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In the mid Sixties Edward Nelson proved the existence of a consistent quantum field theory that describes the Yukawa-like interaction of a non-relativistic nucleon field with a relativistic meson field. Since then it is thought, despite the renormalization procedure involved in the construction, that the quantum dynamics should be governed in the classical limit by a Schrödinger-Klein-Gordon system with Yukawa coupling. In the present paper we prove this fact in the form of a Bohr correspondence principle.
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1. Introduction.

Modern theoretical physics explains how matter interacts with radiation and proposes phenomenological models of quantum field theory that in principle describe such fundamental interaction. Giving a firm mathematical ground to these models is known to be a difficult task related to renormalization theory [START_REF] Benfatto | Renormalization group, volume 1 of Physics Notes[END_REF][START_REF] Folland | Quantum field theory[END_REF]53,[START_REF] Glimm | Quantum physics[END_REF][START_REF] Hepp | Théorie de la renormalisation[END_REF][START_REF] Mastropietro | Non-perturbative renormalization[END_REF]. Since the fifties there were spectacular advances in these problems culminating with the perturbative renormalization of quantum electrodynamics, the birth of the renormalization group method and the renormalizability of gauge field theories. Nevertheless, conceptual mathematical difficulties remain as well as outstanding open problems, see [START_REF] Jaffe | Constructive quantum field theory[END_REF][START_REF] Rivasseau | Constructive field theory and applications: perspectives and open problems[END_REF]. The purpose of the present article is to study the quantum-classical correspondence for a simple renormalized model of particles interacting with a scalar field: the Nelson model. We believe that the study of the relationship between classical and quantum nonlinear field theories sheds light on the mathematical foundation of renormalization theory. In particular, in the case considered here the renormalization procedure turns out to be related to a normal form implemented by nonlinear symplectic transformations on the classical phase-space. Interested reader may found a formal discussion concerning the possibility of a different point of view on renormalization in an extended version of this article [START_REF] Ammari | Bohr's correspondence principle in quantum field theory and classical renormalization scheme: the Nelson model[END_REF].

The so-called Nelson model is a system of Quantum Field Theory that has been widely studied from a mathematical standpoint [see e.g. 1, 13-16, 21, 30, 34, 39, 43, 43-45, 67, 71, 78]. It consists of nonrelativistic spin zero particles interacting with a scalar boson field, and can be used to model various systems of physical interest, such as nucleons interacting with a meson field. In the mid sixties Edward Nelson rigorously constructed a quantum dynamic for this model free of ultraviolet (high energy) cutoffs in the particle-field coupling, see [START_REF] Nelson | Interaction of nonrelativistic particles with a quantized scalar field[END_REF]. This is done by means of a renormalization procedure:

roughly speaking, we need to subtract a divergent quantity from the Hamiltonian, so the latter can be defined as a self-adjoint operator in the limit of the ultraviolet cutoff. The quantum dynamics is rather singular in this case (renormalization is necessary); and the resulting generator has no explicit form as an operator though it is unitarily equivalent to an explicit one. Since the work of Gross [START_REF] Gross | Particle-like solutions in field theory[END_REF] and

Nelson [START_REF] Nelson | Interaction of nonrelativistic particles with a quantized scalar field[END_REF] it is believed, but never proved, that the renormalized dynamics is generated by a canonical quantization of the Schrödinger-Klein-Gordon (S-KG) system with Yukawa coupling. In other words, the quantum fluctuations of the particle-field system are centered around the classical trajectories of the Schrödinger-Klein-Gordon system at certain scale and the renormalization procedure preserves the suitable quantum-classical correspondence as well as being necessary to define the quantum dynamics.

We give a mathematical formulation of such result in Theorem 1.1 in the form of a Bohr correspondence principle. Consequently, our result justifies in some sense the use of the Schrödinger-Klein-Gordon system as a model of nucleon-meson interaction [see e.g. [START_REF] Bachelot | Problème de Cauchy pour des systèmes hyperboliques semi-linéaires[END_REF][START_REF] Baillon | The Cauchy problem for the coupled Schroedinger-Klein-Gordon equations[END_REF][START_REF] Colliander | Low regularity global well-posedness for the Zakharov and Klein-Gordon-Schrödinger systems[END_REF][START_REF] Fukuda | On coupled Klein-Gordon-Schrödinger equations[END_REF][START_REF] Ginibre | Long range scattering and modified wave operators for the wave-Schrödinger system[END_REF][START_REF] Pecher | Some new well-posedness results for the Klein-Gordon-Schrödinger system[END_REF].

Recently, the authors of this paper have studied the classical limit of the Nelson model, in its regularized version [START_REF] Ammari | Wigner measures approach to the classical limit of the Nelson model: Convergence of dynamics and ground state energy[END_REF][START_REF] Falconi | Classical limit of the nelson model with cutoff[END_REF]. We have proved that the quantum dynamic converges, when an effective semiclassical parameter ε → 0, towards a non-linear Hamiltonian flow on a classical phase space. This flow is governed by a Schrödinger-Klein-Gordon system, with a regularized Yukawa-type coupling. To * On Γ s (Z), we define the annihilation/creation operators a # (g), g ∈ Z, by their action on f ⊗n ∈ Z ⊗sn (with a(g)f 0 = 0 for any f 0 ∈ Z ⊗s0 = C): a(g)f ⊗n = √ εn g, f Z f ⊗(n-1) ; a * (g)f ⊗n = ε(n + 1) g ⊗ s f ⊗n .

They satisfy the Canonical Commutation Relations (CCR), [a(f ), a * (g)] = ε f, g Z .

If Z = L 2 (R d ) it is useful to introduce the operator valued distributions a # (x) defined by

a(g) = R d ḡ(x)a(x)dx , a * (g) = R d g(x)a * (x)dx . * H = Γ s (L 2 (R 3 ) ⊕ L 2 (R 3 )) Γ s (L 2 (R 3 )) ⊗ Γ s (L 2 (R 3 
)). We denote by ψ # (x) and N 1 the annihilation/creation and number operators corresponding to the nucleons (conventionally taken to be the first Fock space), by a # (k) and N 2 the annihilation/creation and number operators corresponding to the meson scalar field (second Fock space). In particular, we will always use the following ε-dependent representation of the CCR if not specified otherwise:

[ψ(x), ψ * (x )] = εδ(x -x ) , [a(k), a * (k )] = εδ(k -k ) .

* We will sometimes use the following decomposition:

H = ∞ n=0 H n , with H n = L 2 (R 3 ) ⊗sn ⊗ Γ s (L 2 (R 3 )) .
We denote by T (n) := T Hn the restriction to H n of any operator T on H * On H, the Segal quantization of L 2 (R 3 ) ⊕ L 2 (R 3 ) ξ = ξ 1 ⊕ ξ 2 is given by R(ξ) = ψ * (ξ 1 ) + ψ(ξ 1 ) + a * (ξ 2 ) + a(ξ 2 ) / √ 2 , and therefore the Weyl operator becomes

W (ξ) = e i √ 2 ψ * (ξ1)+ψ(ξ1) e i √
2 a * (ξ2)+a(ξ2) .

* Let Z be a Hilbert space. We denote by P(Z) the set of Borel probability measures on Z.

1.2. The classical limit of the renormalized Nelson model. The Schrödinger-Klein-Gordon equations with Yukawa-like coupling is a widely studied system of non-linear PDEs in three dimension [see e.g. 17, 18, 27, 40-42, 50, 70]. This system can be written as:

   i∂ t u = - ∆ 2M u + V u + Au ( + m 2 0 )A = -|u| 2 ;
where m 0 , M > 0 are real parameters and V is a non-negative potential that is confining or equal to zero. Using the complex field α as a dynamical variable instead of A (see Equation [START_REF] Gérard | Homogenization limits and Wigner transforms[END_REF] of Section 3), the aforementioned dynamics can be seen as a Hamilton equation generated by the following energy functional, densely defined on 1 L 2 ⊕ L 2 :

E (u, α) := u, -∆ 2M + V u 2 + α, ωα 2 + 1 (2π) 3/2 R 6 1 √ 2ω(k) ᾱ(k)e -ik•x + α(k)e ik•x |u(x)| 2 dxdk .
With suitable assumptions on the external potential V , one proves the global existence of the associated flow E(t); a detailed discussion can be found in Subsection 3.3 where the precise condition on V is given by Assumption (A V ). So there is a Hilbert space 2 D = Q(-∆ + V ) ⊕ FH 1 2 (R 3 ) densely imbedded in L 2 ⊕ L 2 such that there exists a classical flow E : R × D → D that solves the Schrödinger-Klein-Gordon equation (S-KG α [Y]) written using the complex field α.

A question of significant interest, both mathematically and physically, is whether it is possible to quantize the Schrödinger-Klein-Gordon dynamics with Yukawa coupling as a consistent theory that describes quantum mechanically the particle-field interaction. As mentioned previously, E. Nelson rigorously constructed a self-adjoint operator satisfying in some sense the above requirement. Afterwards the model was proved to satisfy some of the main properties that are familiar in the axiomatic approach to quantum fields, see [START_REF] Cannon | Quantum field theoretic properties of a model of Nelson: Domain and eigenvector stability for perturbed linear operators[END_REF]. Furthermore, asymptotic completeness was proved to be true in [START_REF] Ammari | Asymptotic completeness for a renormalized nonrelativistic Hamiltonian in quantum field theory: the Nelson model[END_REF].

The problem of quantization of such infinite dimensional nonlinear dynamics is related to constructive quantum field theory. The general framework is as follows.

Let Z be a complex Hilbert space with inner product • , • . We define the associated symplectic structure Σ(Z) as the pair {Y, B( • , • )} where Y is Z considered as a real Hilbert space with inner product • , • r = Re • , • , and B( • , • ) is the symplectic form defined by B( • , • ) = Im • , • . Following Segal [START_REF] Segal | Foundations of the theory of dynamical systems of infinitely many degrees of freedom[END_REF], we define a (bosonic) quantization of the structure Σ(Z) any linear map R(•) from Y to self-adjoint operators on a complex Hilbert space such that: features of Wick quantization on Section 4.3, the reader may refer to [START_REF] Ammari | Mean field limit for bosons and infinite dimensional phase-space analysis[END_REF][START_REF] Berezin | Russian by Nobumichi Mugibayashi and Alan Jeffrey[END_REF][START_REF] Dereziński | Mathematics of quantization and quantum fields[END_REF] for a more detailed presentation). Following these rules, the formal quantization of the classical energy E yields a quadratic form h on the Fock space Γ s (L 2 ⊕ L 2 ) which plays the role of a quantum energy. The difficulty now lies on the fact that the quadratic form h do not define straightforwardly a dynamical system (i.e. h may not be related to a self-adjoint operator). Nevertheless, according to the work of Nelson it is possible in our case to define for any σ 0 ∈ R + , a renormalized self-adjoint operator H ren (σ 0 ) associated in some specific sense to h (see Section 2 for details). However, the relationship between the classical and the quantum theory at hand is obscured by the renormalization procedure and it is unclear even formally if the quantum dynamics generated by H ren (σ 0 ) are still related to the original Schrödinger-Klein-Gordon equation. Therefore, we believe that it is mathematically interesting to verify Bohr's correspondence principle for this model.

Bohr's principle: "The quantum system should reproduce, in the limit of large quantum numbers, the classical behavior."

This principle may be reformulated as follows. We make the quantization procedure dependent on a effective parameter ε, that would converge to zero in the limit. The physical interpretation of ε is of a quantity of the same order of magnitude as the Planck's constant, that becomes negligible when large energies and orbits are considered. In the Fock representation, we introduce the ε-dependence in the annihilation and creation operator valued distributions ψ # (x) and a # (k), whose commutation relations then become [ψ(x), ψ * (x )] = εδ(x -x ) and [a(k), a * (k )] = εδ(k -k ). If in the limit ε → 0 the quantum unitary dynamics converges towards the Hamiltonian flow generated by the Schrödinger-Klein-Gordon equation with Yukawa interaction, Bohr's principle is satisfied.

If the phase space Z is finite dimensional, the quantum-classical correspondence has been proved in the context of semiclassical or microlocal analysis, with the aid of pseudo-differential calculus, Wigner measures or coherent states [see e.g. [START_REF] Ambrosio | Semiclassical limit of quantum dynamics with rough potentials and well-posedness of transport equations with measure initial data[END_REF][START_REF] De Verdière | Ergodicité et fonctions propres du laplacien[END_REF][START_REF] Combescure | A proof of the Gutzwiller semiclassical trace formula using coherent states decomposition[END_REF][START_REF] Gérard | Mesures semi-classiques et ondes de Bloch[END_REF][START_REF] Gérard | Homogenization limits and Wigner transforms[END_REF][START_REF] Helffer | Ergodicité et limite semi-classique[END_REF][START_REF] Hepp | The classical limit for quantum mechanical correlation functions[END_REF][START_REF] Hörmander | The analysis of linear partial differential operators. III[END_REF][START_REF] Lions | Sur les mesures de Wigner[END_REF][START_REF] Martinez | An introduction to semiclassical and microlocal analysis[END_REF][START_REF] Robert | Autour de l'approximation semi-classique[END_REF]. If Z is infinite dimensional, the situation is more complicated, and there are fewer results for systems with unconserved number of particles [START_REF] Ammari | Wigner measures approach to the classical limit of the Nelson model: Convergence of dynamics and ground state energy[END_REF][START_REF] Ammari | Mean field limit for bosons and infinite dimensional phase-space analysis[END_REF][START_REF] Ammari | On the classical limit of self-interacting quantum field Hamiltonians with cutoffs[END_REF][START_REF] Frank | Dynamics of a strongly coupled polaron[END_REF][START_REF] Frank | Derivation of an effective evolution equation for a strongly coupled polaron[END_REF][START_REF] Ginibre | Partially classical limit of the Nelson model[END_REF]. The approach we adopt here makes use of the infinite-dimensional Wigner measures introduced by Ammari and Nier [START_REF] Ammari | Mean field limit for bosons and infinite dimensional phase-space analysis[END_REF][START_REF] Ammari | Mean field limit for bosons and propagation of Wigner measures[END_REF][START_REF] Ammari | Mean field propagation of Wigner measures and BBGKY hierarchies for general bosonic states[END_REF][START_REF] Ammari | Mean field propagation of infinite dimensional Wigner measures with a singular two-body interaction potential[END_REF]. Remark that Wigner measures are related to phase-space analysis and are in general an effective tool for the study of the classical limit.

Given a family of normal quantum states ( ε ) ε∈(0,ε) on the Fock space, we say that a Borel probability measure µ on Z is a Wigner measure associated to it if there exists a sequence

(ε k ) k∈N ⊂ (0, ε) such that ε k → 0 and 3 (1) lim k→∞ Tr[ ε k W (ξ)] = Z e i √ 2Re ξ,z Z dµ(z) , ∀ξ ∈ Z .
We denote by M ε , ε ∈ (0, ε) the set of Wigner measures associated to ( ε ) ε∈(0,ε) . Let e -i t ε Hren(σ0)

be the quantum dynamics on Γ s (Z), Z = L 2 ⊕ L 2 , then the time-evolved quantum states can be written as (e -i t ε Hren(σ0) ε e i t ε Hren(σ0) ) ε∈(0,ε) . Bohr's principle is satisfied if Wigner measures of time evolved quantum states are exactly the push-forward, by the classical flow E(t), of the initial Wigner measures at time t = 0; i.e.

(2)

M e -i t ε Hren(σ0)

ε e i t ε Hren(σ0) , ε ∈ (0, ε) = E(t) # µ , µ ∈ M( ε , ε ∈ (0, ε)) .
To ensure that M ε , ε ∈ (0, ε) is not empty, it is sufficient to assume that there exist δ > 0 and

C > 0 such that, for any ε ∈ (0, ε), Tr[ ε N δ ] < C;
where N is the number operator of the Fock space Γ s (Z) with Z = L 2 ⊕ L 2 . Actually, we make the following more restrictive assumptions: Let ( ε ) ε∈(0,ε) be a family of normal states on Γ s (L

2 (R 3 ) ⊕ L 2 (R 3 )), then ∃C > 0 , ∀ε ∈ (0, ε) , ∀k ∈ N , Tr[ ε N k 1 ] ≤ C k ; (A 0 ) ∃C > 0 , ∀ε ∈ (0, ε) , Tr[ ε (N + U * ∞ H 0 U ∞ )] ≤ C ; (A ρ )
where N 1 is the nucleonic number operator, N = N 1 + N 2 the total number operator, H 0 is the free Hamiltonian defined by Equation ( 5) and U ∞ is the unitary quantum dressing defined in Lemma 2.3.

As a matter of fact, it is possible in principle to remove Assumption (A 0 ), but it has an important role in connection with the parameter σ 0 related to the renormalization procedure. This condition restricts the considered states ε to be at most with [C/ε] nucleons.

We are now in a position to state precisely our result: the Bohr's correspondence principle holds between the renormalized quantum dynamics of the Nelson model generated by H ren (σ 0 ) and the Schrödinger-Klein-Gordon classical flow generated by E . The operator ) with a potential V satisfying Assumption (A V ). Let ( ε ) ε∈(0,ε) be a family of normal states in Γ s L 2 (R 3 ) ⊕ L 2 (R 3 ) that satisfies Assumptions (A 0 ) and (A ρ ). Then: (i) There exists a σ 0 ∈ R + such that the dynamics e -i t ε Hren(σ0) is non-trivial on the states ε .

H ren (σ 0 ) is constructed in Subsection 2.3 according to Definition 2.13. Recall that D = Q(-∆ + V ) ⊕ FH 1 2 (R 3 ).
(ii) M ε , ε ∈ (0, ε) = Ø . (iii) For any t ∈ R, (3) 
M e -i t ε Hren(σ0)

ε e i t ε Hren(σ0) , ε ∈ (0, ε) = E(t) # µ , µ ∈ M ε , ε ∈ (0, ε) . Furthermore, let (ε k ) k∈N ⊂ (0, ε) be a sequence such that lim k→∞ ε k = 0 and M ε k , k ∈ N = {µ}, i.e.: for any ξ ∈ L 2 ⊕ L 2 , lim k→∞ Tr[ ε k W (ξ)] = L 2 ⊕L 2 e i √ 2Re ξ,z dµ(z).
Then for any t ∈ R, M e

-i t ε k Hren(σ0) ε e i t ε k Hren(σ0) , k ∈ N = {E(t) # µ}, i.e.: (4 

) lim

k→∞ Tr e

-i t ε k Hren(σ0) ε k e i t ε k Hren(σ0) W (ξ) = L 2 ⊕L 2 e i √ 2Re ξ,z d(E(t) # µ)(z) , ∀ξ ∈ L 2 ⊕ L 2 . Remark 1.2.
* The choice of σ 0 is related to our Definition 2.13 of the renormalized dynamics and the localization of states ( ε ) ε∈(0,ε) satisfying Assumption (A 0 ) (see Lemma 4.2). Actually, one can take any σ 0 ≥ 2K(C + 1 + ε) where K > 0 is a constant given in Theorem 2.10.

* We remark that every Wigner measure µ ∈ M( ε , ε ∈ (0, ε)), with ( ε ) ε∈(0,ε) satisfying Assumption (A ρ ) is a Borel probability measure on D equipped with its graph norm, hence the push-forward by means of the classical flow E is well defined (see Section 4.4).

* Adopting a shorthand notation, the last assertion of the above theorem can be written as:

ε k → µ ⇔ ∀t ∈ R , e -i t ε k Hren(σ0) ε k e i t ε k
Hren(σ0) → E(t) # µ .

2. The quantum system: Nelson Hamiltonian.

In this section we define the quantum system of "nucleons" interacting with a meson field, and briefly review the standard renormalization procedure due to Nelson [START_REF] Nelson | Interaction of nonrelativistic particles with a quantized scalar field[END_REF]. Since we are interested in the classical limit and our original and dressed Hamiltonians depend on an effective parameter ε ∈ (0, ε), it is necessary to check that several known estimates of the quantum theory are uniform with respect to ε. This step is crucial and motivated our brief revisit of the Nelson renormalization procedure.

On

H = Γ s (L 2 (R 3 )) ⊗ Γ s (L 2 (R 3 
)) we define the following free Hamiltonian as the positive selfadjoint operator given by:

H 0 = R 3 ψ * (x) -∆ 2M + V (x) ψ(x)dx + R 3 a * (k)ω(k)a(k)dk = dΓ(-∆ 2M + V ) + dΓ(ω) , (5) 
where V ∈ L 2 loc (R 3 , R + ). We denote its domain of self-adjointness by D(H 0 ). We denote by dΓ the second quantization acting either on the first or second Fock space, when no confusion arises.

Now let χ ∈ C ∞ 0 (R 3 ); 0 ≤ χ ≤ 1 and χ ≡ 1 if |k| ≤ 1, χ ≡ 0 if |k| ≥ 2.
Then, for all σ > 0 define χ σ (k) = χ(k/σ); it will play the role of an ultraviolet cutoff in the interaction. The Nelson Hamiltonian with cutoff has thus the form:

(6) H σ = H 0 + 1 (2π) 3/2 R 3 ψ * (x) a * e -ik•x √ 2ω χ σ + a e -ik•x √ 2ω χ σ ψ(x)dx .
We will denote the interaction part by H I (σ) = H σ -H 0 .

Remark 2.1. There is no loss of generality in the choice of χ as a radial function [see 4, Proposition 3.9].

The following proposition shows the self-adjointness of H σ , see e.g. [5, Proposition 2.5] or [START_REF] Falconi | Self-adjointness criterion for operators in fock spaces[END_REF].

Proposition 2.2. For any σ > 0, H σ is essentially self-adjoint on D(H 0 ) ∩ C ∞ 0 (N ).
To obtain a meaningful limit when σ → ∞, we use a dressing transformation, introduced in the physics literature by Greenberg and Schweber [START_REF] Greenberg | Clothed particle operators in simple models of quantum field theory[END_REF] following the work of van Hove [START_REF] Van Hove | Energy corrections and persistent perturbation effects in continuous spectra[END_REF][START_REF] Van Hove | Energy corrections and persistent perturbation effects in continuous spectra. II. The perturbed stationary states[END_REF]. The dressing and the renormalization procedure are described in Sections 2.1 and 2.2 respectively. In Section 2.3

we discuss a possible extension of the renormalized Hamiltonian on H n to the whole Fock space H.

The extension we choose is not the only possible one, however the choice is motivated by two facts:

other extensions should provide the same classical limit, and our choice Ĥren (σ 0 ) is, in our opinion, more consistent with the quantization procedure of the classical energy functional.

2.1. Dressing. The dressing transform was introduced as an alternative way of doing renormalization in the Hamiltonian formalism, and has been utilized in a rigorous fashion in various situations [see e.g. [START_REF] Ginibre | Renormalization of a quadratic interaction in the Hamiltonian formalism[END_REF][START_REF] Glimm | The foundations of quantum field theory[END_REF][START_REF] Hepp | Théorie de la renormalisation[END_REF][START_REF] Nelson | Interaction of nonrelativistic particles with a quantized scalar field[END_REF]. For the Nelson Hamiltonian, it consists of a unitary transformation that singles out the singular self-energy.

