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While diffusion mechanisms of interstitial elements in fcc systems are generally well-known, especially in the case of H atoms, we show in this work that even in the case of a simple metallic system (aluminum), the diffusion of interstitials exhibits a wide variety of paths and mechanisms that depend on the specie. We used an approach based on first-principles calculations associated with kinetic Monte-Carlo simulations and a multi-state diffusion formalism to compute the diffusion coefficients of five interstitial elements: hydrogen, boron, carbon, nitrogen and oxygen. For instance, at the atomic scale, whilst we find that C atoms prefer to be located in octahedral sites (labeled o) rather than in tetrahedral positions (labeled t), we find one additional stable position in the lattice (M). The diffusion through these three stable positions are thus studied in detail. In the case of B atoms, for which the tetrahedral site is found unstable, the diffusion path is between o-o sites. Similarly, in the case of oxygen, t positions are found to be the only stable positions (o are unstable) and the path of migration, along t-t direction, is found through a twice degenerated asymmetric transition state. In the case of H and N atoms for which t and o sites are stable, we explain why the only path is along the t-o direction. Finally, we discuss explicit formulas to compute coefficients of diffusion of interstitials in fcc structures.

Introduction

Diffusion in metallic compounds has been extensively studied, especially for substituted elements [START_REF] Garnier | Solute drag by vacancies in body-centered cubic alloys[END_REF][START_REF] Garnier | Quantitative modeling of solute drag by vacancies in facecentered-cubic alloys[END_REF]. Except for H atoms, the case of interstitials is often omitted. Yet in many cases, interstitials are involved in critical damaging modes of metallic systems. They interact with lattice defects (dislocations, vacancies, grain boundaries, etc) and can thus alter bulk properties. In the case of fcc systems, oxygen, carbon and hydrogen are known to lead to the H embrittlement of the system (corrosion cracking and corrosion fatigue) [START_REF] Magnin | 2nd Int. Conf. on Corrosion Deformation Interactions[END_REF], to metal dusting [START_REF] Young | [END_REF][START_REF] Grabke | Thermodynamics, mechanisms and kinetics of metal dusting[END_REF] or to internal oxidation [START_REF] Prillieux | Internal oxidation in dry and wet conditions for oxygen permeability of Fe-Ni alloys at 1150 and 1100[END_REF]. In macroscopic models, knowledge of interstitials solubility and diffusion coefficients are one of the main information required.

In main metals, the diffusion of interstitial elements at ambient or high temperature is governed either by a direct mechanism of diffusion between stable sites [START_REF] Wolverton | Hydrogen in aluminum: first-principles calculations of structure and thermodynamics[END_REF][8][START_REF] Wimmer | Temperature dependent diffusion coefficients from ab initio computations: H, D and T in nickel[END_REF][START_REF] Heinola | Diffusion of hydrogen in bcc Tungsten studied with first principle calculations[END_REF] (generally tetra-and octahedral positions), or by a mechanism of traps (vacancies [START_REF] Wang | Influence of trap connectivity on H diffusion: Vacancy trapping[END_REF][START_REF] Wang | Hydrogen influence on diffusion in nickel from first-principles calculations[END_REF], dislocation, interfaces). Regarding interstitial diffusion in fcc systems, since the stable interstitial positions in fcc systems are either the tetrahedral (t) [START_REF] Wolverton | Hydrogen in aluminum: first-principles calculations of structure and thermodynamics[END_REF][START_REF] Wang | Ab initio calculations of H interactions with defects in fcc metals: crack tip dislocations and vacancies[END_REF] or the octahedral (o) sites [START_REF] Connétable | Firstprinciples nickel database: energetics of impurities and defects[END_REF][START_REF] Vekilova | First-principles study of vacancy-hydrogen interaction in Pd[END_REF], the main path of diffusion is found to be between o-t sites. For instance, no additional stable position, apart from t and o sites, was found neither in nickel [START_REF] Wimmer | Temperature dependent diffusion coefficients from ab initio computations: H, D and T in nickel[END_REF][START_REF] Connétable | Firstprinciples nickel database: energetics of impurities and defects[END_REF] nor in palladium [START_REF] Vekilova | First-principles study of vacancy-hydrogen interaction in Pd[END_REF][START_REF] Amin-Ahmadi | Dislocation hydrogen interaction mechanisms in hydrided nanocrystalline palladium films[END_REF] nor in any other fcc metals studied [START_REF] Korzhavyi | Monovacancy in copper: rapping efficiency for hydrogen and oxygen impurities[END_REF]. Due to the specific geometrical configuration of fcc structures, the transition state between two tetrahedral or two octahedral positions are exactly the same: the M position, see figure 1. As o and t are generally stable sites, the M position thus exhibits two imaginary frequencies. In the case of nickel for instance, this was clearly observed for many elements [START_REF] Wimmer | Temperature dependent diffusion coefficients from ab initio computations: H, D and T in nickel[END_REF][START_REF] Connétable | Firstprinciples nickel database: energetics of impurities and defects[END_REF]. This configuration should therefore not be seen as a classical transition state as the defined by the transition state theory. Furthermore, in early works, only H diffusion was clearly discussed and the explicit formula was given for this case only [START_REF] Wimmer | Temperature dependent diffusion coefficients from ab initio computations: H, D and T in nickel[END_REF]. The aim of this manuscript is to fill this gap by presenting clear formulas of diffusion coefficients that could be applied to other metals.

