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Abstract
This paper investigates the performance of interpolation equations for a near infrared thermal
imager operating over wavelengths from 0.9 µm to 1.7 µm with various filter bandwidths and a
broad temperature range from 300 ◦C to 1000 ◦C. The equations are based on a general
formulation of the effective wavelength as a function of the temperature. The quality of the
interpolation is assessed in relation to the order of the effective wavelength. However, the
noise induced by the imperfections of the thermal imager significantly disturbs the signal, and
this phenomenon is enhanced as the bandwidth of the filter increases (i.e. for low-temperature
applications). The main purpose of this paper is to establish the right choice of the filter
bandwidth and the expression and order of the interpolation equation in relation to the noise
level on the thermal imager and the desired accuracy. This paper first outlines the background
on interpolation equations and then tests them on synthetic data from signals delivered first by
an ideal thermal imager (i.e. free from noise) and then from noisy signals. This simulation
study provides a framework for users to select an interpolation equation with an adequate order
for near infrared thermal imagers. The performances of the selected interpolation equations
are finally demonstrated on real images performed by a near infrared thermal imager.

1. Introduction

An accurate on-line temperature measurement is the key
parameter for the optimization and quality assurance of
many industrial processes. Non-contact infrared systems,
such as pyrometers and thermal imagers, are suitable in
many industrial applications or research projects. For
temperatures ranging from 300 ◦C to 1000 ◦C, near infrared
thermal imagers, operating at short wavelengths (from
0.9 µm to 1.7 µm), provide high performances in terms
of temperature sensitivity, and also have the advantage of
being less sensitive to emissivity. Furthermore, they deliver
images with a high spatial resolution which is suitable for
studies on materials with non-uniform surfaces. These
thermal imagers are then widely used for thermal imaging
applications [1], for radiance temperature measurements [2],
for multi-spectral measurements [3, 4] and for true temperature
field measurements [5].

For these applications, it is essential that a radiometric
calibration of the thermal imager is carried out with low

temperature error [6]. The signal of the thermal imager is the
integral of its spectral responsivity multiplied by the spectral
radiance of the black body. An ideal radiometric calibration
requires the measurement of the spectral responsivity of the
thermal imager and the integration of Planck’s law over its
spectral bandwidth. Unfortunately, the spectral responsivity
provided by the manufacturer is often given as a relative value.

When the spectral responsivity of the thermal imager is
unknown, an algebraic interpolation equation approximates
the relationship between the output signal of the thermal
imager and the temperature of the black body. The calibration
parameters of the interpolation equation are estimated by
a common multi-point calibration method based on least-
squares fitting of the measured output signals versus the
different temperatures of the black body. Then, the difference
between the estimated temperature obtained by inverting the
interpolation equation and the true black-body temperature
is known as the interpolation error. It should ideally be
smaller than about 1/3 to 1/5 of the quadrature sum of all the
other uncertainty components of the radiometric calibration.



Hence, it should ideally be comparable to the accuracy
of the black-body temperature (around 0.1 ◦C). Therefore,
the interpolation equation should not introduce additional
errors and the interpolation error should not impact the total
uncertainty. In this secondary radiometric calibration approach
to thermal imagers, performed with a multi-point method
using interpolation equations, choosing a proper interpolation
equation is a fundamental step to minimize the interpolation
error.

The easiest interpolation equation is the monochromatic
approximation of the product of black-body radiance in Planck
or Wien formulation by the thermal imager responsivity around
a mean operating wavelength. The suitability of this equation
depends on the temperature range, the spectral bandwidth of
the thermal imager and the required accuracy of the application.
As shown in [7], the monochromatic approximation introduces
large interpolation errors in the near infrared spectral band,
which is not acceptable for many applications. This error
can be reduced by adding correction factors used with a
reference wavelength [8] and at high temperatures (above
1500 ◦C) [9]. However, the estimated temperature calculated
from this interpolation equation cannot be derived analytically.
In contrast, the Sakuma–Hattori [10] interpolation equation,
based on a temperature-dependent effective wavelength, which
is a polynomial function at first order of the temperature, is
analytically invertible. However, this equation is fitted using
non-linear least-squares techniques. An interpolation equation
with a general formulation of the inverse effective wavelength
as a polynomial function at various orders of the inverse
temperature, suggested in [11], can easily be fitted using linear
least-squares techniques when this interpolation equation is
expressed with the Wien approximation. Moreover, a physical
interpretation of the calibration parameters is provided.

This paper addresses the issue of the choice of an
interpolation equation with this final formulation of a
temperature-dependent effective wavelength for a near infrared
thermal imager equipped for various filters representing
different applications of near infrared thermography and
operating over a broad temperature range (300 ◦C–1000 ◦C).
With respect to [12], the paper assesses the interpolation errors
for an ideal thermal imager (i.e. free from noise) to study the
error due to the different orders of the effective wavelength
and the influence of the filter characteristics. In addition,
the interpolation error is investigated from the interpolation
equation fitting to noisy data. The interpolation error is then the
addition of an error due to the interpolation equation (evaluated
from noiseless data) and an error due to the noise in the thermal
imager signal. The main objective of this paper is to evaluate
the performance of the interpolation error in relation to the
level of noise.

