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! Ageing of carbon based supercapacitors is studied by various analytical methods.

! Two ageing mechanisms are observed depending on varied activated carbon species.

! Supercapacitors based on carbon A aged with a continuous material modification.

! A passive layer formed on carbon B during the ageing of the supercapacitor.
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a b s t r a c t

In order to shed light on ageing mechanisms of Electrochemical Double Layer Capacitor (EDLC), two

kinds of activated carbons are studied in tetraethyl ammonium tetrafluoroborate (Et4NBF4) in acetoni-

trile. In floating mode, it turns out that two different ageing mechanisms are observed, depending on the

activated carbon electrode materials used. On one hand, carbon A exhibits a continuous capacitance and

series resistance fall-off; on the other hand, for carbon B, only the series resistance degrades after ageing

while the capacitance keeps unchanged. Additional electrochemical characterizations (Electrochemical

Impedance Spectroscopy e EIS e and diffusion coefficient calculations) were carried out showing that

carbon A's ageing behavior is suspected to be primarily related to the carbon degradation while for

carbon B a passivation occurs leading to the formation of a Solid Electrolyte Interphase-Like (SEI-L) film.

These hypotheses are supported by TG-IR and Raman spectroscopy analysis. The outcome forms the

latter is an increase of carbon defects on carbon A on positive electrode.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Energy is one of the main topics of discussion and research in
today's society. With shortages in petroleum reserves and worries

about the effects of greenhouse gas emissions, there has been a
considerable amount of effort put into the research, development,

and deployment of renewable energy sources. For this reason,
research into devices for Electrochemical Energy Storage (EES) has

been a major topic of the research community during the past
decade. However, classical battery and capacitor systems have

limits for the amount of energy they are capable of storing and
limitations for the rates at which they can deliver that energy [1].

Supercapacitors (SCs), introduced in 1957 by Howard Becker of
“American General Electric”, have an intermediate energy-power

yield compared to capacitors and batteries [2]. SCs are capable of
storing larger amounts of energy than traditional capacitors, but

SCs can still deliver this energy at high rates (high power), but only
for a short time [3]. Based off these characteristics, the main ap-

plications that SCs that have drawn interest for are use in handheld
electronic devices, transportation, and the electric power grid [1]

[4]. Nowadays, most studies into SCs are concerning materials for
pseudo-capacitors [5], hybrid capacitors [6] [7] [8], as well as SCs

with high capacitance due to studies into the carbon's pore sizes
and distributions [9] for the purpose of increasing the energy

density of SCs. Despite all these efforts to improve the performance
of new materials for SCs, activated carbon-based SCs called Elec-

trochemical Double Layer Capacitors are still the only practical
candidates for industrial SC applications because of their relative
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low cost and high cyclability. However, the nature of the parasitic
chemical reactions that occur between activated carbon electrodes

and organic electrolytes is still unclear. Understanding these
parasitic chemical reactions (called ageing mechanisms in the

following parts) is important for industrial applications for safety
and security reasons. Also, knowledge of these reactions is impor-

tant for further optimization of the performance of SCs.
Until now, only few papers have concentrated their efforts into

investigating the ageing mechanisms of activated carbon based SCs
in acetonitrile-based electrolyte under constant potential [10] [11]

[12] [13]. Among them, Azaïs et al. proposed an understanding of
ageing mechanism in 2007 [10]. By using two different activated

carbons, they suggested that the ageing of SCs is closely related to
the decomposition of the organic electrolyte at the active surfaces

of the carbon. Azaïs et al. also purposed that activated carbons
should have small amounts of surface functionalities, suitable pore

size distributions, and an absence of moisture to ensure stable long-
term performance [10]. Zhu et al. further investigated the ageing

mechanisms of SC materials [11]. Using acetonitrile-based elec-
trolyte under 2.9 V for 45 days, they found that the positive elec-

trode (mentioned in their text as anode) suffers more from ageing

effects. Through the use of nitrogen adsorption-desorption analysis,
they showed that only pores between 0.5 nm and 0.8 nm are

affected by ageing. Also, from Element Analysis, X-ray Photoelec-
tron Spectroscopy (XPS) and Infrared (IR) measurements, they

found some nitrogen-containing species on the carbon following
ageing. These species can be pyridine moieties (C¼N-C), amines (C-