Moreover, there is an evidence gap in the literature regarding atomistic diffusion mechanisms of interstitial species in aluminum. Even though many experimental works have studied the H diffusion (see [START_REF] Ai | Hydrogen diffusivity during corrosion of high-purity aluminum[END_REF] and references therein), no diffusion coefficient nor any internal friction measurement in fcc-Al have been reported in literature for other interstitial elements (C, N, O and B). In other metals however, these data exist (nickel [START_REF] Bose | Diffusion coefficient of carbon in Fe-Ni austenite in the temperature range 950-1100 c[END_REF][START_REF] Grabke | Diffusivity of nitrogen in iron-nickel alloys Scr[END_REF][START_REF] Park | The diffusion and solubility of oxygen in solid nickel Metall[END_REF], iron [START_REF] Takada | Determination of diffusion coefficient of oxygen in γ-iron from measurements of internal oxidation in Fe-Al alloys Metall[END_REF], etc). This lack of data can probably be explained by the low melting point of aluminum (960 K) and, the slow diffusivity and low solubility of interstitials.

Alike, except for H atoms (Wolverton et al [START_REF] Wolverton | Hydrogen in aluminum: first-principles calculations of structure and thermodynamics[END_REF]), there are few theoretical studies. For instance, Dai et al [START_REF] Dai | Influence of H, C, N and O impurities on the stability of Mg and Al from first-principles calculations Modelling Simul[END_REF] only studied the relative stability of interstitial elements (from an energetic point of view) regardless if the sites were stable or not, i.e. if they are in a local minimum or not.

In this work we reinterpret density functional theory (DFT) results on interstitial stability in the light of new data and then we analyze their diffusion paths. We put an emphasis on the following interstitial elements: hydrogen, boron, carbon, nitrogen and oxygen. The study of these elements shows original paths and mechanisms at the atomic scale. DFT simulations were used to first study the stability of different configurations and then compute migration energies and frequencies of the transition states. These DFT values are then used in kinetic Monte Carlo simulations (kMC) to compute each element's macroscopic diffusion coefficient and activation energy. The diffusion coefficient formula, which uses a multi-state diffusion formalism based on the work of Landman et al [START_REF] Landman | Stochastic theory of multistate diffusion in perfect and defective systems. I. Mathematical formalism[END_REF] is finally given and results are compared to kMC simulations and literature.

Computational details

Atomistic calculations were performed with the DFT using the Vienna ab initio simulation package [START_REF] Kresse | Ab initio molecular dynamics for liquid metals[END_REF]. We used the Perdew-Burke-Ernzerhof [START_REF] Perdew | Generalized gradient approximation made simple[END_REF] functional and projector augmented-wave pseudo-potentials [START_REF] Kresse | From ultrasoft pseudopotentials to the projector augmented-wave method[END_REF]. We employed 3 × 3 × 3 supercells (i.e. 108 atoms per unit-cell) to study the stability of sites. The inter-atomic forces were fully relaxed and calculations were performed at zero pressure (supercell shapes were fully relaxed). The plane-wave cutoff energy was set to 600 eV, and 8 × 8 × 8 Monkhorst-Pack mesh grids [START_REF] Monkhorst | Special points for the brilluoin zone integrations[END_REF] were used to sample the first Brillouin zone. These criteria give formation energies converged to within 2-3 meV. Results on reference states are summarized in appendix A. The inter-atomic force constants of each configuration were obtained as finite differences of forces with respect to atomic displacements (using phonopy package [START_REF] Togo | First-principles calculations of the ferroelastic transition between rutile-type and Ca[END_REF]). Due to excessive computational costs, these calculations were only done on 2 × 2 × 2 super-cells. Nevertheless, some tests were conducted on larger supercells and led to similar results quanti tatively speaking (see below).

