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Abstract Principal component analysis (PCA) is very popular to perform di-
mension reduction. The selection of the number of significant components is es-
sential but often based on some practical heuristics depending on the application.
Only few works have proposed a probabilistic approach able to infer the num-
ber of significant components. To this purpose, this paper introduces a Bayesian
nonparametric principal component analysis (BNP-PCA). The proposed model
projects observations onto a random orthogonal basis which is assigned a prior
distribution defined on the Stiefel manifold. The prior on factor scores involves an
Indian buffet process to model the uncertainty related to the number of compo-
nents. The parameters of interest as well as the nuisance parameters are finally
inferred within a fully Bayesian framework via Monte Carlo sampling. A study
of the (in-)consistence of the marginal maximum a posteriori estimator of the
latent dimension is carried out. A new estimator of the subspace dimension is pro-
posed. Moreover, for sake of statistical significance, a Kolmogorov-Smirnov test
based on the posterior distribution of the principal components is used to refine
this estimate. The behaviour of the algorithm is first studied on various synthetic
examples. Finally, the proposed BNP dimension reduction approach is shown to
be easily yet efficiently coupled with clustering or latent factor models within a
unique framework.
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1 Introduction

Dimension reduction (DR) is an ubiquitous preprocessing step in signal processing
and statistical data analysis. It aims at finding a lower dimensional subspace ex-
plaining a set of data while minimizing the resulting loss of information. Related
interests are numerous, e.g., reducing the impact of noise, data storage, computa-
tional time.

Principal component analysis (PCA) permits DR by projecting observations
onto a subset of orthonormal vectors. It provides an elegant solution to DR by
looking for a K-dimensional representation of a dataset Y = [y1, . . . ,yN ] with
yn ∈ RD in an orthonormal basis, referred to as principal components. Given K,
the K-dimensional subspace spanned by these principal components is supposed
to minimize the quadratic reconstruction error of the dataset, see (Jolliffe 1986)
for a comprehensive review of PCA. According to one of its standard formulations,
PCA can be interpreted as the search of an orthonormal basis P of RD such that
all matrices formed by the first K columns of P and denoted P:,1:K ensures

∀K ∈ {1, . . . , D} , P:,1:K = argmax
U∈SKD

UTYYTU (1)

where SKD is the Stiefel manifold, i.e., the set of D ×K orthonormal matrices.
However, Eq. (1) does not provide tools to assert the relevance of the selected

principal components in expectation over the data distribution. To fill this gap,
Tipping and Bishop (1999b) have shown that PCA can be interpreted as a maxi-
mum likelihood estimator of latent factors following the linear model

∀n ∈ {1, . . . , N} , yn = Wxn + εn (2)

where yn is the observation vector, W is the matrix of latent factors assumed
to be Gaussian, xn is the associated vector of coefficients and εn is an isotropic
Gaussian noise. If the coefficients xn are assumed Gaussian, they can be ana-
lytically marginalized out thanks to a natural conjugacy property. The resulting
marginalized likelihood function p(y|W, εn) can be expressed in terms of the em-
pirical covariance matrix YTY and the hermitian matrix WTW. Although no
orthogonality constraint is imposed on the latent factors, the resulting marginal
maximum likelihood estimator is precisely provided by the singular value decom-
position (SVD) of the noise-corrected observation vector: the SVD produces a set
of orthogonal vectors. The subspace can then be recovered using an expectation-
maximization (EM) algorithm. One of the main advantages of this so-called proba-
bilistic PCA (PPCA) lies in its ability to deal with non-conventional datasets. For
instance, such an approach allows PCA to be conducted while facing missing data
or non linearities (Tipping and Bishop 1999a,b). Several works have pursued these
seminal contributions, e.g., to investigate these non linearities more deeply (Bolton
et al 2003; Lawrence 2005; Lian 2009) or the robustness of PPCA with respect to
the presence of corrupted data or outliers (Archambeau et al 2008; Schmitt and
Vakili 2016).

Several studies have addressed the issue of determining the relevant latent
dimension of the data, K here. The PPCA along with its variational approxi-
mation proposed by Bishop (1999a,b) automatically prunes directions associated
with low variances, in the spirit of automatic relevance determination (MacKay
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1995). Another strategy considers the latent dimension K as a random variable
within a hierarchical model of the form f(W|K)f(K) and uses the SVD decompo-
sition of W. However, explicit expressions of the associated estimators are difficult
to derive. To bypass this issue, Minka (2000) and Smı́dl and Quinn (2007) have
proposed Laplace and variational approximations of the resulting posteriors, re-
spectively. Solutions approximated by Monte Carlo sampling are even harder to
derive since the size of the parameter space varies with K. Zhang et al (2004)
have proposed to use reversible jump Markov chain Monte Carlo (RJ-MCMC)
algorithms (Green 1995) to build a Markov chain able to explore spaces of vary-
ing dimensions. Despite satisfying results, this method is computationally very
expensive.

Bayesian nonparametric (BNP) inference has been a growing topic over the
past fifteen years, see for instance the review by Müller and Mitra (2013). Capital-
izing on these recent advances of the BNP literature, this work proposes to use the
Indian buffet process (IBP) as a BNP prior to deal with the considered subspace
inference problem. More precisely, the basis of the relevant subspace and associ-
ated representation coefficients are incorporated into a single Bayesian framework
called Bayesian nonparametric principal component analysis or BNP-PCA. A pre-
liminary version of this work was presented at ICASSP 2017 (Elvira et al 2017).
Following the approach by Besson et al (2011), the prior distribution of the prin-
cipal components is a uniform distribution over the Stiefel manifold. Then, the
IBP permits to model the observations by a combination of a potentially infinite
number of latent factors. Inheriting from intrinsic properties of BNP, the IBP
naturally penalizes the complexity of the model (i.e., the number K of relevant
factors), which is a desired behaviour for dimension reduction. In addition, while
the IBP still permits to infer subspaces of potentially infinite dimension, the or-
thogonality constraint imposed to the latent factors enforces their number K to
be at most D: orthogonality has some regularization effect as well. The posterior
of interest is then sampled using an efficient MCMC algorithm which does not
require reversible jumps.

Compared to alternative approaches, in particular those relying on RJ-MCMC
sampling, the adopted strategy conveys significant advantages. First, although RJ-
MCMC is a powerful and generic tool, its implementation needs the definition of
bijections between parameter spaces of different sizes. As a consequence, Jacobian
matrices contribute to the probability of jumping between spaces of different di-
mensions. These Jacobian terms are often both analytically and computationally
expensive. Within a BNP framework, there are no such Jacobian terms. Monte
Carlo sampling of BNP models implicitly realizes trans-dimensional moves since
the IBP prior is a distribution on infinite binary matrices. Combined to the con-
jugacy properties of the IBP, such a formulation permits more efficient Monte
Carlo sampling. Then, the use of the IBP and its induced sparsity alleviates the
overestimation of the latent dimension coupled with a subsequent pruning strat-
egy followed by other crude approaches. The proposed model also opens the door
to a theoretical analysis of the consistency of estimators. Finally, the method is
flexible enough to be coupled with standard machine learning (e.g., classification)
and signal processing (e.g., signal decomposition) tasks.

This paper is organized as follows. Section 2 recalls notions on directional
statistics and the IBP. Section 3 describes the proposed hierarchical Bayesian
model for BNP-PCA. Section 4 describes the MCMC inference scheme. Section 5
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Symbol Description

N , n number of observations, with index
D, d dimension of observations with index
K, k number of latent factors, with index
P(α) Poisson distribution with parameter α

SKD
set of D ×K matrices P such that

PTP = IK
OD The orthogonal group
etr exp tr

iFj Confluent hypergeometric function
γ(a, b) Lower incomplete Gamma function
〈·, ·〉 Euclidean scalar product

Table 1 List of symbols

defines several estimators and gathers theoretical results on their properties, in
particular their (in-)consistency. Section 6 illustrates the performance of the pro-
posed method on numerical examples. Concluding remarks are finally reported in
Section 8. Note that all notations are gathered in Table 1.

2 Preliminaries

2.1 Distribution on the Stiefel Manifold

The set of D×K real matrices P which verify the relation PTP = IK is called the
Stiefel manifold and is denoted SKD . Note that when K = D, The Stiefel manifold
SDD corresponds to the orthogonal group OD. The Stiefel manifold is compact with
finite volume

vol
(
SKD
)

=
2Kπ

DK
2

π
1
4
K(K−1)∏D

i=1 Γ
(
D
2 −

i−1
2

) . (3)

Hence, the uniform distribution USKD on the Stiefel manifold is defined by the
density with respect to the Lebesgue measure given by

pU (P) =
1

vol(SKD )
1SKD (P). (4)

Over the numerous distributions defined on the Stiefel manifold, two of them play
a key role in the proposed Bayesian model, namely the matrix von Mises-Fisher
and the matrix Bingham distributions. Their densities with respect to the Haar
measure on the Stiefel Manifold have the following form

pvMF (P|C) = 0F−1
1

(
∅, D

2
,CTC

)
etr
(
CTP

)
(5)

pB (P|B) = 1F−1
1

(
D

2
,
K

2
,B

)
etr
(
PTBP

)
(6)

where C is a D×K matrix, B is a D×D symmetric matrix and etr(·) stands for the
exponential of the trace of the corresponding matrix. The two special functions 0F1

and 0F0 are two confluent hypergeometric functions of matrix arguments (Herz
1955).
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2.2 Nonparametric sparse promoting prior

The Indian buffet process (IBP), introduced by Griffiths and Ghahramani (2011),
defines a distribution over binary matrices with a fixed number N of columns but a
potentially infinite number of rows denoted by K. The IBP can be understood with
the following culinary metaphor. Let consider a buffet with an infinite number of
available dishes. The first customer chooses K1 ∼ P(α) dishes. The nth customer
selects the kth dish among those already selected with probability mk

n (where mk

is the number of times dish k has been previously chosen) and tries Kn ∼ P(αn )
new dishes. Let Z the binary matrix defined by zk,n = 1 if the nth customer has
chosen the kth dish, and zero otherwise. The probability of any realization of Z is
called the exchangeable feature probability function by Broderick et al (2013) and
is given by

P
[
Z|α

]
=
αKe−α

∑
n

1
n∏2N−1

i=1 Ki!

