V )1/2u‖22

+‖u‖2 · ‖α‖2FH1/2 + ‖u‖2 · ‖(−∆ + V )1/2u‖2 · ‖α‖FH1/2

)
.

It is easy to prove an equivalent bound for the imaginary part, and hence obtain for any ξ ∈ L2 ⊕ L2:∣∣∣〈ξ,V(t)(z)〉
∣∣∣ ≤ C(σ0)‖ξ‖L2⊕L2

(
‖u‖22 + ‖(−∆ + V )1/2u‖22 + ‖α‖2FH1/2 + ‖u‖2 · ‖(−∆ + V )1/2u‖22

+‖u‖2 · ‖α‖2FH1/2 + ‖u‖2 · ‖(−∆ + V )1/2u‖2 · ‖α‖FH1/2

)
.

Therefore it follows immediately that

‖V(t)(z)‖L2⊕L2 ≤ C(σ0)
(
‖u‖22 + ‖(−∆ + V )1/2u‖22 + ‖α‖2FH1/2 + ‖u‖2 · ‖(−∆ + V )1/2u‖22

+‖u‖2 · ‖α‖2FH1/2 + ‖u‖2 · ‖(−∆ + V )1/2u‖2 · ‖α‖FH1/2

)
.

The right hand side of the above equation is in L∞t

(
R, L1

z

[
L2⊕L2, dµt(z)

])
, as shown at the beginning

of the proof of Proposition 4.17. a

At this stage, we appeal to a result proved in [7, Proposition 4.1] concerning the uniqueness of

measure-valued solutions of the Liouville equation (98), which we briefly recal in the Appendix B.

Proposition 4.23. Let (%ε)ε∈(0,ε̄) ⊂ L1(H) be a family of normal states that satisfies Assump-

tions (A0),(A′ρ) and (A′′ρ). In addition, let µ̃t : R → P
(
L2 ⊕ L2

)
such that for any t ∈ R, µ̃t ∈
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M
(
%̃εk(t), k ∈ N

)
for some sequence (εk)k∈N with εk → 0 and µ̃t satisfies the integral equation (96).

Then µ̃t = (E0(−t) ◦ Ê(t))#µ0 .

Proof. Observe that Lemma 4.21, Lemma 4.22 and Lemma 4.12 (ii)-(iii) are sufficient to apply Propo-

sition B.1 with v(t, z) = V(t)(z) and (µ̃t)t∈R. Hence, we obtain the existence of a probability measure

η verifying the properties (i)-(ii) in the Appendix B. The next step is to show that η is concentrated on

solutions of the dressed equation (S-KG[D]) written in the interaction representation. For simplicity

one can take the interval I such that [0, T ] ⊂ I, for some T > 0.

By Hölder inequality, Lemma 4.12 (iii) and Proposition B.1-(ii),∫
X

(∫
I

||γ(t)||2H1⊕FH1/2dt

)1/2

dη(x, γ) ≤
(∫

I

∫
H1⊕FH1/2

||z||2H1⊕FH1/2dµ̃t

)1/2

<∞ .

This means that γ ∈ L2(I,H1 ⊕ FH1/2) for η-a.e. So we conclude that there exists a η-negligible set

N such that for any (x, γ) ∈ Xr N , γ ∈W 1,1(I, L2 ⊕ L2), satisfy the equation

γ(t) = x+

∫ t

0

V(s)(γ(s))ds , ∀t ∈ I ;

and furthermore γ ∈ L2(I,H1⊕FH1/2)∩L∞(I, L2⊕L2) and V(·)(γ(·)) ∈ L1(I, L2⊕L2). Remember

that Dg∞(−1) and E0(t) preserve the spaces H1 ⊕FH1/2 and L2 ⊕L2 (see Proposition 3.5). So by a

simple computation one checks that for any γ as before, the curve

t→ γ̃(t) := Dg∞(1) ◦E0(t)(γ(t)) ∈ L2(I,H1 ⊕FH1/2) ∩ L∞(I, L2 ⊕ L2)

and satisfies the Duhamel formula,

γ̃(t) = E0(t) ◦Dg∞(1)x− i
∫ t

0

E0(t− s)∂z̄(E − E0)(γ̃(s))ds , ∀t ∈ I ,

which is the original Cauchy problem (S-KG[Y]) with the energy E given by Definition 3.8. Remember

that we have already checked that Dg∞(θ) are nonlinear symplectomorphisms on the phase space