NH2), polyacetonitrile (-C¼N-)n and amides, which they said are
most likely due to cathodic (#) and anodic (þ) polymerization re-

actions of acetonitrile. From Raman spectroscopy, they observed
decrease of the G band (1596 cm#1) and increase of the D3 band

(~1500 cm#1). Zhu et al. considered that the decrease in the G band
is related to the loss of ideal graphitic lattices in the activated car-

bon and the increase of the D3 band concerns increases of non-
graphitic moieties (amorphous carbon). Thus, according to the re-

sults of Zhu et al., the disorder of the activated carbon structure
increases after ageing. A few years later, A. M. Bittner et al. [12]

completed the previous works by studying the ageing of a com-
mercial SC (2.5 V 200 F Epcos AG). Their results proved to be the

same as [11]. According to their results, the presence of BF4
#

together with Hþ are keys to the polymerization of acetonitrile,

which ultimately contributes to the failure of the supercapacitor.
Additionally, P. Kurzweil and M. Chwistek put their efforts into

electrolyte and gas analysis. In an acetonitrile/Et4NBF4 system, they
found heterocyclic compounds (such as pyrazines) and cyclic

siloxane in the electrolyte after electrochemical ageing. Also, the
electrolyte became brown in color after electrochemical ageing.

They proposed that the aged electrolyte should consist of acet-
amide, organic acids, fluoroacetic acid derivates and polymer

products. Concerning analysis of the gas that was evolved during
ageing, hydrogenwas detected during ageing which was generated

by electrolysis of residual water or by the fluorination of carboxylic
acids [13].

Another aspect of ageing in SCs is related to the surface func-
tional groups of activated carbons. A. Yoshida et al. [18] proved that

the acidic functional groups had a negative influence on the life-

time of SCs. Yoshida used phenolic resin-based novolac fibers (ACF)
that were heat treated for different times or at different tempera-

tures. They proved that the leakage current can be reduced when
the amount of the ACF's acidic surface functional groups are

reduced. The acidic functional groups, like alcohol, ketone, carboxyl
and ester groups on ACF behave as active sites for the acceleration

of electrochemical oxidation or reduction of ACF during polariza-
tion. Furthermore, heat treatments in N2 atmosphere decreased the

amount of acidic surface functional groups in ACF which resulted in

the suppression of electrochemical interactions of the ACF with the
electrolyte, which in turn decreases the SCs' leakage current [18].

In summary, many different characterization techniques have
been employed in different studies to characterize the ageing

behavior of activated carbons in non-aqueous electrolytes. In this
paper, we use the combination of various electrochemical (galva-

nostatic cycling and impedance spectroscopy) and analytical
(Raman, Infrared spectroscopies) and materials characterization

(TGA) methods to study the ageing mechanism of two different
carbons during constant potential (floating) experiments. This

approach gives a holistic picture of two different types of ageing
mechanisms for activated carbon-based supercapacitors.

2. Experimental

2.1. Electrochemical characterizations

Two different kinds of activated carbon, A and B, were tested in
this study. A is a YP-50F activated carbon from the Kuraray com-

pany, a porous carbon used for supercapacitor applications; it has
been used as a reference in our ageing tests. B is a porous carbon

used for water purification applications. Table 1 gives the charac-
teristics of A and B. Electrodes made from activated carbon A

contained 95 wt% of activated carbon A and 5wt% of PTFE as binder,
while the electrodes made from activated carbon B contained 80wt

% of activated carbon B, 5 wt% of PTFE and 15 wt% of carbon black
(to compensate for the poor conductivity of activated carbon B).

