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In industry, resin flow prediction is a real challenge,
because filling defects, such as dry spots and poros-
ities, can dramatically degrade the mechanical proper-
ties of the shaped part. The present contribution
investigates the use of the boundary element method
for the numerical simulation of resin flow in liquid
composite molding processes. Due to the dual-scale
structure of the reinforcement, there are two different
approaches in the literature to simulate the flow: the
macroscale, well suited for the mold design, and
the microscale, usually used for the local analysis of
the reinforcement impregnation. In this work, both
scales are under consideration. The article presents
the numerical methods used to solve Darcy’s law and
Stokes equations with boundary integral formulations.
Typical applications are given to illustrate both meth-
ods, and numerical validations are performed using
comparisons with experimental and analytical data. The
results show that the methods provide a high accuracy
and a low CPU time.

INTRODUCTION

Liquid composite molding (LCM) refers to composite
manufacturing processes involving a liquid resin flow
through a dry fibrous reinforcement in a closed mold. It
has been widely used in industry for the last decades to
produce high quality and complex-shaped parts. Typical
fields of applications can be found in automotive,

aeronautics, spatial, marine, defense, or sporting goods
industry. Resin transfer molding (RTM) is one of the
most popular process among the large numbers of tech-
nologies currently in use, such as vacuum assisted RTM
and liquid resin infusion. The present contribution focuses
on the mold filling step of LCM process. In this step, the
resin is forced into the mold to impregnate the fibrous
reinforcement.

It has been proven that the quality of the impregnation
determines the mechanical properties of the final compos-
ite material. In particular, a partial filling leaving dry
spots and/or porosities within the reinforcement may dra-
matically decrease the mechanical performances of the
part. This is why resin flow prediction has become a vital
concern in composites manufacturing industry. To ensure
a complete filling of the whole part, a special care is usu-
ally taken to place the injection ports and the vents in the
mold. Cost of tools together with the time spent on devel-
oping the best filling strategy have led engineers to use
numerical methods instead of full trial-and-error methods.

Numerical modeling addressing each step of the pro-
cess, such as preform processing, mold filling and resin
cure, has been extensively studied for the last 3 decades.
In most cases, structural composites materials are manu-
factured using dual-scale porous reinforcements (typically
carbon fabrics). The reinforcement architecture is usually
made of a periodical organization of tows enclosing sev-
eral thousands of fibers. Consequently, two different
scales can be used to simulate the resin flow within the
reinforcement: macroscale and microscale. The micro-
scale focuses on the flow between the fibers inside the
tow. Due to the large numbers of fibers, simulations are
usually performed using representative elementary cells
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(REC). The size of these cells typically ranges from a
few micrometers to a few millimeters, depending on
material complexity and computational resources. Typical
applications can be found in the field of numerical perme-
ability computation using the Stokes equations [1,2].
On the contrary, macroscale is mainly used in the simula-
tion of the whole composite part filling. Permeability is
then utilized in the program as material input data, and
the simulation is generally conducted using Darcy’s
law [3].

Most of the time, mold filling simulations are achieved
in commercial codes using a control volume/finite ele-
ment method (CV/FEM) [4]. This method is based on fill-
ing fractions, ranging from 0 (no resin) to 1 (completely
filled with resin). Fractional values indicate that the resin/
air interfaces occurs in the cell. Several methods have
been developed to improve the location of the interface.
Among them, some techniques are based on reconstruc-
tion schemes, such as simple line interface calculation [5]
or piecewise linear interface calculation [6], while others
utilize some adaptive mesh refinements [7,8] or Level Set
Methods [9,10]. The Level Set Methods are advanced
numerical techniques developed to capture complex-
shaped interfaces occurring in two and three dimensions.
They are widely used in large range of numerical prob-
lems including propagating interfaces, for example, in
fluid mechanics, crystal growth, combustion, and medical
imaging.