From now on, let 0 < σ 0 < σ, with σ 0 fixed. Then define:

g σ (k) = - i (2π) 3/2 1 2ω(k) χ σ (k) -χ σ0 (k) k 2 2M + ω(k) ; (7) E σ = 1 2(2π) 3 R 3 1 ω(k) (χ σ -χ σ0 ) 2 (k) k 2 2M + ω(k) dk - 1 (2π) 3 R 3 χ σ (k) ω(k) (χ σ -χ σ0 )(k) k 2 2M + ω(k) dk . (8)
The dressing transformation is the unitary operator generated by (the dependence on σ 0 will be usually omitted): ( 9)

T σ = R 3 ψ * (x) a * (g σ e -ik•x ) + a(g σ e -ik•x ) ψ(x)dx .
The function g σ ∈ L 2 (R 3 ) for all σ ≤ ∞; therefore it is possible to prove the following Lemma, e.g.

utilizing the criterion of [START_REF] Falconi | Self-adjointness criterion for operators in fock spaces[END_REF].

Lemma 2.3. For any σ ≤ ∞, T σ is essentially self-adjoint on C ∞ 0 (N ). We denote by U σ (θ) the corresponding one-parameter unitary group U σ (θ) = e -i θ ε Tσ .

For the sake of brevity, we will write U σ := U σ (-1). We remark that T σ and H σ preserve the number of "nucleons", i.e.: for any σ ≤ ∞, σ < ∞:

(10) [T σ , N 1 ] = 0 = [H σ , N 1 ] .
The above operators also commute in the resolvent sense. We are now in position to define the dressed

Hamiltonian (11) Ĥσ := U σ H σ -εN 1 E σ U * σ .
The operator Ĥσ is self-adjoint for any σ < ∞, since H σ and N 1 are commuting self-adjoint operators and U σ is unitary. The purpose is to show that the quadratic form associated with Ĥσ Hn satisfies the hypotheses of KLMN theorem, even when σ = ∞, so it is possible to define uniquely a self-adjoint operator Ĥ∞ . In order to do that, we need to study in detail the form associated with Ĥ(n) σ . By Equation [START_REF] Ammari | Mean field propagation of infinite dimensional Wigner measures with a singular two-body interaction potential[END_REF], it follows immediately that [START_REF] Ammari | On the classical limit of self-interacting quantum field Hamiltonians with cutoffs[END_REF] Ĥ(n

) σ = εU (n) σ H (n) σ ε -(εn)E σ (U (n) σ ) * .
A suitable calculation [START_REF] Ammari | Asymptotic completeness for a renormalized nonrelativistic Hamiltonian in quantum field theory: the Nelson model[END_REF][START_REF] Nelson | Interaction of nonrelativistic particles with a quantized scalar field[END_REF] yields:

Ĥ(n) σ = H (n) σ0 + ε 2 i<j V σ (x i -x j ) + ε 2M n j=1 a * (r σ e -ik•xj ) 2 + a(r σ e -ik•xj ) 2 +2a * (r σ e -ik•xj )a(r σ e -ik•xj ) -2 D xj a(r σ e -ik•xj ) + a * (r σ e -ik•xj )D xj ; (13) 
where

D xj = -i∇ xj and r σ (k) = -ikg σ (k) , (14) 
V σ (x) = 2Re R 3 ω(k)|g σ (k)| 2 e -ik•x dk -4Im R 3 ḡσ (k) (2π) 3/2 χ σ (k) 2ω(k) e -ik•x dk .
It is also possible to write Ĥσ in its second quantized form as:

Ĥσ = H 0 + ĤI (σ) ; (15) ĤI (σ) = H I (σ 0 ) + 1 2 R 6 ψ * (x)ψ * (y)V σ (x -y)ψ(x)ψ(y)dxdy + 1 2M R 3 ψ * (x) a * (r σ e -ik•x ) 2 + a(r σ e -ik•x ) 2 + 2a * (r σ e -ik•x )a(r σ e -ik•x ) -2 D x a(r σ e -ik•x ) + a * (r σ e -ik•x )D x ψ(x)dx . ( 16 
)
Remark 2.4. The dressed interaction Hamiltonian ĤI (σ) contains a first term analogous to the undressed interaction with cutoff, a second term of two-body interaction between nucleons, and a more singular term that can be only defined as a form when σ = ∞.

2.2.

Renormalization. We will now define the renormalized self-adjoint operator Ĥ(n) ∞ . A simple calculation shows that E σ → -∞ when σ → +∞; hence the subtraction of the self-energy in the definition [START_REF] Ammari | Mean field propagation of infinite dimensional Wigner measures with a singular two-body interaction potential[END_REF] of Ĥσ is necessary. It is actually the only renormalization necessary for this system. We prove that the quadratic form associated with Ĥ(n) σ of Equation ( 13) has meaning for any σ ≤ ∞, and the KLMN theorem [see 73, Theorem X.17] can be applied, with a suitable choice of σ 0 , and bounds that are uniform with respect to ε ∈ (0, ε). Let us start with some preparatory lemmas:

Lemma 2.5. For any 0 ≤ σ ≤ ∞, the symmetric function V σ satisfies:

(i) V σ (1 -∆) -1/2 ∈ L(L 2 (R 3 )); (ii) (1 -∆) -1/2 V σ (1 -∆) -1/2 ∈ K(L 2 (R 3 )).
In particular,

V σ ∈ L s (R 3 ) ∩ L 3,∞ (R 3 ), for any s ∈ [2, +∞[. Proof. It is sufficient to show [11, Corollary D.6] that V σ ∈ L 3,∞ (R 3 ) (weak-L p spaces). Write V σ = V (1) σ + V (2) 
σ ,

V (1) σ (x) = 2Re R 3 ω(k)|g σ (k)| 2 e -ik•x dk = 2(2π) 3/2 ReF ω|g σ | 2 (x) ; (17) V (2) σ (x) = -2 √ 2Im R 3 ḡσ (k) (2π) 3/2 χ σ (k) ω(k) e -ik•x dk = -2 √ 2ImF ḡσ χ σ √ ω (x) . ( 18 
) • V (1) σ . For any σ ≤ ∞, ω|g σ | 2 ∈ L s (R 3 ), 1 ≤ s ≤ 2. Then V (1) σ ∈ L s (R 3 ) for any s ∈ [2, +∞]; furthermore V (1) σ ∈ C 0 (R 3 ) (the space of continuous functions converging to zero at infinity). Hence V (1) σ ∈ L 3,∞ (R 3 ). • V (2) σ . For any σ ≤ ∞, ḡσ χσ √ ω ∈ L s (R 3 ), 1 < s ≤ 2. Therefore V (2) σ ∈ L s (R 3 ) for any s ∈ [2, +∞[. It remains to show that V (2) σ ∈ L 3,∞ (R 3 ). Define f (k) ∈ L 2 (R 3 ): (19) f (k) := χ σ (k) ω(k) χ σ -χ σ0 (k) k 2 2M + ω(k) .
Then there is a constant c > 0 such that |V

(2)

σ (x)| ≤ c|F(f )(x)|,
where the Fourier transform is intended to be on L 2 (R 3 ). The function f is radial, so we introduce the spherical coordinates (r, θ, φ) ≡ k ∈ R 3 , such that the z-axis coincides with the vector x. We then obtain: Since for any σ ≤ +∞, f (r)r ∈ L 1 (R) we can take the limit R → +∞ and conclude:

lim R→+∞ B(0,R) f (k)e -ik•x dk = lim
(20) F(f )(x) = 4π |x| +∞ 0 f (r)r sin(r|x|)dr .
Therefore, for any x ∈ R 3 {0}, there exists a 0 < c ≤ 4πc f (r)r L 1 (R) such that:

(21) |V (2) σ (x)| ≤ c |x| .
Let λ be the Lebesgue measure in R 3 . Since x : |V

σ | > t ⊂ x : c |x| > t , there is a positive C such that: [START_REF] Cannon | Quantum field theoretic properties of a model of Nelson: Domain and eigenvector stability for perturbed linear operators[END_REF] λ x :

|V (2) σ (x)| > t ≤ λ x : c |x| > t ≤ C t 3 . Finally (22) implies V (2) σ ∈ L 3,∞ (R 3 ).
Lemma 2.6. There exists c > 0 such that for any ε ∈ (0, ε), σ ≤ +∞:

(H 0 + 1) -1/2 D xj a(r σ e -ik•xj )(H 0 + 1) -1/2 (n) L(Hn) ≤ c √ nε ω -1/2 r σ 2 ; ( 23 
) (H 0 + 1) -1/2 a * (r σ e -ik•xj )D xj (H 0 + 1) -1/2 (n) L(Hn) ≤ c √ nε ω -1/2 r σ 2 . ( 24 
)
Moreover, (23) holds if we replace the left H 0 by dΓ(-∆ 2M +V ) and the right H 0 by dΓ(ω) and similarly (24) holds if we replace the left H 0 by dΓ(ω) and the right H 0 by dΓ(-∆ 2M + V ).

Proof. Let S n ≡ S n ⊗ 1 be the symmetrizer on H n (acting only on the {x 1 , . . . , x n } variables) and Ψ n ∈ H n with n > 0. Then:

Ψ n , dΓ(-∆)Ψ n = Ψ n , (nε)S n (D x1 ) 2 ⊗ 1 n-1 Ψ n = (nε) Ψ n , (D xj ) 2 Ψ n . Hence (nε) D xj Ψ n 2 ≤ dΓ(-∆) + 1 1/2 Ψ n 2 . It follows that (25) D xj dΓ(-∆) + 1 -1/2 (n) L(Hn) ≤ 1 √ nε ; dΓ(-∆) + 1 -1/2 D xj (n) L(Hn) ≤ 1 √ nε .
Using [START_REF] Chen | The Rigorous Derivation of the 2D Cubic Focusing NLS from Quantum Many-body Evolution[END_REF] we obtain for any Ψ n ∈ H n , with Ψ n = 1:

(H 0 + 1) -1/2 D xj a(r σ e -ik•xj )(H 0 + 1) -1/2 Ψ n ≤ c √ nε a(r σ e -ik•xj ) dΓ(ω) + 1 -1/2 Ψ n ≤ c √ nε ω -1/2 r σ 2 ;
where the last inequality follows from standard estimates on the Fock space [see 5, Lemma 2.1]. The bound [START_REF] Chen | Derivation of the cubic NLS and Gross-Pitaevskii hierarchy from manybody dynamics in d = 2, 3 based on spacetime norms[END_REF] is obtained by adjunction.

Lemma 2.7. There exists c > 0 such that for any ε ∈ (0, ε), σ ≤ +∞:

(H 0 + 1) -1/2 a * (r σ e -ik•xj )a(r σ e -ik•xj )(H 0 + 1) -1/2 (n) L(Hn) ≤ c ω -1/2 r σ 2 2 ; (26) (H 0 + 1) -1/2 a * (r σ e -ik•xj ) 2 (H 0 + 1) -1/2 (n) L(Hn) ≤ c ω -1/4 r σ 2 2 ; ( 27 
) (H 0 + 1) -1/2 a(r σ e -ik•xj ) 2 (H 0 + 1) -1/2 (n) L(Hn) ≤ c ω -1/4 r σ 2 2 . ( 28 
)
The same bounds hold if H 0 is replaced by dΓ(ω).

Proof. First of all observe that, since m 0 > 0, there exists c > 0 such that, uniformly in ε ∈ (0, ε):

(H 0 + 1) -1/2 dΓ(ω) + 1 1/2 L(H) ≤ c ; (H 0 + 1) -1/2 (N 2 + 1) 1/2 L(H) ≤ c .
Equation ( 26) is easy to prove:

(H 0 + 1) -1/2 a * (r σ e -ik•xj )a(r σ e -ik•xj )(H 0 + 1) -1/2 (n) L(Hn) ≤ c dΓ(ω) + 1 -1/2 a * (r σ e -ik•xj ) (n) L(Hn) • a(r σ e -ik•xj ) dΓ(ω) + 1 -1/2 (n) L(Hn) ≤ c ω -1/2 r σ 2 2 .
For the proof of ( 27) the reader may refer to [START_REF] Ammari | Asymptotic completeness for a renormalized nonrelativistic Hamiltonian in quantum field theory: the Nelson model[END_REF]Lemma 3.3 (iv)]. Finally [START_REF] Combescure | A proof of the Gutzwiller semiclassical trace formula using coherent states decomposition[END_REF] follows from (27) by adjunction.

Lemma 2.8. There exists c(σ 0 ) > 0 such that for any ε ∈ (0, ε) and λ ≥ 1:

H 0 + λ -1/2 H I (σ 0 ) H 0 + λ -1/2 (n) L(Hn) ≤ c(σ 0 )λ -1/2 (nε) ; (29) 
H 0 + λ -1/2 ε 2 i<j V σ (x i -x j ) H 0 + λ -1/2 (n) L(Hn) ≤ c(σ 0 )λ -1/2 nε(1 + nε) . ( 30 
)
Proof. The inequality [START_REF] Cook | The mathematics of second quantization[END_REF] can be proved by a standard argument on the Fock space [see e.g. 32, Proposition IV.1].

To prove [START_REF] Dereziński | Asymptotic completeness in quantum field theory. Massive Pauli-Fierz Hamiltonians[END_REF] we proceed as follows. First of all, by means of (i), Lemma 2.5 we can write:

-∆ xi + λ -1/2 V σ (x i -x j ) -∆ xi + λ -1/2 L(Hn) ≤ λ -1/2 V σ (x i ) -∆ xi + λ -1/2 L(Hn) ≤ c(σ 0 )λ -1/2 . Therefore V σ (x i -x j ) ≤ c(σ 0 )λ -1/2 -∆ xi + λ . Let Ψ n ∈ H n ;
using its symmetry, and some algebraic manipulations we can write:

Ψ n , ε 2 i<j V σ (x i -x j )Ψ n ≤ c(σ 0 )(nε) 2 Ψ n , λ -1/2 (D x1 ) 2 + λ 1/2 Ψ n = c(σ 0 ) Ψ n , N 1 λ -1/2 dΓ(D 2 x ) + λ 1/2 N 1 Ψ n ≤ c(σ 0 )λ -1/2 N 1/2 1 dΓ(D 2 x ) + λ 1/2 Ψ n 2 + N 1 dΓ(D 2 x ) + λ 1/2 Ψ n 2 ≤ c(σ 0 )λ -1/2 Ψ n , N 1 + N 2 1 dΓ(D 2 x ) + λ Ψ n ;
where the constant c(σ 0 ) is redefined in each inequality. The result follows since N 1 commutes with dΓ(D 2 x ).

Combining Lemmas 2.6, 2.7 and 2.8 together, we can prove easily the following proposition.

Proposition 2.9. There exist c > 0 and c(σ 0 ) > 0 such that for any ε ∈ (0, ε), λ ≥ 1, σ 0 < σ ≤ +∞ and for any Ψ ∈ D(N 1 ):

H 0 + λ -1/2 ĤI (σ) H 0 + λ -1/2 Ψ ≤ c ω -1/2 r σ 2 2 + ω -1/4 r σ 2 2 + ω -1/2 r σ 2 +c(σ 0 )λ -1/2 • (N 1 + 1)Ψ . (31) 
Consider now ĤI (σ) (n) . It follows easily from Equation [START_REF] Dereziński | Mathematics of quantization and quantum fields[END_REF] above that for any σ 0 < σ ≤ +∞, and

Ψ n ∈ D(H 1/2 0 ) ∩ H n : Ψ n , ĤI (σ) (n) Ψ n ≤ c(nε + 1) ω -1/2 r σ 2 2 + ω -1/4 r σ 2 2 + ω -1/2 r σ 2 +c(σ 0 )(nε + 1)λ -1/2 Ψ n , H (n) 0 Ψ n +λ c(nε + 1) ω -1/2 r σ 2 2 + ω -1/4 r σ 2 2 + ω -1/2 r σ 2 +c(σ 0 )(nε + 1)λ -1/2 Ψ n , Ψ n . (32) 
Consider now the term ω -1/2 r σ 2 2 + ω -1/4 r σ 2 2 + ω -1/2 r σ 2 ; by definition of r σ , there exists c > 0 such that, uniformly in σ ≤ +∞:

(33) ω -1/2 r σ 2 2 + ω -1/4 r σ 2 2 + ω -1/2 r σ 2 ≤ c σ -2 0 + σ -1 0 .
Hence for any σ 0 ≥ 1 there exist K > 0 (K = 2c), c(σ 0 ) > 0 and C(n, ε, λ, σ 0 ) > 0 such that [START_REF] Falconi | Classical limit of the nelson model with cutoff[END_REF] becomes:

Ψ n , ĤI (σ) (n) Ψ n ≤ K(nε+1) σ0 + c(σ 0 )(nε + 1)λ -1/2 Ψ n , H (n) 0 Ψ n + C(n, ε, λ, σ 0 ) Ψ n , Ψ n . (34) 
Therefore choosing [START_REF] Fock | Konfigurationsraum und zweite quantelung[END_REF] σ 0 > 2K(nε + 1)

and then λ > 2c(σ 0 )(nε + 1) 2 , we obtain the following bound for any Ψ n ∈ D(H

1/2 0 ) ∩ H n , with a < 1, b > 0 and uniformly in σ 0 < σ ≤ +∞: (36) Ψ n , ĤI (σ) (n) Ψ n ≤ a Ψ n , H (n) 0 Ψ n + b Ψ n , Ψ n .
Applying KLMN theorem, [START_REF] Folland | Quantum field theory[END_REF] proves the following result [see e.g. 4, 68, for additional details].

Theorem 2.10. There exists K > 0 such that, for any n ∈ N, and ε ∈ (0, ε) the following statements hold:

(i) For any 2K(nε + 1) < σ 0 < σ ≤ +∞, there exists a unique self-adjoint operator

Ĥ(n) σ with domain D(n) σ ⊂ D (H (n) 0 ) 1/2 ⊂ H n associated to the symmetric form ĥ(n) σ (•, •), defined for any Ψ, Φ ∈ D (H (n) 0 ) 1/2 as: (37) ĥ(n) σ (Ψ, Φ) = Ψ, H (n) 0 Φ + Ψ, ĤI (σ) (n) Φ .

The operator Ĥ(n)

σ is bounded from below, with bound -b σ0 (σ) (where |b σ0 (σ)| is a bounded increasing function of σ).

(ii) The following convergence holds in the norm topology of L(H n ):

(38) lim σ→+∞ (z -Ĥ(n) σ ) -1 = (z -Ĥ(n) ∞ ) -1 , for all z ∈ C R.
(iii) For any t ∈ R, the following convergence holds in the strong topology of L(H n ):

(39) s -lim σ→+∞ e -i t ε Ĥ(n) σ = e -i t ε Ĥ(n) ∞ .
Remark 2.11. The operator Ĥ(n) ∞ can be decomposed only in the sense of forms, i.e.

(

) Ĥ(n) ∞ = H (n) 0 Ĥ(n) I (∞) ; 40 
where has to be intended as the form sum.

Extension of Ĥ(n)

∞ to H. We have defined the self-adjoint operator Ĥ(n) ∞ which depends in σ 0 for each n ∈ N. Now we are interested in extending it to the whole space H. This can be done in at least two different ways. However, we choose the one that is more suitable to interpret Ĥ∞ as the Wick quantization of a classical symbol.

Let K be defined by Theorem 2.10. Then define N(ε, σ 0 ) ∈ N by: ( 41)

N(ε, σ 0 ) = σ 0 -2K 2Kε -1 ;
where the square brackets mean that we take the integer part if the number within is positive, zero otherwise.

Definition 2.12 ( Ĥren (σ 0 )). Let 0 ≤ σ 0 < +∞ be fixed. Then we define Ĥren (σ 0 ) on H by:

(42) Ĥren (σ 0 ) Hn = Ĥ(n) ∞ if n ≤ N(ε, σ 0 ) 0 if n > N(ε, σ 0 )
where N(ε, σ 0 ) is defined by [START_REF] Fukuda | On coupled Klein-Gordon-Schrödinger equations[END_REF]. We may also write Ĥren (σ 0 ) = H 0 Ĥren,I (σ 0 ) as a sum of quadratic forms.

The operator Ĥren (σ 0 ) is self-adjoint on H, with domain of self adjointness:

(43) Dren (σ 0 ) = Ψ ∈ H , Ψ Hn ∈ D(n) ∞ for any n ≤ N(ε, σ 0 ) .
Acting with the dressing operator U ∞ defined in Lemma 2.3 (with the same fixed σ 0 as for Ĥren (σ 0 )), we can also define the undressed extension H ren (σ 0 ). Definition 2.13 (H ren (σ 0 )). Let 0 ≤ σ 0 < +∞ be fixed. Then we define the following operator on H:

(44) H ren (σ 0 ) = U * ∞ (σ 0 ) Ĥren (σ 0 )U ∞ (σ 0 ) .
The operator H ren (σ 0 ) is self-adjoint on H, with domain of self adjointness:

(45) D ren (σ 0 ) = Ψ ∈ H , Ψ Hn ∈ e -i ε T (n) ∞ D(n) ∞ for any n ≤ N(ε, σ 0 ) .
Remark 2.14. Let σ 0 ≥ 0 be fixed. Then the Ĥσ given by (11) defines, in the limit σ → ∞, a symmetric quadratic form ĥ∞ on D(H 1/2 0 ) ⊂ H. Also Ĥren (σ 0 ) defines a quadratic form ĥren . We have 4 :

(46) ĥ∞ (1 [0,N] (N 1 ) • , • ) = ĥren (1 [0,N] (N 1 ) • , • ) .
However, we are not able to prove that there is a self-adjoint operator on H associated to ĥ∞ , and it is possible that there is none. 3. The classical system: S-KG equations.

In this section we define the Schrödinger-Klein-Gordon (S-KG) system, with initial data in a suitable dense subset of L 2 (R 3 ) ⊕ L 2 (R 3 ), that describes the classical dynamics of a particle-field interaction.

Then we introduce the classical dressing transformation (viewed itself as a dynamical system), and then study the transformation it induces on the Hamiltonian functional. Finally, we discuss the global existence of unique solutions of the classical equations, both in their original and dressed form.

The Yukawa coupling: The S-KG[Y] system (Schrödinger-Klein-Gordon with Yukawa interaction), or undressed classical equations, is defined by:

(S-KG[Y])    i∂ t u = - ∆ 2M u + V u + Au ( + m 2 0 )A = -|u| 2 ;
where V : R 3 → R is an external potential. If we introduce the complex field α, defined by

A(x) = 1 (2π) 3 2 R 3 1 √ 2ω(k) ᾱ(k)e -ik•x + α(k)e ik•x dk , (47) 
Ȧ(x) = -i (2π) 3 2 R 3 ω(k) 2 α(k)e ik•x -ᾱ(k)e -ik•x dk , (48) 
we can rewrite (S-KG[Y]) as the equivalent system 5 :

(S-KG α [Y])        i∂ t u = - ∆ 2M u + V u + Au i∂ t α = ωα + 1 √ 2ω F |u| 2 .
The "dressed" coupling: The system that arises from the dressed interaction is quite complicated. We will denote it by S-KG [D], and it has the following form 6 :

(S-KG[D])              i∂ t u = - ∆ 2M u + V u + (W * |u| 2 )u + [(ϕ * A) + (ξ * ∂ t A)]u + 3 i=1 [(ρ (i) * A)∂ (i) + (ζ (i) * A) 2 ]u ( +m 2 0 )A = -ϕ * |u| 2 + i 3 i=1 ρ (i) * [(u∂ (i) u) - √ 2M (ζ (i) * ∂ t A)]
where: V, W, ϕ : R 3 → R with W, ϕ even; ξ : R 3 → C, even; ρ 3.1. Dressing. We look for a classical correspondent of the dressing transformation U ∞ (θ). Since U ∞ (θ) is a one-parameter group of unitary transformations on H, the classical counterpart of its generator is expected to induce a non-linear evolution on the phase-space L 2 (R 3 ) ⊕ L 2 (R 3 ), using the quantum-classical correspondence principle for systems with infinite degrees of freedom [see e.g. 5 The two systems are equivalent since (1

: (R 3 ) 3 → C, odd; and ζ : (R 3 ) 3 → R,
+ ω ς )Reα ∈ L 2 (R 3 ) ⇔ A ∈ H ς+1/2 (R 3 ), (1 + ω ς )Imα ∈ L 2 (R 3 ) ⇔ ∂tA ∈ H ς-1/2 (R 3 ). In (S-KGα[Y]
) the unknowns are u and α. 6 We denote by ∂ (i) the derivative with respect to the i-th component of the variable x ∈ R 3 . Analogously, we denote by v (i) the i-th component of a 3-dimensional vector v.