K∏
k=1

(N −mk)!(mk − 1)!

N !
(7)

where Ki denotes the number of times a history has appeared: the term history
refers to a realization of the binary vector of size N formed by the rows (zk,·) of
Z. Thus, there are 2N − 1 possibilities. The IBP can also be interpreted as the
asymptotic distribution of a beta Bernoulli process where the beta process has
been marginalized out (Thibaux et al 2007). A stick-breaking construction has
been also proposed by Teh et al (2007). We emphasize that the IBP of parameter
α is a α-sparsity promoting prior since the expected number of non-zero coefficient
in Z is of order αN logN .

3 Bayesian nonparametric principal component analysis (BNP-PCA)

This section introduces a Bayesian method called BNP-PCA for dimension reduc-
tion that includes the a priori unknown number of underlying components into
the model. The latent factor model and the associated likelihood function are first
introduced in Section 3.1. The prior model is described in Section 3.2. A Monte
Carlo-based inference scheme will be proposed in Section 4.

3.1 Proposed latent factor model

Let Y = [y1, . . . ,yN ] denote the D × N -matrix of observation vectors yn =
[y1,n, . . . , yD,n]T . For sake of simplicity but without loss of generality, the sample
mean vector ȳ , 1

N

∑N
n=1 yn is assumed to be zero. Data are supposed to live in

an unknown subspace of dimension K ≤ D. The problem addressed here is thus to
identify both the latent subspace and its dimension. To this aim, the observation
vectors are assumed to be represented according to the following latent factor
model

∀n ∈ {1, . . . , N} , yn = P(zn � xn) + en (8)

where P = [p1, . . . ,pD] is an orthonormal base of RD, i.e., PTP = ID, zn =
[z1,n, . . . , zD,n]T is a binary vector, xn = [x1,n, . . . , xD,n]T is a vector of coeffi-
cients and � denotes the Hadamard (term-wise) product. In Eq. (8), the additive
term en can stand for a measurement noise or a modeling error and is assumed to
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be white and Gaussian with variance σ2. It is worth noting that the binary vari-
able zk,n (k ∈ {1, . . . , D}) explicitly encodes the activation hence the relevance
of the coefficient xk,n and of the corresponding direction pk for the latent repre-
sentation. Thus, the term-wise product vectors sn , zn � xn would be referred
to as factor scores in the PCA terminology. This is the reason why we call this
approach Bayesian nonparametric principal component analysis or BNP-PCA.

The likelihood function is obtained by exploiting the Gaussian property of the
additive white noise term. The likelihood of the set of N observed vectors assumed
to be a priori independent can be written as

f(Y|P,Z,X, σ2) = (2πσ2)−DN/2

exp

(
− 1

2σ2

N∑
n=1

‖yn −P(zn � xn)‖22

)
,

(9)

where Z = [z1, . . . , zN ] is the binary activation matrix, X = [x1, . . . ,xN ] is the
matrix of representation coefficients and ‖ · ‖2 stands for the `2-norm.

3.2 Prior distributions

The unknown parameters associated with the likelihood function are the orthonor-
mal basis P, the binary matrix Z, the coefficients X and the noise variance σ2.
Let define the corresponding set of parameters as θ = (P,Z, σ2), leaving X apart
for future marginalization.

Orthonormal basis P. By definition, P is an orthonormal basis and belongs to
the orthogonal group OD. Since no information is available a priori about any pre-
ferred direction, a uniform distribution on OD is chosen as a prior distribution on
P whose probability density function (pdf) with respect to the Lebesgue measure
is given by Eq. (4).

Indian buffet process Z. Since the observation vectors are assumed to live in a
lower dimensional subspace, most of the factor scores in the vectors zn � xn are
expected to be zero. To reflect this key feature, an IBP prior IBP(α) is assigned
to the binary latent factor activation coefficients, as discussed in Section 2.2. The
parameter α controls the underlying sparsity of Z. Note that the IBP is a prior
over binary matrices with a potentially infinite number of rows K. However any
factor model underlied by a matrix Z with K > D will occur with null probability
due to to the orthogonality of P. Our purpose is to combine the flexibility of the
IBP prior with the search for an orthogonal projector.
Coefficients X. Independent Gaussian prior distributions are assigned to the
individual representation coefficients gathered in the matrix X. This choice can be
easily motivated for large N by the central limit theorem since these coefficients
are expected to result from orthogonal projections of the observed vectors onto
the identified basis. Moreover, it has the great advantage of being conjugate to
make later marginalization tractable analytically (see next section). To reflect the
fact that the relevance of a given direction pk is assessed by the ratio between
the energy of the corresponding representation coefficients in xk and the noise
variance σ2, we follow the recommendation of Punskaya et al (2002) to define the
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prior variances of these coefficients as multiples of the noise variance through a
Zellner’s prior

∀k ∈ N, xk|δ2
k, σ

2 ∼
N∏
n=1

N (0, δ2
kσ

2). (10)

Along this interpretation, the hyperparameters δ2
k would correspond to the ratios

between the eigenvalues of a classical PCA and the noise variance.

Noise variance σ2. A non informative Jeffreys’ prior is assigned to σ2

f(σ2) ∝ 1

σ2
1R+

(
σ2
)
. (11)

Hyperparameters. The set of hyperparameters is gathered in φ = {δ, α} with
δ =

{
δ2
1 , . . . , δ

2
K

}
. The IBP parameter α will control the mean number of active

latent factors while each hyperparameter δ2
k scales the power of each component

pk with respect to the noise variance σ2. In this work, we propose to include
them into the Bayesian model and to jointly estimate them with the parameters
of interest. This hierarchical Bayesian approach requires to define priors for these
hyperparameters (usually referred to as hyperpriors), which are summarized below.

Scale parameters δ2
k. The powers of relevant components are expected to be at

least of the order of magnitude of the noise variance. Thus, the scale parameters
δ2
k are assumed to be a priori independent and identically distributed according

to a conjugate shifted inverse gamma (sIG, see Appendix B for more details)
distribution defined over R+ as in (Godsill 2010)

psIG

(
δ2
k|aδ, bδ

)
=

baδδ
γ (aδ, bδ)(

1

1 + δ2
k

)aδ+1

exp

(
− bδ

1 + δ2
k

)
1R+

(
δ2
k

) (12)

where γ(a, b) is the lower incomplete gamma function and aδ and bδ are positive
hyperparameters chosen to design a vague prior, typically a = 1 and b = 0.1. Note
that the specific choice aδ = bδ = 0 would lead to a noninformative Jeffreys prior
(Punskaya et al 2002). However, this choice is prohibited here since it would also
lead to an improper posterior distribution (Robert 2007).
IBP parameter α. Without any prior knowledge regarding this hyperparameter, a
Jeffreys prior is assigned to α. As shown in Appendix C, the corresponding pdf is
given by

f(α) ∝ 1

α
1R+

(α). (13)

4 Inference: MCMC algorithms

The posterior distribution resulting from the hierarchical Bayesian model for BNP-
PCA described in Section 3 is too complex to derive closed-form expressions of
the Bayesian estimators associated with the parameters of interest, namely, the or-
thonormal matrix P and the binary matrix Z selecting the relevant components.
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To overcome this issue, this section introduces a MCMC algorithm to generate
samples asymptotically distributed according to the posterior distribution of in-
terest. It also describes a practical way of using these samples to approximate
Bayesian estimators.

4.1 Marginalized posterior distribution

A common tool to reduce the dimension of the space to be explored while resorting
to MCMC consists in marginalizing the full posterior distribution with respect to
some parameters. In general, the resulting collapsed sampler exhibits faster conver-
gence and better mixing properties (D. A. van Dyk and Park 2008). Here, taking
benefit from the conjugacy property induced by the prior in Eq. (10), we propose
to marginalize over the coefficients X according to the following hierarchical model

f (θ,φ|Y) =

∫
RDN

f (Y|θ,X) f (θ,X|φ) f (φ) dX. (14)

Calculations detailed in Appendix A lead to the marginalized posterior distribution

f
(
θ,φ|Y

)
=

(
1

2πσ2

)ND
2

exp

(
− tr(YTY)

2σ2

)
×

K∏
k=1

exp

[
1

2σ2

δ2
k

1 + δ2
k

∑
n

zk,n 〈pk,yn〉2
]

×
K∏
k=1

(
1

1 + δ2
k

)aδ+ 1
2

∑
n zk,n

exp

(
− bδ

1 + δ2
k

)

× αK∏
kKn!

e−α
∑
n

1
i

∏
k

(N −mk)! (mk − 1)!

N !

×
(

baδδ
γ (aδ, bδ)

)K (
σ2
)−1

α−1
1UD (P).

(15)

Note that, since the main objective of this work is to recover a lower dimensional
subspace (and not necessarily the representation coefficients of observations on
this subspace), this marginalization goes beyond a crude sake of algorithmic con-
venience. It is also worth noting that it is still possible to marginalize with respect
to the scale parameters δ2

k. This finding will be exploited in Section 4.2.