From these vibrational properties, we computed the vibrational free energy G vib , expressed as:

G vib (T) = k B T n,q ln 2 sinh ω n,q 2k B T (1)
where ω n,q are the supercell frequencies. In this work, frequencies were only calculated at 0 K in first-order approximation.

The summations were performed on 20 × 20 × 20 q-meshes.

The zero-point energy (ZPE) is thus expressed as:

ZPE = G vib bulk+X (0) -G vib bulk (0) -G vib refX (0) (2) 
where G vib refX is the vibrational free energy of X in its reference state, i.e. molecule (for H, N and O) or crystal (carbon diamond and hR12-Boron).

To compute diffusion coefficients, the atomistic mechanisms are characterized by constant escape frequencies, from x to y, Γ xy :

Γ xy (T) = ν xy (T) exp(-E m xy /k B T). ( 3 
)
E m xy is the migration energy from x to y positions and ν xy is the attempt frequency of the jump. To compute E m xy , CLIMB-NEB calculations [START_REF] Henkelman | A climbing image nudged elastic band method for finding saddle points and minimum energy paths[END_REF] were conducted on 2 × 2 × 2 and 3 × 3 × 3 supercells (supercell shapes were not relaxed). The individual rates from x to y positions (where x and y = t, o or M), ν xy (T) are given by:

ν xy (T) = k B T h exp ∆G vib xy (T) k B T ( 4 
)
where ∆G vib xy (T) is the vibrational free energy difference between the initial position (x) and the transition state (ts), ∆G vib xy (T) = G vib x (T) -G vib ts (T) (summation done with real frequencies). It is often approximated by its high temperature expression, ν * xy (see Wimmer for details [START_REF] Wimmer | Temperature dependent diffusion coefficients from ab initio computations: H, D and T in nickel[END_REF]):

ν * xy 3N-3 n=1 ω x q=0,n 3N-4 n=1 ω ts q=0,n . (5) 
Hereinafter, we use both expressions: equation ( 4) in the model and equation ( 5) in kMC simulations.

Results

Stability

The formation energies ( H f [X]) of the X atoms in interstitial positions, expressed by:

H f [X] = E o [M.Al + X] -E o [M.Al] -E o [ref -X], (6) 
are summarized in table 1. E o are the energies of the system with and without interstitial elements. E o [ref -X] is the energy per atom of the reference state of X, i.e. the molecule for H, O and N atoms, and the diamond and hR12 structures (space group No 166) for carbon and boron, respectively. We also give the ZPE, which were computed using the frequencies of the X atom in the metal and in the reference states (equation ( 2)), the Voronoï volume (in Å3 ) [START_REF] Rycroft | Voro + +: a three-dimensional Voronoi cell library in c + +[END_REF] and the volumes of formation (Ω f ).

We found that the substituted positions (i.e. instead of an Al atom) are always unstable. The analysis of frequencies shows that there are always three imaginary frequencies associated with the interstitial element as illustrated on figure 2, in the case of O atom. In the following, we consider that species prefer to be located in interstitial positions. The formation of clusters with vacancy is out of the scope of this work. Contrary other fcc structures (like nickel for instance), we found that the most stable positions and the intrinsic stability of the sites (o and t) are strongly dependent on the specie.

The difference in energy between t and o sites (∆H = H f [t] -H f [o] ) for H atoms is low, i.e. ∆H 24 meV (including the ZPE), while it is higher for N atoms (∆H 793 meV). The results on H atoms are in excellent agreement with the literature [START_REF] Wolverton | Hydrogen in aluminum: first-principles calculations of structure and thermodynamics[END_REF]. Even if t sites are also the stable positions for O atoms, the case of oxygen must be treated separately. Calculated frequencies show that there is only one stable position: tetrahedral sites. The o position is unstable as illustrated in figure 3. No additional stable configuration was found.

In the case of C and B atoms, o sites are found energetically more stable than t sites, contrary to previous species. For B atoms, vBAND analysis reveals that t sites are unstable (see figure 4). Moreover, contrary to other fcc structures, we found one additional stable position for carbon: the position labeled M (for middle), see figure 1. This configuration corresponds to the half-way position between two first-nearest neighboring ( 1nn) octahedral positions (o-o). From a structural point of view, M is also the half-way position between two 1nn tetrahedral positions (t-t). Although unstable for H, N, O atoms (two imaginary frequencies) and B atoms (one imaginary frequency), this configuration is stable for C atoms (see figure 5). However, its formation energy is higher than other sites (see table 1).