L2 ⊕ L2 (see Proposition 3.17). Now appealing to the result [27, Theorem 1.3], wee need to show

that γ̃1 ∈ L10/3([0, T ], L10/3(R3)) ∩ L8([0, T ], L12/5(R3)) where γ̃ = (γ̃1, γ̃2) in order to conclude that

γ̃ is actually the unique strong and global solution of the S-KG equation with initial condition γ(0) =

x ∈ H1 ⊕ FH1/2 and belonging to C(R, H1 ⊕ FH1/2). The last statement follows by Strichartz

estimates since γ̃1 ∈ L2([0, T ], L6(R3) ∩ L∞([0, T ], L2(R3). So going back to γ, we conclude that

γ(t) = E0(−t)#Ê(t)(x). Hence, for any Borel bounded function ϕ on L2 ⊕ L2 and t ∈ R,∫
L2⊕L2

ϕ(x)dµ̃t =

∫
X

ϕ(γ(t))dη =

∫
X

ϕ ◦E0(−t) ◦ Ê(t)(x)dη =

∫
L2⊕L2

ϕ(E0(−t) ◦ Ê(t)(x)) dµ0(x) .

a

4.7. The classical limit of the dressing transformation. Let’s consider now the dressing trans-

formation U∞(θ) = e−i
θ
εT∞ on H, with self-adjoint generator:

T∞ =
(
Dg∞

)Wick
=

∫
R3

ψ∗(x)
(
a∗(g∞e

−ik·x) + a(g∞e
−ik·x)

)
ψ(x)dx ;

g∞(k) = − i

(2π)3/2

1√
2ω(k)

1− χσ0
(k)

k2

2M + ω(k)
∈ L2(R3) .
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The family
(
e−i

θ
εT∞

)
θ∈R ⊂ L(H) is a strongly continuous unitary group, and therefore can be seen as

a dynamical system acting on quantum states. Therefore, given a family (%ε)ε∈(0,ε̄) of normal quantum

states on H, we could determine the Wigner measures of

(100) %̂ε(θ) = e−i
θ
εT∞ %ε e

i θεT∞ .

Since T∞ =
(
Dg∞

)Wick
, where Dg∞ is the classical dressing generator defined in Section 3.1, we expect

that under suitable assumptions,
(
%εk → µ ⇒ %̂εk(θ) → Dg∞(θ)#µ

)
, where Dg∞(θ) is the classical

dressing transformation. The last assertion is indeed true, as explained in the following. Observe that

the dressing generator T∞ is equal to the interaction part HI(σ) of the Nelson model with cutoff,

where χσ√
2ω

is replaced by g∞, i.e. T∞ = HI(σ)
∣∣
χσ√
2ω

=g∞
. The classical limit of the Nelson model with

cutoff has been treated by the authors in [5], thus the results below can be immediately deduced by

the results in [5, d = 3, H0 = 0 and χ√
ω

= g∞]. We recall also that g∞, and therefore also T∞ and

Dg∞ , depends on σ0 ∈ R+.

Lemma 4.24. Let (%ε)ε∈(0,ε̄) be a family of normal (quantum) states on H that satisfies Assump-

tions (A0) and (Aρ). Then for any σ0 ∈ R+ , (%̂ε(−1))ε∈(0,ε̄) satisfies Assumptions (A0) and (A′ρ).

Proposition 4.25. Let Dg∞ : R × Q(−∆ + V ) ⊕ FH1/2 → Q(−∆ + V ) ⊕ FH1/2 be the classical

dressing transformation. Let (%ε)ε∈(0,ε̄) be a family of normal quantum states on H that satisfies

Assumption (A0) and Assumption (Aρ) or (A′ρ). Then M
(
%ε, ε ∈ (0, ε̄)

)
6= Ø; and for any σ0 ∈ R+

and θ ∈ R ,

(101) M
(
%̂ε(θ), ε ∈ (0, ε̄)

)
=
{

Dg∞(θ)#µ , µ ∈M
(
%ε, ε ∈ (0, ε̄)

)}
.

Furthermore, let (εk)k∈N ⊂ (0, ε̄) be a sequence such that limk→∞ εk = 0. Then the following statement

is true:

(102) %εk → µ⇔
(
∀θ ∈ R , ∀σ0 ∈ R+ , %̂εk(θ)→ Dg∞(θ)#µ

)
.

4.8. Overview of the results: linking the dressed and undressed systems. Since as discussed

in the previous subsection we can treat the dressing as a dynamical transformation with its own “time”

parameter θ; we are able to link the classical limit of the dressed and undressed quantum dynamics

via the classical dressing. In this way we are able to recover the expected classical S-KG dynamics for

the undressed dynamics, and finally prove Theorem 1.1.