4.2 MCMC algorithm

The proposed MCMC algorithm includes the sampling of Z described in Algo. 1
and is summarized in Algo. 2. It implements a Gibbs sampling to generate sam-
ples asymptotically distributed according to Eq. (15). This section derives the
conditional distributions associated with the parameters and hyperparameters.
Sampling the binary matrix Z. The matrix Z is updated as suggested by
Knowles and Ghahramani (2011), see Algo. 1. Let mk(n) =

∑
i6=n zk,i the number

of observations different from n which actually use the direction pk, i.e. verifying
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Fig. 1 An example of the proposition of new directions when P⊥ is 2 dimensional and κ? = 1.
Gray dots are observations projected on P⊥. The colored circle is the pdf of the proposal
distribution when κ? = 1.

zk,i = 1 for i 6= n. Directions for which mk(n) = 0 are called singletons and the
corresponding indices are gathered in a set denoted by Jn. Conversely, directions
for which mk(n) > 0 are referred to as non-singletons and the set of corresponding
indices is denoted by In. Note that ∀n, In∪Jn = {1, . . . ,K}. First, non-singletons
are updated through a Gibbs sampling step where δ2

k can be marginalized out. One
has

P
(
zk,n = 1|Y,P, σ2

)
P (zk,n = 0|Y,P, σ2)

=

mk(n)

N − 1−mk(n)
exp

(
1

2σ2

(
pTk yn

)2)×
γ
(
a+ 1, b+ 1

2σ2

(
pTk yn

)2)
γ(a, b)

ba(
b+ 1

2σ2

(
pTk yn

)2)a+1

(16)

where

a = aδ +
N∑

i=1,i6=n

zk,i (17)

b = bδ +
1

2σ2

N∑
i=1,i6=n

zk,i
(
pTk yi

)2
. (18)

A Metropolis Hastings step is used to update singletons. Let κ = card
(
Jn
)

be the number of singletons, PIn and PJn , [p̃1, . . . p̃κ] be the sub-matrices of
P with indices in In and Jn, respectively. The move goes from a current state

s = {κ,PJn} to a new state s? =
{
κ?,P?

J ?n

}
. The proposal distribution in the

Metropolis-Hastings step is chosen according to the conditional model

q
(
κ?,P?

J ?n |κ,PJn ,PIn
)

= q
(
κ?|PIn

)
q
(
P?
J ?n |κ

?,PIn
)
. (19)
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Algorithm 1: Detailed procedure to sample Z

Input: Y,Z(t−1),P(t−1), σ2 (t−1), δ
2 (t−1)
k

1 Let P(t− 1
2

) = P(t−1) ;
2 for n← 1 to N do

// Identify shared directions and singletons
3 for k ← 1 to K do

4 Compute mk(n) =
∑
l6=n z

(t−1)
k,l ;

5 end

6 Let In ,
{
k, mk(n) > 0

}
;

7 Let Jn ,
{
k, mk(n) = 0

}
;

// Sample shared directions
8 foreach k in I do

9 Sample z
(t)
k,n according to Eq. (16) ;

10 end
// Define set of singletons

11 Let κ , card
(
Jn
)

;

12 Let PIn ,
[
pk, k ∈ In

]
. ;

// Sample new number of singletons
13 Sample κ? according to Eq. (20) ;

// Sample iteratively new directions
14 Let P?J ?n

= [ ] ;

15 for k ← 1 to κ? do

16 Let N an orthonormal basis of
[
PIn ,P

?
J ?n

]⊥
;

17 Let v the first eigenvector of NTYYTN and λ its associated eigenvalue ;
18 Sample p?k ∼ vMF(v, λ) ;

19 Update P?J ?n
=
[
P?J ?n

,p?k
]

;

20 end
// Metropolis Hasting step

21 Compute us→s? according to Eq. (21) ;
22 Sample u ∼ U([0, 1]) ;
23 if u ≤ us→s? then

24 Set s = s? and update P(t− 1
2

) ;
25 Update K = K − κ+ κ? ;

26 end

27 end

Output: Z(t),P(t− 1
2

).

Note that the proposal distribution Eq.(19) is conditioned to PIn . This choice
is legit since the goal is to sample the conditional distribution f(Z,PJn |Y,PIn , σ

2).
Close to the structure of the IBP, we propose to use for q (κ?|PIn) a Poisson dis-
tribution P(α) combined with a mass card

(
In
)
/D on 0:

q
(
κ?|PIn

)
=

card
(
In
)

D
δ0(κ) +

(
1−

card
(
In
)

D

)
P(α) (20)

Recall that card
(
In
)

is the number of coefficients zk,n = 1 of the nth column of
Z that are not singletons (singletons⇔ zk,n = 1 & ∀i 6= n, zk,i = 0). Once κ? has
been chosen, a new matrix Z? is formed by concatenating columns with indices in
In and κ? rows with zeros everywhere except ones at the nth position (or column).
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For PJn , a von Mises-Fisher distribution vMF(C), see Section 2.1, is chosen
as a proposal. The columns of C are built from the κ first eigenvectors of the pro-
jection of YYT on the orthogonal of PIn , i.e. the span of singletons and unused
directions. The columns of C are then multiplied by their corresponding eigen-
values. Figure 1 illustrates the procedure to add one new direction, κ? = 1, on a
simple example in dimension 2.
The move s→ s? is then accepted with probability

us→s? =
f
(
Y|PIn ,P?

Jn ,Z
?, σ2

)
f (Y|PIn ,PJn ,Z, σ2)

p (s?) q(s|s?,PIn)

p (s) q(s?|s,PIn)
(21)

The full procedure is summarized in Algo. 2.

Algorithm 2: Gibbs sampler

Input: Y, nmc

1 for t← 1 to nmc do
// Update directions and handle singletons

2 Sample Z(t) and P(t− 1
2

) as described in Alg. 1 ;
// Update activated directions and weights.

3 for k ← 1 to K do

4 Compute NK\k, a basis of P
⊥ (t− 1

2
)

\k ;

5 Sample vk according to Eq. (22) ;

6 Set p
(t)
k = NK\kvk ;

7 Sample δ
2 (t)
k according to Eq. (24) ;

8 end
// Update hyperparameters.

9 Sample σ2 (t) according to Eq. (25) ;

10 Sample α(t) according to Eq. (26) ;

11 end

Output: A collection of samples
{
P(t),Z(t), δ

2 (t)
k , σ2 (t), α(t)

}nmc
t=nburn+1

asymptotically distributed according to Eq. (15).

Sampling the orthonormal basis P.
Let A ⊂ {1, . . . , D} denote the set of K indices corresponding to the active direc-
tions in P, i.e., the K columns of P actually used by at least one observed vector:
∀k ≤ K, ∃n s.t. zk,n = 1. Matrix P can be split into 2 parts P = [PA,PĀ]. The
matrix PA features the K active directions and PĀ the (D −K) unused compo-
nents. Let PA\k denote the matrix obtained by removing the column pk from PA
and NA\k a matrix whose (D−K+1) columns form an orthonormal basis for the

orthogonal of PA\k. Since pk ∈ P⊥A\k it can be written as pk = NA\kvk. Since
the prior distribution of P is uniform on the orthogonal group OD, vk is uniform
on the (D − K + 1)-dimensional unit sphere (Hoff 2009). By marginalizing PĀ,
one obtains

f(vk|Y,PA\k,Z, δ
2
k, σ

2) ∝

exp

(
1

2σ2

δ2
k

1 + δ2
k

vTk NT
A\k

(
N∑
n=1

zk,nynyTn

)
NA\kvk

)
(22)
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which is a Bingham distribution on the (D −K + 1)-unit sphere, see Section 2.1.
As a consequence,

f(pk|Y,PA\k,Z, δ
2
k, σ

2) ∝

exp

(
1

2σ2

δ2
k

1 + δ2
k

pTk

(
N∑
n=1

zk,nynyTn

)
pk

)
(23)

Sampling the scale parameters δ2
k. The posterior distribution of δ2

k for all k,
can be rewritten as

f
(
δ2
k|P,Z, σ2

)
∝
(

1

1 + δ2
k

)aδ+ 1
2

∑
n zk,n+1

exp

− 1

1 + δ2
k

(
bδ +

1

2σ2

∑
k,n

zk,n
(
pTk yn

)2) . (24)

which is a shifted Inverse Gamma distribution.

Sampling the noise variance σ2. By looking carefully at (15), one obtains

σ2|Y,Z,P, δ ∼ IG
(
ND

2
,

1

2
tr
(
YYT

)
−
∑
k,n

1

2

δ2
k

1 + δ2
k

zk,n
(
yTnpk

)2)
.

(25)

Sampling the IBP parameter α. The conditional posterior distribution of α
is gamma distributed

α|Y,Z ∼ G

(
K,

N∑
n=1

1

n

)
. (26)

Algo. 2 describes the full sampling procedure.

5 Estimators: theoretical properties

Since one motivation of the proposed BNP-PCA approach is its expected ability
to identify a relevant number of degrees of freedom of the proposed model, this
section focuses on this aspect. Section 5.1 derives theoretical results concerning
the marginal maximum a posteriori (MAP) estimator of K associated with the
proposed IBP-based model. In particular, Theorem 1 apparently brings some bad
news by showing that this estimator is not consistent when the parameter α of
the IBP is fixed. Similar results have been reported by Chen et al (2016) on an
empirical basis only. Note that our approach considers α as an unknown param-
eter as well, which may explain the good behaviour observed experimentally in
Section 6. Section 5.2 proposes an efficient way to select the right number of com-
ponents based on simple statistical tests. Section 5.3 deals with estimators of other
parameters.



Bayesian nonparametric Principal Component Analysis 13

5.1 Posterior distribution of the subspace dimension

The consistency of Dirichlet process mixture models (DPMMs) for Bayesian den-
sity estimation has been widely studied, see Ghosal (2009) and references therein.
For instance, posterior consistency of such DPMMs with a normal kernel has been
obtained by Ghosal et al (1999). While such results tend to motivate the use of non-
parametric priors, a certain care should be paid regarding the behaviour of any
posterior distribution. For instance, McCullagh and Yang (2008) have provided
both experimental and analytical results about the ability of DPMMs to identify
and separate two clusters. More recently, Miller and Harrison (2013, 2014) have
shown that the posterior distribution of the number of clusters of DPMMs and
Pitman-Yor process mixture models are not consistent. When the number of ob-
servations tends to infinity, the marginal posterior does not concentrate around
any particular value, despite the existence of concentration rates. Fewer results are
available when an IBP is used, see for instance Chen et al (2016) where posterior
contraction rates are established for phylogenetic models.

The following theorem shows that the marginal MAP estimator of the number
of components K is not consistent when conditioned upon (fixed) α.