To try to explain the relative stability of the sites, we first focus on the steric effects by discussing volumes of Voronoï [START_REF] Rycroft | Voro + +: a three-dimensional Voronoi cell library in c + +[END_REF] (V oro ) and formation (Ω f ) listed in table 1. Atoms with a large atomic radius (B and C atoms) are preferably located in o sites, which are the smallest ones, while other atoms are in t sites. This suggests that C and B atoms strongly interact with Al atoms. δV oro , which corresponds to the site's local distortion when filled, and Ω f the global effect on the lattice, clearly show the influence of the insertion. In the case of B atoms, both volumes are large, specially in t sites, which would explain why this configuration is unstable. In other cases, we clearly identify the steric effects, but it is difficult to explain why o sites are unstable for O atoms, while o, t and M sites are stable for C atoms.

In addition, we plotted the electronic density-of-states (eDOS) in figure 6 (projected onto Al and X atoms). H atoms, which are small atoms, only interacts with Al atoms with their s states, thus explaining why both sites have equivalent energies. The charge transfer is only located between Al and H atoms as we can see in the plot of the differential charge density maps displayed in figure 7. For O, N and C atoms, where s shells are located deeper in energy (-21, -14 and -13 eV, respectively), they only interact with Al atoms with their p states, contrary to what was found for B atoms. From C to O atoms, the electronegativity of these guest atoms induces stronger interactions, and therefore stronger bonds. If we look at the eDOS of o sites in detail, in the case of N and O atoms, we note an increasing of the charge density around the Fermi level (located in 0 eV) in comparison to the eDOS of the t sites. This suggests that, when O and N atoms are located in o sites, they should embrittle Al bonds. On the other hand, for C and B atoms, where hybridization with aluminium orbitals is at higher energy, the increase in charge density at the Fermi level is observed for t sites. These results can therefore be correlated with the results presented above on site stability.

Diffusion mechanisms

In the light of these results, we hereinafter discuss the diffusion mechanisms of these species. As for stability, diffusion mechanisms are dependent on the specie. In fcc systems, three different paths were generally considered: the first path is between one tetrahedral site and one octahedral site (t-o), the second is between two 1nn t positions (t-t), and the third between two 1nn o positions (o-o). In the case of carbon, since M positions are stable, additional paths were considered: along t-M and o-M directions. CLIMB-NEB calculations [START_REF] Henkelman | A climbing image nudged elastic band method for finding saddle points and minimum energy paths[END_REF] were used to look for the transition states, obtain the energy landscape and compute the migration energies (E m ). Results (attempt frequencies calculated at high temperature, ν * xy , and migration energies) are listed in table 2. The corresponding energy landscapes are displayed in figure 8. Vibrational band structures of transition states, conducted on 2 × 2 × 2 supercells, are plotted in appendix B. To test the accuracy of migration energies, we directly computed the transition state energies of of B and O atoms. Their atomic position and supercell shapes were fully relaxed. By symmetry, in M and in the transition state of O atoms, the atoms can not fall in their stable site. We found that the effects of shapes relaxation was low (about 50 meV): CLIMB-NEB simulation give 1.16 and 0.75 eV, for O and B atoms respectively, while direct simulations gave 1.10 and 0.75 eV.

The case of hydrogen is a well-known one: the only path is between t and o sites. The transition state is almost located in the middle of the path, when the H atom crosses the triangle formed by Al atoms. The migration energies we found are in excellent agreement with earlier theoretical literature: Wolverton [START_REF] Wolverton | Hydrogen in aluminum: first-principles calculations of structure and thermodynamics[END_REF] also found 0.17 eV for the migration energy from t to o (obtained on 2 × 2 × 2 supercells).

We obtain similar result for N atoms, but their migration energy (along t ⇒ o) is significantly higher than the one of H atoms (0.92 eV). Moreover, the position of the transition state is found slightly out of the direct path (offset of the ideal position).

For O atoms, since the o sites are unstable, only a direct t-t path is possible. We found that the transition state is not located in M (the half-way position) but in the barycenter of the triangle (white ball, figure 1) composed of two Al atoms and one octahedral site. There are therefore two equivalent paths for one jump between 1nn t sites (one for each triangle located left and right of the diagonal bounds between the two first-nearest neighboring Al atoms). O atoms have thus twelve (6 × 2) paths to move from a t site to another t site (the length of the jump is thus slightly increased).