First of all, we put together the results proved from Section 4.2 to Section 4.6 on the renormalized

dressed dynamics and remove the Assumption (A′′ρ) with the help of an approximation argument

worked out in [10]. This is done in the following theorem.

Theorem 4.26. Let Ê : R × Q(−∆ + V ) ⊕ FH1/2 → Q(−∆ + V ) ⊕ FH1/2 be the dressed S-KG

flow associated to Ê . Let (%ε)ε∈(0,ε̄) be a family of normal states in H that satisfies Assumptions (A0)

and (A′ρ). Then for any σ0 ≥ 2K(C+ 1 + ε̄) the dynamics e−i
t
ε Ĥren(σ0) is non-trivial on every relevant

sector with fixed nucleons of the state %ε; M
(
%ε, ε ∈ (0, ε̄)

)
6= Ø ; and for any t ∈ R

(103) M
(
e−i

t
ε Ĥren(σ0)%εe

i tε Ĥren(σ0), ε ∈ (0, ε̄)
)

=
{

Ê(t)#µ , µ ∈M
(
%ε, ε ∈ (0, ε̄)

)}
.
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Furthermore, let (εk)k∈N ⊂ (0, ε̄) be a sequence such that limk→∞ εk = 0. Then the following statement

is true:

(104) %εk → µ⇔
(
∀t ∈ R , e

−i tεk Ĥren(σ0)
%εke

i tεk
Ĥren(σ0) → Ê(t)#µ

)
.

Proof. Thanks to the argument briefly sketched below, we no longer need Assumption (A′′ρ). Let

χ ∈ C∞0 (R) such that 0 ≤ χ ≤ 1 , χ ≡ 1 in a neighbourhood of 0 and χR(x) = χ( xR ). The

approximation

%ε,R =
χR(Ĥren(σ0)) %ε χR(Ĥren(σ0))

Tr
[
χR(Ĥren(σ0)) %ε χR(Ĥren(σ0))

] ,
satisfies the Assumptions (A0), (A′ρ), (A′′ρ) and the property

||e−i tε Ĥren(σ0) (%ε − %ε,R) ei
t
ε Ĥren(σ0)||L1(H ) = ||%ε − %ε,R||L1(H) ≤ ν(R) ,

where ν(R) is independent of ε and limR→∞ ν(R) = 0 . The last claim follows by Assumption (A′ρ),

Theorem 2.10 and Definition 2.12. Up to extracting a sequence which a priori depends on R and t, we

can suppose that M (%εn,R, n ∈ N) = {µ0,R} , M (%εn , n ∈ N) = {µ0} and M(%εn(t), n ∈ N) = {µt}.
In particular, applying Proposition 4.23 we obtain

M(e−i
t
εn
Ĥren(σ0)%εn,Re

i tεn Ĥren(σ0), n ∈ N) =
{

Ê(t)#µ0,R

}
.

A general estimate proved in [10, Proposition 2.10] compares the total variation distance of Wigner

(probability) measures with the trace distance of their associated quantum states. In our case, it

implies ∫
L2⊕L2

|µt − Ê(t)#µ0,R| ≤ lim inf
n→∞

||e−i
t
εn
Ĥren(σ0) (%εn − %εn,R) ei

t
εn
Ĥren(σ0)||L1(H) ≤ ν(R) ,∫

L2⊕L2

|µ0 − µ0,R| ≤ lim inf
n→∞

||%εn − %εn,R||L1(H) ≤ ν(R) ,

where the left hand side denotes the total variation of the signed measures µt−Ê(t)#µ0,R and µ0−µ0,R

respectively. Hence by the triangle inequality, we obtain∫
L2⊕L2

|µt − Ê(t)#µ0| ≤
∫
L2⊕L2

|µt − Ê(t)#µ0,R|+
∫
L2⊕L2

|µ0,R − µ0| ≤ 2ν(R) .

This proves that {
Ê(t)#µ0

}
⊂M(e−i

t
εn
Ĥren(σ0)%εne

i tεn Ĥren(σ0), n ∈ N) ,

By reversing time and utilizing the analogue inclusion above, we prove (104). a

Proof of Theorem 1.1: Observe that using the definition of the renormalized dressed evolution

%ε(t) (Definition 4.3) and the definition of the “dressing dynamics” %̂ε(θ) (Equation (100)), we obtain:

e−i
t
εHren(σ0) %ε e

i tεHren(σ0) = e−
i
εT∞e−i

t
ε Ĥren(σ0)e

i
εT∞ %ε e

− iεT∞ei
t
ε Ĥren(σ0)e

i
εT∞ =

((
%̂ε(−1)

)
(t)
)

ˆ(1) .