This works investigates the use of boundary element
method (BEM) to simulate the flows occurring at macro-
scale and microscale in the reinforcement. One important
feature of the BEM is that it is only required to mesh the
boundary to perform the computation, while a full domain
mesh is needed in FEM methods. Therefore, BEM is well
suited for large and complex-shaped domains. It is also
well suited to combine with Level Set Methods, as they
use the signed-distance to the interface to follow the front
motion. The article presents the governing equations of
the resin flow at both scales, and the main features of
the numerical models. Finally, some typical applications
illustrating the methods are given. Numerical results are
also compared with experimental and analytical data.

GOVERNING EQUATIONS

In this work, it is assumed that the resin is Newtonian,
and that the flow occurs in isothermal conditions. In par-
ticular, the filling time is assumed to be shorter than the
time required to reticulate the resin, and viscosity is
assumed to be constant and homogeneous. It is usually
the case in injection and infusion processes since the resin
has to be maintained at a low viscosity during the filling
stage. It is also assumed that the fibers in the reinforce-
ment are fixed and rigid during the resin motion. Besides,
it is assumed that the permeability tensor is constant in
time and space, although some fiber displacements may
change the local properties of the reinforcement.

Macroscopic Scale Flow

It is generally admitted in the literature that the aniso-
tropic form of Darcy’s law is well suited to describe the
macroscopic resin flow within the fibrous reinforcement
[9,11]. In Darcy’s law it is also implicitly assumed that
the resin follows incompressibility equation. Therefore,
the macroscale model is given as:
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where X is the computational domain, ~v is the resin
velocity, p the pressure, l the liquid resin viscosity, and ##k
the permeability tensor. It should be noticed that Eq. 1a
gives the superficial resin velocity, but the real velocity
in the porous network can be computed using the fiber
volume fraction of the dry reinforcement. For a two-
dimensional flow, the permeability tensor is given as
follows:
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where ð~e1;~e2Þ denotes the unit vectors in two-
dimensional (2D) Cartesian coordinates. Two types of
boundary conditions can be specified:

i. p5#p on Cp (Dirichlet condition)
ii. q5 op

on 5#q on Cq (Neumann condition)

where #p (respectively, #q) is the prescribed value of pres-
sure (respectively, normal derivative), and C is the
domain boundary, divided into parts at imposed pressure
Cp and parts at imposed normal derivative Cq satisfying
C5Cp [ Cq.

Microscopic Scale Flow

The resin motion between the fibers (intra-tow
domain) is governed by Stokes equations [1]:

lD~v 5 ~rp in X ð3aÞ

~r # ~v50 in X ð3bÞ
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where X is the computational domain (resin), ~v the resin
velocity, and p the pressure. Two types of boundary con-
ditions can be specified:

i. vk5 #vk on Cvk (imposed velocity)
ii. Tk5 #Tk on CTk (imposed stress)

where vk and Tk are the prescribed k-component of veloc-
ity and stress vector on the boundary. The Newtonian
resin behavior is given as follows:
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where rij is the stress tensor and _cij the strain rate tensor,
given as follows:
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where xj is the component j (indicial notation). It should
be mentioned that stress vector at boundary is given as
Ti5rijnj, with nj being the component j of outward
normal.

NUMERICAL METHOD

This section covers the numerical technique used to
solve the governing equations of the flows occurring at
macroscale and microscale. The BEM [12–14] has been
used in this work. The main feature of the BEM is the
use of a boundary mesh instead of a full domain mesh. In
this method, the solution at internal points is computed in
a postprocessing step, once the boundary problem is
solved. A Level Set method has been implemented in the
macroscale model to advance the flow front inside the
reinforcement during the mold filling stage. A Marching
Triangles algorithm has also been utilized to generate a
boundary mesh at each step time.

BEM Resolution of Darcy’s Law

Boundary Integral Formulation. Combining Eqs. 1a
and 1b leads to the following equation:

~r # 2
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where e is the porosity of the dry reinforcement, corre-
sponding to the complementary value of the fiber volume
fraction.