This paper is organized as follows: in section 2 the main
interpolation equations required for the study are recalled. In
section 3, interpolation errors are calculated for simulated data
from an ideal near infrared thermal imager equipped with
Gaussian filters. The interpolation errors are also given in
relation to the noise of the thermal imager signal. Finally,
section 4 is devoted to the assessment of the performances
of interpolation equations with real data from a near infrared
thermal imager with a different bandwidth filter.

2. Background to interpolation equations

This section recalls the fundamental radiometric equation
which links the black-body temperature to the thermal imager’s
signal through the integration of Planck’s law and the spectral
responsivity of the thermal imager. When this spectral
responsivity is unknown, interpolation equations provide a
useful alternative by approximating the integral using an
analytic function with fitting parameters. This section
discusses various definitions of interpolation equations.

2.1. Fundamental radiometric equation

Let us consider a thermal imager, in a dark room, viewing
a black-body source at temperature T , with an atmosphere of
unitary transmission and without any other heat sources. Then,
the output signal ID, provided by the thermal imager with
a linear response, is the integral of the spectral responsivity
(W(λ)) multiplied by the spectral radiance of the black body
(defined on a finite bandwidth "λ):

ID = k

∫

"λ

L0(λ, T ) W(λ) dλ, (1)

where k is a constant dependent on geometrical, optical,
electrical and digital properties of the thermal imager which is
expressed in DL m2 sr W−1 (DL: digital level). This constant
can be computed up to a scale factor and for this study it
will be set at one. The integration bandwidth "λ depends on
the thermal imager. The relative spectral responsivity W(λ)

includes the detector sensitivity and the transmittances of the
filter and lens. The spectral radiance of the black body, L0, is
given by Planck’s law at wavelength λ and temperature T .

According to equation (1), an ideal radiometric calibration
requires the measurement of the spectral responsivity W of the
thermal imager and the integration of Planck’s law over this
spectral responsivity [13]. However, its measurement remains
difficult to obtain.

2.2. Principle of the interpolation equation

As a first approach the interpolation equation can be expressed
as a monochromatic approximation, based on the mean
operating wavelength of the thermal imager (which is the mean
wavelength value of the product of filter transmittance and
imager responsivity), λ0, as follows:

k

∫

"λ

L0(λ, T ) W(λ) dλ ≈ ÎD = k"λ L0(λ0, T ) W(λ0). (2)

The next step can be the choice between Planck’s form
and Wien’s approximation for the expression of the black-body
spectral radiance L0(λ0, T ). Wien’s approximation is accurate
to within 1% if the condition λ T < 3000 µm K is observed.
This choice depends on the temperature range and the spectral
band of the thermal imager. For the temperature range 300 ◦C–
1000 ◦C, considered in our application, the wavelength should
be shorter than 2.4 µm. Wien’s approximation is then available
for our wavelengths (0.9 µm to 1.7 µm) and the simplest



interpolation equation can be expressed as follows:

ÎD = A exp
(−C2

λ0 T

)
, (3)

where A is a fitting parameter related to the spectral
responsivity given by

A = k C1

∫

"λ

W(λ)λ−5 dλ ≈ k "λ C1 λ−5
0 W(λ0), (4)

C1 and C2 are the first and the second radiation constants
(C1 = 1.191 042 × 108 W µm4 m−2 and C2 = 14 388 K µm).
Parameter A is assumed to be a property of the thermal
imager that depends only on its spectral characteristics and
responsivity.

The third step is the calculation of the interpolation error,
which is the difference between the estimated temperature
provided by the interpolation equation and the black-body
temperature. This error is compared with the required
accuracy of the application. For example, in the near infrared
spectral band, with Wien’s formulation, this monochromatic
interpolation equation provides an interpolation error greater
than 1 ◦C [14] in the temperature range 300 ◦C–1000 ◦C.
A correction factor is then usually applied to decrease the
interpolation error. A first method is the reference wavelength
method [15, 9] which uses a temperature-dependent factor
A(T ) and a fixed reference wavelength, λr, in the exponential
term (λr can exhibit a value close to λ0). However,
the estimated temperature calculated from this interpolation
equation cannot be derived analytically but only by iteration.
In contrast, the effective wavelength method [10] is based on
a fixed parameter A and a temperature-dependent wavelength,
λx(T ). Some forms of the interpolation equation provided
by this method are analytically invertible to calculate the
estimated temperature. The effective wavelength method is
thus widely used and is detailed in the next paragraph.

2.3. Effective wavelength method

The effective wavelength method uses a varying wavelength,
called the extended effective wavelength, and is denoted by
λx , which is calculated as a function of temperature. The
interpolation equation based on Wien’s law is given by the
following equation:

ÎD = A exp
( −C2

λx(T ) × T

)
, (5)

where

1
λx

= T

C2
ln

( ∫
"λ

C1 W(λ)λ−5 dλ∫
"λ

W(λ)L0(λ, T ) dλ

)

.