The case of B atoms is similar to the O atoms, however, B atoms only move between o sites, and the transition state is located in M. Finally, for C atoms, the energy landscape is different from previous species. NEB simulations give us three transition states: along t-o, t-M and o-M. In the first case, the path is found to be direct. Along t-M and o-M the jumps are located near the M position and the transition state is slightly out the direct path. We could also note that the attempt frequency of C atoms along t-o (0.05 and 0.1) is lower than those obtained along the other directions. This is due to the additional soft modes in the band structure (see vibrational band structures in appendix B).

t-t (o-o) o-t (t-o) o-M (M-o) t-M (M-t) H E m - 0.06 (0.17) - - ν * xy - 1.0 (10.0) - - B E m -(0.75) - - - ν * xy -(40.9) - - - C E m - 0.

Diffusion equations

Using these DFT values, we then computed diffusion coefficients using kMC simulations (see details in appendix C). We used the same method as described by Wang et al [START_REF] Wang | Influence of trap connectivity on H diffusion: Vacancy trapping[END_REF].

Results of simulations are depicted in figure 9. To approve our kMC simulations, we extracted explicit expressions of the diffusion mechanisms in each case, according to the method proposed by Landman et al [START_REF] Landman | Stochastic theory of multistate diffusion in perfect and defective systems. I. Mathematical formalism[END_REF] as shown in appendix D. Diffusion equations are thus given by:

D oo = a 2 o Γ oo (7a) D tt = ζ 4 a 2 o Γ tt (7b) D to = 1 2 a 2 o Γ to Γ ot Γ to + 2Γ ot . ( 7c 
)
When the t and M sites are sufficiently deep, the diffusion atom temporarily equilibrates in both sites, D tom is thus expressed by:

D tom = a 2 o 4 [6 Γ mo Γ om Γ tm + 3 Γ mt Γ om Γ tm + 6 Γ mo Γ ot Γ tm +2 Γ mt Γ ot Γ tm + 4 Γ mo Γ om Γ to + 6 Γ mt Γ om Γ to +4 Γ mo Γ ot Γ to + 4 Γ mt Γ ot Γ to ]/[6 Γ mt Γ om +4 Γ mo Γ ot + 4 Γ mt Γ ot + 3 Γ mo Γ tm + 18 Γ om Γ tm +12 Γ ot Γ tm + 2 Γ mo Γ to + 2 Γ mt Γ to + 12 Γ om Γ to ]. ( 8 
)
a o is the lattice parameter of the fcc system, set to 4.04 Å, and Γ xy given by equations ( 3) and (4).

Equations (7a) and (7b) correspond to the cases where the initial and final positions are the o and the t sites, respectively. For O (along t-t), as there are two paths for each trajectory, ζ is equal to 2. When t and o are stable positions (for H and N atoms) and there is only one path, equation (7c) Table 3. Activation energies (in eV) and the prefactor D o (10 -6 m 2 s -1 or 10 -10 cm 2 s -1 ) obtained using a fit on a range of [200; 1000] K of the full diffusion coefficient model. According to how the fit was done (direct or logarithmic fit), accuracy of E a is ±10 meV.

In the case of oxygen, one must take into account the double degeneracy of the path. must be applied (equivalent expression to the one proposed by Wimmer et al [START_REF] Wimmer | Temperature dependent diffusion coefficients from ab initio computations: H, D and T in nickel[END_REF]). Finally, in the case of carbon, where there are three paths and three stable positions, the coefficient of diffusion follows the equation (D.6). The full expression, includes all jumps.

As we can see in figure 9(a), our kMC simulations and these formulas lead to the same results even for C atoms. Except for hydrogen, the diffusion of interstitial species is slow in aluminum, D is lower than 10 -10 m 2 s -1 , especially for O and N atoms. The lack of experimental values does not enable us to validate our results, especially in the case of C atoms, for which the accuracy of the attempt frequency along t-o could be improved. Nonetheless, these explicit formulas will now be used to easily describe atomistic mechanisms. In the case of C atoms, if we consider only t-o paths, we reproduce the diffusivity matches (see magenta circles in figure 9(b)). Finally, the M configuration does influence the diffusion mechanism of C atoms (not stable enough).