8, 49, 59

]. The resulting "classical dressing" D g∞ (θ) plays a crucial role in proving our results: on one hand it is necessary to link the S-KG classical dynamics with the quantum dressed one; on the other it is at the heart of the "classical" renormalization procedure.

Let g ∈ L 2 (R 3 ); define the following functional

D g : L 2 (R 3 ) ⊕ L 2 (R 3 ) → R, (49) 
D g (u, α) := R 6 g(k) ᾱ(k)e -ik•x + ḡ(k)α(k)e ik•x |u(x)| 2 dxdk .
The functional D g induces the following Hamiltonian equations of motion:

(50)

i∂ θ u = A g u i∂ θ α = gF (|u| 2 )
; where

A g (x) = R 3 g(k)ᾱ(k)e -ik•x + ḡ(k)α(k)e ik•x dk , (51) 
F (|u| 2 )(k) = R 3 e -ik•x |u(x)| 2 dx . ( 52 
)
Observe that for any g ∈ L 2 (R 3 ) and x ∈ R 3 , A g (x) ∈ R. This will lead to an explicit form for the solutions of the Cauchy problem related to [START_REF] Ginibre | Long range scattering and modified wave operators for the wave-Schrödinger system[END_REF]. The latter can be rewritten in integral form, for any θ ∈ R:

(53)          u θ (x) = u 0 (x) exp -i θ 0 (A g ) τ (x) dτ α θ (k) = α 0 (k) -ig(k) θ 0 F (|u τ | 2 )(k) dτ ;
where (A g ) τ is defined by [START_REF] Ginibre | Partially classical limit of the Nelson model[END_REF] with α replaced by α τ ; analogously we define B g by ( 51) with α replaced by β.

Lemma 3.1. Let s ≥ 0, s -1 2 ≤ ς ≤ s + 1 2 ; (1 + ω 1 2 )g ∈ L 2 (R 3 ). Also, let u, v ∈ H s (R 3 ) and (1 + ω ς )α, (1 + ω ς )β ∈ L 2 (R 3 ). Then there exist constants C s , C ς > 0 such that: (A g -B g )u H s ≤ C s max w∈{u,v} w H s (1 + ω 1 2 )g 2 (1 + ω ς )(α -β) 2 , (54) 
A g (u -v) H s ≤ C s max ζ∈{α,β} (1 + ω ς )ζ 2 (1 + ω 1 2 )g 2 u -v H s , (55) 
(1 + ω ς )g R 3 e -ik•x (u -v)v + (ū -v)u dx 2 ≤ C ς max w∈{u,v} w H s (1 + ω 1 2 )g 2 u -v H s . (56) Proof. If s ∈ N, the results follow by standard estimates, keeping in mind that |k| ≤ ω(k) ≤ |k| + m 0 .
The bounds for non-integer s are then obtained by interpolation.

Proposition 3.2. Let θ ∈ R, (u 0 , α 0 ) ∈ L 2 ⊕ L 2 . If (u θ , α θ ) ∈ C 0 (R, L 2 ⊕ L 2 ) is a solution of (53), then it is unique, i.e. any (v θ , β θ ) ∈ C 0 (R, L 2 ⊕ L 2 ) that satisfies (53) is such that (v θ , β θ ) = (u θ , α θ ).
Proof. We have:

i 2 ∂ θ u θ -v θ 2 2 + α θ -β θ 2 2 = Im u θ -v θ , (A g ) θ -(B g ) θ u θ + (B g ) θ u θ -v θ 2 + α θ -β θ , g R 3 e -ik•x (u θ -v θ )v θ + (ū θ -vθ )u θ dx 2 .
The result hence is an application of the estimates of Lemma 3.1 with s = 0 and Gronwall's Lemma. Now that we are assured that the solution of ( 53) is unique, we can construct it explicitly. Since A g (x) is real, it follows that for any θ ∈ R:

|u θ | = |u 0 |. Therefore F (|u θ | 2 ) = F (|u 0 | 2 ), and 
α θ (k) = α 0 (k) -iθg(k)F (|u 0 | 2 )(k) .
Substituting this explicit form in the expression for u θ , we obtain the solution for any (u 0 , α 0 ) ≡

(u, α) ∈ L 2 (R 3 ) ⊕ L 2 (R 3 ): (57) 
     u θ (x) = u(x) exp -iθA g (x) + iθ 2 Im R 3 F (|u| 2 )(k)|g(k)| 2 e ik•x dk α θ (k) = α(k) -iθg(k)F (|u| 2 )(k)
.

This system of equations defines a non-linear symplectomorphism: the "classical dressing map" on

L 2 ⊕ L 2 . Definition 3.3. Let g ∈ L 2 (R 3 ). Then D g (•) : R × L 2 ⊕ L 2 → L 2 ⊕ L 2 is
defined by (57) as:

D g (θ)(u, α) = (u θ , α θ ) .
The map D g (•) is the Hamiltonian flow generated by D g .

Using the explicit form (57) and Lemma 3.1, it is straightforward to prove some interesting properties of the classical dressing map. The results are formulated in the following proposition, after the definition of useful classes of subspaces of

L 2 ⊕ L 2 . Definition 3.4. Let s ≥ 0, s -1 2 ≤ ς ≤ s + 1 2 . We define the spaces H s (R 3 ) ⊕ FH ς (R 3 ) ⊆ L 2 (R 3 ) ⊕ L 2 (R 3 ): H s (R 3 ) ⊕ FH ς (R 3 ) = (u, α) ∈ L 2 (R 3 ) ⊕ L 2 (R 3 ) , u ∈ H s (R 3 ) and F -1 (α) ∈ H ς (R 3 ) . Proposition 3.5. Let s ≥ 0, s -1 2 ≤ ς ≤ s + 1 2 ; and g ∈ FH 1 2 (R 3 ). Then D g : R × H s ⊕ FH ς → H s ⊕ FH ς ;
i.e. the flow preserves the spaces

H s ⊕ FH ς . Furthermore, it is a bijection with inverse D g (θ) -1 = D g (-θ).
Hence the classical dressing is an Hamiltonian flow on

H s ⊕ FH ς . Corollary 3.6. Let s ≥ 0, s -1 2 ≤ ς ≤ s + 1 2 , θ ∈ R, and g ∈ FH 1 2 (R 3 ). Then there exists a constant C(g, θ) > 0 and a λ(s) ∈ N * such that for any (u, α) ∈ H s ⊕ FH ς : (58) D g (θ)(u, α) H s ⊕F H ς ≤ C(g, θ) (u, α) λ(s) H s ⊕F H ς .
Using the positivity of both -∆ and V , and Corollary 3.6 one also obtains the following result.

Corollary 3.7. Let V ∈ L 2 loc (R d , R + ); and let Q(-∆ + V ) ⊂ L 2 (R 3
) be the form domain of -∆ + V . Then for any 1 2 ≤ ς ≤ 3 2 , and g ∈ FH 1 2 (R 3 ):

D g : R × Q(-∆ + V ) ⊕ FH ς → Q(-∆ + V ) ⊕ FH ς .

Classical Hamiltonians.

In this section we define the classical Hamiltonian functionals that generate the undressed and dressed dynamics on L 2 ⊕ L 2 . Then we show that they are related by a suitable classical dressing: the quantum procedure described in Section 2.2 is reproduced, in simplified terms, on the classical level.

Definition 3.8 (E , Ê ). The undressed Hamiltonian (or energy) E is defined as the following real

functional on L 2 (R 3 ) ⊕ L 2 (R 3 ): E (u, α) := u, -∆ 2M + V u 2 + α, ωα 2 + 1 (2π) 3/2 R 6 1 √ 2ω(k) ᾱ(k)e -ik•x + α(k)e ik•x |u(x)| 2 dxdk .
We denote by E 0 the free part of the classical energy, namely

E 0 (u, α) = u, -∆ 2M + V u 2 + α, ωα 2 . Let χ σ0 ∈ L ∞ (R 3 ) ∩ FH -1/2 (R 3 ) such that χ σ0 (k) = χ σ0 (-k) for any k ∈ R 3 .
Then (again as a real functional on L 2 ⊕ L 2 ) the dressed Hamiltonian Ê is defined as 7 :

Ê (u, α) := u, -∆ 2M + V u 2 + α, ωα 2 + 1 (2π) 3/2 R 6 χσ 0 (k) √ 2ω(k) ᾱ(k)e -ik•x + α(k)e ik•x |u(x)| 2 dxdk + 1 2M R 9 r ∞ (k)ᾱ(k)e -ik•x + r∞ (k)α(k)e ik•x r ∞ (l)ᾱ(l)e -il•x + r∞ (l)α(l)e il•x |u(x)| 2 dxdkdl -2 M Re R 6 r ∞ (k) ᾱ(k)e -ik•x ū(x)D x u(x)dxdk + 1 2 R 6 V ∞ (x -y)|u(x)| 2 |u(y)| 2 dxdy .
Remark 3.9. We denote by D(E ) ⊂ L 2 ⊕ L 2 the domain of definition of E , and by

D( Ê ) ⊂ L 2 ⊕ L 2
the domain of definition of Ê . We have that

D(E ) ⊃ C ∞ 0 ⊕ C ∞ 0 and D( Ê ) ⊃ C ∞ 0 ⊕ C ∞ 0 .
Therefore both E and Ê are densely defined, and

D(E ) ∩ D( Ê ) is dense in L 2 ⊕ L 2 .
We are interested in the action of E and Ê on H 1 ⊕ FH 1 2 , since this emerges naturally as the energy space of the system, at least when V = 0.

Lemma 3.10. Let θ ∈ R, g ∈ FH 1 2 (R 3 ). Then for any u ∈ Q(V ) ∩ H 1 (R 3 ), and α ∈ FH 1 2 (R 3 ): D g (θ)(u, α) ∈ D(E ). Proof. Let u ∈ Q(V ), and α ∈ L 2 (R 3 ). Then u θ , V u θ 2 = u, V u 2 ;
where u θ is defined in Equation ( 57), and it is the first component of D g (θ)(u, α). Also, for any

(u, α) ∈ H 1 ⊕ FH 1 2
we have that:

R 6 |u(x)| 2 1 ω(k) α(k)e ik•x dxdk = C R 3 1 |k|ω(k) ω 1/2 α (k) R 3 D x |u(x)| 2 e ik•x dx dk ≤ 2C 1 |k|ω(k) 2 ω 1/2 α 2 u 2 u H 1 < +∞ .
The result then follows since D g (θ) maps H 1 ⊕ FH 1 2 into itself by Proposition 3.5. 7 We recall that:

g∞(k) = -i (2π) -3/2 √ 2ω(k) 1-χσ 0 (k) k 2 2M +ω(k) ; V∞(x) = 2Re R 3 ω(k)|g∞(k)| 2 e -ik•x dk - 4Im R 3 ḡ∞(k) (2π) 3/2 1 √ 2ω(k) e -ik•x dk . Also, Dx = -i∇x ; r∞(k) = -ikg∞(k) .
The functional E is independent of g ∞ , while Ê depends on it. In addition, we know that g ∞ has been fixed, at the quantum level, to renormalize the Nelson Hamiltonian, and it is the function that appears in the generator of the dressing transformation U ∞ . Hence, since we are establishing a correspondence between the classical and quantum theories, we expect it to be the function that appears in the classical dressing too. Two features of g ∞ are very important in the classical setting:

the first is that g ∞ ∈ FH 1 2 (R 3 ) for any χ σ0 ∈ L ∞ ∩FH -1 2 ;
the second is that it is an even function, i.e. g ∞ (k) = g ∞ (-k) for any k ∈ R 3 . Using the first fact, one shows that D g∞ (•) maps the energy space into itself (and that will be convenient when discussing global solutions); using the second property we can simplify the explicit form of D g∞ (•). Lemma 3.11. Let θ ∈ R, and g ∈ L 2 (R 3 ). If g is an even or odd function, then the map D g (θ)

defined by (57) becomes:

(59) D g (θ)(u(x), α(k)) = u(x)e -iθAg(x) , α(k) -iθg(k)F (|u| 2 )(k) . Proof. Consider I(x) := R 3 F (|u| 2 )(k)|g(k)| 2 e ik•
x dk. We will show that Ī(x) = I(x). We have that:

Ī(x) = R 6 |u(x )| 2 |g(k)| 2 e -ik•(x-x ) dx dk = R 6 |u(x )| 2 |g(-k)| 2 e ik•(x-x ) dx dk . Now if g is either even or odd, |g(-k)| = |g(k)|. Hence Ī(x) = I(x), therefore ImI(x) = 0.
We conclude this section proving its main result: E and Ê are related by the D g∞ (1) classical dressing 8 .

Proposition 3.12. For any

u ∈ Q(V ) ∩ H 1 (R 3 ), α ∈ FH 1 2 (R 3
), and for any

χ σ0 ∈ L ∞ (R 3 ) ∩ FH -1 2 (R 3 ): (1) (u, α) ∈ D(E ); (2) (u, α) ∈ D( Ê ); (3) Ê (u, α) = E • D g∞ (1)(u, α).
Remark 3.13. Relation (3) of Proposition 3.12 actually holds for any (u, α) ∈ D g∞ (-1)D(E ).

Remark 3.14. The Wick quantization of E yields the quadratic form • , H

∞ • Hn , that is not closed and bounded from below for any n ∈ N * . On the other hand, if χ σ0 is the ultraviolet cutoff of Section 2, then the Wick quantization of Ê yields directly the renormalized quadratic form • , Ĥ(n) ∞ • Hn that is closed and bounded from below for any n ≤ N(ε, σ 0 ).

Proof of Proposition 3.12. The statement (1) is just an application of Lemma 3.10 when θ = 0. If [START_REF] Ambrosio | Semiclassical limit of quantum dynamics with rough potentials and well-posedness of transport equations with measure initial data[END_REF] holds formally, than (2) follows directly, since by Lemma 3.10 the right hand side of (3) is well defined.

It remains to prove that the relation (3) holds formally. This is done by means of a direct calculation, 8 We recall again that g∞ = -i

(2π) -3/2 √ 2ω(k) 1-χσ 0 (k) k 2 2M +ω(k)
. that we will briefly outline here.

E • D g∞ (1)(u, α) = ue -iAg ∞ , D x 2M D x ue -iAg ∞ 2 + u, V u 2 + α, ωα 2 + 2Im α, ωg ∞ F u 2 + 1 (2π) 3/2 2Re R 6 1 2ω(k) ᾱ(k)e -ik•x |u(x)| 2 dxdk (a) + ωg ∞ F u 2 2 + 1 (2π) 3/2 2Im R 6 1 2ω(k) g ∞ (k)F u (k)e ik•x |u(x)| 2 dxdk . (b)
After some manipulation, taking care of the ordering, the first term on the right hand side becomes:

ue -iAg ∞ , D x 2M D x ue -iAg ∞ 2 = u, - ∆ 2M u 2 + 1 2M A r∞ u, A r∞ u 2 (c) -i u, A k 2 2M g∞ u 2 (d) - 1 M u, R 3 dk D x r∞ (k)α(k)e ik•x + r ∞ (k) ᾱ(k)e -ik•x D x u 2 . (e)
The proof is concluded making the following identifications (the other terms sum to the free part):

(a) + (d) = 1 (2π) 3/2 R 6 χ σ0 2ω(k) ᾱ(k)e -ik•x + α(k)e ik•x |u(x)| 2 dxdk ; (b) = 1 2 R 6 V ∞ (x -y)|u(x)| 2 |u(y)| 2 dxdy ; (c) = 1 2M R 9 r ∞ (k)ᾱ(k)e -ik•x + r∞ (k)α(k)e ik•x r ∞ (l)ᾱ(l)e -il•x + r∞ (l)α(l)e il•x |u(x)| 2 dxdkdl ; (e) = - 2 M Re R 6 r ∞ (k)ᾱ(k)e -ik•x ū(x)D x u(x)dxdk .

Global existence results.

In this section we discuss uniqueness and global existence of the classical dynamical system: using a well-known result on the undressed dynamics, we prove uniqueness and existence also for the dressed system.

The Cauchy problem associated to E by the Hamilton's equations is 9 (S-KG α [Y]). Theorem 3.15 below is a straightforward extension of [START_REF] Colliander | Low regularity global well-posedness for the Zakharov and Klein-Gordon-Schrödinger systems[END_REF][START_REF] Pecher | Some new well-posedness results for the Klein-Gordon-Schrödinger system[END_REF] that includes a (confining) potential on the NLS equation. As proved in [START_REF] Carles | Sharp weights in the cauchy problem for nonlinear schrodinger equations with potential[END_REF][START_REF] Oh | Cauchy problem and Ehrenfest's law of nonlinear Schrödinger equations with potentials[END_REF], the quadratic potential is the maximum we can afford to still have Strichartz estimates and global existence in the energy space. Therefore we make the following standard assumption on V : (60)

Assumption A V . V ∈ C ∞ (R 3 , R + ), and ∂ α V ∈ L ∞ (R 3 ) for any α ∈ N 3 ,
E : R × Q(-∆ + V ) ⊕ FH 1 2 (R 3 ) → Q(-∆ + V ) ⊕ FH 1 2 (R 3
) . 9 The Cauchy problem associated to Ê is equivalent to (S-KG[D]), setting:

W = V∞, ϕ = (2π) -3/2 F (χσ 0 ), ξ = (2π) -3/2 √ 2M F ( k 2 √ ω g∞) -F (i k 2 ω g∞) , ρ = √ 2 M F ( √ ωkg∞), and ζ = i √ M F ( k √ ω g∞).
If V = 0, then there is a unique Hamiltonian flow

(61) E : R × H s (R 3 ) ⊕ FH ς (R 3 ) → H s (R 3 ) ⊕ FH ς (R 3 ) . for any 0 ≤ s ≤ 1, s -1 2 ≤ ς ≤ s + 1 2 .
Theorem 3.16 (Dressed global existence). Assume A V . Then for any

χ σ0 ∈ L ∞ (R 3 ) ∩ FH -1 2 (R 3
), there is a unique Hamiltonian flow:

(62) Ê : R × Q(-∆ + V ) ⊕ FH 1 2 (R 3 ) → Q(-∆ + V ) ⊕ FH 1 2 (R 3 ) .
If V = 0, then there is a unique Hamiltonian flow

(63) Ê : R × H s (R 3 ) ⊕ FH ς (R 3 ) → H s (R 3 ) ⊕ FH ς (R 3 ) . for any 0 ≤ s ≤ 1, s -1 2 ≤ ς ≤ s + 1 2 .
For any V that satisfies A V , the flows Ê and E are related by:

(64) Ê = D g∞ (-1) • E • D g∞ (1) , E = D g∞ (1) • Ê • D g∞ (-1) .
Proof of Theorem 3.16. The theorem is a direct consequence of the global well-posedness result of Theorem 3.15, the relation Ê = E • D g∞ (1) proved in Proposition 3.12, and the regularity properties of the dressing proved in Proposition 3.5.

3.4. Symplectic character of D χσ 0 . To complete our description of the Schrödinger-Klein-Gordon system, we explicitly prove that the classical dressing is a (non-linear) symplectomorphism for the

real symplectic structure (L 2 ⊕ L 2 ) R , Im • , • L 2 ⊕L 2 . We denote by dD g (θ) (u,α) ∈ L(L 2 ⊕ L 2 ) the (Fréchet) derivative of D g (θ) at the point (u, α) ∈ L 2 ⊕ L 2 .
Proposition 3.17. Let g ∈ L 2 (R 3 ) be an even or odd function. Then for any θ ∈ R, D g (θ) is differentiable at any point (u, α) ∈ L 2 (R 3 ) ⊕ L 2 (R 3 ). In addition, it satisfies for any

(v 1 , β 1 ), (v 2 , β 2 ) ∈ L 2 (R 3 ) ⊕ L 2 (R 3 ): (65) Im dD g (θ) (u,α) (v 1 , β 1 ), dD g (θ) (u,α) (v 2 , β 2 ) L 2 ⊕L 2 = Im (v 1 , β 1 ), (v 2 , β 2 ) L 2 ⊕L 2 .
Proof. We recall that with the assumptions on g, D g (θ) has the explicit form:

D g (θ)(u(x), α(k)) = u(x)e -iθAg(x) , α(k) -iθg(k)F (|u| 2 )(k) ;
where A g and F are defined by Equations ( 51) and ( 52) respectively. The Fréchet derivative of D g (θ)

is easily computed, and yields

dD g (θ) (u,α) (v(x), β(k)) = v(x) -iθB g (x)u(x) e -iθAg(x) , β(k) -2iθg(k)Re F (ūv)(k) = i(v, β) , ii(v, β) ;
where we recall that B g (x) is A g (x) with α substituted by β. Then we have:

Im i(v 1 , β 1 ), i(v 2 , β 2 ) L 2 = Im v 1 , v 2 L 2 + 2θRe B (1) g u, v 2 L 2 -v 1 , B (2) g u L 2 , Im ii(v 1 , β 1 ), ii(v 2 , β 2 ) L 2 = Im β 1 , β 2 L 2 + 2θRe g ReF (ūv 1 ), β 2 L 2 -β 1 , g ReF (ūv 2 ) L 2 .
The result then follows, noting that g ReF (ūv 1 ),

β 2 L 2 = v 1 , B (2) 
g u L 2 and β 1 , g ReF (ūv 2 ) L 2 = B (1) g u, v 2 L 2 .

The classical limit of the renormalized Nelson model.

In this section we discuss in detail the classical limit of the renormalized Nelson model, both dressed and undressed, and prove the main result Theorem 1.1. A schematic outline of the proof is given in 4.1. Scheme of the proof. First of all, let us explain the main ideas that are behind our proof of Theorem 1.1. Since the explicit form of H ren (σ 0 ) is not known, it seems a very hard task to study directly the limit of a time-evolved family of states e -i t ε Hren(σ0) ε e i t ε Hren(σ0) , at least using established techniques. The introduction of the classical dressing, and the relation 64), proved in Theorem 3.16) play therefore a crucial role. Once we combine them with the convergence of the quantum dressing to the classical dressing "as a dynamical system", see Proposition 4.25, we can relate the undressed and dressed dynamics throughout the entire limit procedure. The final ingredient is the convergence of a family of states ε (t) = e -i t ε Ĥren ε e i t ε Ĥren evolved with the quantum dressed dynamics to the corresponding Wigner measure Ê(t) # µ 0 evolved with the classical dressed dynamics. Despite being technically demanding, the proof of the latter takes advantage of the explicit expression of the quadratic form ĥren (•, •) = • , Ĥren • associated to the dressed Hamiltonian. The lengthier part of the aforementioned proof is to control each term that arises from the expansion of the quadratic form associated to [ Ĥren,I , W ( ξs )]: it is necessary to prove that each associated classical symbol either is compact, or it can be approximated with a compact one.

E = D g∞ (1) • Ê • D g∞ (-1) (Equation (
In the light of the discussion above, the proof of Theorem 1.1 can be schematized through the following steps.