Without the knowledge of W , an analytical extended
effective wavelength versus the temperature should be
suggested. Reference [10] suggests an extended effective
wavelength which is expressed as a first order polynomial
function of the inverse temperature. The Sakuma–Hattori
interpolation equation is then given by

ÎD = A exp
( −C2

b0 × T + b1

)
, (6)

where b0 and b1 are fitting parameters.

Reference [11] generalizes this formulation and the
inverse of the extended effective wavelength is a polynomial
function of the inverse temperature with different orders, as
follows:

1

λ̂x

=
N∑

i=0

( ai

T i

)
(7)

where ai are fitting parameters and N is the order of
the polynomial function, which depends on the operating
wavelength of the thermal imager, the spectral bandwidth of
the filter, the temperature range and the required accuracy
of the application. The interpolation equation formed using
equations (5) and (7) is difficult to invert for high orders.
However, when used with Wien’s approximation, it can be
fitted, to all orders, using linear least-squares techniques,
unlike the Sakuma–Hattori equation which requires non-linear
least-squares techniques. As shown in [16], for relatively
narrow bandwidth thermal imagers, it is sufficient to use a
polynomial function at first order (N = 1 and a2 = 0) and the
parameters a0 and a1 have a physical meaning and can be well
approximated by equations (8) and (9) as follows:

a0 = 1
λ0

(

1 + 6
(

σf

λ0

)2
)

(8)

a1 = − C2

2 λ2
0

(
σf

λ0

)2

, (9)

where λ0 and σf are the mean wavelength and standard
deviation of the spectral responsivity of the thermal imager.
If the ratio r = σf

λ0
≪ 1, the parameter a0 will be close to the

inverse of the mean wavelength of the spectral responsivity.
The term a1 describes the temperature dependence of the
extended effective wavelength. The parameters a0 and a1

depend only on the mean wavelength and standard deviation
of the spectral responsivity and they are independent of its
shape (Gaussian, uniform, etc). Reference [12] provides a
comprehensive study of the influence of r on the interpolation
error. For wide bandwidth thermal imagers, the order N of
equation (7) can be higher and at minimum the term a2 is
required.

3. Simulation of the interpolation error

A simulation study of the interpolation error is carried out with
an interpolation equation (5) based on an extended effective
wavelength equation (7) expressed as first and second order.
The interpolation error is calculated, in the case of thermal
imagers operating in NIR, for narrow and large bandwidths
and for a wide temperature range from 300 ◦C to 1000 ◦C. The
first aim is to highlight the variation of interpolation error in
relation to the extended effective wavelength’s order and the
wide variation of the relevant parameter r = σf

λ0
, as in [12]. The

second goal is to understand the influence of the noise due to
experimental errors (non-linearity, non-uniformity, temporal
noise, etc) on the interpolation error. This simulation analysis
is carried out with noiseless and noisy data.



3.1. Simulation procedure

The simulated output signal ID of the thermal imager is
obtained according to equation (1) and therefore by integrating
the product of the spectral responsivity of our thermal imager
(W ) with Planck’s law. The parameterW is equal to the product
of the spectral responsivity of the detector (set between 0 and
1), provided by the manufacturer, with the spectral distribution
of the filters. The filters are Gaussian with a mean wavelength
of λ0 = 1310 nm and different full-width at half-maximum
(FWHM), from 10 nm to 600 nm (which corresponds to a
standard deviation σf = FWHM√

8 ln 2
varying from 4.24 nm to

254.8 nm). The relevant selected parameter, the ratio r = σf

λ0
,

varies from 3.24 × 10−3 to 0.194. Finally, equation (1) is
calculated over the temperature range from 300 ◦C to 1000 ◦C
(respectively for a bandwidth "λ from 900 nm to 1700 nm).

For the second simulation, noise is optionally added to
the output signal by defining ǏDj

= IDj
+ νj , where ν is the

j th trial value of M trials (j = 1 . . . M) for a random variable
following a Gaussian distribution N (0, σ 2

ID
) of mean zero and

standard deviation σID .
The parameters of interpolation equation (5) are fitted to

the previous simulated output signal, ID or ǏD, and to the
reference temperature values T of Planck’s law. The fit method
is based on weighted least-squares fit where the weights are
inversely proportional to the output signal values.

Finally, the estimated temperature T̂ is calculated by the
inverse of equation (5) and then by solving the polynomial
equation (10) with Cardan’s formula at third order.

(
a2

T̂ 3

)
+

a1

T̂ 2
+

a0

T̂
− 1

C2
(ln(ÎD) − ln(A)) = 0. (10)

The absolute interpolation error ET = |T − T̂ | and the
maximum absolute interpolation error over all temperatures,
ETpeak , are then calculated. For noisy simulations, the mean
value (ĒT ) and the standard deviation (σET

) of interpolation
errors are calculated over M trials. The mean value over all
temperatures is denoted ¯̄ET .

3.2. Influence of extended effective wavelength order

This first series of simulations is intended to study the influence
of the extended effective wavelength’s order in relation to the
relevant parameter r = σf

λ0
. The simulation is carried out

without noise on the output signal ID. This approach clearly
defines the dependence of the interpolation error on the order
of the extended effective wavelength.