Theorem 1 Let YN = [y1, . . . ,yN ] denote a matrix of N D-dimensional obser-
vations. Let KN denotes the random variable associated with the latent subspace
dimension of the model described in Section 3. Then, the two following assertions

∀k < D lim sup
N→∞

P
[
KN = k | YN , α

]
< 1 (27)

lim sup
N→∞

P
[
KN = D | YN , α

]
> 0 (28)

are true.

Proof See Appendix F.

As discussed in the proof, Eq. (27) can be extended to a wider range of models,
while Eq. (28) results from the orthogonality constraint. Up to our knowledge, no
similar results have been derived for the IBP. We emphasize that Theorem 1 does
not claim that the marginal MAP estimator of the subspace dimension defined as

K̂mMAP,α = argmax
k∈{0,...,D}

P
[
K = k | YN , α

]
(29)

is biased or irrelevant. However, a corollary of Eq. (27) is that this estimator is not
consistent. This can be explained by a certain leakage of the whole mass towards
the probability of having K = D, as shown by Eq. (28). To overcome this issue,
instead of resorting to the conventional marginal MAP estimator of the dimension,
an alternative strategy will be proposed in Section 5.2 to identify the dimension
of the relevant subspace.

By considering an additional hypothesis on the distribution of the measure-
ments YN , the following theorem states an interesting result.

Theorem 2 Let y1, . . . ,yN be N D-dimensional observations independently and
identically distributed according to a centered Gaussian distribution of common
variance σ2

y. Then

P
(
KN = 0|YN , α, σ

2
y

) a.s.−→
N→+∞

0. (30)
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Proof See Appendix G.

Two distinct interpretations of this theorem can be proposed. Indeed the Gaussian
assumption is used twice in this case: both the data and the noise are Gaussian.
On one hand, if Gaussian measurements are interpreted as noise, i.e., yn = εn
and σ2

y = σ2 in the proposed latent factor model (2), the expected dimension of
the latent subspace should be 0. Theorem 2 states that this will almost surely not
be the case, so that K̂N is inconsistent. On the other hand, the same Theorem 2
can be positively interpreted since one would rather expect to find K̂N = D since
white Gaussian noise spreads its energy equally in every direction. With respect
to this second interpretation, K̂N may be considered as consistent.

In the present approach, we consider that a latent subspace is meaningful as
soon as it permits to distinguish a signal from white Gaussian noise: we stick to the
first interpretation of Theorem 2 and consider that K̂N is inconsistent. Finally,
we emphasize that the two theorems above are related to posterior estimators
of K conditioned upon α and possibly σ2. A posterior estimator K̂mMAP will be
defined later by Eq.(31) where parameters α and σ2 are marginalized. Experiments

conducted in Section 6 will show that this K̂mMAP seems to be asymptotically
consistent.

5.2 Selecting the number of components

As emphasized in Section 5.1, the posterior probabilities P
[
K|Y, α

]
may not to be

sufficient to properly derive reliable estimates of the subspace dimension and select
the number of relevant directions. However, the proposed BNP-PCA considers the
IBP parameter α as unknown. Then one can define the marginalized MAP estimate

K̂mMAP = argmax
k∈{0,...,D}

P
[
K = k | Y

]
. (31)

The numerical study of Section 6 will show that it seems to be consistent contrary
to K̂mMAP,α. As a consequence, as soon as sufficient amount of data is available,

one may use K̂mMAP for model selection.
Another possibility, with theoretical guarantees, is to take advantage of the

posterior distribution of the principal components P and to use statistical tests.
In accordance with the notations introduced in Section 4.2, let A ⊂ {1, . . . , D}
denote the set of K indices corresponding to the estimated active directions in P.
Elaborating on (23), the posterior distribution of pk, ∀k ∈ Ā, can be expressed
thanks to a (D − K)-dimensional unit-norm random vector wk = NT

Apk whose
distribution is given by

f
(
wk|YN ,PA,Z, δ

2
k, σ

2
)
∝ exp

(
wTk Λk,Nwk

)
(32)

where

Λk,N = γk

N∑
n=1

NT
AynyTnNA (33)

where NA is a D×(D−K) orthogonal matrix which spans the null space of PA; γk
depends on σ2 and δ2

k. Interestingly, if PA correctly identifies the unknown signal
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subspace of dimension K, any component p`, ` ∈ Ā is actually a non-relevant
direction. According to the latent factor model (2), the projected vectors NT

Ayn
(n = 1, . . . , N) in (33) should reduce to white Gaussian noises so that

lim
N→+∞

1

N
Λk,N = γkσ

2
ID−K (34)

where ID−K is the (D−K) identity matrix. This means that the posterior distri-
bution (32) of the w` tends to be uniform over the (D−K)-dimensional sphere. Let
L = D−K andWĀ the L×L orthogonal matrix whose columns are the vectors
{w`}`∈Ā. One could think of building tests of goodness-of-fit able to identify the
maximum dimension L = D −K ∈ {0, . . . , D} for which WĀ remains uniformly
distributed over the orthogonal group OL. However, sinceWĀ lives in a possibly
high dimensional space, this testing procedure would be inefficient to provide a
reliable decision rule. As an alternative, we propose to conduct a statistical tests
on the set of the following L = D −K absolute scalar products

ω` , |wT` u`|, ` ∈ Ā, (35)

where the {u`}`∈Ā is a set of L arbitrary L-dimensional unit-norm vectors, for in-
stance uniformly distributed on the sphere. Indeed, ifWĀ is uniformly distributed
over the orthogonal group OL, the distribution of the L-dimensional random vec-
tor ωĀ whose components are given by (35) can be easily derived as stated by the
following theorem.

Theorem 3 Let K ∈ {0, . . . , D}, W = [w1, . . . ,wD−K ]T be a random matrix
uniformly distributed on the orthogonal group OD−K , and u1, . . . ,uD−K be L =
(D − K) arbitray unit-norm L-dimensional vectors. Let ω = [ω1, . . . , ωL]T such
that ω` , |wT` u`|. Then, the components of ω are identically distributed and the
cumulative distribution (cdf) of any component ω` is given by

P (ω` ≤ λ) =
vol (OL−2)

vol (OL−1)
2

∫ λ

0

(
1− z2

)(L−3)/2
dz

= 2λl
vol (OL−2)

vol (OL−1)
2F1

(
1

2
,−L− 3

2
;

3

2
;λ2

)
.

(36)

Proof See Appendix E.

Note that the ω` can be interpreted as generalized cosines in dimension L =
D − K. The distribution Eq. (36) depends on the difference D − K only. Fig. 2
shows the empirical and theoretical pdf’s associated with the cdf (36) for various
values of D −K.

We propose to use Theorem 3 to design the following Kolmogorov-Smirnov test

of goodness-of-fit applied to the matrices
{

P(t)
}nmc

t=nbi

generated by the Gibbs sam-

pler detailed in Algo. 2. For a given candidate A of K indices associated with the
subspace spanned by PA, one can test whether the remaining set Ā of indices cor-
responds to directions PĀ uniformly distributed over the orthogonal group OD−K .
Thanks to Theorem 3 this is equivalent to test whether the absolute scalar prod-
ucts (35) are distributed according to (36). Note also that the random variables
{ω`}`∈Ā form a set of identically distributed components of a L-dimensional ran-
dom vector ωĀ. This permits to use a single statistical test to be performed for
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Fig. 2 Empirical (light blue bars, computed from 20000 samples) and theoretical (dark blue
lines) pdf’s associated with the cdf (36) for 4 different values of the dimension.

Algorithm 3: Selecting the number of relevant directions

Input: level of KS test; a collection of samples
{
p

(t)
1 , . . .p

(t)
D ,Z(t)

}TMC
t=nburn+1

generated by Alg. 2.

1 For each iteration, relabel the directions p
(t)
k w.r.t. their frequency of activation, given

by Z(t);

2 Sample u1 . . .uD
i.i.d.∼ S1

D ;
3 for K ← 1 to D − 1 do
4 for t← nburn + 1 to nburn + niter do

5 Let NK be a basis of the orthogonal of p
(t)
1 . . .p

(t)
K ;

6 Compute ω
K (t)
K+1 , ‖NT

KuK+1‖−1|p(t)T
K+1N

T
KuK+1|, . . .

ω
K (t)
D , ‖NT

KuD‖−1|p(t)T
D NT

KuD| ;

7 end

8 Stack the ω
K (t)
K+1 , . . . ω

K (t)
D into a single collection of samples in view of

Kolmogorov-Smirnov’s test ;
9 if HK is not rejected then

10 K̂KS = K ;
11 break;

12 end

13 end

Output: K̂KS, an estimator of the number of relevant components.
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each dimension candidate K iteratively in increasing or decreasing order, rather
than D −K multiple tests. The null hypothesis is defined as

H(K)
0 : ω`

cdf∼ (36), ∀` ∈ Ā = {D −K + 1, ..., D} (37)

Obviously, if this null hypothesis is accepted for a given set Ā of D −K indices,
it will be accepted for any subset of lower dimension. Conversely, if this null
hypothesis is rejected for some K and a given set Ā of D −K indices, it will be
definitely rejected for any superset of Ā, that is for subspace dimensions smaller
than K. Since the objective of the proposed procedure is to identify an a priori
small number K of relevant components (and not a lower or upper bound), this
hypothesis should be tested for an increasing number K of active components. As
a result, the following estimator K̂KS of the number of active components is finally
proposed:

K̂KS = min
{
K ∈ {0, . . . , D} | H(K)

0 is accepted
}
. (38)

By convention,H(D)
0 is accepted whenH(K)

0 has been rejected for allK ∈ {0, . . . , D − 1}:
thus the model would identify data to white Gaussian noise with no special direc-
tion. Algo. 3 describes the full procedure.