(i) (Subsection 4.2). Express the average of the Weyl operator W (ξ) with respect to the dressed time-evolved state ˜ ε (t) = e i t ε H0 ε (t) e -i t ε H0 (in the interaction picture) as the integral formula

Tr ˜ ε (t)W (ξ) = Tr ε W (ξ) + i ε t 0 Tr ε (s)[ Ĥren,I , W ( ξs )] ds .
(ii) (Subsection 4.3). Characterize the quadratic form associated to [ Ĥren,I , W ( ξs )], in particular prove that the associated classical symbol can be approximated with a compact symbol (Proposition 4.9).

(iii) (Subsections 4.4 and 4.5). Take the limit ε → 0 in the integral formula of Step (i) (extracting a common subsequence for all times), thus obtaining a time-dependent family (μ t ) t∈R of Wigner measures characterized by a transport equation

∂ t μt + ∇ T V(t)μ t = 0 .
(iv) (Subsection 4.6). The transport equation of Step (iii) is solved by E 0 (-t) # Ê(t) # µ 0 . Prove that the family (μ t ) t∈R can be uniquely identified with (E 0 (-t) # Ê(t) # µ 0 ) t∈R provided that ε (0) → µ 0 . This is achieved by applying a general uniqueness result for probability measure solutions of transport equations proved in [START_REF] Ammari | On the uniqueness of probability measure solutions to Liouville's equation of Hamiltonian PDEs[END_REF]. 

∃C > 0 , ∀ε ∈ (0, ε) , ∀k ∈ N , Tr[ ε N k 1 ] ≤ C k .
We recall that the Weyl operator

W (ξ), L 2 ⊕ L 2 ξ = ξ 1 ⊕ ξ 2 , is defined as: (66) W (ξ) = e i √ 2 ψ * (ξ1)+ψ(ξ1) e i √ 2 a * (ξ2)+a(ξ2) . Lemma 4.1. For any ξ = ξ 1 ⊕ ξ 2 such that ξ 1 ∈ Q(-∆ + V ) ⊂ H 1 and ξ 2 ∈ D(ω 1/2 ) ≡ FH 1/2
, there exists C(ξ) > 0 that depends only on ξ 1 H 1 and ξ 2 F H 1/2 , such that for any ε ∈ (0, ε):

H 1/2 0 W (ξ)Ψ ≤ C(ξ) (H 0 + ε) 1/2 Ψ , ∀Ψ ∈ Q(H 0 ) ; (H 0 + 1) 1/2 (N 1 + 1) 1/2 W (ξ)Ψ ≤ C(ξ) (H 0 + ε) 1/2 (N 1 + ε) 1/2 Ψ , ∀Ψ ∈ Q(H 0 ) ∩ Q(N 1 ) .
In an analogous fashion, for any ξ ∈ L 2 ⊕ L 2 , r > 0, there exist C(ξ) > 0 that depends only on ξ 1 2 and ξ 2 2 , such that for any ε ∈ (0, ε):

(N 1 + N 2 ) r/2 W (ξ)Ψ ≤ C(ξ) (N 1 + N 2 + ε) r/2 Ψ , ∀Ψ ∈ Q(N r 1 ) .
Lemma 4.2. Let ( ε ) ε∈(0,ε) be a family of normal states on H. Then ( ε ) ε∈(0,ε) satisfies Assumption (A 0 ) if and only if for any ε ∈ (0, ε) there exists a sequence (Ψ i (ε)) i∈N of orthonormal vectors in H with non-zero components only in

[C/ε] n=0 H n and a sequence (λ i (ε)) i∈N ∈ l 1 , with each λ i (ε) > 0, such that: ε = i∈N λ i (ε)|Ψ i (ε) Ψ i (ε)| .
The explicit ε-dependence of Ψ i and λ i will be often omitted.

Proof. We start assuming (A 0 ). Let ε = i∈N λ i |Ψ i Ψ i | be the spectral decomposition of ε . Then

Tr ε N k 1 = i∈N λ i Ψ i , N k 1 Ψ i ≤ C k ⇒ i∈N λ i Ψ i , (N 1 /C) k Ψ i ≤ 1 .
Let 1 [L,+∞) (N 1 ) be the spectral projection of N 1 on the interval [L, +∞); and choose L > C. Then it follows that: The converse statement that Assumption (A 0

1 ≥ Tr ε 1 [L,+∞) (N 1 )(N 1 /C) k = i∈N λ i Ψ i , 1 [L,+∞) (N 1 )(N 1 /C) k Ψ i ≥ i∈N λ i (L/C) k Ψ i , 1 [L,+∞) (N 1 )Ψ i . Therefore (L/C) k Ψ i , 1 [L,+∞) (N 1 )Ψ i ≤
) follows if ε = i∈N λ i |Ψ i Ψ i |, with each Ψ i with at most [C/ε] particles is trivial to prove.
In this subsection, we will consider only families of states ( ε ) ε∈(0,ε) that satisfy Assumption (A 0 )

and the following assumption:

(A ρ ) ∃C > 0 , ∀ε ∈ (0, ε) , Tr[ ε (N 1 + H 0 )] ≤ C . Definition 4.3 ( ε (t), ˜ ε (t)).
We define the dressed time evolution of a state ε to be

ε (t) = e -i t ε Ĥren ε e i t ε Ĥren ,
where the dependence on σ 0 of Ĥren is omitted, and the σ 0 is chosen such that the dynamics is nontrivial on the whole subspace with at most [C/ε] nucleons (see Lemma 4.2 and the discussion in Section 1.2). We also define the dressed evolution in the interaction picture to be

˜ ε (t) = e i t ε H0 ε (t) e -i t ε H0 .
To characterize the evolved Wigner measures corresponding to ˜ ε (t), it is sufficient to study its Fourier transform; this is done studying the evolution of Tr[˜ ε (t)W (ξ)] by means of an integral equation.

Proposition 4.4. Let ( ε ) ε∈(0,ε) be a family of normal states on H satisfying Assumptions (A 0 )

and

(A ρ ). Then for any t ∈ R, Q(-∆ + V ) ⊕ D(ω 1/2 ) ξ = ξ 1 ⊕ ξ 2 : Tr ˜ ε (t)W (ξ) = Tr ε W (ξ) + i ε t 0 Tr ε (s)[ Ĥren,I , W ( ξs )] ds , (67) 
where ξs = e is(-∆+V ) ξ 1 ⊕ e -isω ξ 2 . The commutator [ Ĥren,I , W ( ξs )] has to be intended as a densely defined quadratic form with domain Q(H 0 ), or equivalently as an operator from Q(H 0 ) to Q(H 0 ) * .

Proof. The family ( ε ) ε∈(0,ε) satisfies Assumption (A 0 ), therefore by Lemma 4.2:

Tr ˜ ε (t)W (ξ) = i∈N λ i e i t ε H0 e -i t ε Ĥren Ψ i , W (ξ)e i t ε H0 e -i t ε Ĥren Ψ i .
By Assumption (A ρ ), it follows that Ψ i ∈ Q(H 0 ) for any i ∈ N. Hence the right hand side is differentiable in t by Lemma 4.1, since Q(H 0 ) is the form domain of both H 0 and Ĥren . Using the Duhamel formula and the fact that e -i s ε H0 W (ξ)e i s ε H0 = W ( ξs ), we then obtain:

Tr ˜ ε (t)W (ξ) = i∈N λ i Ψ i , W (ξ)Ψ i + i ε t 0 e -i s ε Ĥren Ψ i , [ Ĥren,I , W ( ξs )]e -i s ε Ĥren Ψ i ds ;
where [ Ĥren,I , W ( ξs )] makes sense as a quadratic form on Q(H 0 ). The result is then obtained using The goal is to show that each of its terms converges in the limit ε → 0, either to zero or to a suitable phase space symbol.

For convenience, we recall some terminology related to quantization procedures in infinite dimensional phase spaces (see [START_REF] Ammari | Mean field limit for bosons and infinite dimensional phase-space analysis[END_REF] for additional informations). Let Z be a Hilbert space (the classical phase space). In the language of quantization, we call a densely defined functional A : D ⊂ Z → C a (classical) symbol. We say that A is a polynomial symbol if there are densely defined bilinear forms b p,q on Z ⊗sp × Z ⊗sq , 0 ≤ p ≤ p, 0 ≤ q ≤ q (with p, p, q, q ∈ N) such that ( 68)

A (z) = 0≤p≤ p 0≤q≤q
b p,q (z ⊗p , z ⊗q ) .

The Wick quantized quadratic form (A ) W ick on Γ s (Z) is then obtained, roughly speaking, replacing each z(•) with the annihilation operator valued distribution a(•); each z(•) with the creation operator valued distribution a * (•); and putting all the a * (•) to the left of the a(•). We denote, with a straightforward notation, the class of all polynomial symbols on Z by alg (p,q)∈N 2 Q p,q (Z). If A : Z → C and the bilinear forms b p,q (z ⊗p , z ⊗q ) in [START_REF] Nelson | Interaction of nonrelativistic particles with a quantized scalar field[END_REF] can all be written as z ⊗q , bp,q z ⊗p Z ⊗sq for some bounded (resp. compact) operator bp,q : Z ⊗sp → Z ⊗sq , we say that A is a bounded (resp. compact) polynomial symbol. We denote the class of all bounded (resp. compact) polynomial symbols by alg (p,q)∈N 2 P p,q (Z) resp. alg (p,q)∈N 2 P ∞ p,q (Z) . We remark that E , Ê and D g defined in Section 3 are all polynomial symbols 10 on L 2 ⊕ L 2 . Lemma 4.5. Let ( ε ) ε∈(0,ε) satisfy the same assumptions as in Proposition 4.4. Then there exist maps B j (•) :

Q(-∆ + V ) ⊕ D(ω 1/2 ) → alg (p,q)∈N 2 Q p,q L 2 ⊕ L 2 , j = 0, . . . , 3, such that for any t ∈ R, ξ ∈ Q(-∆ + V ) ⊕ D(ω 1/2 ): Tr ˜ ε (t)W (ξ) = Tr ε W (ξ) + 3 j=0 ε j t 0 Tr ε (s)W ( ξs ) B j ( ξs ) W ick ds = Tr ε W (ξ) + 3 j=0 ε j t 0 Tr ε (s)W ( ξs )B j ( ξs ) ds ; ( 69 
)
where the B j ( ξs ) W ick make sense as densely defined quadratic forms. To simplify the notation, we have set B j (•) := B j (•) W ick . 10 In L 2 (R 3 )⊕L 2 (R 3 ), we adopt the notation z = (u, α); and to each u(x) it corresponds the operator valued distribution ψ(x), to each α(k) the distribution a(k). The Wick quantization is again obtained by substituting each u # (x), α # (k) with ψ # (x), a # (k) , and using the normal ordering of creators to the left of annihilators.

Proof. We only sketch the proof here since it follows the same lines as in [START_REF] Ammari | Mean field propagation of infinite dimensional Wigner measures with a singular two-body interaction potential[END_REF][START_REF] Liard | Dérivation des équations de schrödinger non-linéaires par une méthode des caractéristiques en dimension infinie[END_REF]. By [START_REF] Møller | The translation invariant massive Nelson model. I. The bottom of the spectrum[END_REF], the only thing we have to prove is that, in the sense of quadratic forms, i ε [ Ĥren,I , W ( ξs )] = 3 j=0 W ( ξs )B j ( ξs ). First of all, we remark that Ĥren,I is the Wick quantization of a polynomial symbol 11 ; i.e. Ĥren,I = ÊI W ick , with

ÊI (u, α) = 1 (2π) 3/2 R 6 χ σ0 2ω(k) ᾱ(k)e -ik•x + α(k)e ik•x |u(x)| 2 dxdk + 1 2M R 9 r ∞ (k)ᾱ(k)e -ik•x + r∞ (k)α(k)e ik•x r ∞ (l) ᾱ(l)e -il•x +r ∞ (l)α(l)e il•x |u(x)| 2 dxdkdl - 2 M Re R 6 r ∞ (k) ᾱ(k)e -ik•x ū(x)D x u(x)dxdk + 1 2 R 6 V ∞ (x -y)|u(x)| 2 |u(y)| 2 dxdy . (70) 
We also recall, according to [8, Proposition 2.10 for bounded polynomial symbols] and [62, Proposition 2.1.30 for the general case], that essentially for any A ∈ alg (p,q)∈N 2 Q p,q (L 2 ⊕ L 2 ) the following formula is true, in the sense of forms, for any suitably regular ξ ∈ L 2 ⊕ L 2 :

(71) W * (ξ) A W ick W (ξ) = A • + iε √ 2 ξ W ick
.

Roughly speaking, the Weyl operators W (ξ) translate each creation/annihilation operator by ∓ iε We state the next lemma without giving the tedious proof, that is based on the same type of estimates given in Section 2.2 for the full operator Ĥren,I .

Lemma 4.6. For any j = 0, 1, 2, 3, ξ ∈ Q(-∆ + V ) ∩ D(ω 1/2 ) and C > 0, there exists C j (ξ) > 0 such that for any Φ, Ψ ∈ D(H

1/2 0 ) ∩ D(N 1 ), with Φ or Ψ in [C/ε]
n=0 H n and for any s ∈ R and ε ∈ (0, ε):

(72) | Φ, B j ( ξs )Ψ | ≤ C j (ξ) (N 1 + H 0 + ε) 1/2 Φ • (N 1 + H 0 + ε) 1/2 Ψ .
Thanks to this lemma we are now in a position to prove that the higher order terms in ε of Equation ( 69) (namely those with j > 0) vanish in the limit ε → 0.

Proposition 4.7. Let ( ε ) ε∈(0,ε) satisfy Assumptions (A 0 ) and (A ρ ); let ξ ∈ Q(-∆ + V ) ∩ D(ω 1/2 ).
Then the following limit holds for any t ∈ R:

(73) lim Ψ i is on the domain Q(H 0 ) ∩ Q(N 1 ), and in addition i λ i Ψ i , (N 1 + H 0 )Ψ i ≤ C, uniformly with respect to ε ∈ (0, ε). Therefore we can write

3 j=1 ε j t 0 Tr ε (s)W ( ξs )B j ( ξs ) ds ≤ 3 j=1 ε j i λ i t 0 W * ( ξs )e -i s ε Ĥren Ψ i , B j ( ξs )e -i s ε Ĥren Ψ i ds .
Using now Lemma 4.6 and then Lemma 4.1 and the fact that N 1 commutes with Ĥren we obtain

3 j=1 ε j t 0 Tr ε (s)W ( ξs )B j ( ξs ) ds ≤ 3 j=1 ε j C j (ξ) i λ i t 0 (N 1 + H 0 + ε) 1/2 W * ( ξs )e -i s ε Ĥren Ψ i • (N 1 + H 0 + ε) 1/2 e -i s ε Ĥren Ψ i ds ≤ 3 j=1 ε j C(ξ)C j (ξ) i λ i t 0 e -i s ε Ĥren Ψ i , (N 1 + H 0 + ε)e -i s ε Ĥren Ψ i ds ≤ 3 j=1 ε j C(ξ)C j (ξ) i λ i t Ψ i , (N 1 + ε)Ψ i + t 0 e -i s ε Ĥren Ψ i , H 0 e -i s ε Ĥren Ψ i ds .
Now we consider the term e -i s ε Ĥren Ψ i , H 0 e -i s ε Ĥren Ψ i . First of all we write it as

e -i s ε Ĥren Ψ i , H 0 e -i s ε Ĥren Ψ i = e -i s ε Ĥren Ψ i , ( Ĥren -Ĥren,I )e -i s ε Ĥren Ψ i = [C/ε] n=0 e -i s ε Ĥ(n) ∞ Ψ (n) i , Ĥ(n) ∞ - Ĥ(n) I (∞) e -i s ε Ĥ(n) ∞ Ψ (n) i = [C/ε] n=0 Ψ (n) i , Ĥ(n) ∞ Ψ (n) i -e -i s ε Ĥ(n) ∞ Ψ (n) i , Ĥ(n) I (∞)e -i s ε Ĥ(n) ∞ Ψ (n) i ≤ [C/ε] n=0 Ψ (n) i , Ĥ(n) ∞ Ψ (n) i + e -i s ε Ĥ(n) ∞ Ψ (n) i , Ĥ(n) I (∞)e -i s ε Ĥ(n) ∞ Ψ (n) i . (74) 
The idea now is to use the bound of Equation ( 36) on e

-i s ε Ĥ(n) ∞ Ψ (n) i , Ĥ(n) I (∞)e -i s ε Ĥ(n) ∞ Ψ (n) i
. The crucial point is that since we have chosen σ 0 such that the dynamics is non-trivial for any n ≤ [C/ε],

it follows that there exist an a < 1 and a b < ∞ both independent of ε and n such that the bound [START_REF] Folland | Quantum field theory[END_REF] holds for any n ≤ [C/ε]. Therefore we obtain

e -i s ε Ĥren Ψ i , H 0 e -i s ε Ĥren Ψ i ≤ a e -i s ε Ĥren Ψ i , H 0 e -i s ε Ĥren Ψ i + b Ψ i , Ψ i + [C/ε] n=0 Ψ (n) i , Ĥ(n) ∞ Ψ (n) i . ( 75 
)
Now since a < 1, we may take it to the left hand side and use again (36) on Ψ

(n) i , Ĥ(n) ∞ Ψ (n) i : e -i s ε Ĥren Ψ i , H 0 e -i s ε Ĥren Ψ i ≤ 1 1 -a Ψ i , H 0 Ψ i + 2b 1 -a Ψ i , Ψ i . (76)
Finally, since the state is normalized (i.e. i λ i Ψ i , Ψ i = 1), we conclude:

3 j=1 ε j t 0 Tr ε (s)W ( ξs )B j ( ξs ) ds ≤ t 3 j=1 ε j C(ξ)C j (ξ) i λ i Ψ i , N 1 Ψ i + 1 1-a Ψ i , H 0 Ψ i +( 2b 1-a + ε) Ψ i , Ψ i ≤ t 3 j=1 ε j C(ξ)C j (ξ) 1 + 1 1-a i λ i Ψ i , (N 1 + H 0 )Ψ i + 2b 1-a + ε ≤ t 3 j=1 ε j C(ξ)C j (ξ) 1 + 1 1-a C + 2b 1-a + ε .
The right hand side has no implicit dependence on ε, so it converges to zero when ε → 0.

By the same argument used from ( 74) to ( 76) above, we can prove the following useful lemma.

Lemma 4.8. If a family of states ( ε ) ε∈(0,ε) satisfies Assumptions (A 0 ) and (A ρ ), then for any t ∈ R, ε (t) ε∈(0,ε) and ˜ ε (t) ε∈(0,ε) satisfy Assumptions (A 0 ) and (A ρ ). In particular, there exist a(C) < 1 and b(C) > 0 such that uniformly on ε ∈ (0, ε):

Tr[ ε (t)N k 1 ] ≤ C k , ∀k ∈ N ; (77) Tr[ ε (t)(N 1 + H 0 )] ≤ 1 1 -a(C) C + 2b(C) 1 -a(C) ; ( 78 
)
and the same bounds hold for ˜ ε (t) ε∈(0,ε) .

It remains to study the limit of the B 0 (•)-term in [START_REF] Oh | Cauchy problem and Ehrenfest's law of nonlinear Schrödinger equations with potentials[END_REF]. As already pointed out in Lemma 4.5, we know that B 0 is a Wick quantization. More precisely, there exist a densely defined map from the one-particle space to polynomial symbols in (p,q)∈{(i,j)|0≤i,j≤2;2≤i+j≤3} Q p,q L 2 ⊕ L 2 . In order to apply the convergence results of Ammari and Nier [START_REF] Ammari | Mean field limit for bosons and infinite dimensional phase-space analysis[END_REF], we need to show that the symbol of B 0 may be approximated by a compact one, with an error that vanishes in the limit ε → 0.

To improve readability, we will write B 0 (ξ) in a schematic fashion. The precise structure of each term will be discussed and analyzed in the proof of the sequent proposition. In addition, as seen in Equation ( 16), the dressed interaction quadratic form ĤI (∞) can be split in three terms: the first is just the interaction term H I (σ 0 ) of the Nelson model with cutoff (with σ replaced by σ 0 ), whose classical limit has been analyzed by the authors in [START_REF] Ammari | Wigner measures approach to the classical limit of the Nelson model: Convergence of dynamics and ground state energy[END_REF]; the second is a "mean-field" term for the nucleons, of the same type as the ones analyzed by Ammari and Nier in [START_REF] Ammari | Mean field propagation of infinite dimensional Wigner measures with a singular two-body interaction potential[END_REF]; the last one has a structure similar to the interaction part of the Pauli-Fierz model [see e.g. [START_REF] Bach | Quantum electrodynamics of confined nonrelativistic particles[END_REF][START_REF] Bach | Renormalization group analysis of spectral problems in quantum field theory[END_REF][START_REF] Bach | Spectral analysis for systems of atoms and molecules coupled to the quantized radiation field[END_REF][START_REF] Spohn | Dynamics of charged particles and their radiation field[END_REF], and thus will be called of "Pauli-Fierz type". We will concentrate on the analysis of the Pauli-Fierz type terms of B 0 , while for a precise treatment of the others the reader may refer to [START_REF] Ammari | Wigner measures approach to the classical limit of the Nelson model: Convergence of dynamics and ground state energy[END_REF][START_REF] Ammari | Mean field propagation of infinite dimensional Wigner measures with a singular two-body interaction potential[END_REF]. In order to highlight the different parts of B 0 (ξ) = B 0 (ξ 1 , ξ 2 ), we will underline with different style and color the Nelson, . . . . . . . . . . . mean-field and Pauli-Fierz type terms:

B 0 (ξ 1 , ξ 2 ) = B 0 (ξ 1 , ξ 2 ) W ick = (a * + a)(ξ 1 ψ * -ξ1 ψ) + Im(ξ 2 )ψ * ψ + ξ1 ψ * ψψ -ξ 1 ψ * ψ * ψ . . . . . . . . . . . . . . . . . . . . +(a * a * + aa + a * a)(ξ 1 ψ * -ξ1 ψ) + (ξ 2 a * -ξ2 a)ψ * ψ + (a * D x + D x a)(ψ * ξ 1 -ξ1 ψ) +ψ * D x ξ 2 ψ -ψ * ξ2 D x ψ . (79) 
Proposition 4.9. There exists a family of maps (B

(m) 0 ) m∈N such that: * For any m ∈ N B (m) 0 (•) : Q(-∆ + V ) ⊕ D(ω 3/4 ) → (p,q)∈{(i,j)|0≤i,j≤2;2≤i+j≤3} P ∞ p,q L 2 ⊕ L 2 ; * For any ξ ∈ Q(-∆ + V ) ⊕ D(ω 3/4
), there exist a sequence C (m) (ξ) m∈N that depends only on ξ Q(-∆+V )⊕D(ω 3/4 ) such that lim m→∞ C (m) = 0; and such that for any two vectors Φ, Ψ ∈ H ∩ D(N 1 ), and for any ε ∈ (0, ε):

(H 0 + 1) -1/2 Φ, B 0 (ξ) -B (m) 0 (ξ) W ick (H 0 + 1) -1/2 Ψ ≤ C (m) (ξ) (N 1 + ε) 1/2 Φ • (N 1 + ε) 1/2 Ψ . ( 80 
)
Remark 4.10. Contrarily to what it was previously assumed throughout Section 4, in this proposition we need additional regularity on ξ 2 , namely ξ 2 ∈ D(ω 3/4 ) ⊂ D(ω 1/2 ). This will not be a problem in the following, since we will extend our results to any ξ ∈ L 2 (R 3 ) ⊕ L 2 (R 3 ) by a density argument, and

D(ω 3/4 ) is still dense in L 2 (R 3 ).
Proof of Proposition 4.9. To prove the proposition, we need to analyze each term of Equation ( 79),

and prove that either it has a compact symbol or it can be approximated by one, in a way that [START_REF] Van Hove | Energy corrections and persistent perturbation effects in continuous spectra[END_REF] holds. The analysis for Nelson terms has been carried out in [5, Proposition 3.11 and Lemma 3.15]. In addition, using Lemma 2.5 we see that V ∞ satisfies the hypotheses of the mean field potentials in [START_REF] Ammari | Mean field propagation of infinite dimensional Wigner measures with a singular two-body interaction potential[END_REF], therefore (80) holds also for the . . . . . . . . . . . mean-field terms [see in particular Section 3.2 of 11]. For the sake of completeness, we explicitly write the Nelson and mean field part of Equation ( 79):

(a * + a)(ξ 1 ψ * -ξ1 ψ) = - 1 √ 2(2π) 3/2 R 3 a * e -ik•x √ 2ω χ σ0 + a e -ik•x √ 2ω χ σ0 ξ 1 (x)ψ * (x) -ξ1 (x)ψ(x) dx ; Im(ξ 2 )ψ * ψ = - 1 √ 2(2π) 3/2 R 6 χσ 0 (k) √ 2ω(k) ξ 2 (k)e ik•x -ξ2 (k)e -ik•x ψ * (x)ψ(x)dxdk ; ξ1 ψ * ψψ -ξ 1 ψ * ψ * ψ . . . . . . . . . . . . . . . . . . . . = 1 √ 2 R 6 V ∞ (x -y) ξ1 (y)ψ * (x)ψ(x)ψ(y) -ξ 1 (y)ψ * (x)ψ * (y)ψ(x) dxdy .
It remains to study the terms of Pauli-Fierz type. This is done in six parts; in each part we group terms that are either adjoint of each other, or can be treated in a similar fashion.