Let (%ε)ε∈(0,ε̄) be a family of normal states in H that satisfies Assumptions (A0) and (Aρ). In addition,

as usual, let (εk)k∈N ⊂ (0, ε̄) be a sequence such that limk→∞ εk = 0. Then we can use Lemma 4.24,
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Proposition 4.25 and Theorem 4.26 to prove the following statement:

%εk → µ⇔
(
∀t ∈ R , e

−i tεkHren(σ0)
%εke

i tεk
Hren(σ0) → Dg∞(1)#Ê(t)#Dg∞(−1)#µ

= [Dg∞(1) ◦ Ê(t) ◦Dg∞(−1)]#µ

)
.

Therefore Theorem 1.1 is proved, since by Equation (64) of Theorem 3.16, Dg∞(1)◦ Ê(t)◦Dg∞(−1) =

E(t). To be more precise, we use the following chain of inferences:(
%εk → µ

) Lem. 4.24
Prop. 4.25

=⇒
(
∀σ0 ∈ R+ , %̂εk(−1)→ Dg∞(−1)#µ and

(
%̂εk(−1)

)
k∈N

satisfies Ass. (A0), (A′ρ)

)
Thm. 4.26
Lem. 4.8=⇒

(
∃σ0 ∈ R+ , ∀t ∈ R ,

(
%̂εk(−1)

)
(t)→ Ê(t)#Dg∞(−1)#µ

and
((
%̂εk(−1)

)
(t)
)
k∈N

satisfies Ass. (A0), (A′ρ)

)
Prop. 4.25

=⇒
(
∀t ∈ R ,

((
%̂εk(−1)

)
(t)
)

ˆ(1)→ Dg∞(1)#Ê(t)#Dg∞(−1)#µ

)
Thm. 3.16

=⇒
(
∀t ∈ R , e−i

t
εHren(σ0)%εke

i tεHren(σ0) → E(t)#µ

)
.

The inference in the opposite sense is trivial.

As it has become evident with the above discussion, we do not prove Theorem 1.1 directly; and it

would be very difficult to do so, due to the fact that we do not know the explicit form of the generator

Hren(σ0) of the undressed dynamics. We know instead how the dressed generator Ĥren(σ0) acts as a

quadratic form, and that is sufficient to characterize its dynamics in the classical limit, and obtain the

results of Theorem 4.26. The properties of the dressing transformation and of its classical counterpart

are then crucial to translate the results on the dressed dynamics to the corresponding results on the

undressed one.

Appendix A. Uniform higher-order estimate

We prove in this section a higher-order estimate that bounds the meson number operator N2 by

the dressed Hamiltonian Ĥ
(n)
σ uniformly with respect to the effective (semiclassical) parameter ε and

the cut-off parameter σ. Such type of estimates rely on the pull-through formula and they are known

for the P (ϕ)2 model [76] and for the Nelson model [4]. However, since the dependence of the dressed

Hamiltonian Ĥ
(n)
σ on ε is somewhat nontrivial, we briefly indicate in this appendix how to obtain an

uniform estimate.

Lemma A.1. For any ε ∈ (0, ε̄) and any ψ ∈ D(N2) ⊂ H,∥∥N2ψ
∥∥2

=

∫
R3

∥∥(N2 + ε)
1
2 a(k)ψ

∥∥2
dk .
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Proof. Recall that N2 and a(k) depends in the parameter ε according to the notations of Subsection

1.1. Taking care of domain issues as in [4, Lemma 2.1] one proves∥∥N2ψ
∥∥2

=
〈
N

1
2

2 ψ,

∫
R3

a∗(k)a(k) dkN
1
2

2 ψ
〉

=

∫
R3

∥∥a(k)N
1
2

2 ψ
∥∥2
dk =

∫
R3

∥∥(N2 + ε)
1
2 a(k)ψ

∥∥2
dk .

a

Recall that the interaction term ĤI(σ)(n) is given by (13). A simple computation yields

[a(k), ĤI(σ)(n)] = ε2

[
n∑
j=1

1

2
√

(2π)3

χσ(k)√
ω(k)

e−ik.xj +
1

M

n∑
j=1

rσ(k)e−ik·xja∗(rσe
−ik·xj )

+rσ(k)e−ik·xja(rσe
−ik·xj )− rσ(k)e−ik·xjDxj

]
.