Figure 1 shows that the maximum absolute interpolation
error, ETpeak , decreases when the order of extended effective
wavelength increases and when the ratio r decreases. At order
zero, an interpolation error lower than 0.1 ◦C is achieved with
a value of r lower than 9 × 10−3, which corresponds to a
FWHM of about 35 nm. At first order, the same value of
the interpolation error is achieved for a value of r lower than
7×10−2, or a FWHM value around 220 nm. Finally, at second
order, the interpolation error is lower than 0.1◦C for all the
spectral bandwidths of the thermal imager.

Figure 1. Logarithmic representation of the maximum absolute
interpolation error, ETpeak , versus the ratio r = σf

λ0
for Gaussian

filters with a mean wavelength of λ0 = 1310 nm and standard
deviation values from σf = 4.2 × 10−2 to 0.25.

As shown in table 1, and according to equation (4), the
fitting parameter A increases with the bandwidth of the spectral
responsivity of the camera. The increase, in absolute value, of
the parameters a0 and a1 is also consistent with equations (8)
and (9). The difference between the fitting values and the
theoretical values remains low (a few per cent) as long as the
value of r is lower than 0.05. The value of parameter a2 is
small with a narrow bandwidth filter and increases quickly
with a wide bandwidth filter.

As a first conclusion and with noiseless data, a high order
always decreases the interpolation error, and this decrease is
even more significant for large values of r . For wide bandwidth
filters, an interpolation equation with an extended effective
wavelength at second order is the best choice to achieve an
interpolation error of less than 0.1 ◦C.

3.3. Influence of noise

The second series of simulations are performed to study the
influence of noise on the choice of the extended effective
wavelength order.

The noisy output signal, ǏD, is generated with a variation
of relative standard deviation σID from 0% to 2% (for an
output signal digitalized on 12 bits, the maximum relative
standard deviation represents 80 DL). The number of trials
is set to M = 100. This simulation is only performed
with a wide bandwidth filter and with a value of r of 0.194
(for a mean wavelength of λ0 = 1310 nm and a Gaussian
filter, it corresponds to a FWHM value around 600 nm). This
case induces a maximum difference of the interpolation error
between an extended effective wavelength at first and second
order.

For each M value of ǏD, the temperatures are estimated
with an interpolation equation with an extended effective
wavelength at first and second order. Figure 2 shows the mean
value of the interpolation error over the trials and temperatures,
called ¯̄ET , for both orders. ¯̄ET is very different when the
relative standard deviation σID is lower than 1.5%. After



Table 1. Maximum temperature interpolation errors, ETpeak , for each extended effective wavelength’s order; fitting calibration parameter
values for an extended effective wavelength at second order.

1/λ̂x

0th order 1st order 2nd order

ETpeak / ETpeak / A/ a0/ a1/ a2/ ETpeak /
r ◦C ◦C (DL s−1) µm−1 (K µm−1) (K2 µm−1) ◦C

3.24 × 10−3 0.0187 0.006442 25.40 × 104 0.7638 −0.4051 93.843 30.76 × 10−4

1.13 × 10−2 0.0941 0.006533 89.038 × 104 0.76426 −0.8555 95.954 30.91 × 10−4

7.46 × 10−2 2.499 0.06529 61.22 × 105 0.7888 −24.927 19.79 × 102 47.91 × 10−4

0.194 6.804 0.441 14.151 × 106 0.825 −82.38 13.69 × 103 53.46 × 10−2

Figure 2. Logarithmic representation of ¯̄ET versus the relative
standard deviation of the noise of the output signal σID for a
Gaussian filter with a ratio r = 0.194 (mean wavelength of
λ0 = 1310 nm and FWHM of 600 nm).

this value, the quantity ¯̄ET becomes similar for both cases.
A second-order extended effective wavelength significantly
reduces the interpolation error only if the noise standard
deviation of the output signal is lower than 1.5%. With a very
noisy output signal, when the relative standard deviation σID is
above 1.5%, an increase in the order of the extended effective
wavelength moderately improves the interpolation error.

As a second conclusion, for low-noise data, the largest part
of the interpolation error is due to the interpolation equation.
An extended effective wavelength at second order significantly
reduces the interpolation error. In contrast, for high-noise data,
a second order does not seem to provide improvements. The
next paragraph studies the contribution of the second-order
extended effective wavelength for high-noise signals.

3.4. Coupled influence of order and noise

The third series of simulations extends the previous results to
the entire range of variation of parameter r (from 3.24 × 10−3

to 0.194) and with a variation of relative standard deviation σID

of the output signal from 0% to 1%. The number of trials is
set at M = 100.

Figures 3 and 4 confirm that the quantity ¯̄ET increases
with the ratio r and with the noise of the output signal. The
mean interpolation error obtained with an extended effective
wavelength at first or second order is always greater than 0.1 ◦C
for a relative standard deviation higher than 0.15%, whatever

Figure 3. Mean (over the trials and temperatures) of interpolation
errors for an extended effective wavelength at first order versus the
ratio r of a Gaussian filter (mean wavelength of λ0 = 1310 nm and
FWHM from 10 nm to 600 nm) and for seven levels (from 0% to 1%)
of the relative standard deviation of the noise of the output signal.