Part 1 ( ξ1 aaψ, ξ 1 a * a * ψ * ).

ξ1 aaψ = -1 2 √ 2M R 3 a r ∞ e -ik•x 2 ξ1 (x)ψ(x)dx .
We recall that r ∞ ∼ kg ∞ , where g σ is defined by [START_REF] Ammari | On the uniqueness of probability measure solutions to Liouville's equation of Hamiltonian PDEs[END_REF] for any σ ≤ ∞. Let ξ1 ααu be the symbol 12 associated to ξ1 aaψ, i.e. ξ1 aaψ = ( ξ1 ααu) W ick . Now, since r ∞ / ∈ L 2 (R 3 ), we cannot expect that ξ1 ααu is defined for any u, α ∈ L 2 (R 3 ), and therefore that it is a compact symbol. We introduce the approximated symbol ξ1 ααu (m) defined by

ξ1 aaψ (m) = ( ξ1 ααu (m) ) W ick = -1 2 √ 2M R 3 a r σm e -ik•x 2 ξ1 (x)ψ(x)dx , with (σ m ) m∈N ⊂ R such that lim m→∞ σ m = ∞.
First of all, we prove that (80) holds for ξ1 aaψ -ξ1 aaψ (m) :

(H 0 + 1) -1/2 Φ, ( ξ1 aaψ -ξ1 aaψ (m) )(H 0 + 1) -1/2 Ψ ≤ 1 2 √ 2M ξ 1 2 (dΓ(ω) + 1) 1/2 (H 0 + 1) -1/2 Φ • sup x∈R 3 (dΓ(ω) + 1) -1/2 a (r ∞ -r σm )e -ik•x 2 (dΓ(ω) + 1) -1/2 (dΓ(ω) + 1) 1/2 (H 0 + 1) -1/2 (N 1 + ε) 1/2 Ψ .
We use (28) of Lemma 2.7 and the fact that (dΓ(ω) + 1) 1/2 (H 0 + 1) -1/2 is bounded with norm smaller than one to obtain

(H 0 + 1) -1/2 Φ, ( ξ1 aaψ -ξ1 aaψ (m) )(H 0 + 1) -1/2 Ψ ≤ c 2 √ 2M ξ 1 2 ω -1/4 (r ∞ -r σm ) 2 2 Φ • (N 1 + ε) 1/2 Ψ ≤ C (m) (ξ 1 ) (N 1 + ε) 1/2 Φ • (N 1 + ε) 1/2 Ψ , with C (m) (ξ 1 ) = C(ε, ξ 1 ) ω -1/4 (r ∞ -r σm ) 2 2
for some C(ε, ξ 1 ) > 0. The sequence C (m) (ξ 1 ) m∈N converges to zero since by our choice of (σ m ) m∈N :

lim m→∞ ω -1/4 (r ∞ -r σm ) 2 2 = 0 .
It remains to show that ξ1 ααu (m) is a compact symbol. Such symbol can be written as

ξ1 ααu (m) = -1 2 √ 2M R 9 ξ1 (x)r σm (k)r σm (k )e i(k+k )•x α(k)α(k )u(x)dxdkdk .
Now we can define an operator bααu : L 2 ⊕ L 2 ⊗s3 → C in the following way. Let the maps π 1 , π 2 :

L 2 (R 3 ) ⊕ L 2 (R 3 ) → L 2 (R 3
) be the projections on the first and second space respectively. Then we define the operator bααu as: bααu

: (u, α) ⊗3 ∈ L 2 ⊕ L 2 ⊗s3 -→ π2⊗π2⊗π1 α(k)α(k )u(x) ∈ L 2 (R 9 ) -→ f, ααu L 2 (R 9 ) ∈ C ; where f (k, k , x) = -1 2 √ 2M ξ1 (x)r σm (k)r σm (k )e i(k+k )•x ∈ L 2 (R 9
). Therefore bααu is bounded and finite rank, and therefore compact. The proof for the corresponding adjoint term

ξ 1 a * a * ψ * = -1 2 √ 2M R 3 a * r ∞ e -ik•x 2 ξ 1 (x)ψ * (x)dx
can be obtained directly from the above, using the following approximation with compact symbol:

ξ 1 a * a * ψ * (m) = (ξ 1 ᾱ ᾱū (m) ) W ick = -1 2 √ 2M R 3 a * r σm e -ik•x 2 ξ 1 (x)ψ * (x)dx . Part 2 (ξ 1 aaψ * , ξ1 a * a * ψ). ξ 1 aaψ * = -1 2 √ 2M R 3 a r ∞ e -ik•x 2 ξ 1 (x)ψ * (x)dx .
Again we approximate this term by

ξ 1 aaψ * (m) = (ξ 1 ααū (m) ) W ick = -1 2 √ 2M R 3 a r σm e -ik•x 2 ξ 1 (x)ψ * (x)dx
as above. The proof that it satisfies ( 80) is perfectly analogous as the one for the previous term.

Therefore we only prove that ξ 1 ααū (m) is a compact symbol. We define an operator b ααū :

L 2 ⊕ L 2 ⊗s2 → L 2 ⊕ L 2 by bααū : (u, α) ⊗2 ∈ L 2 ⊕ L 2 ⊗s2 -→ π2⊗π2 α(k)α(k ) ∈ L 2 (R 6 ) -→ cααū R 6 f (k, k , •)α(k)α(k )dkdk ⊕ 0 ∈ L 2 ⊕ L 2 ;
where

f (k, k , x) = -1 2 √ 2M ξ 1 (x)r σm (k)r σm (k )e -i(k+k )•x
. By definition, we have that

ξ 1 ααū (m) = (u, α), bααū (u, α) ⊗2 L 2 ⊕L 2 .
It is easily seen that the operator cααū is bounded. It is in fact compact: let β j β in L 2 (R 6 ) be a weakly convergent (bounded) sequence such that max sup

j β j L 2 (R 6 ) , β L 2 (R 6 ) = X < ∞; then cααū (β -β j ) L 2 ⊕L 2 = f (k, k , x), (β -β j )(k, k ) L 2 k,k (R 6 ) L 2 x (R 3 ) -→ j→∞ 0 ,
by Lebesgue's dominated convergence theorem, using the uniform bound

f (k, k , x), (β -β j )(k, k ) 2 L 2 k,k (R 6 ) ≤ f (k, k , x) 2 L 2 k,k (R 6 ) β 2 L 2 (R 6 ) + β j 2 L 2 (R 6 ) ≤ 2X 8M 2 r σm 4 2 |ξ 1 (x)| 2 ∈ L 1 x (R 3 ) .
Therefore, since cααū is compact and π 2 ⊗ π 2 is bounded, it follows that bααū is compact. Again, that implies the result holds also for the adjoint term

ξ1 a * a * ψ = -1 2 √ 2M R 3 a * r ∞ e -ik•x 2 ξ1 (x)ψ(x)dx . Part 3 ( ξ1 a * aψ, ξ 1 a * aψ * ). ξ1 a * aψ = -1 √ 2M R 3 a * r ∞ e -ik•x a r ∞ e -ik•x ξ1 (x)ψ(x)dx , ξ 1 a * aψ * = -1 √ 2M R 3 a * r ∞ e -ik•x a r ∞ e -ik•x ξ 1 (x)ψ * (x)dx .
The proof for this couple of terms goes on exactly like the previous one, i.e. approximating r ∞ with r σm and showing that the corresponding operator cᾱαu is compact, for it maps weakly convergent sequences into strongly convergent ones.

Part 4 ( ξ2 aψ * ψ, ξ 2 a * ψ * ψ).

ξ2 aψ * ψ = - √ 2i M R 6 Im ξ 2 (k )r ∞ (k )e ik •x a r ∞ e -ik•x ψ * (x)ψ(x)dxdk .
We approximate it by the symbol ξ2 αūu (m) defined by:

ξ2 aψ * ψ (m) = ( ξ2 αūu (m) ) W ick = - √ 2i M R 6 ψ * (x)χ m (D x )Im ξ 2 (k )r ∞ (k )e ik •x a r σm e -ik•x ψ(x)dxdk ;
where χ m is the smooth cut-off function defined at the beginning of Section 2, while r σm is the usual regularization of r ∞ defined above. First of all we check that the approximation satisfies [START_REF] Van Hove | Energy corrections and persistent perturbation effects in continuous spectra[END_REF]. By the chain rule, two parts have to be checked:

(H 0 + 1) -1/2 Φ, ( ξ2 aψ * ψ -ξ2 aψ * ψ (m) )(H 0 + 1) -1/2 Ψ ≤ √ 2(2π) 3/2 M (H 0 + 1) -1/2 Φ, R 3 dx ψ * (x) 1 -χ m (D x ) ImF -1 ξ 2 r∞ (x)a r ∞ e -ik•x ψ(x)(H 0 + 1) -1/2 Ψ + (H 0 + 1) -1/2 Φ, R 3 dx ψ * (x)χ m (D x )ImF -1 ξ 2 r∞ (x)a (r ∞ -r σm )e -ik•x ψ(x)(H 0 + 1) -1/2 Ψ ;
and we will consider them separately. For the first part we have:

(H 0 + 1) -1/2 Φ, R 3 dx ψ * (x) 1 -χ m (D x ) ImF -1 ξ 2 r∞ (x)a r ∞ e -ik•x ψ(x)(H 0 + 1) -1/2 Ψ ≤ ∞ n=0 nε (H (n) 0 + 1) -1/2 Φ n , (1 -χ m (D x1 ))ImF -1 ξ 2 r∞ (x 1 )a r ∞ e -ik•x1 (H (n) 0 + 1) -1/2 Ψ n Hn ≤ ∞ n=0 nε (1 -D 2 x ) -1/2 1 -χ m (D x ) L(L 2 (R 3 )) • F -1 (ξ 2 r∞ ) ∞ • ω -1/2 r ∞ 2 • (1 -D 2 x1 ) 1/2 (H (n) 0 + 1) -1/2 Φ n Hn • dΓ(ω) 1/2 (H (n) 0 + 1) -1/2 Ψ n Hn ≤ (1 + ε) ξ 2 F H 1/2 • ω -1/2 r ∞ 2 2 • (1 -D 2 x ) -1/2 1 -χ m (D x ) L(L 2 (R 3 )) • (N 1 + ε) 1/2 Φ • N 1/2 1 Ψ ;
where in the last inequality we have utilized the following bound:

nε (1 -D 2 x1 ) 1/2 (H (n) 0 + 1) -1/2 Φ n 2 Hn = Φ n , (H (n) 0 + 1) -1/2 dΓ(1 -∆)(H (n) 0 + 1) -1/2 Φ n Hn ≤ N 1/2 1 Φ n Hn + dΓ(-∆) 1/2 (H (n) 0 + 1) -1/2 Φ n Hn ≤ (1 + ε) (N 1 + ε) 1/2 Φ n Hn .
So the first part satisfies (80), since

lim m→∞ (1 -D 2 x ) -1/2 1 -χ m (D x ) L(L 2 (R 3 )) = 0 .
A similar procedure for the second part yields

(H 0 + 1) -1/2 Φ, R 3 dx ψ * (x)χ m (D x )ImF -1 ξ 2 r∞ (x)a (r ∞ -r σm )e -ik•x ψ(x)(H 0 + 1) -1/2 Ψ ≤ ξ 2 F H 1/2 • ω -1/2 r ∞ 2 • ω -1/2 (r ∞ -r σm ) 2 N 1/2 1 Φ • N 1/2 1 Ψ ;
i.e. it satisfies [START_REF] Van Hove | Energy corrections and persistent perturbation effects in continuous spectra[END_REF], for lim m→∞ ω -1/2 (r ∞ -r σm ) 2 = 0. Now it remains to show that ξ2 αūu (m) is a compact symbol:

ξ2 αūu (m) = -(2π) 3/2 √ 2i M R 6 ū(x)χ m (D x )ImF -1 ξ 2 r∞ (x)r σm (k)e ik•x α(k)u(x)dxdk .
As for the previous terms, we define an operator b αūu :

L 2 ⊕ L 2 ⊗s2 → L 2 ⊕ L 2 by bαūu : (u, α) ⊗2 ∈ L 2 ⊕ L 2 ⊗s2 -→ π2⊗π1 α(k)u(x) ∈ L 2 (R 6 ) -→ cαūu f (x, D x )u(x) ⊕ 0 ∈ L 2 ⊕ L 2 ; where f (x, D x ) = -(2π) 3 √ 2i M χ m (D x )F -1 rσm α (x)ImF -1 ξ 2 r∞ (x).
We can easily prove that f :

L 2 (R 3 ) → L 2 (R 3 ) is a compact operator. The cutoff function χ m ∈ L ∞ 0 (R 3
) by hypothesis 13 . 13 We denote by L ∞ 0 (R 3 ) the set of bounded functions on R 3 that vanish at infinity.

Now both rσm α and ξ

2 r∞ belong to L 1 (R 3 ), since r σm , α, ω 1/2 ξ 2 , ω -1/2 r ∞ ∈ L 2 (R 3 ). Therefore F -1 rσm α ImF -1 ξ 2 r∞ ∈ L ∞ 0 (R 3 ), hence f (x, D x ) ∈ K(L 2 (R 3 
)). It immediately follows that bαūu is compact, and the proof is complete. As usual, this result implies the one for the adjoint term

ξ 2 a * ψ * ψ = - √ 2i M R 6 Im ξ 2 (k )r ∞ (k )e ik •x a * r ∞ e -ik•x ψ * (x)ψ(x)dxdk . Part 5 (D x a ξ1 ψ, a * D x ψ * ξ 1 , D x aψ * ξ 1 , a * D x ξ1 ψ). D x a ξ1 ψ = 1 √ 2M R 3 ξ1 (x)D x a r ∞ e -ik•x ψ(x)dx .
The approximated symbol D x a ξ1 ψ (m) is given by

D x a ξ1 ψ (m) = 1 √ 2M R 3 ξ1 (x)D x a r σm e -ik•x ψ(x)dx .
First of all we prove that ( 80) is satisfied. Given Φ ∈ H, we denote by Φ n,p its restriction to the subspace

H n,p = L 2 (R 3 ) ⊗sn ⊗ L 2 (R 3 )
⊗sp with n nucleons and p mesons. We also denote by 

X n = {x 1 , . . . ,
(H 0 + 1) -1/2 Φ, R 3 ξ1 (x)D x a (r ∞ -r σm )e -ik•x ψ(x)dx(H 0 + 1) -1/2 Ψ = ∞ n,p=0 ε (n + 1)(p + 1) R (n+p+2)d (H 0 + 1) -1/2 Φ n,p (X n ; K p ) ξ1 (x)D x (r ∞ -rσm )(k)e ik•x (H 0 + 1) -1/2 Ψ n+1,p+1 (x, X n ; k, K p )dxdX n dkdK p ≤ ∞ n,p=0 ε(n + 1) R (n+p+2)d (H 0 + 1) -1/2 Φ n,p (X n ; K p )D x ξ 1 (x) r∞-rσ m √ ω (k)e ik•x ε(p + 1)ω(k) (H 0 + 1) -1/2 Ψ n+1,p+1 (x, X n ; k, K p )dxdX n dkdK p ≤ ∞ n,p=0 ε(n + 1) (-∆ + V ) 1/2 ξ 1 2 • ω -1/2 (r ∞ -r σm ) 2 • (H 0 + 1) -1/2 Φ n,p Hn,p • e ik•x ε(p + 1)ω(k 1 )(H 0 + 1) -1/2 Ψ n+1,p+1 (X n+1 ; K p+1 ) Hn+1,p+1 ≤ (-∆ + V ) 1/2 ξ 1 2 • ω -1/2 (r ∞ -r σm ) 2 • (N 1 + ε) 1/2 Φ • Ψ ;
where in the last bound we have used Schwarz's inequality and the fact that pω(k 1 ) ≡ p j=1 ω(k j ) when acting on vectors of H n,p . Now, since lim m→∞ ω -1/2 (r ∞ -r σm ) 2 = 0, Equation [START_REF] Van Hove | Energy corrections and persistent perturbation effects in continuous spectra[END_REF] 

holds with C (m) (ξ 1 ) = 1 √ 2M (-∆ + V ) 1/2 ξ 1 2 • ω -1/2 (r ∞ -r σm ) 2 .

It remains to show that the classical symbol

D x α ξ1 u (m) = 1 √ 2M R 6 ξ1 (x)D x α(k)r σm (k)e ik•x u(x)dxdk
is compact. Here we have written

D x α ξ1 u (m) = ξ 1 , D x v 2 , with v x (x) = (2π) 3/2 √ 2M F -1 αr σm (x)u(x)
; and that is defined for any v ∈ Ḣ1 (R 3 ). However, since

ξ 1 ∈ Q(-∆ + V ) ⊂ H 1 (R 3 ) and D x is self-adjoint, we can write D x α ξ1 u (m) = D x ξ 1 , v 2 for any v ∈ L 2 (R 3 ). It follows that D x α ξ1 u (m) is defined for any u, α ∈ L 2 (R 3 ), since α, r σm ∈ L 2 implies αr σm ∈ L 1 , and therefore F -1 αr σm ∈ L ∞ .
It follows that the operator bDxαu :

L 2 ⊕ L 2 ⊗s2 → C defined as bDxαu : (u, α) ⊗2 ∈ L 2 ⊕ L 2 ⊗s2 -→ π2⊗π1 α(k)u(x) ∈ L 2 (R 6 ) -→ f , αu L 2 (R 6 ) ∈ C , with f (x, k) = 1 √ 2M (D x ξ 1 )(x)r σm (k)e -ik•
x , is bounded and finite rank, and therefore compact.

a * D x ξ1 ψ = 1 √ 2M R 3 ξ1 (x)a * r ∞ e -ik•x D x ψ(x)dx .
Again, the approximated symbol a * D x ξ1 ψ is given by

a * D x ξ1 ψ (m) = 1 √ 2M R 3 ξ1 (x)a * r σm e -ik•x D x ψ(x)dx .
Equation ( 80) is satisfied, and the proof follows the same guidelines as the one for the previous term D x a ξ1 ψ. We give the compactness proof for the symbol

ᾱD x ξ1 u (m) = 1 √ 2M R 6 ξ1 (x)ᾱ(k)r σm (k)e -ik•x D x u(x)dxdk .
We rewrite it as ᾱD x ξ1 u (m) = (u, α), bᾱDxu (u, α) L 2 ⊕L 2 , with bᾱDxu :

L 2 ⊕ L 2 → L 2 ⊕ L 2 defined as bᾱDxu : (u, α) ∈ L 2 ⊕ L 2 -→ π1 u(x) ∈ L 2 (R 3 ) -→ c ᾱDx u 0 ⊕ f (k) ∈ L 2 ⊕ L 2 ,
where

f (k) = 1 √ 2M r σm (k) k e ik•x ξ 1 , u L 2 x + e ik•x D x ξ 1 , u L 2
x . Now suppose that u j u is a weakly convergent (bounded) sequence with bound X. It follows that, uniformly in j,

|f j (k)| 2 = 1 √ 2M r σm (k) k e ik•x ξ 1 , u j L 2 x + e ik•x D x ξ 1 , u j L 2 x 2 ≤ 1 2M 2 X 2 |r σm (k)| 2 (k 2 + 1) ξ 1 2 H 1 ∈ L 1 k (R 3 ) .
In addition, lim j→∞ |f (k) -f j (k)| 2 = 0; therefore cᾱDxu is a compact operator by Lebesgue's dominated convergence theorem. So bᾱDxu is compact. The proofs above extend immediately to the adjoint terms

a * D x ψ * ξ 1 = 1 √ 2M R 3 ψ * (x)a * r ∞ e -ik•x D x ξ 1 (x)dx ; D x aψ * ξ 1 = 1 √ 2M R 3 ψ * (x)D x a r ∞ e -ik•x ξ 1 (x)dx . Part 6 (ψ * D x ξ 2 ψ, ψ * ξ2 D x ψ). ψ * D x ξ 2 ψ = (2π) 3/2 √ 2M R 3 ψ * (x)D x F -1 ξ 2 r∞ (x)ψ(x)dx .
The approximated symbol, as for the terms of point 4, contains χ m (D x ):

ψ * D x ξ 2 ψ (m) = (2π) 3/2 √ 2M R 3 ψ * (x)χ m (D x )D x F -1 ξ 2 r∞ (x)ψ(x)dx .
As usual, we start proving that (80) holds. We remark that this is the only term where we need

ξ 2 ∈ D(ω 3/4 ) instead of D(ω 1/2 ). (H 0 + 1) -1/2 Φ, R 3 ψ * (x) 1 -χ m (D x ) D x F -1 ξ 2 r∞ (x)ψ(x)dx(H 0 + 1) -1/2 Ψ ≤ ∞ n=0 nε (H 0 + 1) -1/2 Φ n , 1 -χ m (D x1 ) D x1 F -1 ξ 2 r∞ (x 1 )(H 0 + 1) -1/2 Ψ n ≤ ∞ n=0 nε (1 -∆) -1/2 1 -χ m (D x ) L(L 2 (R 3 )) • F -1 ξ 2 r∞ ∞ + F -1 kξ 2 r∞ ∞ • (1 -∆ x1 ) 1/2 (H 0 + 1) -1/2 Φ n Hn • D x1 (H 0 + 1) -1/2 Ψ n Hn + (H 0 + 1) -1/2 Ψ n Hn ≤ 2 (1 -D 2 x ) -1/2 1 -χ m (D x ) L(L 2 (R 3 )) • ω 3/4 ξ 2 2 • ω -1/4 r ∞ 2 • Φ • (N 1 + ε) 1/2 Ψ + Ψ ;
hence the result follows with

C (m) (ξ 2 ) = 2 √ 2(2π) 3/2 M (1 -D 2 x ) -1/2 1 -χ m (D x ) L(L 2 (R 3 )) ω 3/4 ξ 2 2 ω -1/4 r ∞ 2 , since lim m→∞ (1 -D 2 x ) -1/2 1 -χ m (D x ) L(L 2 (R 3 )) = 0. It remains to show that the symbol ūD x ξ 2 u (m) = (2π) 3/2 √ 2M R 3 ū(x)χ m (D x )D x F -1 ξ 2 r∞ (x)u(x)dx
is compact. We introduce the operator būDxu :

L 2 ⊕ L 2 → L 2 ⊕ L 2 such that ūD x ξ 2 u (m) = (u, α), būDxu (u, α) L 2 ⊕L 2 : būDxu : (u, α) ∈ L 2 ⊕ L 2 -→ π1 u(x) ∈ L 2 (R 3 ) -→ cūDxu f (x, D x )u(x) ⊕ 0 ∈ L 2 ⊕ L 2 , where f (x, D x ) = (2π) 3/2 √ 2M D x χ m (D x )F -1 ξ 2 r∞ (x). Now f (x, D x ) is a compact operator: both x χ m (x) and F -1 ξ 2 r∞ (x) are in L ∞ 0 (R 3
). Therefore būDxu is compact. The proof extends immediately to the adjoint term

ψ * ξ2 D x ψ = (2π) 3/2 √ 2M R 3 ψ * (x)F ξ2 r ∞ (x)D x ψ(x)dx .