Lemma A.2. For any C > 0 and σ0 ≥ 2K(C + 1 + ε̄) there exist c, b > 0 such that for any ε ∈ (0, ε̄),

σ0 < σ ≤ +∞ and n ∈ N such that nε ≤ C, we have∥∥(b+ εω(k) + Ĥ(n)
σ )−

1
2 [a(k), ĤI(σ)(n)](b+ Ĥ(n)

σ )−
1
2

∥∥ ≤ c(| χσ(k)√
ω(k)
|+ |rσ(k)|ω(k)−1/4

)
.

Proof. According to Proposition 2.9 and Theorem 2.10, ĤI(σ)(n) is H
(n)
0 -form bounded with small

bound that is uniform with respect to ε ∈ (0, ε̄), σ0 < σ ≤ +∞ and n ∈ N such that nε ≤ C. Hence

(H
(n)
0 )

1
2 (b + Ĥ

(n)
σ )−

1
2 is uniformly bounded for some b > 0. So it is enough to prove the claimed

bound with H
(n)
0 instead of Ĥ

(n)
σ . Now using similar estimates as in Lemma 2.6 and the fact that√

εω(k)(b+εω(k)+Ĥ
(n)
σ )−

1
2 is uniformly bounded one correctly bounds all the terms of the commutator

except the one with a∗. Remark that the commutator contains the power ε2 that controls the sum

over 1 ≤ j ≤ n and the factor 1/
√
εω(k). In order to bound the term with a∗, one uses the type of

estimate in [4, Lemma 3.3 (ii)] with s = 1/2. Remark that one gets an ε-dependent estimate from [4,

Lemma 3.3 (ii)] by noticing that ε1/4(H
(n)
0 +1)−1/4(dΓ1(ω)+1)1/4 and ε1/4(N2 +1)−1/4(dΓ1(1)+1)1/4

are uniformly bounded17 and that a∗ contains
√
ε that cancels the latter ε−1/4 · ε−1/4. a

Let C > 0 and σ0 ≥ 2K(C + 1 + ε̄) as in the above lemma. In particular Ĥ
(n)
σ is a self-adjoint

operator for any ε ∈ (0, ε̄), σ0 < σ ≤ +∞ and n ∈ N such that nε ≤ C.

Lemma A.3 (The pull-through formula). The following identity holds true for some b < 0, any

φ ∈ D(N
1
2

2 ) ∩Hn and k almost everywhere in R3,

a(k)(b− Ĥ(n)
σ )−1φ = (b− εω(k)− Ĥ(n)

σ )−1a(k)φ

+(b− εω(k)− Ĥ(n)
σ )−1 [a(k), ĤI(σ)(n)] (b− Ĥ(n)

σ )−1φ .

Proof. According to [4, Lemma 4.4] there exists ψ ∈ (H
(n)
0 + 1)−1D(N

1
2 ) such that φ = (b − Ĥ(n)

σ )ψ

for some b < 0. So the claimed formula is equivalent to

(b− εω(k)− Ĥ(n)
σ )a(k)ψ = a(k)(b− Ĥ(n)

σ )ψ + [a(k), ĤI(σ)(n)]ψ .

The latter identity follows by a simple computation. a

17dΓ1(·) is the ε-independent second quantization operator in [4]
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Proposition A.4. For any C > 0 and σ0 ≥ 2K(C + 1 + ε̄) there exist c, b > 0 such that the operator

Ĥ
(n)
σ is self-adjoint and the following bound holds true:∥∥N2ψ

∥∥ ≤ c∥∥(Ĥ(n)
σ + b)ψ

∥∥ , ∀ψ ∈ D(Ĥ(n)
σ ) ,

for any ε ∈ (0, ε̄), σ ∈ (σ0,+∞], n ∈ N such that nε ≤ C.

Proof. The operator Ĥ
(n)
σ is uniformly bounded from below. So by choosing b > 0 large enough one

can take ψ = (−b− Ĥ(n)
σ )−1φ. Now it is enough to prove the estimate for φ ∈ (H

(n)
0 + 1)−1/2D(N

1
2

2 ).