The boundary integral formulation is obtained using a
Green’s function, given as follows [12]:

p$ x; sð Þ5 1
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where p$ is the Green’s function, computed as 2D funda-
mental solution of Eq. 6, x and s are the field point and

the source point (Fig. 1), ##jkj is the determinant of the per-
meability tensor, and r̂ is a scalar function depending on
domain geometry and permeability tensor:

r̂25
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where ri is the projection of ~r on outward normal ~n at
boundary. Integrations by parts together with Green’s the-
orem yield to Somigliana’s equation:

cðsÞpðsÞ1
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ð

C
p$ðx; sÞqðxÞdCðxÞ (9)

where cðsÞ is the free term and q$ the normal derivative
of p$. It should be mentioned that Eq. 9 is valid for any
point source s placed in the plane, in particular for inter-
nal points [15]. Therefore, pressure can be computed in
the whole domain provided that both p and q are known
along its boundary C. Next, the velocity can be computed
using the derivative of Eq. 9.

Constant BEM. The numerical procedure consists in
meshing the boundary using N elements (Fig. 2). In the
constant BEM, p and q are assumed to be constant and
equal to the value at the mid-element node. The assem-
bling process leads to a linear system given as
½H&3 ~P5½G&3 ~Q, where Pi (respectively, Qi) is pressure
(respectively, normal derivative of pressure) at node i, Hij

and Gij are integration constants defined as follows:

Hij5
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FIG. 1. Computational domain representation and geometrical notations
in BEM.

FIG. 2. Computational domain discretization using constant boundary

elements.



where dij is the Kronecker symbol, and Cj denotes the
element j,

Gij5
ð

Cj

p$ðx; xiÞdCjðxÞ (11)

Evaluation of coefficients Hij and Gij is achieved using
a Gauss quadrature formula, except for the diagonal
of matrix H (Hii5 1

2). Boundary conditions are introduced
into the system by assigning directly the prescribed nodal
values, either Pi5#pðxiÞ or Qi5#qðxiÞ. Passing all
unknowns on the left-hand side yields to the linear system
ready to be solved, that is, ½A&3 ~X5~B.

BEM Resolution of Stokes Equations

Boundary Integral Formulation. The well known
boundary integral formulation of elastostatics [12,13] can
be used to solve the Stokes equations. However, displace-
ment vector and strain tensor have to be replaced with
velocity vector and strain rate tensor. Fundamental solu-
tions are obtained by imposing a virtual Poisson coeffi-
cient of 1

2 to satisfy the incompressibility condition. The
virtual velocity is then given as follows:
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and the virtual stress is given as:

t$lk x; sð Þ5 ðrlrkÞ
pr4

~r:~n (13)

Constant BEM. The numerical method used to assem-
bly and solve the linear system is quite similar to the pro-
cedure described above. However, as fundamental
solutions differ from the previous section, the linear sys-
tem is now organized into the following matrix form:

½H1;1& ½H1;2& … ½H1;N&

½H2;1& ½H2;2& … ½H2;N&

! ! . .
.

!

½HN;1& ½HN;2& # # # ½HN;N&

2

66666664

3

77777775

½V1&

½V2&

!

½VN&

2

6666664

3

7777775

5

½G1;1& ½G1;2& … ½G1;N&

½G2;1& ½G2;2& … ½G2;N&

! ! . .
.

!

½GN;1& ½GN;2& # # # ½GN;N&

2

66666664

3

77777775

½T1&

½T2&

!