4.4.

Defining the time-dependent family of Wigner measures. The last tool we need in order to take the limit ε → 0 of the integral formula (69) are Wigner measures. Throughout this section, we will leave some statements unproven; the reader may refer to [8, Section 6] for the proofs, and a detailed discussion of Wigner measures properties. We recall the definition of a Wigner measure associated with a family of states on

H = Γ s L 2 (R 3 ) ⊕ L 2 (R 3 ) .
Definition 4.11. Let ( ε ) ε∈(0,ε) ⊂ L 1 H be a family of normal states; µ ∈ P L 2 ⊕ L 2 a Borel probability measure. We say that µ is a Wigner (or semiclassical) measure associated to ( ε ) ε∈(0,ε) , or

in symbols µ ∈ M ε , ε ∈ (0, ε) , if there exist a sequence (ε k ) k∈N ⊂ (0, ε) such that lim k→∞ ε k = 0 and (81) lim k→∞ Tr ε k W (ξ) = L 2 ⊕L 2 e i √ 2Re ξ,z L 2 ⊕L 2 dµ(z) , ∀ξ ∈ L 2 ⊕ L 2 .
We remark that the right-hand side is essentially the Fourier transform of the measure µ, so considering the sequence (ε k ) k∈N there is at most one probability measure that could satisfy [START_REF] Van Hove | Energy corrections and persistent perturbation effects in continuous spectra. II. The perturbed stationary states[END_REF]. If (81) is satisfied, we say that to the sequence ( ε k ) k∈N corresponds a single Wigner (or semiclassical) measure µ, or

simply ε k → µ.
First of all, it is necessary to ensure that such a definition of Wigner measures is meaningful, i.e.

that under suitable conditions the set of Wigner measures M associated to a family of states is not empty. Since m 0 > 0, it turns out that Assumption (A ρ ) is sufficient. Assumption (A ρ ) would be sufficient as well, even if we will not use it for the moment.

Lemma 4.12. Let ( ε ) ε∈(0,ε) be a family of normal states on H, that satisfies Assumptions (A ρ ) and

(A 0 ). Then for any t ∈ R:

(i) M ε (t), ε ∈ (0, ε) = Ø ; M ˜ ε (t), ε ∈ (0, ε) = Ø . (ii) Any µ ∈ M ε (t), ε ∈ (0, ε) or in M ˜ ε (t), ε ∈ (0, ε) 14 satisfies: µ B u (0, √ C) ∩ Q(-∆ + V ) ⊕ D(ω 1/2 ) = 1 (iii) Moreover z=(u,α)∈L 2 ⊕L 2 (-∆ + V ) 1/2 u 2 2 + α 2 F H 1/2 dµ(z) < +∞ . We recall that B u (0, √ C) = (u, α) ∈ L 2 ⊕ L 2 , u 2 ≤ √ C .
Proof. By (78) of Lemma 4.8, we see that ε (t) and ˜ ε (t) satisfy (A 0 ) and (A ρ ) at any time. Now (i) follows by [8, Theorem 6.2] and (ii) by (iii) and [START_REF] Ammari | Mean field propagation of Wigner measures and BBGKY hierarchies for general bosonic states[END_REF]Lemma 2.14]. The third point is essentially a consequence of [START_REF] Ammari | Mean field propagation of infinite dimensional Wigner measures with a singular two-body interaction potential[END_REF]Lemma 3.12]. However the latter result requires more regularity on the states ε . So we indicate here how to adapt the argument to our case. It is enough to assume t = 0 and {µ} = M ε , ε ∈ (0, ε) . The operators -∆ 2M + V and ω are positive (self-adjoint). So one can find non-decreasing sequences of finite rank operators A k and B k that converge weakly to -∆ 2M + V and ω respectively. In particular

b W ick k = dΓ(A k ) ⊗ 1 + 1 ⊗ dΓ(B k ) ≤ dΓ(- ∆ 2M + V ) ⊗ 1 + 1 ⊗ dΓ(ω) = H 0 , where b k (u, α) = u, A k u + α, B k α ∈ P ∞ 1,1 (L 2 ⊕ L 2 ). Let P k and Q k be the orthogonal projec- tions on Ran(A k ) and Ran(B k ) respectively. Using the Fock space decomposition Γ s (L 2 ⊕ L 2 ) ≡ Γ s (P k L 2 ⊕ Q k L 2 ) ⊗ Γ s (P ⊥ k L 2 ⊕ Q ⊥ k L 2 ) where P ⊥ k = 1 -P k and Q ⊥ k = 1 -Q k ; one can write b W ick k ≡ (b k ) W ick |Γs(P k L 2 ⊕Q k L 2 ) ⊗ 1 Γs(P ⊥ k L 2 ⊕Q ⊥ k L 2 ) and ε ≡ ˆ ε . Hence Tr ε b W ick k = Tr ˆ ε b W ick |Γs(P k L 2 ⊕Q k L 2 ) ⊗ 1 Γs(P ⊥ k L 2 ⊕Q ⊥ k L 2 ) = Tr Γs(P k L 2 ⊕Q k L 2 ) k ε b W ick k ,
where k εj is a given reduced density matrix which is trace-class in Γ s

(P k L 2 ⊕ Q k L 2 )
. So the problem is in some sense reduced to finite dimension. Now using Wick calculus (in finite dimension) b W ick k can be written as an Anti-Wick operator by moving all the a * to the right of a. So, one obtains

b W ick k = b A-W ick k + εT with T (dΓ(P k ⊕ Q k ) + 1) -1
is bounded uniformly with respect to ε ∈ (0, ε). 14 In this section, we have used mostly the notation D(ω 1/2 ); however D(ω 1/2 ) = F H 1/2 , where the latter is defined in Definition 3.4.

Hence lim

ε→0 Tr Γs(P k L 2 ⊕Q k L 2 ) k ε b A-W ick k = lim ε→0 Tr Γs(P k L 2 ⊕Q k L 2 ) k ε b W ick k ≤ lim ε→0 Tr ε H 0 ≤ C .
For details on the Anti-Wick quantization we refer the reader to [START_REF] Ammari | Mean field limit for bosons and infinite dimensional phase-space analysis[END_REF]; in particular it is a positive quantization (see e.g. [START_REF] Ammari | Mean field limit for bosons and infinite dimensional phase-space analysis[END_REF]Proposition 3.6]). Hence, we see that

Tr Γs(P k L 2 ⊕Q k L 2 ) k ε (b k,χ ) A-W ick ≤ Tr Γs(P k L 2 ⊕Q k L 2 ) k ε b A-W ick k where b k,χ (u, α) = χ(u) u, A k u + χ(α) α, B k α for any cutoff function χ ∈ C ∞ 0 (R 3 ), 0 ≤ χ ≤ 1. Finally [8, Theorem 6.2] gives z=(u,α)∈L 2 ⊕L 2 b k,χ (u, α) dµ(z) = lim ε→0 Tr ε (b k,χ ) A-W ick = lim ε→0 Tr Γs(P k L 2 ⊕Q k L 2 ) k ε b A-W ick k ≤ C ,
and the monotone convergence theorem proves (iii).

As we said above, our aim is to take the limit ε k → 0 on the integral equation ( 69), for a suitable sequence contained in (0, ε). We may suppose that the sequence (ε k ) k∈N is chosen in such a way that there exist µ 0 ∈ M ε , ε ∈ (0, ε) such that (81) holds, i.e. M ε k , k ∈ N = {µ 0 }. However, nothing a priori ensures that the sequence, or one of its subsequences (ε ki ) i∈N ⊂ (ε k ) k∈N , is such that for any t ∈ R:

lim i→∞ Tr ˜ ε k i (t)W (ξ) = L 2 ⊕L 2 e i √ 2Re ξ,z dμ t (z) , ∀ξ ∈ L 2 (R 3 ) ⊕ L 2 (R 3 ) ;
where μt : R → P L 2 ⊕ L 2 is a map such that μ0 = µ 0 . The possibility of extracting such a common subsequence is crucial, since the integral equation involves all measures from zero to an arbitrary time t. To prove it is possible, we exploit the uniform continuity properties of Tr ˜ ε (t)W (ξ) in both t and ξ, proved in the following lemma. Lemma 4.13. Let ( ε ) ε∈(0,ε) be a family of quantum states on H that satisfies Assumptions (A 0 ) and

(A ρ ). Then the family of functions (t, ξ) → Gε (t, ξ) := Tr ˜ ε (t)W (ξ) is uniformly equicontinuous on bounded subsets of R × Q(-∆ + V ) ⊕ D(ω 1/2 ) . Proof. Let (t, ξ), (s, η) ∈ R × Q(-∆ + V ) ⊕ D(ω 1/2
) . Without loss of generality, we may suppose that s ≤ t. We write Gε (t, ξ) -Gε (s, η) ≤ Gε (t, η) -Gε (s, η) + Gε (t, ξ) -Gε (t, η) ; and define X 1 := Gε (t, η) -Gε (s, η) , X 2 := Gε (t, ξ) -Gε (t, η) . Consider X 1 ; we get by standard manipulations and Lemma 4.2:

X 1 ≤ 3 j=0 ε j i∈N λ i t s e -i s ε Ĥren Ψ i , W ( η) s B j ( η) s e -i s ε Ĥren Ψ i ds .
Now using Lemma 4.6 we obtain

X 1 ≤ 3 j=0 ε j C j (η) i∈N λ i t s (N 1 + H 0 + ε) 1/2 W * ( η) s e -i s ε Ĥren Ψ i • (N 1 + H 0 + ε) 1/2 e -i s ε Ĥren Ψ i ds ;
then using Lemma 4.1, and the fact that

(η 1 ) s H 1 = η 1 H 1 , (η 2 ) s F H 1/2 = η 2 F H 1/2 we get X 1 ≤ C(η) 3 j=0 ε j C j (η) t s Tr ε (s)(N 1 + H 0 + ε) ds ≤ |t -s|C(η) 3 j=0 εj C j (η) C 1-a(C) + 2b(C) 1-a(C) + ε ;
where in the last inequality we used Equation ( 78) of Lemma 4.8. Now let's consider X 2 ; a standard manipulation using Weyl's relation yields

X 2 ≤ e i ε 2 Im ξ,η L 2 ⊕L 2 W (ξ -η) -1 (N 1 + N 2 + 1) -1 L Γs(L 2 ⊕L 2 ) Tr ˜ ε (t)(N 1 + N 2 + 1) .
Now we use the estimate in [8, Lemma 3.1] and obtain

X 2 ≤ ξ -η L 2 ⊕L 2 ε η L 2 ⊕L 2 + 1 Tr ˜ ε (t)(N 1 + N 2 + 1) ≤ ξ -η L 2 ⊕L 2 ε η L 2 ⊕L 2 + 1 C 1-a(C) + 2b(C) 1-a(C) + 1 ,
where in the last inequality we used again Equation ( 78) of Lemma 4.8, keeping in mind that N 2 ≤ dΓ(ω) ≤ H 0 . Now using Lemma 4.13 with the estimates on X 1 , X 2 above and a diagonal extraction argument, we prove the following proposition. We omit the proof since it is similar to [11, Proposition 3.9].

Proposition 4.14. Let ( ε ) ε∈(0,ε) be a family of quantum states on H that satisfies Assumptions (A 0 )

and (A ρ ). Then for any sequence (ε k ) k∈N ⊂ (0, ε) with lim k→∞ ε k = 0, there exists a subsequence (ε ki ) i∈N such that there exists a map µ t : R → P L 2 ⊕ L 2 verifying the following statements:

ε k i (t) → µ t , ∀t ∈ R ; (82) ˜ ε k i (t) → μt , ∀t ∈ R , with μt = E 0 (-t) # µ t ; (83) ε k i (t)W ( ξt ) → µ ξ,t , ∀t ∈ R and ∀ξ ∈ L 2 ⊕ L 2 , with dµ ξ,t (z) = e i √ 2Re ξt,z dµ t (z) ; (84)
where E 0 (t)z = e -it(-∆+V ) u ⊕ e -itω α is the Hamiltonian flow associated with the free classical energy E 0 , and ξt = E 0 (-t)ξ. Moreover, µ t and μt are both Borel probability measures on Q(-∆ + V ) ⊕ D(ω 1/2 ). 4.5. The classical limit of the integral formula. We are finally ready to discuss the limit ε → 0 of the integral formula [START_REF] Oh | Cauchy problem and Ehrenfest's law of nonlinear Schrödinger equations with potentials[END_REF]. As a final preparation, we state a couple of preliminary lemmas. The first is a slight improvement of [START_REF] Ammari | Mean field limit for bosons and infinite dimensional phase-space analysis[END_REF]Theorem 6.13]. The second can be easily proved by standard estimates on the symbol B (m) 0 (ξ) which we recall for convenience:

B (m) 0 (ξ)(u, α) = 2i √ 2 ReF χσ 0 ᾱ √ 2ω (x), Im ξ1 u (x) 2 + i √ 2 u(x), χ m (D x )Im F χσ 0 ξ2 √ 2ω (x)u(x) 2 +i √ 2Im u(x), χ m (D (•) )V ∞ * ξ1 u (x)u(x) 2 + i(2π) 3/2 2M Im ξ 1 (x), F -1 (r σm α) 2 + F(r σm ᾱ) 2 +F -1 (r σm α)F(r σm ᾱ) (x)u(x) 2 -2 √ 2(2π) 3 M Im u(x), χ m (D x )Im F -1 (r ∞ ξ 2 ) (x)F -1 (r σm α)(x)u(x) 2 -i √ 2(2π) 3/2 M Im ξ 1 (x), D x F -1 (r σm α)(x)u(x) 2 -i √ 2(2π) 3/2 M Im ξ 1 (x), F(r σm ᾱ)(x)D x u(x) 2 + i √ 2(2π) 3/2 M Im u(x), χ m (D x )D x F -1 (r ∞ ξ 2 )(x)u(x) 2 . (85) 
Lemma 4.15. Let (ε j ) j∈N ⊂ (0, ε), lim j→∞ ε j = 0, and δ > 0. Furthermore, let ( εj ) j∈N be a sequence of normal states in H such that for some C(δ) > 0,

(N 1 + N 2 ) δ/2 εj (N 1 + N 2 ) δ/2 L 1 (L 2 ⊕L 2 ) ≤ C(δ) , (86) 
uniformly in ε ∈ (0, ε). Suppose that εj → µ ∈ P(L 2 ⊕ L 2 ) then the following statement is true:

∀A ∈ (p,q)∈N 2 p+q<2δ P ∞ p,q L 2 ⊕ L 2 , lim j→∞ Tr εj (A ) W ick = L 2 ⊕L 2 A (z)dµ(z) .
Proof. By linearity it is enough to assume A ∈ P ∞ p,q L 2 ⊕ L 2 for (p, q) ∈ N 2 with p + q < 2δ. Let (P R ) R>0 be an increasing family of finite rank orthogonal projections on L 2 such that the strong limit s -lim R→+∞ P R = 1 holds. Let A R (z) := A (P R ⊕ P R z) for any z ∈ L 2 ⊕ L 2 . One writes

Tr εj (A ) W ick - L 2 ⊕L 2 A (z)dµ(z) ≤ Tr εj (A ) W ick -Tr εj (A R ) W ick (87) + Tr εj (A R ) W ick - L 2 ⊕L 2 A R (z)dµ(z) (88) + L 2 ⊕L 2 A R (z)dµ(z) - L 2 ⊕L 2 A (z)dµ(z) . (89) 
Using standard number estimates and the regularity of the states ( εj ) j , one shows

Tr εj (A -A R ) W ick ≤ ||(N 1 + N 2 ) δ/2 εj (N 1 + N 2 ) δ/2 || L 1 (L 2 ⊕L 2 ) || Ã -ÃR || ,
where à and ÃR denote the compact operators satisfying A (z) = z ⊗q , à z ⊗p and A R (z) = z ⊗q , ÃR z ⊗p respectively. Since ÃR = (P R ⊕P R ) ⊗q à (P R ⊕P R ) ⊗p and à is compact, one shows that lim R→+∞ || à -ÃR || = 0. So the right hand side of (87) can be made arbitrary small by choosing R large enough.

According to [START_REF] Ammari | Mean field limit for bosons and infinite dimensional phase-space analysis[END_REF]Theorem 6.2], the regularity of ( εj ) j insures the bound

L 2 ⊕L 2 ||z|| 2δ L 2 ⊕L 2 dµ(z) ≤ C(δ) .
Hence by dominated convergence the right hand side of (89) can also be made arbitrary small when R is large enough since A (z) and A R (z) are both bounded by c||z|| p+q L 2 ⊕L 2 and A R (z) converges pointwise to A (z).

To handle the right hand side of (88), we use a further regularization. Let χ ∈ C ∞ 0 (R), 0 ≤ χ ≤ 1, χ(x) = 1 in a neighborhood of 0 and χ m (x) = χ( x m ) for m > 0. Recall that the Fock space has the decomposition Γ

s (L 2 ⊕ L 2 ) ≡ Γ s (P R L 2 ⊕ P R L 2 ) ⊗ Γ s (P ⊥ R L 2 ⊕ P ⊥ R L 2 ) where P ⊥ R = 1 -P R . In this representation A W ick R ≡ (A R ) W ick |Γs(P R L 2 ⊕P R L 2 ) ⊗ 1 Γs(P ⊥ R L 2 ⊕P ⊥ R L 2
) and εj ≡ ˆ εj . Hence using reduced density matrices R εj that are normalized positive trace-class operators in Γ s (P R L 2 ⊕ P R L 2 ), one writes

Tr εj (A R ) W ick = Tr ˆ εj (A R ) W ick |Γs(P R L 2 ⊕P R L 2 ) ⊗ 1 Γs(P ⊥ R L 2 ⊕P ⊥ R L 2 ) = Tr Γs(P R L 2 ⊕P R L 2 ) R εj (A R ) W ick .
As in the proof of Lemma 4.12, the Wick calculus gives that (A R ) W ick can be written as an Anti-Wick operator by moving all the a * to the right of a. So, one obtains (A R ) W ick = (A R ) A-W ick + εT with

T (dΓ(P R ⊕ P R ) + 1) -p+q 2
is bounded uniformly with respect to ε ∈ (0, ε). We refer the reader to [START_REF] Ammari | Mean field limit for bosons and infinite dimensional phase-space analysis[END_REF] where Weyl and Anti-Wick quantization are explained for "cylindrical" symbols. Hence

lim j→∞ Tr εj (A R ) W ick = lim j→∞ Tr Γs(P R L 2 ⊕P R L 2 ) R εj (A R ) W ick = lim j→∞ Tr Γs(P R L 2 ⊕P R L 2 ) R εj (A R ) A-W ick . Now we define χ m,R (z) := χ m (|P R ⊕ P R z| 2 ) and R,m εj := χ m,R (z) W eyl R εj χ m,R (z) W eyl . So one writes Tr R εj (A ) A-W ick - L 2 ⊕L 2 A (z)dµ(z) ≤ Tr ( R εj -R,m εj )(A ) A-W ick (90) + Tr R,m εj (A R ) A-W ick -χ 2 m,R (z)A R (z)dµ(z) (91) + χ 2 m,R (z)A R (z)dµ(z) -A R (z)dµ(z) , (92) 
where the traces are on the Fock space Γ s (P R L 2 ⊕ P R L 2 ) and the integrals are over L 2 ⊕ L 2 . By dominated convergence the right hand side of (92) tends to 0 when m → ∞ at fixed R. The right hand side of (90) can be made arbitrary small when m → ∞ using the following decomposition

( R,m εj -R εj ) = (χ W eyl m,R -1) R εj χ W eyl m,R (A) + R εj (χ W eyl m,R -1) (B) 
, which gives Tr (A) (A R ) A-W ick = Tr T 1 T 2 T 3 T 4 and a similar expression for (B) with

T 1 = (N R + 1) p+q 4 (χ W eyl m,R -1)(N R + 1) -δ 2 , T 2 = (N R + 1) δ 2 R εj (N R + 1) δ 2 T 3 = (N R + 1) -δ 2 χ W eyl m,R (N R + 1) p+q 4 , T 4 = (N R + 1) -p+q 4 (A R ) A-W ick (N R + 1) -p+q 4 ,
where N R = dΓ(P R ⊕ P R ). The Weyl-Hörmander Pseudo-differential calculus gives that T 1 → m→∞ 0 in norm (since δ > p + q) and that T i , i = 2, 3, 4, are uniformly bounded with respect j ∈ N and m > 0 at fixed R (see e.g. [8, Proposition 3.2 and 3.3]).

To complete the proof, we remark that Tr R,m εj (A R ) 

A-W ick = Tr R εj χ W eyl m,R (A R ) A-W ick χ W eyl m,
W eyl m,R (A R ) W eyl χ W eyl m,R = (χ 2 m,R A R ) W eyl + ε c(ε) W eyl with c(ε) ∈ S P R ⊕P R (1,
(A R ) A-W ick = lim j→∞ Tr εj (χ 2 m,R A R ) W eyl = L 2 ⊕L 2 χ 2 m,R (z)A R (z)dµ(z) .
This yields the intended bound on (88) and completes the proof. uniformly in m ∈ N:

B (m) 0 (ξ)(u, α) ≤ C(σ 0 ) ξ L 2 ⊕L 2 u 2 2 + (-∆ + V ) 1/2 u 2 2 + α 2 F H 1/2 + u 2 • (-∆ + V ) 1/2 u 2 2 + u 2 • α 2 F H 1/2 + u 2 • (-∆ + V ) 1/2 u 2 • α F H 1/2 . ( 93 
)
It follows that: 

* For any ξ ∈ L 2 ⊕ L 2 , for any (u, α) ∈ Q(-∆ + V ) ⊕ D(ω 1/2 ), lim m→∞ B (m) 0 (ξ)(u, α) = B 0 (ξ)(u,
∈ L 2 ⊕ L 2 and (u, α) ∈ Q(-∆ + V ) ⊕ D(ω 1/2 ).
Recall that for any σ 0 ≥ 2K(C + 1 + ε) there exists b > 0 such that the operator Ĥren (σ 0 ) + b is nonnegative uniformly for ε ∈ (0, ε). Let ( ε ) ε∈(0,ε) be a family of normal states on Γ s (L 2 (R 3 ) ⊕ L 2 (R 3 )), we consider the additional assumption:

∃C > 0 , ∀ε ∈ (0, ε) , Tr[ ε ( Ĥren (σ 0 ) + b) 2 ] ≤ C ; (A ρ )
Proposition 4.17. Let ( ε ) ε∈(0,ε) ⊂ L 1 (H) be a family of normal states that satisfy Assumptions (A 0 ), (A ρ ) and (A ρ ) such that 15 σ 0 ≥ 2K(C + 1 + ε). Then:

(i) For any sequence (ε k ) k∈N ⊂ (0, ε) converging to zero, there exist a subsequence (ε kι ) ι∈N and a map µ t : R → P L 2 ⊕ L 2 such that ε kι (t) → µ t and ˜ ε kι (t) → μt = E 0 (-t) # µ t , for any t ∈ R .