5.3 Estimating other parameters

This section discusses the derivation of estimates associated with the remaining pa-
rameters, other than the dimension K of the subspace. Regarding the orthonormal
matrix P of which the K first columns span the signal subspace, it is not recom-
mended to use a simple average of the samples P(t) generated by the MCMC
algorithm to approximate the minimum mean square error (MMSE) estimator.
Indeed, the Markov chain targets a highly multimodal distribution with modes
that depend on the current state of the dimension K(t). In particular, at a given
iteration t, the last D −K(t) columns of P(t) are directly drawn from a uniform
prior. One alternative is to compute the MMSE estimator conditioned upon an
estimate K̂ of the relevant dimension. This can be easily done by averaging the
samples P(t) corresponding to the iterations t for which K(t) = K̂. A similar
procedure applies for the binary matrix Z. Note that in the specific context of
parametric subspace estimation, other Bayesian estimators have been proposed by
Besson et al (2011, 2012).

Remark: the posterior distribution of the scale parameters δ =
{
δ2
1 , . . . , δ

2
K

}
,

where the matrix P has been marginalized, cannot be derived analytically. This
posterior distribution can be derived explicitly in some very particular cases only,
assuming that the binary matrix Z is the K × N matrix 1K,N with only 1’s ev-
erywhere, see App. H for details. The resulting posterior involves a generalized
hypergeometric function of two matrices that could be used as a measure of mis-
match between the magnitudes of the eigenvalues of covariance matrices. We leave
this open question for future work.
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(a) (b)

(c) (d) (e) (f)

Fig. 3 Top : posterior distribution of K for (a) D = 16, N = 100, and (b) D = 36, N = 500.
Bottom : posterior distributions of (c) & (e) scale factors δ2

K and (d) & (f) dispersion of the

projection P̂TP for D = 16, N = 100 and D = 36, N = 500, respectively. The red lines
indicates the true values of δ2

1 . . . δ
2
K .

6 Performance assessment of BNP-PCA

The performance of the proposed BNP-PCA is assessed on datasets simulated
according to the linear model

yn = Hun + en (39)

where en is an additive Gaussian noise of covariance matrix σ2ID and the quan-
tities H and un are specified as follows. First, for a given dimension D of the
observations, K orthonormal directions are gathered in a D ×K matrix H which
is uniformly generated on the Stiefel manifold SKD . Then, N representation vec-
tors u1, . . . ,uN of dimension K are identically and independently generated ac-
cording to a centered Gaussian distribution with a diagonal covariance matrix
Σ = diag

{
δ2
1σ

2, . . . , δ2
Kσ

2
}

where the scale factors δ2
1 , . . . , δ

2
K control the relevance

of a particular direction. Equivalently, by choosing different values for the scale
factors, this model also conveniently permits to consider the case of an anisotropic
noise corrupting an isotropic latent subspace. In the following, the choice of these
scale factors will be specified in four typical scenarios.

Since each scale factors δ2
k controls the signal-to-noise ratio in each direction, a

unique value σ2 = 0.01 of the noise variance is considered without loss of generality.
Several dimensions D and K are considered for various numbers of observations N .
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The proposed Gibbs sampler has been run during 1000 iterations after a burn-in
period of 100 iterations.

6.1 Scale factors and alignment of components

The performances of the proposed algorithm have been first evaluated on various
simulated datasets. As an illustration, we report here the results on 2 datasets
corresponding to (D = 16,K = 4, N = 100) and (D = 36,K = 6, N = 500) and
where the scale coefficients δ2

k are defined as proportional to 1/k.
Fig. 3(a) & (b) show the posterior distributions of K for (D = 16, N = 100) and
(D = 36, N = 500), respectively. We observe that the maximum of the two poste-
rior histograms correspond to the expected dimension, i.e., K = 4 for D = 16 and
K = 6 for D = 36. Note that this estimator corresponds to the marginal maximum
a posteriori estimator defined by Eq. (31). These two examples suggest that the
marginal MAP estimator K|Y seems to be consistent since it is able to recover
the expected dimension. This is in contrast with the behaviour of the conditional
MAP estimator K|Y, α that is known to be inconsistent from Theorems 1 and 2.
Section 6.2 will come back to this question in more details. We do not comment
on the behaviour of K̂KS based on KS tests here: in such simple scenarios, K̂KS

and K̂KS always give the same results.
Fig. 3 (c) & (e) show the posterior distributions of the 8 first scale factors. Fig. 3(d)
& (f) show the alignment of the true pk with the estimated p̂k; see Fig. 3(c)&(d)
for D = 16, N = 100 and Fig. 3(e)&(f) for D = 36, N = 500. The alignment is mea-
sured by the scalar product 〈pk, p̂k〉 between each column of P and its estimate.
No ordering problem is expected here since the variances are sufficiently different in
every direction. In both cases, it appears that scale factors are correctly identified.
We observe that inferred directions correspond to actual principal components
with an alignment typically higher than 0.8 on average. All other components, for
k ≥ 5 on Fig. 3(d) and k ≥ 7 on Fig. 3(f)), are considered as inactive since as-
sociated to components with comparable factors and much lower alignment. This
observation motivated the procedure proposed in Section 5.2 elaborated on KS
tests to build the estimator K̂KS, see Eq. (38). Recall that K̂KS will be especially
useful when the signal to noise ratio is close to 1 for some components, that is
δ2
k ' 1.

These first experiments show that the proposed BNP-PCA is able to iden-
tify the relevant latent subspace through its dimension K as well as principal
components pk and their corresponding scale factors δ2

k. They also indicate that
K̂mMAP seems to be consistent in contrast with K̂mMAP,α, see Theorems 1 & 2 of
Section 5.1.

6.2 Marginal MAP estimator of the latent dimension

This section experimentally investigates the behaviour of the marginal MAP esti-
mator K̂mMAP of the dimension of the latent subspace defined by (31). Note that

this estimator is different from the marginal MAP estimator K̂mMAP,α defined in
(29) which was still conditioned upon α. Indeed, in the Bayesian model proposed
in Section 3, a prior distribution is assigned to the hyperparameter α which is thus
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Fig. 4 Empirical posterior probabilities P [K = k|Y] of the latent dimension for (left) D = 16,
(center) D = 25, (right)D = 36 and N ∈ {100, 200, 500, 1000, 5000}. The orange bars indicate
the true dimension K of the latent subspace. Bottom plots are the empirical marginal posterior
distributions f (α|Y) where the number of observations N increases when the line color goes
from light to dark blue lines.

jointly inferred with the parameters of interest. While Theorem 1 of section 5.1
says that K̂mMAP,α with fixed α is inconsistent, we will empirically show that

K̂mMAP seems to be consistent.

Fig. 4 shows the empirical posterior probabilities P [K = k|Y] when all the
scaling factors have been fixed to values significantly higher than 1, such that
δ2
k = 50/k, 1 ≤ k ≤ K. Actual subspace dimensions are K =

√
D for D ∈

{16, 25, 36}. This figure shows that, for D = 16, the marginal MAP estimator

K̂mMAP correctly recovers the latent dimension for all values of N . The proposed
model needs around N = 500 observations for D = 25, and N = 1000 for D = 36.
All posteriors seem to concentrate around the true value K =

√
D as the number

of observations increases: these numerical results suggest a consistent behaviour
of the estimator.

These findings do not contradict Theorem 1 which states that the marginal
MAP estimator of K is inconsistent for fixed α. In contrast, sampling α jointly
with the other parameters leads to a marginal MAP estimator K̂mMAP which seems
to be consistent, at least based on our numerical experiments. By examining the
empirical marginal posterior distributions f (α|Y) reported in Fig. 4 (last row),
one can note that this distribution seems to get closer to 0 as the number of
observations N increases. Exploiting the fact that E[K] a priori scales as α log(N),
the posterior behaviour of the latent subspace dimension seems to result from a
decreasing estimated value of α, this is expected. Moreover, recall that Theorem 1
states that the marginal posterior probabilities P [KN = k|YN , α] does not admit
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Table 2 Results of Kolmogorov-Smirnov goodness-of-fit tests at level 0.05 averaged over 20
Monte Carlo simulations when the signal is made of N = 500 D-dimensional realizations of
an isotropic Gaussian noise. Scores reported in each column correspond to the probability of
rejecting the null hypothesis for a subspace of candidate dimension K.

K 0 1 2 3 4 5

D = 9 0.05 0.05 0.05 0.05 0.05 0
D = 16 0.05 0 0.05 0.05 0 0
D = 25 0.05 0.1 0.05 0.1 0.05 0
D = 36 0.05 0.05 0.05 0.05 0.05 0.05

1 as a limit for any value k. However, it does not state that the mode cannot
converge to the true value.

Finally, let us recommend that a certain care be taken anyway when resort-
ing to these posterior probabilities. We have shown that the proposed estimator
K̂mMAP can exhibit a good asymptotic behaviour, but how this asymptote behaves
still seems to depend both on the generative model and the experiment settings
and is out of the scope of the present paper.

6.3 The BNP-PCA of white Gaussian noise

In this experiment, the scaling parameters are all chosen as δ2
k = 0, leading to

observed measurements yn (n = 1, . . . , N) only composed of white Gaussian noise.
In this particular case, data do not live in a particular subspace. The purpose of
this first basic experiment is to check whether the algorithm is able to detect that
no component is relevant, i.e., K = 0 since data behaves like white Gaussian noise.
More precisely, since the signal is only composed of isotropic noise, the empirical
covariance matrix of the observed vectors verifies

lim
N→+∞

N−1YYT = σ2
ID. (40)

According to Section 5.2 and Theorem 3, the posterior distribution of a poten-
tial active direction in (23) should asymptotically tend to be ∝ exp

(
pTp/4

)
that

is constant since pTp = 1 by definition: one expects that the pk be uniformly
distributed on the unit sphere. BNP-PCA estimates scale factors that are all com-
parable given the prior. Therefore BNP-PCA does not identify any special latent
subspace in this case.

Table 2 shows the results provided by the Kolmogorov-Smirnov (KS) goodness-
of-fit test described in Section 5.2. More precisely, forN = 500 andD ∈ {9, 16, 25, 36},
Table 2 reports the probability of rejecting the null hypothesis H(K)

0 in (37) for
candidate dimensions K ∈ {0, . . . , 5} of the latent subspace, i.e., L = D − K ∈
. . . {D, . . . ,D − 5}. These results computed from 20 Monte Carlo simulations show
that the null hypothesis is very often rejected with a probability of the order of
0.05, which corresponds to the chosen rejection level of the KS test here: it is con-
sidered as accepted (not rejected). Similar results are obtained for K ∈ {6, . . . , D}.
As expected, the estimator K̂KS defined by (38) well recovers the actual dimension
of the latent subspace, i.e., K = 0 here since the data is simply white Gaussian
noise only.
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Fig. 5 Marginal posterior distributions in case of signal with anisotropic noise, for D = 16,
N = 200(top) and N = 2000(bottom).