½TN&

2

6666664

3

7777775

(14)

where ½Vi& (respectively, ½Ti&) is a 2 3 1 submatrix storing
velocity vector (respectively, stress vector) at node i and
½Hij&, ½Gij& are 2 3 2 submatrices given as:
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where ði; jÞ are the indexes of source point and the element
over integration, and ðl; kÞ are indexes ranging from 1 to 2.
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All above submatrixes are evaluated numerically using
a Gauss quadrature formula, except for node i belonging
to element j, for which the analytical solution is given as
follows:
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where Li is the length of boundary element i. Boundary
conditions are introduced the linear system by assigning
the prescribed nodal values, that is, either Vik 5#vkðxiÞ, or
Tik 5#tkðxiÞ.

Resin Front Updating

This section covers the case of a moving computa-
tional domain, that is, X5XðtÞ. In the implemented
method, the boundary motion is computed using a Level
Set method [16,17]. An important feature differing from
CV methods is that the resin motion is fully governed by
the boundary velocity field. Therefore, coupling Level Set
with BEM is straightforward by meshing the advancing
front at each time step. In the numerical model, the
boundary mesh used in the BEM is defined as the inter-
section between the flow front and another grid of higher
dimension, also called background grid. A Marching Tri-
angles algorithm has been implemented to generate the
boundary mesh [18,19].

Signed Distance Function. In Level Set Methods, the
boundary is embedded in a signed distance function, so
that the zero Level Set corresponds to the interface [16]:

CðtÞ5fx 2 IR2=/ðx; tÞ50g (19)

Distance is signed negative if the point is located in
the impregnated region, or it is signed positive otherwise:

/5
2dðx;CÞ if x inside X

1dðx;CÞ if x outside X

(

(20)

where x is the node under consideration and dðx;CÞ the
Euclidean distance from that point to the front C. In this



work, the background grid is generated using a free trian-
gulation with 3-nodes triangles (linear interpolation)
(Fig. 3).

Level Set Formulation and BEM Coupling Strategy.
The Level Set equations are used to govern the evolution
of the signed distance function. To combine with BEM,
the formulation involving a propagating interface with a
velocity in its normal direction is used. It is given as
follows:

@/
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/ðx; t50Þ5/0 ð21bÞ
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where F is the norm of the extended normal velocity,
computed according to the nearest neighbor rule: for each
background node, the velocity corresponding to the near-
est computational boundary node is assigned (for further
details see Ref. [17]).

Updating Scheme. At the beginning of the filling stage,
/0 is evaluated by computing the signed distance from
the background nodes to the inlet gates. Next, the signed-
distance function is updated using the following expres-
sion (Euler scheme):

/ðx; t1DtÞ5/ðx; tÞ2Fðx; tÞjr/ðx; tÞjDtðtÞ (22)

where Dt is the time step, adjusted to match its upper
limit according to the Courant-Friedrichs-Levy conditions.
These conditions restrict the motion of the front to one
grid cell per step time.

Reinitialization. Level Set field tends to lose its signed-
distance property while being updating. Reinitialization
step, usually performed by solving a Hamilton-Jacobi sys-
tem, is required to maintain the property. In the present
contribution, reinitialization is carried out by computing
explicitly Euclidean distances from grid to boundary
mesh. For sake of efficiency, the reinitialization should
be restricted in a narrow-band around the front.

Boundary Remeshing Procedure. The boundary mesh
is updated at each time step using the background grid
through a Marching Triangles algorithm [18]. This algo-
rithm has two advantages comparing with the standard
Marching Squares: ambiguous intersecting cases vanish,
and grid generation can be performed using some free tri-
angulation methods implemented in most of commercial
meshing softwares.

In this algorithm, each triangle is visited to determine
how the front intersects the grid. Eight intersection cases
can be encountered, but they reduce to only two topolo-
gies using symmetry and nodes permutations. The look-
up table is defined by labeling each triangle vertices
either outside or inside the fluid domain. In the imple-
mented algorithm, once the intersecting case is identified,
boundary nodes are placed by linearly interpolating the
zero Level Set along the triangle edges (Fig. 3). Boundary
elements are created by connecting two nodes using a
straight line. As connections occur within a triangle, it is
straightforward to generate the connectivity of the ele-
ments in the mesh. Normals to elements are oriented out-
ward using the sign of the signed-distance function within
the triangle.