Using Lemma A.1 and Lemma A.3,∥∥N2ψ
∥∥2

=

∫
R3

∥∥(N2 + ε)
1
2 a(k)(b+ Ĥ(n)

σ )−1φ
∥∥2
dk

≤ 2

∫
R3

∥∥(N2 + ε)
1
2 (b+ εω(k) + Ĥ(n)

σ )−1a(k)φ
∥∥2
dk(105)

+2

∫
R3

∥∥(N2 + ε)
1
2 (b+ εω(k) + Ĥ(n)

σ )−1[a(k), ĤI(σ)(n)] (b+ Ĥ(n)
σ )−1φ

∥∥2
dk .(106)

Since (N2 + ε)
1
2 (b+ εω(k) + Ĥ

(n)
σ )−1/2 is uniformly bounded, by Lemma A.2 one shows

(106) ≤ c
∫
R3

| χσ(k)√
ω(k)
|+ |rσ(k)|ω(k)−1/4 dk ·

∥∥(b+ Ĥ(n)
σ )−1/2φ

∥∥2

For simplicity we denote by c any constant. In the same way, one also shows

(105) ≤ c

∫
R3

∥∥(b+ εω(k) + Ĥ(n)
σ )−1/2a(k)φ

∥∥2
dk

≤ c

∫
R3

∥∥(b+ εω(k) +H
(n)
0 )−1/2a(k)φ

∥∥2
dk = c

∥∥N1/2
2 (b+H

(n)
0 )−1/2φ

∥∥2
.

The last equality follows by a similar argument as in the proof of Lemma A.1. Hence, one obtains∥∥N2ψ
∥∥2 ≤ c

(∥∥φ∥∥2
+
∥∥(b+H

(n)
0 )−1/2φ

∥∥2
)

= c
(∥∥(b+ Ĥ(n)

σ )ψ
∥∥2

+
∥∥(b+H(n)

σ )1/2ψ
∥∥2
)

≤ c
∥∥(b+ Ĥ(n)

σ )ψ
∥∥2
.

The last inequality is a consequence of the uniform boundedness of the operator (b + H
(n)
0 )−1/2(b +

Ĥ
(n)
σ )−1/2 with respect to ε, σ and n ∈ N such that nε ≤ C. a

Appendix B. Probabilistic representation

For any open bounded interval I, we denote by ΓI the space of all continuous curves from Ī into

(L2 ⊕ L2, || · ||L2⊕L2) and define the following metric space

(107) X =
(
L2 ⊕ L2 × ΓI , || · ||(L2⊕L2,dw) + sup

t∈Ī
|| · ||(L2⊕L2,dw)

)
where the norm || · ||(L2⊕L2,dw) is associated to the distance introduced in (97). For each t ∈ I, we

define the continuous evaluation map,

et : (x, γ) ∈ E × ΓI(E) 7→ γ(t) ∈ E .

Consider the transport or Liouville equation,

∂tµt +∇T (v.µt) = 0 ,
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understood in a weak sense as the integral equation,

(108)

∫
I

∫
L2⊕L2

∂tϕ(t, x) + Re〈v(t, x),∇ϕ(t, x)〉L2⊕L2 dµt(x) dt = 0, ∀ϕ ∈ C∞0,cyl(I × L2 ⊕ L2) .

The following result is an adaptation of [7, Propositon 4.1].

Proposition B.1. Let v : R×H1 ⊕FH1/2 → L2 ⊕ L2 be a Borel vector field such that v is bounded

on bounded sets. Let t ∈ I → µt ∈ P(H1 ⊕ FH1/2) be a weakly narrowly continuous solution in

P(L2 ⊕ L2) of the Liouville equation (108) defined on an open bounded interval I with the following

estimate satisfied, ∫
I

∫
H1⊕FH1/2

‖v(t, x)‖L2⊕L2 dµt(x) dt <∞ .

Then there exists a Borel probability measure η, on the space X given in (107), satisfying:

(i) η is concentrated on the set of (x, γ) ∈ H1⊕FH1/2×ΓI such that γ ∈W 1,1(I, L2⊕L2) and γ

are solutions of the initial value problem γ̇(t) = v(t, γ(t)) for a.e. t ∈ I and γ(t) ∈ H1⊕FH1/2

for a.e. t ∈ I with γ(s) = x for some fixed s ∈ I.

(ii) µt = (et)]η for any t ∈ I.

Here W 1,1(I, L2 ⊕ L2) is the Sobolev space of functions in L1(I, L2 ⊕ L2) with distributional first

derivatives in L1(I, L2 ⊕ L2). In particular, functions in W 1,1(I, L2 ⊕ L2) are absolutely continuous

curves in L2 ⊕ L2.
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