Figure 4. As for figure 3 but with an interpolation equation with an
extended effective wavelength at second order.

the value of r . Above this value, the interpolation error is
mainly due to the noise in the output signal.

However, the quantity ¯̄ET increases faster with the ratio r

for an extended effective wavelength at first order than it does
at second order. It reaches 0.79 ◦C at order 1 for a relative
standard deviation σID = 1% and for a ratio r = 0.194.
For the same configuration, the quantity ¯̄ET for an extended
effective wavelength at second order rises to 0.59 ◦C. Figure 5
demonstrates that the difference between quantity ¯̄ET for an



Figure 5. Difference of interpolation errors averaged over the trials and temperatures for an extended effective wavelength at first and
second order versus the ratio r of a Gaussian filter (mean wavelength of λ0 = 1310 nm and FWHM from 10 nm to 600 nm) and for six levels
(from 0% to 1%) of the relative standard deviation of the noise of the output signal.

interpolation equation with an extended effective wavelength
at first and second order, denoted " ¯̄ET = ¯̄ET (order 1) −
¯̄ET (order 2), is always positive.

As a third conclusion, an interpolation equation with an
extended effective wavelength at second order is always more
efficient than it is with one at first order. As this positive
difference increases with the ratio r , an extended effective
wavelength at second order is always advisable with wide
bandwidth filters. However, this benefit decreases when the
noise standard deviation on the output signal increases. For
example, for the highest values of parameter r = 0.194, the
second order brings an additional accuracy of about 0.43 ◦C
compared with the first order. When the noise reaches 1%, this
performance decreases to only 0.2 ◦C. For very noisy signal,
and for applications involving high time resolution, a second-
order parametrization of the extended effective wavelength
may not be the best compromise.

4. Experimental validation of the interpolation error

To compare simulation with experimental results, the
interpolation equation with an extended effective wavelength
at first or second order is fitted from measured data provided
by a near infrared thermal imager.

The calibration methodology, involving a black body
and the thermal imager, is described in the first paragraph.
Compared with the simulation step, the thermal imager
can be seen as a matrix of detectors and each detector as
a thermometer. Then, the interpolation equation is fitted
from the output signal of each detector. However, this
signal is not ideal and some departures from ideal behaviour
are characterized in the second paragraph. Finally, the

interpolation error of each detector is determined in two
configurations of calibration: the thermal imager equipped
with a narrow Gaussian filter and without it (i.e. on the entire
spectral band of the thermal imager). The mean value of this
interpolation error field is compared with simulation results.

4.1. Experimental set-up

The calibration set-up is composed of a thermal imager aligned
with a black body on a translation stage.

The easiest way to calibrate the thermal imager is to
illuminate it uniformly so that each pixel receives the same
flux. A flat-plate calibrator or a system based on an integrating
sphere would offer such an illumination compatible with
the field of view of the imager. Unfortunately, the flat-
plate calibrator cannot provide a reference temperature up
to 500 ◦C, which is necessary to calibrate the near infrared
thermal imager, and an integrating sphere would complicate
the experimental set-up. The calibration of the thermal imager
is then carried out with a cavity black body with relatively small
aperture size in relation to the field of view of the thermal
imager. It provides reference temperatures over the range
50 ◦C to 1200 ◦C with a cavity diameter of 50 mm and an
emissivity of 0.995. The NIR lens used has a 50 mm focal
length and the distance between the thermal imager and the
black body is around 1 m. The advantage of this calibration is
the reliable, high and constant emissivity of the cavity black
body. The major drawback is that the aperture only fills a
relatively small part of the image (25% or 20 000 pixels). In
order to assess the entire image it is necessary to carry out
multiple measurements with the source positioned at different
points within the image. In this paper, only one position is
shown. The temperature of the black body is measured by



a reference S-type thermocouple. The experimental set-up is
located in a black room to minimize surrounding radiation.

The thermal imager is a 320×256 InGaAs array operating
in the near infrared spectral band from 0.9 µm up to 1.7 µm and
with a Peltier cooler. The set-up includes a filter wheel with
three Gaussian filters, a black screen and an empty hole. The
wheel is motorized to rotate and is piloted by the software. For
this experiment, the mean wavelength is λ0 = 1310 nm with a
FWHM of 50 nm for the narrow filter considered and a FWHM
of 600 nm without filters. The thermal imager is equipped with
a lens of focal length 50 mm and the F-number is set to 4.
The exposure time range available is between 1 µs and 400 s.
However, the minimum time is limited to 100 µs to minimize
the non-linearity of the signal with the exposure time, and the
maximum time is limited to 1 s to minimize the duration of the
calibration. Consequently, the calibration temperature range
is limited between 500 ◦C and 850 ◦C, which is lower than the
range used for the simulations. As shown in reference [12],
for the Sakuma–Hattori equation and when the temperatures
are equally spaced, the peak interpolation error increases as the
cube of the temperature range. The values of the simulated and
measured interpolation errors will not be the same. However,
trends are comparable, which validates the noise impact on the
interpolation equation.