The effect of temperature on the attempt frequency (ν As explained previously, only H diffusivity was studied. The activation energy value that was found (0.14 eV, fitted on the diffusivity) is slightly lower than the experimental one (0.17 eV, [START_REF] Ai | Hydrogen diffusivity during corrosion of high-purity aluminum[END_REF] and references therein). The activation energy we found includes both migration energies (t-o and o-t), that which explains why our value is slightly different from the migration energies. Wolverton's study leads to the same result as ours. Our value of E a is however smaller than the experimental findings. This discrepancy can be explained by a slow down in the diffusivity induced by the formation of VH cluster even at low H concentration, as explained by Tanguy [START_REF] Tanguy | H effects in Al-Mg, Al-Zn-Mg alloys, and Al: experiments, continuum, and atomistic modeling[END_REF].

Conclusion

In conclusion, we showed that while H and N atoms exhibit a 'simple' diffusion mechanism (along a direct t-o path), the cases of O, C and B atoms demand a special focus. For C atoms a new stable position in the network has been identified and the mechanism of diffusion therefore differs from what was expected. A complex path occurs for these elements. The case of O (B) atoms involves a direct t-t (o-o) diffusion, with a saddle point different from what is generally expected.

Finally, explicit diffusion coefficients formulas, confirmed by kMC simulations, have been presented and discussed. A new focus should now be put onto other fcc structures, especially for atoms bonding with metals. the models. The diffusions were considered as Poisson processes. The constant escape frequency Γ, is the sum of the rates of all possible jumps. In first-order approximation, we used ν * xy instead of ν xy (T) (in the model and kMC). 500 kMC simulations with 500 millions of steps per kMC were used.

Appendix D. Multistate model

D.1. t-o diffusion

In the case where there are t and o sites and only one jump (along the t-o), D to is expressed by:

D to = 1 2 a 2 o Γ to Γ ot Γ to + 2Γ ot . (D.1)
To derive this equation, we used the multi-state diffusion formalism proposed by Landman et al [START_REF] Landman | Stochastic theory of multistate diffusion in perfect and defective systems. I. Mathematical formalism[END_REF]. We must first identify the number of non-equivalent position in the primitive cell: tetrahedral sites are in 8c positions and octahedral sites in 4b. In the primitive cell there are thus two inequivalent t sites (labeled t 1 and t 2 ) and one o site. We built two quantities: the Laplace transform of the waiting time density matrix (ψ(u)) and the Fourrier transform matrix of the displacements of X in Ni ( p(k)). ψ(u) is given by:

ψ(u) = o 1 t 1 t 2 o 1 t 1 t 2    0 4Γto 4Γto+u 4Γto 4Γto+u 4Γot 8Γot+u 0 0 4Γot 8Γot+u 0 0    (D.2)
where Γ xy are the rate of escape from internal state x to state y.

Here the jumps are: 

(k) = o 1 t 1 t 2 o 1 t 1 t 2    0 A t1o A t2o A ot1 0 0 A ot2 0 0    (D.3)
where

A t1o = [1 + e -i l k1 + e -i l k2 + e -i l k3 ]/4 A ot1 = [1 + e i l k1
+ e i l k2 + e i l k3 ]/4 A t2o = [1 + e i l k1 + e i l k2 + e i l k3 ]/4 A ot2 = [1 + e -i l k1 + e -i l k2 + e -i l k3 ]/4 (D.4) where l = a o √ 2/2. We then followed the same approach than Wu et al [START_REF] Wu | Direct diffusion through interpenetrating networks: oxygen in titanium[END_REF] to derive equations.

D.2. Three sites diffusion

In the case where there are three sites (t, o and M), three paths were considered: t-o, t-M and o-M. In addition to the previous case, there are six additional non-equivalent M positions per primitive cell. p(k) matrix is thus equal to:

o t 1 t 2 m 1 m 2 • • • m 6 o t 1 t 2 m 1 m 2 m 3 m 4 m 5 m 6                 0 A t1o A t2o B m1o B m2o • • • B m6o A ot1 0 0 1 1 • • • 1 A ot2 0 0 C m1t2 C m2t2 • • • C m6t2 B om1 1 C t2m1 0 0 • • • 0 B om2 1 C t2m2 0 0 • • • 0 B om3 1 C t2m3 0 0 • • • 0 B om4 1 C t2m4 0 0 • • • 0 B om5 1 C t2m5 0 0 • • • 0 B om6 1 C t2m6 0 0 • • • 0                
where B m1o = [e -i l k2 + e -i l k3 ]/2 B om1 = [e i l k2 + e i l k3 ]/2 B m2o = [e -i l k1 + e -i l k3 ]/2 B om2 = [e i l k1 + e i l k3 ]/2 B m3o = [e -i l k1 + e -i l k2 ]/2 B om3 = [e i l k1 + e i l k2 ]/2 B m4o = [1 + e -i l k1 ]/2 B om4 = [1 + e i l k1 ]/2 B m5o = [1 + e -i l k2 ]/2 B om5 = [1 + e i l k2 ]/2 B m6o = [1 + e -i l k3 ]/2 B om6 = [1 + e i l k3 ]/2 C m1t2 = e -i l (k2+k3) C t2m1 = e i l (k2+k3) C m2t2 = e -i l (k1+k3) C t2m2 = e i l (k1+k3) C m3t2 = e -i l (k1+k2) C t2m3 = e i l (k1+k2) C m4t2 = e -i l k1 C t2m4 = e i l k1 C m5t2 = e -i l k2 C t2m5 = e i l k3 C m6t2 = e -i l k3 C t2m6 = e i l k3 (D.6)
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Figure 1 .