6.4 Influence of the distribution of scaling factors

The third experiment aims at investigating two aspects of BNP-PCA. The first
question is how far principal components are well recovered. The second aspects
concerns the limitations of the proposed method when some scaling factors δ2

k are
below 1, leading to poorly relevant directions of the latent subspace with respect
to the noise level. More precisely, N measurement vectors have been generated
according to the model (39) with N ∈ {200, 2000}, D = 16 and K = 16 with
scaling factors δ2

k = 10/k2.2 (k = 1, . . . ,K), such that the first 5 scaling factors
are [10, 2.2, 0.9, 0.5, 0.3]; only 2 are larger than 1. This setting permits to play with
individual signal-to-noise ratios specified in each direction. Since the scaling factors
δ2
k are lower than 1 for k ≥ 3, not all directions are expected to be recovered.
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Fig. 5 (right) shows the empirical marginal posterior probability of the latent
dimension. These probabilities lead to marginal MAP estimators (31) of the latent

dimension equal to K̂mMAP = 2 for both cases (N = 200 and N = 2000). The

alternative estimator K̂KS of the latent subspace derived from the Kolmogorov-
Smirnov test (see Section 5.2) leads to estimates between 2 (65% provides K̂KS = 2

for N = 200) and 3 (95% provides K̂KS = 3 for N = 2000). These experiments
indicate that BNP-PCA fails to detect principal components weaker than the noise
level.

Fig. 5 (left) depicts the estimated inner products 〈pk, p̂k〉 and corresponding
confidence intervals computed from 50 Monte Carlo simulations where p̂k denote
the estimated direction vectors. A high score (like a cosine) indicates a good align-
ment of the vectors, thus a correct recovery of the corresponding latent direction.
This figure shows that, for N = 200 (top), the proposed model accurately identifies

the first component only among the two expected from K̂mMAP = 2. For larger
N = 2000 (bottom) the alignment is better and the 2 predicted components are
well recovered as attested by the good alignment between the p̂k and pk. How-
ever, in both cases, the proposed strategy is not able to extract components with
scaling factors δ2

k smaller than 1: they are identified to noise, as expected from
signal-to-noise ratios.

7 Applications

7.1 BNP-PCA and clustering

To illustrate the flexibility of the proposed model, a simple experiment where
the dimension reduction is combined with a linear binary classifier is presented.
The representation coefficients in Eq. (8) are now modeled by a mixture of two
Gaussian distributions corresponding to 2 distinct clusters

∀n, xn ∼ π N (µ0,∆0) + (1− π) N (µ1,∆1) , (41)

where µi = [µi,1, . . . , µi,K ]T and ∆i = diag
{
δ2
i,1, . . . , δ

2
i,K

}
for i ∈ {0, 1} are re-

spectively the mean and the covariance matrix associated with each class. A com-
mon centered Gaussian distribution is used as the prior distribution for the mean
vectors µi (i ∈ {0, 1}) assumed to be a priori independent, i.e., µi ∼ N

(
0, s2I

)
.

Note that the use of non-informative priors are prohibited here due to posterior
consistency. Additionally, a binary label vector η = [η1, . . . , ηN ]T which indicates
whether the nth observation belongs to the class C0 or C1 is assigned equiprobable
prior probabilities and will be jointly estimated with the parameters of interest.
Analytical marginalization w.r.t. to the scale factors remains tractable. All prior
distributions are conjugate, yielding conditional posterior distributions that can
be easily derived and sampled as described in Section 4.2.

Results on a subset of the MNIST database. The performance of the pro-
posed algorithm is illustrated on a subset of the MNIST database1, obtained by
extracting the first 200 images associated with the digits 6 and 7. Each image is

1 Available online at http://ufldl.stanford.edu/wiki/index.php/Using_the_MNIST_
Dataset

http://ufldl.stanford.edu/wiki/index.php/Using_the_MNIST_Dataset
http://ufldl.stanford.edu/wiki/index.php/Using_the_MNIST_Dataset
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Fig. 6 Clustering results for the 200 first images of the MNIST database for digits 6 and 7.

encoded as a vector in lexicographic order where pixels with null variance (i.e.,
pixels mainly located in the image corners) have been removed, leading to observa-
tion vectors of dimension D = 572. The objective of this experiment is to evaluate
the need and impact for dimension reduction for this binary classification task.
The results provided by the proposed method are compared with those obtained
by using an expectation-maximization (EM) algorithm2 as well as an MCMC al-
gorithm, both inferring the parameters associated with the conventional Gaussian
mixture model (41) described above. Both algorithms, denoted respectively by
GMM-EM and GMM-MCMC, are preceded by a supervised dimension reduction
preprocessing which consists in computing the first K principal components, for a
wide set of dimensions K. We emphasize that the proposed BNP-PCA approach
combined to an MCMC algorithm for inference addresses jointly the dimension re-
duction and classification tasks as well as it identifies the dimension of the relevant
latent subspace and estimates the noise level.

To overcome the problem of label switching inherent to MCMC sampling of
mixture models, the samples generated from the proposed Bayesian nonparametric
approach and the Bayesian parametric GMM-MCMC algorithms are postprocessed
appropriately (Marin and Robert 2007, Chapter 6-4). More precisely, first, the
two farthest observation vectors (in term of Euclidean distance) are assumed to
belong to distinct classes. Gibbs sampler iterations leading to equal labels for
these two observations are discarded. For remaining iterations, all the generated
labels are reassigned in agreement with consistent labels for these two particular
observations.

Classification performance is evaluated by the resulting labeling errors. All
results have been averaged over 20 Monte Carlo simulations.

Fig. 6 shows the clustering results for the 2 parametric methods compared to
BNP-PCA. Both parametric methods, GMM-EM and GMM-MCMC, show label-
ing errors close to 1% when using few principal components as input features, but

2 Available through the gmdistribution class of MATLAB.
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exhibit a phase transition leading to error up to 50% when retaining too much
principal components. Note that the phase transition occurs later for the EM-
based algorithm that seems to be more robust, but a more elaborated MCMC
method may have exhibited a similar performance. The proposed Bayesian non-
parametric method shows an average labeling error of about 1.5%. Fig. 6 indicates
the typical ranges of values visited by the sampled latent dimension (brown lines).
The intervals K ∈ [3, 18] and K ∈ [83, 130] correspond to 70% of the samples. It
is noticeable that the two parametric methods reach their best performance when
considering a number K of principal components belonging to the first interval.

7.2 Hyperspectral subspace identification

As a second pratical illustration, the BN-PCA is employed to solve a key pre-
processing task for the analysis of hyperspectral images. An hyperspectral image
consists of a collection of several hundreds or thousands of 2D images acquired
in narrow and contiguous spectral bands. Such images can be interpreted as a
collection of spectra measured at each pixel location. A classical objective is the
recovering of spectral signatures of the materials that are present in the scene as
well as their spatial distributions over the scene. A common assumption in spectral
unmixing is to consider that each measured spectrim is a noisy convex combination
of the unknown elementary spectral signatures called endmembers. The combina-
tion coefficients correspond to the unknown proportions to be estimated. Thus this
so-called spectral unmixing can be formulated as a classical blind source separa-
tion or nonnegative matrix factorization problem. One crucial issue lies in the fact
that the number R of endmembers (i.e., the order of decomposition/factorization)
present in the image is generally unknown in most applicative scenarios. How-
ever, under the hypothesis of a linear mixing model, measurements should lie in
a K-dimensional linear subspace with K = R − 1. As a consequence, most of the
spectral unmixing techniques first estimate the relevant latent subspace by a di-
mension reduction step such as PCA. Then one usually considers (Bioucas-Dias
et al 2012) that the number of materials present in the scene is R = K + 1. Pre-
cisely, the proposed BNP-PCA can identify the number R of components that are
significant in an hyperspectral image.

A real hyperspectral image, referred to as “Cuprite hill” and acquired by the
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over Cuprite, Nevada,
is considered. The image of interest consists of 1250 pixels observed in 190 spectral
bands after spatial subsampling in horizontal and vertical directions of a factor
2 and after removing the spectral bands of low SNR typically corresponding to
the water absorption bands. Then the hyperspectral image has been whitened
according to the noise covariance matrix estimated by the strategy described by
Bioucas-Dias and Nascimento (2008).

The proposed BNP-PCA based method is compared to the generic methods
referred to as L-S and OVPCA introduced by Minka (2000) and Smı́dl and Quinn
(2007), respectively, as well as to the hyperspectral-specific subspace identifica-
tion algorithm HySime (Bioucas-Dias and Nascimento 2008). The proposed Gibbs
sampler has been run during 1100 iterations including a burn-in period of 100
iterations.
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Fig. 7 Sharpness index of the images resulting from the projection onto the directions inferred
by PCA (dark blue) and the proposed method (light blue).

The HySime algorithm estimates a hyperspectral subspace of dimension K̂ =
10 while L-S and OVPCA lead to K̂ = 25 and K̂ = 23, respectively. There is no
oracle correct number of materials or dimension of the latent subspace. Examining
the crude mapping of the materials conducted by Clark et al (1993) and Clark et al
(2003) permits to state that it is highly unlikely that more than 15 materials are
present in the considered region of interest. Specialists generally agree about a
number of components between 10 and 15. It appears that both HySime and
OVPCA overestimate the number of endmembers Using BNP-PCA on the same
dataset, the marginal MAP estimator defined by 31 yields K̂mMAP = 25 while
the implementation of the Kolmogorov-Smirnov goodness-of-fit test detailed in
Section 5.2 leads to a latent subspace dimension estimate K̂KS = 13 which is quite
coherent with the expected value.