It is important to notice that the above method gener-
ally leads to a large number of elements in the boundary
mesh. However, it is easy to reduce significantly unneces-
sary elements (typically found near corners of triangles)
using a perturbation procedure acting on the Level Set
data [20].

Contact Implementation. The method described above
directly handles topological changes appearing when
fronts merge. However, it does not ensure that the resin
remains inside the cavity. The nonpenetration condition is
implemented using a fixed Level Set describing the walls.
At each time step, the current Level Set is modified by
intersecting mold with resin front using the following
expression:

FIG. 3. Boundary elements mesh of the front using Marching Triangle

algorithm.



/5max ð/;/mÞ (23)

where /m. mold is the signed-distance function to the
mold walls.

APPLICATIONS

Applications illustrating the macroscale and microscale
numerical models are presented in this section. Some
experimental data and analytical solutions are used to
assess and discuss the results.

Knitted Fabric Impregnation

To validate the numerical results, an experimental
setup was developed to follow the infusion of an aniso-
tropic knitted fabric. The fabric was multi-injected and
fitted with internal obstacles acting like inserts to get
closer from industrial concerns. Geometry and dimensions
of the mold are given Fig. 4.

Experimental Procedure. The fabric used to perform
the test is a glass fiber material knitted with a 1 3 1 rib
pattern (manufactured by Textile A"ero Tarn). During the
test, the resin was replaced with a model fluid used at
room temperature in order to maintain isothermal condi-
tions during the flow. For that purpose, canola oil was
chosen. This oil has been used in literature by the past
for its properties closed to typical thermoset resin

(viscosity of 0.075 Pa s at 20'C and superficial tension of
33.4 mN m21) and its perfect Newtonian behavior [21].
Material data and processing parameters used to conduct
the test are summarized in Tables 1 and 2. It should be
noted that permeability tensor was previously measured
using a transient in-plane method: a complete description
of the measurements is available in Ref. [21].

The experimental set-up consisted in infusion process
equipment equipped with pressure sensors and a camera
coupled device (CCD) camera placed in front of the rein-
forcement (Fig. 5). The knitted fabric (one layer) was put
in place under a transparent flexible bag and sealed on a
tooling plane surface using a vacuum sealant tape. It
should be mentioned that no draining product was used in
the set-up for the need of the test. The canola oil was
stored at room temperature in an open container at atmos-
pheric pressure. In the infusion set-up, the main flow was
divided into two injection lines in order to obtain two
separates ports for the canola oil entering the reinforce-
ment. A constant vacuum was maintained inside the cav-
ity in order to control the pressure during the flow. For
that purpose, two vacuum lines were placed on the part
and connected to the pump. The camera used to follow
the flow front was a 1,350 3 1,024 px2 CCD with typical
magnification factor of images of 2.7 px mm21. The
frame rate used to collect the data was four images per
second.

Numerical Procedure. The background grid used to
mesh the reinforcement includes 560 nodes and 4,624 ele-
ments and was generated with a free triangulation method
using IDEAS (Fig. 6). For the sake of illustration, the
Level Set corresponding to the signed distance to the
mold is given together with the mesh.

FIG. 4. Dimensions of the mold.

TABLE 1. Material data.

K1 (m2) K2 (m2) l (Pa s) e (2)

1.50e-9 7.75e-10 0.1 0.705

TABLE 2. Processing parameters.

Inlet pressure:
p0 (Pa)

Outlet pressure:
pf (Pa)

Inlet gate radius:
r0 (m)

1.03e5 120 5e-3

FIG. 5. Experimental setup.