(ii) The action of e -i t ε Ĥren(σ0) is non-trival on the states ε . (iii) The Fourier transform of μ(•) satisfies the following transport equation ∀ξ ∈ L 2 ⊕ L 2 :

(94)

L 2 ⊕L 2 e i √ 2Re ξ,z dμ t (z) = L 2 ⊕L 2 e i √ 2Re ξ,z dµ 0 (z) + t 0 L 2 ⊕L 2 B 0 ( ξs )(z)e i √ 2Re ξs,z dµ s (z) ds ;
where the right hand side makes sense since B 0 ( ξt

)(z)e i √ 2Re ξt,z ∈ L ∞ t R, L 1 z L 2 ⊕ L 2 , dµ t (z) for any ξ ∈ L 2 ⊕ L 2 .
Proof. The first part of the proposition (i) -(ii) is just a partial restatement of Proposition 4.14. We discuss the last assertion in (iii) about B 0 ( ξt )(z)e i √ 2Re ξt,z , before proving (94). Recall the fact that 15 We recall that C appears in Assumption (A 0 ) and σ 0 in Definition 2.12 of Ĥren(σ0). The condition σ 0 ≥ K(C + 1) ensures that the dressed dynamics is non-trivial on for any ξ ∈ L 2 ⊕ L 2 and for any t ∈ R, ξt L 2 ⊕L 2 = ξ L 2 ⊕L 2 . Using bound (93) of Lemma 4.16 we obtain, setting Q(-∆ + V ) ⊕ D(ω 1/2 ) z = (u, α):

B 0 ( ξt )(z)e i √ 2Re ξt,z ≤ C(σ 0 ) ξ L 2 ⊕L 2 u 2 2 + (-∆ + V ) 1/2 u 2 2 + α 2 F H 1/2 + u 2 • (-∆ + V ) 1/2 u 2 2 + u 2 • α 2 F H 1/2 + u 2 • (-∆ + V ) 1/2 u 2 • α F H 1/2 . Now µ t ∈ M ε (t), ε ∈ (0, ε) , therefore by Lemma 4.12, µ t B u (0, √ C) ∩ Q(-∆ + V ) ⊕ D(ω 1/2 ) = 1
for any t ∈ R. Then it follows that there exists C(C) > 0 such that

L 2 ⊕L 2 B 0 ( ξt )(z)e i √ 2Re ξt,z dµ t (z) ≤ C(C) ξ L 2 ⊕L 2 L 2 ⊕L 2 (-∆ + V ) 1/2 u 2 2 + α 2 F H 1/2 dµ t (z) ≤ C(C) ξ L 2 ⊕L 2 J(t) ;
where J(t) < ∞ by Lemma 4.12. Actually, using the fact that the bound ( 78) is independent of t, it is easily proved that J(t) does not depend on t as well, i.e. J(t) ∈ L ∞ (R).

We prove (94) by successive approximations. Consider Tr ˜ ε kι (t)W (ξ) , ξ ∈ L 2 ⊕ L 2 . We can approximate ξ with (ξ 

(l) ) l∈N ⊂ Q(-∆ + V ) ⊕ D(ω 3/4 ),
) B 0 ( ξ (l) s ) -B (m) 0 ( ξ (l) s ) ≤ i∈N λ i W * ( ξ (l) s )e -i s ε kι Ĥren Ψ i , B 0 ( ξ (l) s ) -B (m) 0 ( ξ (l) s ) e -i s ε kι Ĥren Ψ i ≤ i∈N λ i C (m) ( ξ (l) s ) (H 0 + 1) 1/2 (N 1 + ε) 1/2 W * ( ξ (l) s )e -i s ε kι Ĥren Ψ i • (H 0 + 1) 1/2 (N 1 + ε) 1/2 e -i s ε kι Ĥren Ψ i . Now, using the fact that C (m) ( ξ (l) s ) depends only on ξ (l) s Q(-∆+V )⊕D(ω 3/4 ) = ξ (l) Q(-∆+V )⊕D(ω 3/4 )
and Lemma 4.1 we obtain

Tr ε kι (s)W ( ξ (l) s ) B 0 ( ξ (l) s ) -B (m) 0 ( ξ (l) s ) ≤ i∈N λ i C (m) (ξ (l) )C(ξ (l) ) (H 0 + 1) 1/2 e -i s ε kι Ĥren (N 1 + ε) 1/2 Ψ i 2 .
We then use Equation ( 78) of Lemma 4.8:

Tr ε kι (s)W ( ξ (l) s ) B 0 ( ξ (l) s ) -B (m) 0 ( ξ (l) s ) ≤ i∈N λ i C (m) (ξ (l) )C(ξ (l) )(C + ε) 1 1-a(C) C + 2b(C) 1-a(C) .
The right hand side goes to zero when m → ∞ uniformly with respect to ε kι and s by Proposition 4.9, and therefore

lim m→∞ t 0 Tr ε kι (s)W ( ξ (l) s ) B 0 ( ξ (l) s ) -B (m) 0 ( ξ (l) s ) ds = 0 .
So the next step is to prove

lim ι→∞ Tr ε kι (s)W ( ξ (l) s ) B (m) 0 ( ξ (l) s ) W ick = L 2 ⊕L 2 B (m) 0 ( ξ(l) s )(z) e i √ 2Re ξ(l) s ,z dµ s (z).
This statement follows by applying Lemma 4.15 with δ = 2 and by checking the assumption (95)

||(N 1 + N 2 ) ε kι (s)W ( ξ (l) s ) (N 1 + N 2 )|| L 1 (L 2 ⊕L 2 ) ≤ C ,
uniformly in k ι for some C > 0. In fact (95) holds true by Assumptions (A 0 )-(A ρ ), the Higher order estimate of Proposition A.4 and Lemma 4.1. Remark that while ε kι (s)W ( ξ (l) s ) is not a non-negative trace-class operator, one can still apply Lemma 4.15. In fact, one can write

Tr ε kι (s)W ( ξ (l) s ) B (m) 0 ( ξ (l) s ) = Tr W (η) ε kι (s)W (η) A W ick ,
for some A ∈ p+q<4 P ∞ p,q L 2 ⊕ L 2 and with η = 1 2 ξ (l) s . Remark now that W (η) ε kι (s)W (η) decomposes explicitly into a linear combination of non-negative trace-class operators satisfying all the assumption (86) of Lemma 4.15. Note that the Wigner measures of ε kι (s)W ( ξ (l) s ) are identified through (84). Hence the dominated convergence theorem yields:

lim ι→∞ t 0 Tr ε kι (s)W ( ξ (l) s )B (m) 0 ( ξ (l) s ) ds = t 0 L 2 ⊕L 2 B (m) 0 ( ξ (l) s )(z)e i √ 2Re ξ (l) 
s ,z dµ s (z) ds .

By Lemma 4.16, lim m→∞ B (m) 0 ( ξ (l) s )(z) = B 0 ( ξ (l) s )(z), so by dominated convergence theorem

lim m→∞ t 0 L 2 ⊕L 2 B (m) 0 ( ξ (l) s )(z)e i √ 2Re ξ (l) s ,z dµ s (z) ds = t 0 L 2 ⊕L 2 B 0 ( ξ (l) s )(z)e i √ 2Re ξ (l)
s ,z dµ s (z) ds .

Above it is possible to apply the dominated convergence theorem due to a reasoning analogous to the one done at the beginning of this proof: roughly speaking, we have that

B (m) 0 ( ξ (l) t )(z)e i √ 2Re ξ (l) t ,z ∈ L ∞ t R, L 1 z L 2 ⊕ L 2 , dµ t (z)
uniformly with respect to m ∈ N. In an analogous fashion we finally obtain

lim l→∞ t 0 L 2 ⊕L 2 B 0 ( ξ (l) s )(z)e i √ 2Re ξ (l) s ,z dµ s (z) ds = t 0 L 2 ⊕L 2 B 0 ( ξs )(z)e i √ 2Re
ξs,z dµ s (z) ds .

Corollary 4.18. The transport equation (94) may be rewritten as

L 2 ⊕L 2 e i √ 2Re ξ,z dμ t (z) = L 2 ⊕L 2 e i √ 2Re ξ,z dµ 0 (z) (96) +i √ 2 t 0 L 2 ⊕L 2 e i √ 2Re ξ,z Re ξ, V(s)(z) L 2 ⊕L 2 dμ s (z) ds ; with the vector field V(t)(z) = -iE 0 (-t) • ∂ z Ê -E 0 • E 0 (t)(z). In addition μt = E 0 (-t) # Ê(t) # µ 0 is a solution of Equation (96).
Proof. It is proved by direct calculation, since µ t Q(-∆ + V ) ⊕ FH 1/2 = 1 for any t ∈ R by Lemma 4.12; and Ê(t), E 0 (t) are globally well-defined on this space (for Ê(t), it is proved in Theorem 3.16; for E 0 (t) it is trivial). The second point is proved by differentiating with respect to time and using Lemma 4.16 and Lemma 4.12 (iii).

4.6. Uniqueness of solutions for the transport equation. As discussed in Corollary 4.18, the dressed flow yields in the classical limit a solution of the transport equation (96). The second part of the same corollary suggests that it is important to study uniqueness properties of (96): it is by means of uniqueness that we can close the argument and reach a satisfactory characterization of the dynamics of classical states (Wigner measures). This subsection is devoted to prove that the family of Wigner measures μt of Proposition 4.17 satisfies sufficient conditions, induced by the properties of ( ε ) ε∈(0,ε) , to be uniquely identified with E 0 (-t) # Ê(t) # µ 0 . We use an optimal transport technique initiated by Ambrosio, Gigli, and Savaré [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF] then extended by Ammari and Nier [START_REF] Ammari | Mean field propagation of infinite dimensional Wigner measures with a singular two-body interaction potential[END_REF] to propagation of Wigner measures; and imporved recently by Ammari and Liard [START_REF] Ammari | On the uniqueness of probability measure solutions to Liouville's equation of Hamiltonian PDEs[END_REF] (see also [START_REF] Liard | Dérivation des équations de schrödinger non-linéaires par une méthode des caractéristiques en dimension infinie[END_REF][START_REF] Maniglia | Probabilistic representation and uniqueness results for measure-valued solutions of transport equations[END_REF]).

In order to do that, we need to introduce a suitable topology on P L 2 ⊕ L 2 . Let (e j ) j∈N ⊂ L 2 ⊕ L 2 be an orthonormal basis. Then (97)

d w (z 1 , z 2 ) = j∈N | z 1 -z 2 , e j L 2 ⊕L 2 | 2 (1 + j) 2 1/2 , where z 1 , z 2 ∈ L 2 ⊕ L 2 , defines a distance on L 2 ⊕ L 2 . The topology induced by L 2 ⊕ L 2 , d w is
homeomorphic to the weak topology on bounded sets. Then (µ i ) i∈N weakly narrowly converges to

µ ∈ P L 2 ⊕ L 2 , in symbols µ i n µ, if ∀f ∈ C b L 2 ⊕ L 2 , d w , R , lim i→∞ L 2 ⊕L 2 f (z)dµ i (z) = L 2 ⊕L 2 f (z)dµ(z) ;
where

C b L 2 ⊕ L 2 , d w , R is the space of bounded continuous real-valued functions on L 2 ⊕ L 2 , d w .
It is actually more convenient to use cylindrical functions to prove narrow continuity properties.

We define below two useful spaces of smooth cylindrical functions on L 2 ⊕ L 2 .

Definition 4.20 (Spaces of cylindrical functions). Let

f : L 2 ⊕ L 2 → R. Then f ∈ S cyl L 2 ⊕ L 2
if there exists an orthogonal projection p : 

L 2 ⊕ L 2 → L 2 ⊕ L 2 , dim(Ran p) = d < ∞,
∀z ∈ L 2 ⊕ L 2 , f (z) = g(pz) . Analogously, if g ∈ C ∞ 0 (Ran p), then f ∈ C ∞ 0,cyl L 2 ⊕L 2
, the cylindrical smooth functions with compact support.

We remark that neither S cyl L 2 ⊕ L 2 nor C ∞ 0,cyl L 2 ⊕ L 2 possess a vector space structure. Finally, for cylindrical Schwartz functions we define the Fourier transform:

F[f ](η) = Ran p e -2πiRe η,z L 2 ⊕L 2 f (z)dL p (z) ,
where dL p denotes integration with respect to the Lebesgue measure on Ran p. The inversion formula is then

f (z) = Ran p e 2πiRe η,z L 2 ⊕L 2 F[f ](η)dL p (η) .
With these definitions in mind, we can prove the following lemma. Lemma 4.21. Let ( ε ) ε∈(0,ε) ⊂ L 1 (H) be a family of normal states that satisfies Assumptions (A 0 ), (A ρ ) and (A ρ ); μt : R → P L 2 ⊕ L 2 such that for any t ∈ R , μt ∈ M ˜ ε (t), ε ∈ (0, ε) . If, in addition, μt satisfies the integral equation (96), then the following statements are true: * For any t ∈ R, and for any (t i ) i∈R ⊂ R such that lim i→∞ t i = t, μti n μt ;

i.e. μt is a weakly narrowly continuous map in P(L 2 ⊕ L 2 ).

* The map μt solves the transport equation 16

∂ t μt + ∇ T V(t)μ t = 0 in the weak sense, i.e. ( 98 
) ∀f ∈ C ∞ 0,cyl R × L 2 ⊕ L 2 , R L 2 ⊕L 2 ∂ t f + Re ∇f, V(t) L 2 ⊕L 2 dμ t dt = 0 . Proof. Let f ∈ S cyl L 2 ⊕ L 2 . Fubini's theorem gives L 2 ⊕L 2 f (z)dμ t (z) = Ran p F[f ](ξ) L 2 ⊕L 2 e 2πiRe ξ,z dμ t (z) dL Ran p (ξ) ,
where dL Ran p is the Lebesgue measure on Ran p and F(f 

)(ξ) = Ran p f (z)e -2πiRe
∈ R × (L 2 ⊕ L 2 ). Therefore the map t → L 2 ⊕L 2 f (z)dμ t (z) is continuous for any f ∈ S cyl L 2 ⊕ L 2 .
Finally, by an argument analogous to the one used at the beginning of the proof of Proposition 4.17, it is easy to prove that

L 2 ⊕L 2 z 2 L 2 ⊕L 2 dμ t (z) ∈ L ∞ t (R). In fact, we know that μt B u (0, √ C) ∩ Q(-∆ + V ) ⊕ D(ω 1/2 ) = 1 by Lemma 4.12; and if z = (u, α) then the functions α → α 2 2 ≤ α 2 F H 1/2 , belong to L 1 z L 2 ⊕ L 2 , dμ t ( 
z) uniformly in t by Lemmas 4.12 and 4.8. Then it follows that μt is weakly narrowly continuous by [2, Lemma 5.1.12 -f], thus proving the first point. Now we prove the second point by a similar argument as in [START_REF] Ammari | Mean field propagation of infinite dimensional Wigner measures with a singular two-body interaction potential[END_REF] which we reproduce here for completeness. Let g ∈ C ∞ 0,cyl L 2 ⊕ L 2 ; we integrate Equation (96) with respect to the measure

F[g](η)dL p obtaining L 2 ⊕L 2 g(z)dμ t (z) = L 2 ⊕L 2 g(z)dμ 0 (z) + 2πi t 0 Ran p L 2 ⊕L 2 Re η, V(s)(z) L 2 ⊕L 2 dμ s (z) F[g](η)dL p (η)ds . 16 Recall that V(t)(z) = -iE 0 (-t) • ∂z Ê -E 0 • E 0 (t)(z).
Let ∇g be the differential of g : L 2 ⊕ L 2 → R, where here L 2 ⊕ L 2 is considered as a real Hilbert space with scalar product Re •, • L 2 ⊕L 2 . Then, by Fubini's theorem and the properties of the Fourier transform, we get

L 2 ⊕L 2 g(z)dμ t (z) = L 2 ⊕L 2 g(z)dμ 0 (z) + t 0 L 2 ⊕L 2
Re ∇g(z), V(s)(z) L 2 ⊕L 2 dμ s (z)ds .

By Lebesgue's differentiation theorem (with respect to t), we obtain

∂ t L 2 ⊕L 2 g(z)dμ t (z) - L 2 ⊕L 2 Re ∇g(z), V(t)(z) L 2 ⊕L 2 dμ t (z) = 0 .
Equation ( 98) is then obtained for f (t, z) = ϕ(t)g(z), multiplying by ϕ(t) ∈ C ∞ 0 (R, R), integrating with respect to t, and finally using integration by parts. The result for a generic f ∈ C ∞ 0,cyl R × (L 2 ⊕ L 2 ) follows immediately: f (t, z) = g(t, pz) for some g ∈ C ∞ 0 R × Ran p , and the latter can be approximated by a sequence g j (t, pz)

j∈N ⊂ C ∞ 0 (R) alg ⊗ C ∞ 0 (Ran p).
We need to check an hypothesis on the vector field

V(t)(z) = -iE 0 (-t) • ∂ z Ê -E 0 • E 0 (t)(z) to
prove the sought uniqueness result. This is done in the following lemma.

Lemma 4.22. Let ( ε ) ε∈(0,ε) ⊂ L 1 (H) be a family of normal states that satisfies Assumptions (A 0 )

and (A ρ ); μt :

R → P L 2 ⊕ L 2 such that for any t ∈ R , μt ∈ M ˜ ε (t), ε ∈ (0, ε) . Then V(t)(z) L 2 ⊕L 2 ∈ L ∞ t R, L 1 z L 2 ⊕ L 2 , dµ t (z) , i.
e. the norm of the vector field is integrable with respect to μt , uniformly in t ∈ R.

Proof. By Equation (93) of Lemma 4.16 and the definition of V(t) we have that for any ξ

∈ L 2 ⊕ L 2 : Re ξ, V(t)(z) ≤ C(σ 0 ) ξ L 2 ⊕L 2 u 2 2 + (-∆ + V ) 1/2 u 2 2 + α 2 F H 1/2 + u 2 • (-∆ + V ) 1/2 u 2 2 + u 2 • α 2 F H 1/2 + u 2 • (-∆ + V ) 1/2 u 2 • α F H 1/2 .
It is easy to prove an equivalent bound for the imaginary part, and hence obtain for any ξ

∈ L 2 ⊕ L 2 : ξ, V(t)(z) ≤ C(σ 0 ) ξ L 2 ⊕L 2 u 2 2 + (-∆ + V ) 1/2 u 2 2 + α 2 F H 1/2 + u 2 • (-∆ + V ) 1/2 u 2 2 + u 2 • α 2 F H 1/2 + u 2 • (-∆ + V ) 1/2 u 2 • α F H 1/2 .
Therefore it follows immediately that

V(t)(z) L 2 ⊕L 2 ≤ C(σ 0 ) u 2 2 + (-∆ + V ) 1/2 u 2 2 + α 2 F H 1/2 + u 2 • (-∆ + V ) 1/2 u 2 2 + u 2 • α 2 F H 1/2 + u 2 • (-∆ + V ) 1/2 u 2 • α F H 1/2 .
The right hand side of the above equation is in L ∞ t R, L 1 z L 2 ⊕L 2 , dµ t (z) , as shown at the beginning of the proof of Proposition 4.17.

At this stage, we appeal to a result proved in [START_REF] Ammari | On the uniqueness of probability measure solutions to Liouville's equation of Hamiltonian PDEs[END_REF]Proposition 4.1] concerning the uniqueness of measure-valued solutions of the Liouville equation ( 98), which we briefly recal in the Appendix B. Proposition 4.23. Let ( ε ) ε∈(0,ε) ⊂ L 1 (H) be a family of normal states that satisfies Assumptions (A 0 ),(A ρ ) and (A ρ ). In addition, let μt : R → P L 2 ⊕ L 2 such that for any t ∈ R, μt ∈ M ˜ ε k (t), k ∈ N for some sequence (ε k ) k∈N with ε k → 0 and μt satisfies the integral equation (96).

Then μt = (E 0 (-t) • Ê(t)) # µ 0 .

Proof. Observe that Lemma 4.21, Lemma 4.22 and Lemma 4.12 (ii)-(iii) are sufficient to apply Proposition B.1 with v(t, z) = V(t)(z) and (μ t ) t∈R . Hence, we obtain the existence of a probability measure η verifying the properties (i)-(ii) in the Appendix B. The next step is to show that η is concentrated on solutions of the dressed equation (S-KG[D]) written in the interaction representation. For simplicity one can take the interval I such that [0, T ] ⊂ I, for some T > 0.

By Hölder inequality, Lemma 4.12 (iii) and Proposition B. This means that γ ∈ L 2 (I, H 1 ⊕ FH 1/2 ) for η-a.e. So we conclude that there exists a η-negligible set N such that for any (x, γ) ∈ X N , γ ∈ W 1,1 (I, L 2 ⊕ L 2 ), satisfy the equation ). So going back to γ, we conclude that γ(t) = E 0 (-t) # Ê(t)(x). Hence, for any Borel bounded function ϕ on L 2 ⊕ L 2 and t ∈ R,

γ(t) = x + t 0 V ( 
L 2 ⊕L 2 ϕ(x)dμ t = X ϕ(γ(t))dη = X ϕ • E 0 (-t) • Ê(t)(x)dη = L 2 ⊕L 2
ϕ(E 0 (-t) • Ê(t)(x)) dµ 0 (x) .

4.7. The classical limit of the dressing transformation. Let's consider now the dressing transformation U ∞ (θ) = e -i θ ε T∞ on H, with self-adjoint generator:

T ∞ = D g∞ W ick = R 3
ψ * (x) a * (g ∞ e -ik•x ) + a(g ∞ e -ik•x ) ψ(x)dx ;

g ∞ (k) = - i (2π) 3/2 1 2ω(k) 1 -χ σ0 (k) k 2 2M + ω(k) ∈ L 2 (R 3 ) .
The family e -i θ ε T∞ θ∈R ⊂ L(H) is a strongly continuous unitary group, and therefore can be seen as a dynamical system acting on quantum states. Therefore, given a family ( ε ) ε∈(0,ε) of normal quantum states on H, we could determine the Wigner measures of We recall also that g ∞ , and therefore also T ∞ and D g∞ , depends on σ 0 ∈ R + . Lemma 4.24. Let ( ε ) ε∈(0,ε) be a family of normal (quantum) states on H that satisfies Assumptions (A 0 ) and (A ρ ). Then for any σ 0 ∈ R + , (ˆ ε (-1)) ε∈(0,ε) satisfies Assumptions (A 0 ) and (A ρ ). Furthermore, let (ε k ) k∈N ⊂ (0, ε) be a sequence such that lim k→∞ ε k = 0. Then the following statement is true:

(102) ε k → µ ⇔ ∀θ ∈ R , ∀σ 0 ∈ R + , ˆ ε k (θ) → D g∞ (θ) # µ .
4.8. Overview of the results: linking the dressed and undressed systems. Since as discussed in the previous subsection we can treat the dressing as a dynamical transformation with its own "time" parameter θ; we are able to link the classical limit of the dressed and undressed quantum dynamics via the classical dressing. In this way we are able to recover the expected classical S-KG dynamics for the undressed dynamics, and finally prove Theorem 1.1. First of all, we put together the results proved from Section 4.2 to Section 4.6 on the renormalized dressed dynamics and remove the Assumption (A ρ ) with the help of an approximation argument worked out in [START_REF] Ammari | Mean field propagation of Wigner measures and BBGKY hierarchies for general bosonic states[END_REF]. This is done in the following theorem.