4.2. Evaluation of thermal imager signal

The thermal imager is an array device composed of many
detectors. Its behaviour is a composition of the individual
behaviour of each detector, and of their juxtaposition.

As a single detector, the output signal of each detector is
given by the sum of three terms: signal due to the radiation
source, noise signal from the dark current and offsets and the
signal produced by temporal noises. The ambient radiation
entering the black body can be neglected above 500 ◦C.

The dark current and the offsets are part of the signal
acquired in darkness. This signal, denoted I dark

D , can be
subtracted from the signal obtained during the illumination
with the radiation source, denoted ID.

Moreover, the exposure time t i is managed to avoid the
thermal imager signal becoming lower than the noise level
and to avoid overexposure. When a detector is illuminated
with sufficient radiance, the exposure time is then calculated
to obtain a signal level around 75% of the maximum value.
Around this value and for the limited exposure time chosen,
the signal of each detector is linearly dependent on the exposure
time.

Under these conditions, the corrected signal for each
detector of coordinates u and v, denoted I c

D(u, v), is calculated
from the difference between the signal under illumination, ID,
and the dark signal, I dark

D , and is normalized by the exposure
time, as given in equation (11).

I c
D(u, v) = ID(u, v) − I dark

D (u, v)

ti
(11)

The effects of temporal noise are minimized by averaging the
corrected signal over several frames (in practice 50 frames).
The histogram plotted in figure 6 shows the dispersion of the

Figure 6. Histogram over fifty samples of corrected signal of
equation (11) for a black-body temperature at 500 ◦C.

corrected signal for a central pixel. The temporal mean Ī c
D and

its associated standard deviation, denoted σI c
D
, are calculated.

The values are recorded for a black-body temperature of
T = 500 ◦C and without filter. Considering the noise
as independent of the temperature, this measurement gives
the minimum signal-to-noise ratio and represents the worst
situation. The standard deviation of the corrected signal is low
(around σI c

D
= 0.5%), and therefore the mean value represents

an accurate representation of each detector’s value. It should
be noted that this standard deviation, with a λ0 = 1.3 µm
monochromatic thermal imager, corresponds to a temperature
uncertainty of "T = T 2 λ0

C2
σI c

D
= 0.27 ◦C at a temperature of

T = 500 ◦C. As our thermal imager is not monochromatic, the
measured error would be higher than this value.

As a device array, additional factors need to be
investigated, such as image non-uniformity and size-of-source
effect (SSE). Firstly, the calculation of the corrected signal
compensates the non-uniformity due to dark current and
offsets. Secondly, the residual non-uniformity is due to the
difference in responsivity of each detector, denoted W(u, v) in
equation (1). This can be taken into account by a calibration
of each detector across the calibration parameter A. To do
so, the responsivity of each detector has to be assumed to be
independent and therefore the SSE and the cross-talk problem
must be negligible. It should be noted that this calibration is
performed under the same conditions as our application [5],
for which the temperature measurement is carried out on a
target with the same size as the black-body aperture and at the
same distances. These two phenomena are therefore assessed
over a range of distances in the depth of field of the thermal
imager and with the image well focused. The central area
is then well overfilled by the aperture of the black body at a
fixed temperature of 700 ◦C. Under these conditions of a small
change in angular black-body aperture, the signal indicated by
the detectors within the central area of the black body slightly
increases as the black-body distance decreases. The variation
in the level of mean value of the corrected value is less than
0.5%. As a consequence, correction of SSE is not applied,
and the imperfections of optical components and the cross-
talk problem can be neglected. The response of each detector
is then assumed to be independent.



Table 2. Mean spatial and standard deviations values of fitting parameters with an extended effective wavelength at first and second order
for a narrow bandwidth filter with a FWHM of 50 nm and a mean wavelength of λ0 = 1310 nm.

1
λ̂x

Ã/(DL s−1) 100 × σA ã0/µm−1 100 × σa0 ã1/(K µm−1) 100 × σa1 ã2/(K2 µm−1) 100 × σa2

1st order 2.264 × 1011 1.91 0.765 0.38 −4.48 5.41 — —
2nd order 1.84 × 1011 2.14 0.761 1.85 −34.42 3.2 1.95 × 104 3.2

As a conclusion, the radiometric calibration of the thermal
imager is equivalent to the calibration of each detector. Each
detector produces a corrected signal that can be calibrated
independently of the others, and all can be calibrated together
at the same time. The calibration signal of each detector is the
temporally averaged signal, denoted Ī c

D:

Ī c
D(u, v) = A

exp
(

C2
λx (T ,u,v)×T

) (12)

with

1
λx(T , u, v)

= a0(u, v) +
a1(u, v)

T

(
+

a2(u, v)

T 2

)
. (13)

The calibration depends on three or four images of fitting
parameters, A(u, v), a0(u, v), a1(u, v) and a2(u, v), that are
determined during the radiometric calibration process.