Boundary conditions have been assigned as follows:

i. p5p0 at inlet and pf at outlet
ii. q50 on mold walls and inserts (non penetration

condition)

CPU time for the whole computation was 25 s using a
P8400 Intel Core laptop (2.26 GHz, 1.9 GB of RAM).
The resolution was fully conducted using MATLAB
environment.

Results and Discussion. At the end of the test, some
images have been utilized to make a comparison between
experience and simulation at different times (Fig. 7). For
that purpose, an experimental Level Set was computed to
be compared with the numerical Level Set used in the
program. For each image, the front location was extracted
using an image analysis procedure developed using MAT-
LAB environment. Even if it is not necessary to compute
a full domain solution to obtain the numerical filling pat-
terns, pressure at internal points has also been computed
for the sake of illustration. This step has been achieved in
a postprocessing routine based on Eq. 15.

The comparison between experimental and numerical
Level Sets revealed a good accordance: numerical front
patterns did not differ more than 20 mm from images.
Besides, fronts merging as well as contact with
internal obstacles were successfully predicted by the pro-
gram. It should be mentioned that the numerical method
provided a fair description of the front shapes owing to
the use of Level Set method in the front capturing
implementation.

The impregnated areas were also compared in order to
check that mass variations were correctly computed. The
impregnated pixels on each image were counted through
an image analysis procedure. Results reveal a good

agreement in the whole filling stage (Table 3). In particu-
lar, once the first seconds were elapsed, differences were
less than 7%, in spite of geometry approximations and
edge effects along the mold walls. However, it should be
noted that higher differences were reached during the first
seconds of the flow. This may be explained by a high
sensitivity to time synchronization and inlet ports geome-
try approximations.

Computation of Transverse Permeability in REC

The saturated flow perpendicular to the fibers has been
computed using different REC. Next, the boundary veloc-
ity field was used to compute the transverse permeability
using Darcy’s law.

Quadratic Fiber Packing. The resin flow through uni-
directional reinforcements has been studied by Gebart
[22]. In his model, the author uses the thin channel flow
assumptions to obtain a closed-form solution of Stokes
equations in a quadratic fiber packing. It is also assumed
that fibers are fixed and that sticking contact occurs
between fibers and resin. The following expression is pro-
posed for the transverse permeability:
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where Kt is the transverse permeability, R the fiber radius,
Vf the fiber volume fraction and p

4 the maximum fiber vol-
ume fraction reachable in a quadratic packing.

This solution has been used to assess the numerical
model. A parametric study was achieved using a wide
range of fiber volume fraction varying between 0.1 (poor
fiber content) and 0.7 (high fiber content). Fiber radius
has been maintained constant and equal to 3.5 lm (typical
radius of carbon fiber). The fiber volume fraction has
been set by decreasing or increasing the gap between the
fibers. For symmetry reasons, several patterns can be con-
sidered to carry out the calculations [2]. This study has
been achieved using the smallest pattern, including a
quarter of fiber.

The boundary conditions are given below. They have
been assigned following Gebart’s assumptions. In particu-
lar, a constant pressure flow has been imposed to drive
the flow within the microstructure.

i. #vk50 at fiber/resin interfaces
ii. #T k52#pnk at REC inlet and outlet boundaries

iii. #T 150 and #v250 at REC upper and lower boundaries

where #p is a prescribed value of pressure, equal to pin at
inlet and pout at outlet. It should be noted that conditions
(i) stands for an impermeable and sticking contact
whereas condition (iii) stands for a slipping contact

FIG. 6. Background grid and Level Set of the mold.



corresponding to symmetry conditions. Pressures and vis-
cosity used in the simulation are given in Table 4.

At the end of the calculation, the transverse permeabil-
ity was computed using of the flow rate exiting the REC.
Darcy’s law yields to the following expression:

Kt5
lð12VfÞ
pin2pout

ð

Cout

~v:~ndC (25)

where Cout is the boundary at the exit of the REC under
consideration.

FIG. 7. Comparison between experimental and numerical filling patterns.