Theorem 4.26. Let Ê : R × Q(-∆ + V ) ⊕ FH 1/2 → Q(-∆ + V ) ⊕ FH 1/2 be the dressed S-KG flow associated to Ê . Let ( ε ) ε∈(0,ε) be a family of normal states in H that satisfies Assumptions (A 0 )

and (A ρ ). Then for any σ 0 ≥ 2K(C + 1 + ε) the dynamics e -i t ε Ĥren(σ0) is non-trivial on every relevant sector with fixed nucleons of the state ε ; M ε , ε ∈ (0, ε) = Ø ; and for any t ∈ R (103) M e -i t ε Ĥren(σ0) ε e i t ε Ĥren(σ0) , ε ∈ (0, ε) = Ê(t) # µ , µ ∈ M ε , ε ∈ (0, ε) .

Furthermore, let (ε k ) k∈N ⊂ (0, ε) be a sequence such that lim k→∞ ε k = 0. Then the following statement is true:

(104) ε k → µ ⇔ ∀t ∈ R , e -i t ε k Ĥren(σ0)
ε k e i t ε k Ĥren(σ0) → Ê(t) # µ .

Proof. Thanks to the argument briefly sketched below, we no longer need Assumption (A ρ ). Let χ ∈ C ∞ 0 (R) such that 0 ≤ χ ≤ 1 , χ ≡ 1 in a neighbourhood of 0 and χ R (x) = χ( x R ). The approximation ε,R = χ R ( Ĥren (σ 0 )) ε χ R ( Ĥren (σ 0 )) Tr χ R ( Ĥren (σ 0 )) ε χ R ( Ĥren (σ 0 )) , satisfies the Assumptions (A 0 ), (A ρ ), (A ρ ) and the property

||e -i t ε Ĥren(σ0) ( ε -ε,R ) e i t ε Ĥren(σ0) || L 1 (H ) = || ε -ε,R || L 1 (H) ≤ ν(R) ,
where ν(R) is independent of ε and lim R→∞ ν(R) = 0 . The last claim follows by Assumption (A ρ ), Theorem 2.10 and Definition 2.12. Up to extracting a sequence which a priori depends on R and t, we can suppose that M ( εn,R , n ∈ N) = {µ 0,R } , M ( εn , n ∈ N) = {µ 0 } and M( εn (t), n ∈ N) = {µ t }.

In particular, applying Proposition 4.23 we obtain M(e -i t εn Ĥren(σ0)

εn,R e i t εn Ĥren(σ0) , n ∈ N) = Ê(t) # µ 0,R .

A general estimate proved in [10, Proposition 2.10] compares the total variation distance of Wigner (probability) measures with the trace distance of their associated quantum states. In our case, it implies where the left hand side denotes the total variation of the signed measures µ t -Ê(t) # µ 0,R and µ 0 -µ 0,R respectively. Hence by the triangle inequality, we obtain

L 2 ⊕L 2 |µ t -Ê(t) # µ 0 | ≤ L 2 ⊕L 2 |µ t -Ê(t) # µ 0,R | + L 2 ⊕L 2 |µ 0,R -µ 0 | ≤ 2ν(R) .
This proves that Ê(t) # µ 0 ⊂ M(e -i t εn Ĥren(σ0) εn e i t εn Ĥren(σ0) , n ∈ N) ,

By reversing time and utilizing the analogue inclusion above, we prove (104).

Proof of Theorem 1.1: Observe that using the definition of the renormalized dressed evolution Let ( ε ) ε∈(0,ε) be a family of normal states in H that satisfies Assumptions (A 0 ) and (A ρ ). In addition, as usual, let (ε k ) k∈N ⊂ (0, ε) be a sequence such that lim k→∞ ε k = 0. Then there exists a Borel probability measure η, on the space X given in (107), satisfying:

(i) η is concentrated on the set of (x, γ) ∈ H 1 ⊕ FH for a.e. t ∈ I with γ(s) = x for some fixed s ∈ I. (ii) µ t = (e t ) η for any t ∈ I.

Here W 1,1 (I, L 2 ⊕ L 2 ) is the Sobolev space of functions in L 1 (I, L 2 ⊕ L 2 ) with distributional first derivatives in L 1 (I, L 2 ⊕ L 2 ). In particular, functions in W 1,1 (I, L 2 ⊕ L 2 ) are absolutely continuous curves in L 2 ⊕ L 2 .

Theorem 1 . 1 .

 11 Let E : R × D → D be the Schrödinger-Klein-Gordon flow provided by Theorem 3.15 and solving the equation (S-KG α [Y]

dφ r 2 ff

 2 (r)e -ir|x| cos θ sin θ (r)r sin(r|x|)dr .

4 1

 1 [0,N] (N 1 ) is the orthogonal projector on N n=0 Hn.

  odd. Obviously also (S-KG[D]) can be written as an equivalent system S-KG α [D], with unknowns u and α (omitted here). As discussed in detail in Section 3.3, with a suitable choice of W , ϕ, ξ, ρ and ζ the global well-posedness of (S-KG[D]) follows directly from the global well-posedness of (S-KG[Y]).

  with |α| ≥ 2 (i.e. at most quadratic positive confining potential).

Theorem 3 . 15 (

 315 Undressed global existence). Assume A V . Then there is a unique Hamiltonian flow solving (S-KG α [Y]):

Subsection 4 .

 4 1 to improve readability. The Subsections from 4.2 to 4.6 are dedicated to prove the convergence of the dressed dynamics. The obtained results are summarized by Theorem 4.26. In Subsection 4.7 we study the classical limit of the dressing transformation. Finally, in Section 4.8 we put all the pieces together to prove Theorem 1.1.

4 . 2 .

 42 (v) (Subsection 4.7). Prove that the dressed state e -i θ ε T∞ ε e i θ ε T∞ converges when ε → 0 to D g∞ (θ) # µ for any θ ∈ R, provided that ε → µ.(vi) (Subsection 4.8). Combine the results together, and use the relationE = D g∞ (1)• Ê•D g∞ (-1) to prove that ε → µ yields e -i t ε Hren(σ0) ε e i t ε Hren(σ0) → E(t) # µ .The integral formula for the dressed Hamiltonian. The results of this and the next subsection are similar in spirit to the ones previously obtained in [5,Section 3] for the Nelson model with cutoff and in[START_REF] Ammari | Mean field propagation of infinite dimensional Wigner measures with a singular two-body interaction potential[END_REF] Section 3] for the mean field problem. However, some additional care has to be taken, for in this more singular situation the manipulations below are allowed only in the sense of quadratic forms. We start with a couple of preparatory lemmas. The proof of the first can be essentially obtained following [5, Lemma 6.1]; the second is an equivalent reformulation of Assumption (A 0 ):

  1 for any k ∈ N and for any Ψ i . Now (L/C) k diverges when k → ∞, while Ψ i , 1 [L,+∞) (N 1 )Ψ i does not depend on k, so their product is uniformly bounded if and only if 1 [L,+∞) (N 1 )Ψ i = 0 for any L > C. The result follows immediately, recalling that the eigenvalues of N 1 are of the form εn 1 , with n 1 ∈ N.

Lebesgue's dominated. 1 . 4 . 3 .

 143 convergence theorem on the right hand side, by virtue of Assumption (A ρ ) and Lemma 4The commutator [ Ĥren,I , W ( ξs )]. In this subsection we deal with the commutator [ Ĥren,I , W ( ξs )].

√ 2 3 j=0

 23 ξ.The result then follows immediately on the states ε (s):[ Ĥren,I , W ( ξs )] = W ( ξs ) W * ( ξs ) Ĥren,I W ( ξs ) -Ĥren,I = W ( ξs ) ÊI (• + iε √ 2 ξs ) -ÊI (•) ε j B j (ξ)(z) = i ε ÊI (z + iε√ 2 ξ) -ÊI (z) , to factor out the ε-dependence.

0

  Tr ε (s)W ( ξs )B j ( ξs ) ds = 0 .Proof. By Lemma 4.2 we can write ε = i λ i |Ψ i Ψ i , where each Ψ i has non-zero components only in the subspace n≤[C/ε] H n , and each λ i > 0. Assumption (A ρ ) then translates on the fact that each11 To be precise, we are considering here the quadratic form ĥren,I , defined and different from zero on the whole space H, since it agrees with • , Ĥren,I • when restricted to vectors that belong to n≤[C/ε] Hn (being here the case by Lemma 4.2).

  R . So again by pseudo-differential calculus we know that (AR ) A-W ick = (A R ) W eyl + ε b(ε) W eyl with b(ε)belonging to the Weyl-Hörmander class symbol S P R ⊕P R ( z p+q-2 , dz 2 z 2 ) uniformly in ε (see [8, Section 3.2 and 3.4]). Thereforelim j→∞ Tr R,m εj (A R ) A-W ick = lim j→∞ Tr R εj χ W eyl m,R (A R ) W eyl χ W eyl m,R , since (dΓ(P R ⊕P R )+1) -(q+p)/2 b(ε) W eyl (dΓ(P R ⊕P R )+1) -(p+q)/2is uniformly bounded with respect to ε. The Weyl-Hörmander pseudo-differential calculus gives χ

Lemma 4 . 16 .

 416 There exists C(σ 0 ) > 0 depending only on σ 0 ∈ R + such that the following bound holds for B (m) 0

  α) ; and therefore the bound (93) holds also for B 0 . * For any m ∈ N, B (m) 0 (•), B 0 (•) are are jointly continuous with respect to ξ

[

  C/ε] n=0 Hn and hence non-trivial on the state ε according to Lemma 4.2.

Definition 4 . 19 (

 419 Weak narrow convergence of probability measures). Let (µi ) i∈N ⊂ P L 2 ⊕ L 2 .

  and a rapidly decrease function g in the Schwartz space S(Ran p), such that

0 E 0

 00 s)(γ(s))ds , ∀t ∈ I ; and furthermore γ ∈ L 2 (I,H 1 ⊕ FH 1/2 ) ∩ L ∞ (I, L 2 ⊕ L 2 ) and V(•)(γ(•)) ∈ L 1 (I, L 2 ⊕ L 2 ). Remember that D g∞ (-1) and E 0 (t) preserve the spaces H 1 ⊕ FH 1/2 and L 2 ⊕ L 2 (see Proposition 3.5). So by a simple computation one checks that for any γ as before, the curvet → γ(t) := D g∞ (1) • E 0 (t)(γ(t)) ∈ L 2 (I, H 1 ⊕ FH 1/2 ) ∩ L ∞ (I, L 2 ⊕ L 2 )and satisfies the Duhamel formula,γ(t) = E 0 (t) • D g∞ (1)x -i t (t -s)∂ z (E -E 0 )(γ(s))ds , ∀t ∈ I ,which is the original Cauchy problem (S-KG[Y]) with the energy E given by Definition 3.8. Remember that we have already checked that D g∞ (θ) are nonlinear symplectomorphisms on the phase spaceL 2 ⊕ L 2 (seeProposition 3.17). Now appealing to the result[START_REF] Colliander | Low regularity global well-posedness for the Zakharov and Klein-Gordon-Schrödinger systems[END_REF] Theorem 1.3], wee need to show that γ1 ∈ L 10/3 ([0, T ], L 10/3 (R 3 )) ∩ L 8 ([0, T ], L 12/5 (R 3 )) where γ = (γ 1 , γ2 ) in order to conclude that γ is actually the unique strong and global solution of the S-KG equation with initial condition γ(0) =x ∈ H 1 ⊕ FH 1/2 and belonging to C(R, H 1 ⊕ FH 1/2 ). The last statement follows by Strichartz estimates since γ1 ∈ L 2 ([0, T ], L 6 (R 3 ) ∩ L ∞ ([0, T ], L 2 (R 3

  (100) ˆ ε (θ) = e -i θ ε T∞ ε e i θ ε T∞ .Since T ∞ = D g∞ W ick , where D g∞ is the classical dressing generator defined in Section 3.1, we expect that under suitable assumptions,ε k → µ ⇒ ˆ ε k (θ) → D g∞ (θ) # µ ,where D g∞ (θ) is the classical dressing transformation. The last assertion is indeed true, as explained in the following. Observe that the dressing generator T ∞ is equal to the interaction part H I (σ) of the Nelson model with cutoff, where χσ √ 2ω is replaced by g ∞ , i.e. T ∞ = H I (σ) χσ √ 2ω =g∞ . The classical limit of the Nelson model with cutoff has been treated by the authors in [5], thus the results below can be immediately deduced by the results in [5, d = 3, H 0 = 0 and χ √ ω = g ∞ ].

Proposition 4 . 25 .

 425 Let D g∞ : R × Q(-∆ + V ) ⊕ FH 1/2 → Q(-∆ + V ) ⊕ FH 1/2 bethe classical dressing transformation. Let ( ε ) ε∈(0,ε) be a family of normal quantum states on H that satisfies Assumption (A 0 ) and Assumption (A ρ ) or (A ρ ). Then M ε , ε ∈ (0, ε) = Ø; and for any σ 0 ∈ R + and θ ∈ R ,(101) M ˆ ε (θ), ε ∈ (0, ε) = D g∞ (θ) # µ , µ ∈ M ε , ε ∈ (0, ε) .

L 2

 2 ⊕L 2 

L 2

 2 |µ t -Ê(t) # µ 0,R | ≤ lim inf n→∞ ||e -i t εn Ĥren(σ0) ( εnεn,R ) e i t εn Ĥren(σ0) || L 1 (H) ≤ ν(R) , ⊕L 2 |µ 0 -µ 0,R | ≤ lim inf n→∞ || εnεn,R || L 1 (H) ≤ ν(R) ,

ε

  (t) (Definition 4.3) and the definition of the "dressing dynamics" ˆ ε (θ) (Equation (100)), we obtain:e -i t ε Hren(σ0) ε e i t ε Hren(σ0) = e -i ε T∞ e -i t ε Ĥren(σ0) e i ε T∞ε e -i ε T∞ e i t ε Ĥren(σ0) e i ε T∞ = ˆ ε (-1) (t) ˆ(1) .

  x n } a set of variables, dX n = dx 1 • • • dx n the corresponding Lebesgue measure (and analogously for K p , dK p ). The proof is obtained by a direct calculation on the Fock space as follows:

  dz 2 ) uniformly in ε (see e.g.[START_REF] Ammari | Mean field limit for bosons and infinite dimensional phase-space analysis[END_REF] Proposition 3.2]).

		Hence, according
	to [8, Theorem 6.2] one obtains
	lim j→∞	Tr R,m εj

  since the latter is dense in L 2 ⊕ L 2 , and lim l→∞ Tr ˜ ε kι (t) W (ξ)-W (ξ (l) ) = 0 uniformly in ε kι by Lemma 4.13. Now, for Tr ˜ ε kι (t)W (ξ (l) ) the integral equation (69) holds. Proposition 4.14 implies that ˜ ε kι (t) → μt = E 0 (t) # µ t , for any t ∈ R.Therefore the left-hand side of (69) converges when ι → ∞ to L 2 ⊕L 2 e i √ 2Re ξ (l) ,z dμ t (z); and that in turn converges when l → ∞ to L 2 ⊕L 2 e i

							√	2Re ξ,z dμ t (z) by dominated convergence theorem. In
	addition,							
		lim ι→∞	j=1 3	ε j	0	t	Tr ε kι (s)W ( ξ (l)	s )B j ( ξ (l)	s ) ds = 0 ;
	by Proposition 4.7. It remains to show the convergence of the B 0 term in (69). We approximate B 0
	by the compact B 0 , because using Lemma 4.2 and (80) of Proposition 4.9 we obtain (m)
	Tr ε kι (s)W ( ξ (l)	s						

  1-(ii),

			1/2			1/2	
	X	I	||γ(t)|| 2 H 1 ⊕F H 1/2 dt	dη(x, γ) ≤	I H 1 ⊕F H 1/2	||z|| 2 H 1 ⊕F H 1/2 dμ t	< ∞ .

  Then we can use Lemma 4.24, understood in a weak sense as the integral equation, (108)I L 2 ⊕L 2 ∂ t ϕ(t, x) + Re v(t, x), ∇ϕ(t, x) L 2 ⊕L 2 dµ t (x) dt = 0, ∀ϕ ∈ C ∞ 0,cyl (I × L 2 ⊕ L 2 ) .The following result is an adaptation of[START_REF] Ammari | On the uniqueness of probability measure solutions to Liouville's equation of Hamiltonian PDEs[END_REF] Propositon 4.1].Proposition B.1. Let v : R × H 1 ⊕ FH 1/2 → L 2 ⊕ L 2 bea Borel vector field such that v is bounded on bounded sets. Let t ∈ I → µ t ∈ P(H 1 ⊕ FH 1/2 ) be a weakly narrowly continuous solution in P(L 2 ⊕ L 2 ) of the Liouville equation (108) defined on an open bounded interval I with the following estimate satisfied, I H 1 ⊕F H 1/2 v(t, x) L 2 ⊕L 2 dµ t (x) dt < ∞ .

  1/2 × Γ I such that γ ∈ W 1,1 (I, L 2 ⊕ L 2 ) and γ are solutions of the initial value problem γ(t) = v(t, γ(t)) for a.e. t ∈ I and γ(t) ∈ H 1 ⊕ FH1/2 

We recall that for the Nelson model Z = L 2 (R d ) ⊕ L 2 (R d ), thus we denote the variable z by u ⊕ α.

The second author has been partially supported by the Centre Henri Lebesgue (programme "Investissements d'avenir" ANR-11-LABX-0020-01).

Proposition 4.25 and Theorem 4.26 to prove the following statement:

Hren(σ0) → D g∞ (1) # Ê(t) # D g∞ (-1) # µ = [D g∞ [START_REF] Abdesselam | Analyticity of the ground state energy for massless Nelson models[END_REF] • Ê(t) • D g∞ (-1)] # µ .

Therefore Theorem 1.1 is proved, since by Equation [START_REF] Maniglia | Probabilistic representation and uniqueness results for measure-valued solutions of transport equations[END_REF] of Theorem 3.16, D g∞ (1) • Ê(t) • D g∞ (-1) = E(t). To be more precise, we use the following chain of inferences: 

The inference in the opposite sense is trivial.

As it has become evident with the above discussion, we do not prove Theorem 1.1 directly; and it would be very difficult to do so, due to the fact that we do not know the explicit form of the generator H ren (σ 0 ) of the undressed dynamics. We know instead how the dressed generator Ĥren (σ 0 ) acts as a quadratic form, and that is sufficient to characterize its dynamics in the classical limit, and obtain the results of Theorem 4.26. The properties of the dressing transformation and of its classical counterpart are then crucial to translate the results on the dressed dynamics to the corresponding results on the undressed one.

Appendix A. Uniform higher-order estimate

We prove in this section a higher-order estimate that bounds the meson number operator N 2 by the dressed Hamiltonian Ĥ(n) σ uniformly with respect to the effective (semiclassical) parameter ε and the cut-off parameter σ. Such type of estimates rely on the pull-through formula and they are known for the P (ϕ) 2 model [START_REF] Rosen | The (φ 2n ) 2 quantum field theory: higher order estimates[END_REF] and for the Nelson model [START_REF] Ammari | Asymptotic completeness for a renormalized nonrelativistic Hamiltonian in quantum field theory: the Nelson model[END_REF]. However, since the dependence of the dressed Hamiltonian Ĥ(n) σ on ε is somewhat nontrivial, we briefly indicate in this appendix how to obtain an uniform estimate.

Lemma A.1. For any ε ∈ (0, ε) and any ψ ∈ D(N 2 ) ⊂ H,

Proof. Recall that N 2 and a(k) depends in the parameter ε according to the notations of Subsection 1.1. Taking care of domain issues as in [4, Lemma 2.1] one proves

Recall that the interaction term ĤI (σ) (n) is given by [START_REF] Arai | Ground state of the massless Nelson model without infrared cutoff in a non-Fock representation[END_REF]. A simple computation yields

Lemma A.2. For any C > 0 and σ 0 ≥ 2K(C + 1 + ε) there exist c, b > 0 such that for any ε ∈ (0, ε),

Proof. According to Proposition 2.9 and Theorem 2.10, ĤI (σ

is uniformly bounded for some b > 0. So it is enough to prove the claimed bound with H (n) 0 instead of Ĥ(n) σ . Now using similar estimates as in Lemma 2.6 and the fact that εω(k)(b+εω(k)+ Ĥ(n) σ ) -1 2 is uniformly bounded one correctly bounds all the terms of the commutator except the one with a * . Remark that the commutator contains the power ε 2 that controls the sum over 1 ≤ j ≤ n and the factor 1/ εω(k). In order to bound the term with a * , one uses the type of estimate in [4, Lemma 3.3 (ii)] with s = 1/2. Remark that one gets an ε-dependent estimate from [4, Lemma 3.3 (ii)] by noticing that ε 1/4 (H (n) 0 + 1) -1/4 (dΓ 1 (ω) + 1) 1/4 and ε 1/4 (N 2 + 1) -1/4 (dΓ 1 (1) + 1) 1/4 are uniformly bounded 17 and that a * contains √ ε that cancels the latter ε -1/4 • ε -1/4 .

Let C > 0 and σ 0 ≥ 2K(C + 1 + ε) as in the above lemma. In particular Ĥ(n) σ is a self-adjoint operator for any ε ∈ (0, ε), σ 0 < σ ≤ +∞ and n ∈ N such that nε ≤ C.

Lemma A.3 (The pull-through formula). The following identity holds true for some b < 0, any

2 ) ∩ H n and k almost everywhere in R 3 ,

Proof. According to [START_REF] Ammari | Asymptotic completeness for a renormalized nonrelativistic Hamiltonian in quantum field theory: the Nelson model[END_REF]Lemma 4.4] there exists ψ ∈ (H

The latter identity follows by a simple computation.

17 dΓ 1 (•) is the ε-independent second quantization operator in [START_REF] Ammari | Asymptotic completeness for a renormalized nonrelativistic Hamiltonian in quantum field theory: the Nelson model[END_REF] Proposition A.4. For any C > 0 and σ 0 ≥ 2K(C + 1 + ε) there exist c, b > 0 such that the operator Ĥ(n) σ is self-adjoint and the following bound holds true:

Proof. The operator Ĥ(n) σ is uniformly bounded from below. So by choosing b > 0 large enough one can take ψ = (-b -Ĥ(n) σ ) -1 φ. Now it is enough to prove the estimate for φ ∈ (H

2 ). Using Lemma A.1 and Lemma A.3,

For simplicity we denote by c any constant. In the same way, one also shows

The last equality follows by a similar argument as in the proof of Lemma A.1. Hence, one obtains

The last inequality is a consequence of the uniform boundedness of the operator (b + H