4.3. Interpolation error of the thermal imager with a
Gaussian filter with a FWHM of 50 nm

For a thermal imager equipped with a Gaussian filter with a
FWHM of 50 nm and a mean wavelength of λ0 = 1310 nm,
the first calibration procedure is carried out measuring the
corrected signal from equation (11) and knowing the black
body temperatures ranging from 500 ◦C to 850 ◦C with
an increment of 25 ◦C. Hence, three or four images of
the calibration parameters (A(u, v), a0(u, v), a1(u, v) and
a2(u, v)) of interpolation equation (12) with an extended
effective wavelength at first and second order are fitted. The
parameter values are then computed for each detector of
coordinates (u, v) in the area illuminated by the black body. It
should be noted that the detectors outside the area of the black
body are not calibrated.

The mean spatial value, denoted Ã, ã0, ã1 and ã2 and the
standard deviations, denoted σA, σa0 , σa1 and σa2 of calibration
parameters are tabulated in table 2.

The relative standard deviation of the parameter A is
around 2%. This value shows the low non-uniformity of the
detector’s responsivity (see equation (4)). For the calibration
parameters ã0 and ã1, the experimental values are close to the
theoretical values (see table 1). According to equation (8),
the inverse of the parameter ã0 is homogeneous to the mean
wavelength of the filter, λ0 (when σ

λ0
≪ 1), which is equal

to 1307 nm. This value can be compared with the value of
the mean wavelength of the filter, which is equal to 1310 nm.
Even in calibration experiments with a noisy signal of the
thermal imager, this comparison demonstrates the physical
consistency of the behaviour of the interpolation equation with
two orders of the extended effective wavelength. The low

Figure 7. Values of mean (ẼT ) and standard deviation (σET
) of the

interpolation error field versus the temperature for a Gaussian filter
with a FWHM of 50 nm and a mean wavelength of λ0 = 1310 nm.

values of standard deviations, 0.38% for σa0 and 5.41% for
σa1 , again show the small spatial dispersion of the detector’s
sensitivity.

Next, for each detector, the field of estimated temperatures
T̂ (u, v) is calculated by the resolution of the polynomial
equation (10). The field of interpolation errors ET (u, v) =
T − T̂ (u, v) is calculated. Its mean spatial value, denoted ẼT ,
and its standard deviation, denoted σET

, across the calibrated
detectors, are calculated. Figure 7 shows the mean spatial value
versus the black-body temperature T . Error bars represent
the standard deviation of interpolation error with an extended
effective wavelength at first and second order.

The mean spatial value of interpolation errors, ẼT ,
calculated with an interpolation equation with an extended
effective wavelength at first order is similar to the one
calculated for an extended effective wavelength at second
order. For an interpolation equation with an extended effective
wavelength at first order (respectively at second order), the
standard deviation σET

is between 2.7% and 12% (respectively
between 2.3% and 10%).

Finally, the absolute mean value over all temperatures,
denoted ¯̃ET , of the spatial mean value ẼT is slightly lower
for an extended effective wavelength at second order ( ¯̃ET =
0.33 ◦C) than for an extended effective wavelength at first
order ( ¯̃ET = 0.407 ◦C). These values are consistent with
those calculated in the previous section with simulated noisy
output signal, ǏD, with a standard deviation of noise of σID =
0.5%. This value is also consistent with the temporal standard
deviation of the corrected signal (see figure 6).

For a thermal imager with a standard deviation of noise
around of σID = 0.5% equipped with a narrow bandwidth
Gaussian filter, and even for a large temperature range, an



Table 3. As for table 2 but for a thermal imager without filter.

1
λ̂x

Ã/(DL s−1) 100 × σA ã0/µm−1 100 × σa0 ã1/(K µm−1) 100 × σa1 ã2/(K2 µm−1) 100 × σa2

1st order 3.78 × 1013 0.85 1.16 0.091 −217.39 0.207 — —
2nd order 8.84 × 1013 5.26 1.39 0.47 −446.62 0.81 8.211 × 104 0.97

interpolation equation with an extended effective wavelength
at first order can be a good approximation to achieve a
low interpolation error. A higher order of the extended
effective wavelength moderately improves the interpolation
error. These experimental results confirm the simulated results
of figure 5 in which, for r ≪ 1, the difference in interpolation
errors with an extended effective wavelength at first and second
order is very low.

4.4. Interpolation error of the thermal imager over its entire
bandwidth

The second calibration was carried out for a thermal imager
over its entire bandwidth (0.9 µm to 1.7 µm), without any filter,
and with the same calibration procedure as previously used.

The spatial mean and standard deviation values of
the image’s calibration parameters (A(u, v), a0(u, v), a1(u, v)

and a2(u, v)) of the interpolation equation with an extended
effective wavelength at first and second order are tabulated in
table 3.