 1 Figure 1. Schematic representation of an fcc structure (black balls), Blue and red balls respectively depict the tetrahedral and octahedral positions. We added the position of the M site (green ball) and the position of the oxygen transition state (white ball).

Figure 2 .

 2 Figure 2. Vibrational band structure (vBAND) and density-ofstates (pDOS) for a system with an O atom in a substituted position. Negative frequencies mean that the configuration is unstable. The pDOS displays the density-of-states projected on atoms: orange and blue lines correspond to Al and O vibrations, respectively. Energies are expressed in THz.

Figure 3 .

 3 Figure 3. vBAND and pDOS plots for aluminum with one oxygen either in an o site (left) or in a t site (right).

Figure 4 .

 4 Figure 4. vBAND and pDOS plots for aluminum with one boron either in an o site (left) or in a t site (right).

Figure 5 .

 5 Figure 5. vBAND and pDOS plots for aluminum with one carbon in o, M and t sites (from left to right.

Figure 6 .

 6 Figure 6. eDOS plot projected onto s and p shells: we displayed the contributions of interstitial elements and of its first-nearest neighboring Al atoms. We also represented the contribution of one Al atom located far away from the interstitial.

Figure 7 .

 7 Figure 7. Plot of the contour maps of the charge transfer when sites are filled (∆ρ = ρ[bulk + X] -ρ[bulk] -ρ[X]): X in tetrahedral sites (top) and in octahedral sites (bottom). Black and yellow balls represent Al and X atoms respectively. The same scale is used for all figures.

Figure 9 .

 9 Figure 9. Plot of the diffusion coefficient of H, C, N, O and B atoms, comparison with kMC simulations and model (figure (a)). Figure (b) represents the diffusion coefficient using the model where the attempt frequency is either approximated by its high temperature expression, ν * xy (circles), or performed with the full expression ν xy (T) (small squares), see text. For information, the melting point of fcc-Al is about 960 K.

Figure 8 .

 8 Figure 8. Plot of the energy landscape obtained using NEB calculations in the case of H, N, B, C and O atoms (left to right). In the case of carbon, there are three transition states labeled ET 1 , ET 2 and ET 3 .

Figure B2 .

 B2 Figure B2. vBAND and pDOS plots for transition states of C atoms.

Figure B1 .

 B1 Figure B1. vBAND and pDOS plots for transition states of transition states of H, B, N and O atoms.

  p

Table 1 .

 1 Formation energies (H f , in eV), zero-point energies (ZPE, in meV), volumes of Voronoï (V oro , in Å3) and formation (Ω f , in Å3) of the interstitial elements. δV oro is the difference of Voronoï volume between filled and empty sites (8.2, 8.7 and 8.7Å-3 for o, t and M sites respectively). 'us' means unstable.

	X	Site	H f [X]	∆H	ZPE	V oro	δV oro Ω f
	H	tetra	0.717	0	+13	10.3	1.6	4.8
	B	octa tetra	0.823 2.413	0.106 1.184	-68 us	8.7 12.7	0.5 4.0	3.0 18.8
		octa M	1.229 1.979	0 0.750	-85 us	9.8 10.6	1.6 2.0	11.1 16.6
	C N O	tetra octa M tetra octa tetra octa	1.691 1.322 1.902 -0.904 0 0.369 0 0.580 -0.056 0.850 -3.478 0 -1.992 1.486	-121 11.1 9.0 -130 9.3 -146 +1 10.4 8.8 -57 +24 10.7 us 9.4	2.4 0.8 0.7 1.7 0.6 2.0 1.2	14.5 6.4 12.3 10.6 4.6 8.8 6.9

Table 2 .