To evaluate the relevance of the K directions recovered by BNP-PCA, the mea-
sured hyperspectral spectra are orthogonally projected on each direction p1, . . . ,pK .
The resulting K images are supposed to explain most of the information contained
in the original hyperspectral image with respect to each endmember. They are ex-
pected to individually provide relevant interpretation of the scene. The sharpness
index introduced by Blanchet and Moisan (2012) as a ground truth-free image
quality measure is computed on each image. Figure 7 features the corresponding
scores for each direction. These values are compared with those similarly obtained
by a standard PCA. Figure 7 shows that our method consistently provides better
scores, except for components 3, 5 and 6. This can be empirically explained by the
fact that more spatial information (structure and texture) has been recovered by
BNP-PCA due to its sparsity promoting property. It ensures a better separation
between relevant components and purely random white process than the images
projected on the principal components identified by a standard PCA.
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8 Conclusion

This paper indroduces a Bayesian nonparametric principal component analysis
(BNP-PCA). This approach permits to infer the orthonormal basis of a latent
subspace in which the signal lives as an information distinct from white Gaussian
noise. It relies on the use of an Indian buffet process (IBP) prior which permits
to deal with a family of models with a potentially infinite number of degrees of
freedom. The IBP features two regularizing properties: it promotes sparsity and
penalizes the number of degrees of freedom.

Algorithms implementing a Markov chain Monte Carlo (MCMC) sampling are
described for all parameters according to their conditional posterior distributions.
BNP-PCA appears to be close to completely nonparametric since no parameter
tuning or initialization is needed and the most general priors are used. Compared
to a parametric approach based on RJ-MCMC, the Markov chain is much easier to
implement and mixes much more rapidly. One limitation of the proposed approach
is the use of MCMC for inference: faster estimates may be obtained by resorting
to variational inference for instance.

Since one may be interested in a BNP approach to estimate the dimension K
of the latent subspace (or equivalently the number of degrees of freedom), we have
studied the theoretical properties of some estimators based on BNP-PCA in the
case where the parameter α of the IBP is fixed. Theorems 1 & 2 show that the
marginal MAP (mMAP) estimate of K is not consistent in this case: its posterior
does not asymptotically concentrate on any particular value as the number of
observations increases.

Numerical experiments show that the proposed BNP-PCA that considers the
parameter α of the IBP as an unknown parameter yields very good results. In
particular, experimental results indicate that the mMAP estimate of K seems to
be consistent (as soon as α is not fixed anymore). To make our approach even
more robust, we have elaborated on a Kolmogorov-Smirnov test to propose a
method to accurately identify the dimension of the relevant latent subspace. An
expected limitation is that a principal component may not be recovered when its
energy/eigenvalue is below the noise level. Finally, we have applied BNP-PCA to
two classical problems: clustering based on Gaussian models mixture applied to
the MNIST dataset and linear unmixing of hyperspectral images (or more gener-
ally matrix factorization). The clustering performance of the proposed approach
is very good. The inspection of the significance of the elementary images (also
called endmembers) estimated from a hyperspectral image is in favour of BNP-
PCA compared to standard PCA: each component seems to extract more detailed
information as attested by image-guided diagnosis. Performed on real datasets,
these experiments show that BNP-PCA can be used in a general Bayesian model
and yield good performance on real applications. Again we emphasize that the
resulting approach will call for very few parameter tuning only.

Based on these encouraging results, future work will aim at studying the con-
sistency of both the new KS-based estimator and the marginal MAP estimator
when the IBP parameter has been marginalized. We plan to use BNP-PCA as a
subspace identification strategy in a refined linear hyperspectral unmixing method.
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A Marginalized posteriori distribution

The marginal posterior distribution is obtained by computing

f (θ,φ|Y) =

∫
RDN

f (Y|θ,X) f (θ,X|φ) f (φ) dX.

The rationale of the proof is to split the exponential in two. The coefficients xk,n corresponding
to non activated block in Z, i.e., for which zk,n = 0, vanish. The remaining constant is∏K
k=1(2πδ2

k)−zTk zk/2 where zk denotes the kth row.

The remaining exponential term becomes

−
1

2σ2

N∑
n=1

(
‖yn −

∑
k

zk,n=1

pkxn‖22 +
∑
k

zk,n=1

1

δ2
k

xTnxn

)
. (42)

The `2 norm in Eq. (42) can be easily simplified since pTl pm = δl,m where δl,m is the Kronecker
symbol. In addition, the posterior in Eq. (42) is conjugated to a Gaussian distribution. The
remaining terms after integration are a constant(
2πδ2

kσ
2/(1 + δ2

k)
)zTk zk/2 as well as terms proportional to yTnpkp

T
k yn which can be rewritten

as
(
pTk yn

)2
. The marginal posterior Eq. (15) is obtained by combining all these terms.

B Shifted inverse gamma distribution

The sIG pdf is defined for all real x > 0 by

psIG

(
x|a, b

)
=

ba

γ
(
a, b
) (1 + x

)−(a+1)
exp

(
−

b

1 + x

)
(43)
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with shape parameter a and rate parameter b, and γ(a, b) =
∫ a
0 tb−1e−td t is the lower in-

complete gamma function. If b > a + 1, it is easy to see that the pdf has a unique maximum
in b

a+1
− 1, but no maximum otherwise. Fig. 8 displays the pdf of the sIG distributions for

several values of a and b.
if X ∼ sIG(a, b), the two first moments of X are given by

E[X] = b
γ(a− 1, b)

γ(a, b)
− 1 (44)

var(X) = b2

(
γ(a− 2, b)

γ(a, b)
−
(
γ(a− 1, b)

γ(a, b)

)2
)
. (45)

Note finally that the sIG distribution can be easily sampled by resorting to the change of
variable u = 1+δ2

k where u−1 follows a Gamma distribution of parameters aδ and bδ truncated
on the segment (0, 1).

C Jeffreys’ prior for the IBP hyperparameter

By definition, the Jeffreys’ prior is given by (Marin and Robert 2007, Ch. 2)

f(α) ∝

√
E
[( d

dα
log P

[
Z|α

])2
]
. (46)

Since d
dα

log P
[
Z|α

]
= K

α
−
∑N
n=1

1
n

, and does not depend on Z,

E

[( d

dα
log P

[
Z|α

])2
]

=

(
K

α
−

N∑
n=1

1

n

)2

. (47)

Thus f(α) ∝ α−1.

D Marginalized posterior distribution

The marginal posterior distribution is obtained by integrating the marginal posterior given
by Eq. (15) with respect to the parameters δ2 and α. By mean of conjugacy, straightforward
computations lead to

f
(
P,Z, σ2|Y

)
=

(
1

2πσ2

)ND/2
exp

[
trace

[
−

1

2σ2
YYT

]]

×
(

b
aδ
δ

γ(aδ, bδ)

)K K∏
k=1

γ(ak, bk)

b
ak
k

exp

(
1

2σ2

∑
n

(
pTk yn

)2)

×
(∑

n

1

n

)−K
Γ (K)∏
kKn!

∏
k

(N −mk)! (mk − 1)!

N !
1UD (P),

(48)

where for all k

ak = aδ + zTk zk

bk = bδ +
1

2σ2

∑
n

(
pTk yn

)2
.

E Law and expectation of scalar product

This section derives the marginal distribution of the projections evoked in Theorem 3 under
the uniform distribution over SDD−K .
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Area element of the sphere. The rationale of the proof is to adapt the vector to the
area element in the D-dimensional Euclidean space expressed in spherical coordinate. The
D-dimensional element parametrized by D − 1 angles is given by

dSD = sinD−2(φ1) sinD−3(φ2) . . . sin(φD−2)dφ1 . . . dφD−1,

and the Cartesian coordinates v1 . . . vD of a vector v are given by

v1 = cos(φ1)

v2 = sin(φ1) cos(φ2)

...

vD−1 = sin(φ1) . . . sin(φD−2) cos(φD−1)

vD = sin(φ1) . . . sin(φD−1).

The proof considers a non explicit rotation applied to u such that only the last component vD
is involved in the scalar product.

Proof. Let u be a unit vector of RL. See L here as the size of the orthogonal of the relevant
component, L = D−K. Let ν be a random variable uniformly distributed on the L-dimensional
unit sphere. Let also w be the random variable associated to the scalar product w = |〈u, ν〉| =
|νTu|. The density of w will be obtain from the cdf

pw (w ≤ λ) = pν
(
|νTu| ≤ λ

)
=

∫
1|νTu|(ν)dν, (49)

where the sum appearing in the last equation is expressed w.r.t. the Haar measure on the
sphere.

Let R the rotation matrix such that e = Ru where e = [1, 0, 0, . . . ]. Since the Haar
measure is invariant under rotation, Eq. (49) becomes, once rewritten w.r.t. the area element
dSL−1

p (w ≤ λ) =
1

SL−1

∫
1| cos(φ1)|≤λ(v)dSL−1.

Since | cos(φ1)| ≤ λ if φ1 belongs to the set [arccos(λ), π− arccos(λ)], one have, by means
of symmetry around π/2

p (w ≤ λ) =
2

SL−1

∫ π/2

φ1=arccos(λ)

∫ π

φ2...φL−2=0

∫ 2π

φL−1=0

sinL−2(φ1) . . . sin(φL−2)dφ1 . . . dφL−1

= 2
SL−2

SL−1

∫ π/2

φ1=arccos(λ)
sinL−2(φ1)dφ1,

which is only composed of independent sum. By recognizing the area of the L− 2-sphere and
by defining the change of variable y = cos(φ1), one have

p (w ≤ λ) =
SL−2

SL−1
2

∫ λ

0
sinL−3(arccos(y))dy.