Compared with the case of the narrow Gaussian filter,
the value of Ã is high. According to equation (4), the value
of the integral over the spectral bandwidth increases with
the bandwidth, as it does for ã0 and ã1, due to the fact
that the standard deviation of the spectral responsivity of the
thermal imager is wider. The thermal imager has a rectangular
spectral responsivity from 0.9 µm to 1.7 µm. In this case
of a wide bandwidth, the value of the calibration parameter
ã2 is also very high. This value justifies the choice of an
interpolation equation at a higher order. It should be noted
that for this calibration, the standard deviation values are also
very low.

The mean spatial values, denoted ẼT , of the interpolation
error field are shown versus the black body temperature T in
figure 8 for an interpolation equation with an extended effective
wavelength at first and second orders. The error bars represent
the standard deviation, denoted σET

.
An interpolation equation with an extended effective

wavelength parametrized at first order involves a higher
interpolation error than for the first order. It reaches an
interpolation error up to one degree for a few temperatures. In
contrast, an interpolation equation with an extended effective
wavelength at second order limits the interpolation error
around a mean value over all temperatures of ¯̃ET = 0.36 ◦C.
The second order shows a significant improvement in the
value of the temperature error ( ¯̃ET = 0.73 ◦C for first order
versus ¯̃ET = 0.36 ◦C for second order). In this case, the
interpolation error depends on the order of the extended
effective wavelength. This result has already been noted in
figure 5 when the value of r increases.

Figure 8. As for figure 7 but for a thermal imager without filter.

4.5. Comparison of the simulated and measured
interpolation errors

The two previous experiments confirm the trends observed in
figure 5, and in this paragraph, our approach is to compare the
values of simulated and measured interpolation errors. The
simulation is performed with simulated noisy output signal,
ǏD, which is generated with the measured relative standard
deviation σID on the signal from the thermal imager which
is around 0.5% (see figure 6). The standard deviation of the
imager’s spectral responsivity σf varies and the variation of the
ratio r = σf

λ0
is from 3.24 × 10−3 to 0.194. This simulation is

intended to represent the interpolation error in a configuration
similar to that of the thermal imager. Figure 9 shows
the quantity ¯̄ET for simulated interpolation errors with an
interpolation equation with an extended effective wavelength at
first and second order. In this figure, the measured interpolation
errors, ¯̃ET , are also reported.

For an extended effective wavelength at second order, the
measured interpolation errors are consistent with the simulated
ones for a standard deviation of noise in the output around
σID = 0.5%. For an extended effective wavelength at first
order, the measured interpolation errors are higher than the
simulated ones with the same standard deviation of noise in
the output signal. The measured values should correspond
to a higher standard deviation of noise in the output around
σID = 0.6%. This result demonstrates that for middle-noise on
the output signal, an extended effective wavelength at second
order provides lower residual fits on the fitting parameters A,
a0 and a1.

As a conclusion, for our thermal imager with a middle-
noise on the output signal, for a ratio r < 0.07, an extended
effective wavelength at second order slightly improves the
interpolation error (around 0.07 ◦C) with measured data, unlike
the conclusions reached with simulated data in the previous



Figure 9. Quantities ¯̄ET or ¯̃ET versus the ratio r for the noise’s relative standard deviation of the output signal σID = 0.5% and σID = 0.6%.

section. For a ratio up to r > 0.07, as demonstrated with
simulated data, only an interpolation equation with an extended
effective wavelength at second order involves a significant
improvement in the value of the interpolation error.

5. Conclusion

This paper has described the application of an interpolation
equation with a temperature-dependent effective wavelength
for the calibration of near infrared thermal imagers (see
equation (5)). This dependence is defined as follows: the
inverse extended effective wavelength is a polynomial function
of the inverse temperature (see equation (7)). The order of
the function mainly depends on the mean wavelength and the
standard deviation of the imager’s bandwidth, the temperature
range and the accuracy required.

For temperatures ranging from 300 ◦C to 1000 ◦C, a
simulation performed with a free noise signal of the thermal
imager showed that the interpolation error was lower than
0.1 ◦C if the filter’s FWHM was lower than 220 nm (for a
temperature-dependent effective wavelength at first order and a
mean wavelength of 1310 nm). Using an effective wavelength
at second order, the FWHM could be extended to 600 nm.

A second simulation with a noisy signal of the thermal
imager gave the interpolation error in relation to the percentage
of noise and the characteristics of the imager’s bandwidth.
This simulation showed that an interpolation equation with
an effective wavelength at second order decreases the
interpolation error with noise. However, the interpolation error
was not negligible and was lower than 0.1 ◦C only for a filter
bandwidth lower than 30 nm.

The simulations were compared with experimental results
obtained by a thermal imager with a noise standard deviation
around 0.5% and equipped with a narrow bandwidth filter
(FWHM of 50 nm). An interpolation equation with an effective
wavelength, at first or second order, provided a comparable

interpolation error which was around 0.3 ◦C. However, for
wider spectral bandwidth filters (FWHM higher than 50 nm),
an effective wavelength at second order was required to keep
a low value of interpolation error.

The interpolation equation with an extended effective
wavelength, at first and second orders, was implemented in
an original method [5] for measuring the true temperature
field by fusing the radiance temperature and the reflectivity
measurement fields.
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des caméras silicium: contribution à la modélisation
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