Results of the study are reported in Fig. 8. Dimension-
less permeability has been computed for sake of general-
ity. The parametric study revealed an excellent accordance
between Gebart’s model and numerical results in the
whole range of fiber volume fractions. However, the better
results have been obtained for high fiber volume fractions
due to the thin flow channel assumption used in Gebart’s
approach.

Stochastic Fiber Distribution. In most cases, the fibers
arrangement is disordered and heterogeneous. Several
authors investigated numerically the effect of a stochastic
distribution of fibers on the permeability [1,10]. The
method developed by Chen and Papathanasiou [1] was
used in this work to generate different microstructures
using a random sampling. The process is divided in two
main steps. In the first step, the microstructure is

initialized in a regular quadratic packing of specified fiber
volume fraction. Next, the fibers are randomly displaced
through a Monte-Carlo method, until the microstructure
reaches a disordered arrangement.

The simulation was performed on a square REC of
100 lm side using a fiber volume content of 0.25. In the
numerical model, fibers sections were assumed to be cir-
cular of equal radius set to 3.5 lm (carbon fiber). This
REC was meshed using 988 boundary elements, with 12
elements for each fiber (Fig. 9). Boundary conditions are
identical to the previous case of quadratic fiber packing
(see above). Two simulations were conducted in the REC,
one in each directions of the plane.

CPU time for whole computation was less than 1 min
on a laptop using MATLAB (2.26 GHz, 1.9 GB of RAM).
The boundary velocity field in each direction of the flow
is given Fig. 9. The results reveal that the resin clearly
skirts around the fibers and slows down close to them,

TABLE 3. Impregnated area: comparison between experimental and
numerical data.

Time (s) Exp. (mm2) BEM (mm2) Difference (%)

0.5 7.23e3 8.32e3 15.0
1.5 1.48e4 1.90e4 28.7

3.0 2.89e4 3.52e4 21.2
4.0 4.07e4 4.35e4 6.9

5.0 4.91e4 4.91e4 0.1
6.0 5.55e4 5.52e4 0.5
7.0 6.29e4 5.90e4 6.2

8.0 6.57e4 6.96e4 6.0

TABLE 4. Driving pressures and viscosity.

pin (Pa) pout (Pa) l (Pa s)

2e5 1e5 0.1

FIG. 8. Transverse permeability versus fiber volume fraction.

FIG. 9. Boundary velocity in the REC.



acting like rigid and sticking obstacles, and some preferen-
tial flows occur in regions of poor fiber content. The
microstructure under consideration is slightly anisotropic
(permeability ratio of 0.96), with numerical values of per-
meability of 1.83 3 10212 m2 in direction 2 and 1.90 3
10212 m2 in direction 3. Comparing with a quadratic fiber
packing (2.57 3 10212 m2, Eq. (24)) these values are
slightly lower, underlining the importance of considering a
REC similar to the actual fiber arrangement.

CONCLUSIONS

The article investigates two BEM-based methods to
simulate the macroflow and microflow occurring in the
dual-scale structure of the reinforcement. The numerical
models developed in this works are 2D and the flow is
assumed to be isothermal.

At macroscale, the numerical model is based on a BEM/
Level Set coupling. An anisotropic knitted fabric has been
impregnated with a Newtonian model fluid in order to vali-
date the method. For that purpose, an experimental proce-
dure has been developed to follow the front progression in
an infusion setup. The results are in good accordance with
the experimental data. In particular, the front shape is accu-
rately predicted while the CPU time remains quite low.

In the microscale model, Stokes equations are solved
using a BEM method based on elastostatics Green’s func-
tion. Intra-tow saturated permeability is computed using
different REC. The simulation of the flow within a quad-
ratic pattern reveals a good accordance with Gebart’s
model. Current works investigates a stochastic distribution
of fibers and elliptical shapes - dual scales flow involving
both intra and inter tow should also be tested.
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