Knowing that sin(arccos(y)) can be rewritten as
√

1− y2, one obtains, after two changes
of variable ∫ λ

0
sinL−3(arccos(y))dy =

∫ λ

0

(
1− y2

)L−3
dy

= λ

∫ 1

0

(
1− λ2y2

)L−3
dy

=
λ

2

∫ 1

0

(
1− λ2z

)L−3
z−1/2dz.
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The sum can be resolved using Corollary 1.6.3.2 page 36 in Gupta and Nagar (1999) with

parameters α = 1
2

, β = −L−3
2

, γ = 3
2

and R = λ2, leading to∫ λ

0
sinL−3(arccos(y))dy = 2λ 2F1

(
1

2
,−

L− 3

2
;

3

2
;λ2

)
,

which is the expected result.

F Inconsistency of the marginal MAP estimator of the latent
dimension

We emphasize that the proof is conducted with arguments similar to the one in Miller and
Harrison (2013).

Let first introduce a few notations. We call A(K,N) the set all binary matrices Z with K
rows and N columns. For every binary matrix Z, we call B(Z) the set of matrices Z′ which
are identical to Z except that a new line have been added with only one active element. The
notation Z′(j) will seldom be employed, where j indicates the index of the new active element.
Finally, let cN (K,α) be the quantity

cN (K,α)
4
= max

Z∈A(K,N)
max

Z′∈B(Z)

P[Z|α]

P[Z′|α]
. (50)

F.1 Two lemmas

Let first consider the two following lemmas

Lemma 1 For all α,K

lim sup
N→+∞

1

N
cN (K,α) ≤ +∞. (51)

Proof Let N,K be two positive integers, Z,Z′ two binary matrices belonging respectively to
A(K,N) and B(Z).

According to Eq. (7), one have, by noting Kh
new the number of column in Z′ identical to

the added one,
P[Z|α]

P[Z′|α]
≤
N

α
Kh

new ≤
K

α
N,

which lead to the expected result. ut

Lemma 2 Let Z,Z′ be respectively two elements of A(K,N) and B(Z). Thus,

p (Y1:N | Z) ≤ κ p
(
Y1:N | Z′

)
, (52)

where

κ = bδ
γ(aδ, bδ)

γ(aδ + 1, bδ)
. (53)

Proof Let Θ be the set of all parameters and hyperperameters, such that

p(Y|Z) =

∫
Θ

p(Y|θ,Z)p(θ|Z)dθ.

Let Z′ be an element of B(Z), and j be the index of the active element in the new line. Note
the activation of the jth element adds a term of the form

1

1 + δ2
K+1

exp

(
δ2
K+1

1 + δ2
K+1

(
yTj pK+1

)2
σ2

)
. (54)
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The term in the exponential is always positive, so the exponential can be minored by 1. By
integrating w.r.t. δ2

K+1, one has

p
(
Y1:N | Z′

)
≥

b
aδ
δ

γ(aδ, bδ)

γ(aδ + 1, bδ)

b
aδ+1
δ

p (Y1:N | Z) ,

which completes the proof. ut

F.2 proof

For all integer j in J1, NK

p
(
Y,KN = K|α

)
(55)

=
∑

ZK∈A(K,N)

P [ZK ] p(Y|ZK , α)

≤
∑

ZK∈A(K,N)

NcN (K,α) P
[
Z′(j) | α

]
κ p
(
Y | Z′(j), α

)
.

where the last inequality has been obtained using both Lemmas 1 and 2. Since this inequality
is true for all j, one can average over all values of j, leading to

p
(
Y,KN = K|α

)
≤

∑
ZK∈A(K,N)

N∑
j=1

κcN (K,α) P
[
Z′(j) | α

]
p
(
Y | Z′(j), α

)
≤ κcN (K,α)

∑
ZK∈A(K,N)

∑
Z′∈A(K+1,α)

p
(
Y|Z′(j)|α

)
1Z′∈B(Z)

≤ κcN (K,α)
∑

Z′∈A(K+1,α)

card
{
Z,Z′ ∈ B(Z)

}
p
(
Y|Z′(j)|α

)
1Z′∈B(Z).

However, for each matrix Z′ in A(K + 1, α), there are at most one matrix Z verifying the
condition, leading to

p
(
Y,KN = K|α

)
≤ κcN (K,α)

∑
Z′∈A(K+1,α)

p
(
Y|Z′(j)|α

)
1Z′∈B(Z).

(56)

From now, the proof is almost finished. By the Bayes rule, one has for K < D

p
(
KN = K|Y, α

)
=

p (KN = K,Y | α)∑∞
k=0 p (KN = K,Y, α)

<
p (KN = K,Y|α)

p (KN = K,Y, α) + p (KN = K + 1|Y, α)

<
cN (K,α)κ

cN (K,α)κ+ 1

< 1.
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finally, for K = D

p
(
KN =D|Y, α

)
=

p (KN = D,Y|α)∑∞
k=0 p (KN = k | Y, α)

≥
p (KN = D,Y|α)∑D

k=0 (cN (k, α)κ)K−k p (KN = k|Y, α)

≥
1∑D

k=0 (cN (k, α)κ)D−k

≥
1

1 +
∑D
k=1 (cN (K,α)κ)K

> 0.

One can see from the last couple of equations that the result stated in Eq. (27) can be
generalized to all models based on an IBP and verifying Lemma 2. However, the result in
Eq.(28) results from the orthogonality constraints.

G Severe inconsistency in case of a simple generative model

Assumes that for all n, yn ∼ N (0, σ2ID) and g be the quantity

g(Y,Z,P, δ2) =
K(aδ2 , bδ2 )K

vol(SD)

K∏
k=1

(
1

1 + δ2
k

)a
δ2

+zTk zk

exp

[
−

1

1 + δ2
k

(
bδ2 +

1

2σ2

N∑
n=1

zk,n
(
pTk yn

)2)]
,

i.e., g ∝ p
(
Z,P, δ2|Y, σ2, α

)
. Let emphasize that g is intimately linked to a probability dis-

tribution.

Let KN be again the random variable associated to the latent subspace dimension. One
has, by definition

P
[
KN = 0|Y, σ2, α

]
=

p
(
KN = 0,Y|σ2, α

)∑+∞
K=1 p (KN = K,Y|σ2, α)

≤
1

1 +
p(KN=1,Y|σ2,α)
p(KN=0,Y|σ2,α)

. (57)

The quantity appearing in the denominator of Eq. (57) can be rewritten

p
(
KN = 1,Y|σ2, α

)
p (KN = 0,Y|σ2, α)

=
∑

Z,KN=1

∫
SD

∫
R+

g(Y,Z, δ2,P)dσ2dPdδ2 P[Z|α]

P[0|α]

=
∑

Z,KN=1

∫
SD

∫
R+

g(Y,Z, δ2,P)dσ2dPdδ2

× α
(N − zt1z1)!(zt1z1 − 1)!

N !
.
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Since the matrix Z appearing in the former equation has only one row, one can decompose
the sum over the number of active component and the number of instance,

p
(
KN = 1,Y|σ2, α

)
p (KN = 0,Y|σ2, α)

=

N∑
l=1

∑
Z,KN=1,z1z

T
1 =l

α

l

1(N
l

) ∫
SD

∫
R+

g(Y,Z, δ2,P)dσ2dPdδ2.

Let define for each l the U-statistic

Ul(Y )
4
=

1(N
l

) ∑
Z,KN=1,

z1z
T
1 =l

∫
SD∪R+

g(Y,Z, δ2,P)dσ2dPdδ2, (58)

where the support of each permutation is given by the l active components of Z. By the strong
law of large number (Hoeffding 1961), for all l,

Ul(Y )
a.s.−→

N→+∞
EY

[∫
SD∪R+

g(Y,Z, δ2,P)dσ2dPdδ2

]
= 1. (59)

The former equality holds since the quantity under the expectation is a density. Consequently,
for all L ≤ N

p
(
KN = 1,Y|σ2, α

)
p (KN = 0,Y|σ2, α)

≥
L∑
l=1

α

l
Ul(Y )

a.s.−→
N→+∞

L∑
l=1

α

l
.

Since the former equality is true for all L, and that the harmonic series
∑
l

1
l

diverges, the

quantity
p(KN=1,Y|σ2,α)
p(KN=0,Y|σ2,α)

goes to infinity almost surely as N increases. This complete the

proof.

H Marginal posterior distribution of the scale parameters

In the general case, the posterior distribution of the scale parameters δ =
{
δ2
1 , . . . , δ

2
K

}
, where

the orthogonal matrix P has been marginalized, cannot be derived analytically. However,
assuming that the binary matrix Z is the K ×N matrix 1K,N with only 1’s everywhere, this
posterior distribution can be derived explicitly. In particular, when K = D

f
(
δ|Y, σ2, α,Z = 1D,D

)
∝

D∏
k=1

(
1

1 + δ2
k

)aδ+1

exp

(
−

bδ

1 + δ2
k

)

× 0F0

(
∅, ∅,

1

σ2
YYT − λID,∆δ

)
etr (λ∆δ)

(60)

with λ ∈ (0, 1
σ2 ρmin) where3 ρmin is the minimum eigenvalue of YYT , ∆δ is a D×D diagonal

matrix formed by the ratios δ2
k/(1 + δ2

k) and 0F0 is a generalized hypergeometric function of
two matrices. In particular, this function is defined by

0F0(∅, ∅,A,B) =

∞∑
k=1

∑
κ`k

Cκ(A)Cκ(B)

Cκ(ID)k!
(61)

3 Note that the positive real number λ has no particular interpretation and is only introduced
here for convenience.
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where κ ` k denotes the integer partitions of k, Cκ(A) is a zonal polynomial defined by the
eigenvalues of A (Muirhead 1982, Ch. 7). Despite recent advances in numerical evaluation of
zonal polynomials due to, e.g., Koev and Edelman (2006), this quantity remains difficult to be
computed. However, it can be interpreted as a measure of mismatch between the magnitudes
of the principal components recovered by PCA (through the eigenvalues of 1

σ2 YYT − λID)

and the magnitudes of the relevant components identified by the proposed procedure (in ∆δ).
More generally, this hypergeometric function can be advocated for as an elegant way to

compare two positive definite matrices using their respective eigenvalues. This finding would
suggest the design of an appropriate metric which allows two covariance matrices to be com-
pared regardless of their respective induced orientations.
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