 2 Migration energies E m (in eV, 0K value) and attempt frequency, ν

* xy (in THz), approximated at high temperature of different paths.

  xy (T)) was investigated. It was found relatively low, see figure9(b), even in the case of the H atoms. From these results, we fitted the diffusivities by means of an Arrhenius law ( D = D o exp(-E a /k B T)) to obtain D o and E a values. The Arrhenius law allows reproducing with a high accuracy exact diffusivity curves, showing that, in the case of aluminum, the temperature dependence on activation energies is low (neglecting the thermal expansions). Results are summarized in table3.

* xy and ν

Table A1 .

 A1 Cohesion energies (E coh , in eV/atom) and lattice parameters (a o , in Å), or inter-atomic distances (d, in Å) of reference states.

			H 2	O 2	N 2	C-dia	B-α
	E coh		2.27	3.25	5.19	7.85	6.37
	Exp.	[34, 35] 2.21	2.59	4.88	7.37	5.81
	d/a o		0.75	1.23	1.11	3.55	2.83/4.18
	Exp.	[35]	0.74	1.21	1.10	3.57	-

  12Γ om + 8Γ ot , Λ t = 4Γ to + 6Γ tm and Λ m = 2Γ mo + 2Γ mt . One thus finds for D tom : mo Γ om Γ tm + 3 Γ mt Γ om Γ tm + 6 Γ mo Γ ot Γ tm +2 Γ mt Γ ot Γ tm + 4 Γ mo Γ om Γ to + 6 Γ mt Γ om Γ to +4 Γ mo Γ ot Γ to + 4 Γ mt Γ ot Γ to ]/[6 Γ mt Γ om +4 Γ mo Γ ot + 4 Γ mt Γ ot + 3 Γ mo Γ tm + 18 Γ om Γ tm +12 Γ ot Γ tm + 2 Γ mo Γ to + 2 Γ mt Γ to + 12 Γ om Γ to ].

	o t 1 t 2 m 1 m 2 m 3 m 4 m 5 m 6	                 	o 0 4Γot Λo+u 4Γot Λo+u 2Γom Λo+u 2Γom Λo+u 2Γom Λo+u 2Γom Λo+u 2Γom Λo+u 2Γom Λo+u	t 1 4Γto Λt+u 0 0 Γtm Λt+u Γtm Λt+u Γtm Λt+u Γtm Λt+u Γtm Λt+u Γtm Λt+u	t 2 4Γto Λt+u 0 0 Γtm Λt+u Γtm Λt+u Γtm Λt+u Γtm Λt+u Γtm Λt+u Γtm Λt+u	m 1 2Γmo Λm+u Γmt Λm+u Γmt Λm+u 0 0 0 0 0 0	m 2 • • • 2Γmo Λm+u • • • 2Γmo m 6 Λm+u Γmt Λm+u • • • Γmt Λm+u Γmt Λm+u • • • Γmt Λm+u 0 • • • 0 0 • • • 0 0 • • • 0 0 • • • 0 0 0 • • • 0 • • • 0	                 
	where Λ o = D tom = a 2 o 4 [6 Γ					
	(D.5)							
	and the waiting time density matrix, ψ(u):							
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Appendix A. Molecular references

We report here cohesion energies (E coh , in eV per atom) of reference states: molecules for H, N and O atoms and crystals for C (diamond) and B atoms. For boron, we used the hR12 structure (α), space group No 166 [START_REF] Villars | Pearson's Handbook of Crystallographic Data for Intermetallic Phases[END_REF]. Our results, listed in table A1, are consistent with experimental and theoretical values (see for example [START_REF] Pozzo | Comparative study of water dissociation on Rh(1 1 1) and Ni(1 1 1) studied with first principles calculations[END_REF] and references therein) to the extent that the DFT is inefficient to describe the ground state of atoms. Atomic distance and lattice parameters correspond well with experimental ones.

Appendix B. Vibrational properties

Vibrational properties were computed on 2 × 2 × 2 supercells using a finite displacement method (phonopy [START_REF] Togo | First-principles calculations of the ferroelastic transition between rutile-type and Ca[END_REF]). 8 × 8 × 8 k-meshes grids and 600 eV as cut-off energy were used to compute forces. In the case of transition states, one obtains only one imaginary frequency (here one negative frequency). Figure B1 represent the vibrational band structures of the transition states in the case of H, B, N and O atoms. Figure B2 are those of the C atoms.

Appendix C. Detail of kMC simulations

Kinetic Monte Carlo simulations were carried out to estimate the coefficient of diffusion of interstitial elements and valid ate