The electrodes were rolled to thicknesses of ~300 mm with mass
loadings of 15 mg cm#2. Activated carbons A and B were used as

electrodes for 2-electrode symmetric supercapacitors, which will
be referred to as supercapacitor A (SC A) and supercapacitor B (SC

B). Supercapacitor cells were assembled using a Swagelok cell
(Swagelok®) and each cell used platinum disks for current collec-

tors and a cellulose membrane as the separator. The electrolyte
used for each cell was 1.5 M Et4NBF4 (99%, ACROS Organics™) in

acetonitrile (HPLC Gradient, ACROS Organics™). Three-electrode
cells were used in order to have a sufficient reservoir of electro-

lyte. Before assembly, activated carbon electrodes were dried in an

oven at 120 %C under vacuum for 12 h. All supercapacitor cells were
assembled in a Glovebox (MBRAUN, UNIlab Pro Glove Box Work-

station) with controlled atmosphere (<1 ppm O2). All super-
capacitor cells were tested at room temperature using a VMP3

potentiostat (Biologic, USA.)
These SCs were first characterized electrochemically by Galva-

nostatic Cycling (GC), Cyclic Voltammetry (CV) and Electrochemical
Impedance Spectroscopy (EIS) to determine their initial electro-

chemical characteristics. After the initial characterization, all SC
cells were subjected to an accelerated electrochemical ageing

process. In this process one ageing cycle consisted of 12 h of a
potensiostatic hold, called “floating”, followed by 6 galvanostatic

cycles (Supplementary information: Fig. A.1). The capacitance and
the internal resistance were measured from the discharge portion

of the 6th galvanostatic cycles. The value of the internal resistance is
taken at Dt ¼ t0 - t ¼ 0.0008 s (Df ¼ 1250 Hz), where t ¼ t0 at

E ¼ 2.5 V. The leakage current is the last point of the current
collected during the floating process, once a steady-state was

reached. The integrated charge during ageing is defined by Eq. (A.1)
(Supplementary information, Eq. (A.1)).

Qi ¼
Z

t

0

Idt (1)

We set an increase of 500% for the internal resistance or a loss of

50% of the initial capacitance as the criteria for the SCs' end of life.
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After ageing, the SCs are tested again by GC, CV and EIS to compare
their behavior before and after ageing.

Another important electrochemical factor, the Diffusion Coeffi-
cient, is also compared here. The calculation of the Diffusion Co-

efficient for each battery system is calculated using the Huggins'
Equation (Equation (2)). Parameters for the Huggins' Equation are

traditionally determined in batteries by using the Galvanostatic
Intermittent Titration Method (GITT) [21].

DðionÞbattery ¼ 4

p
(
"

VM

zFS

#2

(

0

@

I$

"

dE
dd

#

dE=d
ffiffi

t
p

1

A

2

(2)

Here, VM is the molar volume, z the charge carried by the

electroactive species, F the Faraday constant, d the stoichiometric
parameter, E the applied voltage, I the applied current and S the

surface area. In Huggins' Equation,
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of SCs. Consequently, the Diffusion Coefficient equation for super-
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(3)

The capacitance here is calculated in the same way as before.
The current is then the current applied during the discharge

portion of the galvanostatic cycling process, which is equal to 0.005
A. The radius, RS, used for the Diffusion Coefficient calculation is an

average value of 50 radius measurements (5 different SEM images,

10 particles radius measurements on each image). The part, dE=d
ffiffi

t
p

is calculated from the diffusion region of the galvanostatic cycling

corresponding to the intermediate part of the discharge curves
between the ohmic drop and the capacitive part.

2.2. Material characterizations

After ageing, the SCs were opened, disassembled, and each

element of the SCs was separated. Each electrodewas washed three
times (1 h per washing cycle) using acetonitrile (99.9%, Extra Dry,

AcroSeal™, ACROS Organics™). Afterwards, all electrodes were
dried for 1 h at 120 %C under vacuum before being tested by

following methods.

2.2.1. Thermogravimetric analysis (TGA) coupled with Infrared (FT-

IR) analysis

IR coupled TGA was done using a Thermo-Scientific TGA-IR
Module, equipped with a KBr window. This module enables a

SETSYS EVOLUTION TGAmachine (from SETARAM) to be connected
to a Nicolet is10 FT-IR spectrometer. For TGA the working atmo-

sphere is 80% Ar and 20% O2, with a gas flux of 40 mL min#1. The
temperature analysis range was from 20 %C to 1000 %C, with a

heating rate of 5 %C min#1. FT-IR measurements were performed
every minute (every 5 %C).

2.2.2. Raman spectroscopy

Raman Spectroscopy using a Labram HR 800 Yvon Jobin from
HORIBAYVON JOBIN, was also used in the physical characterization

of the SC electrodes before and after ageing. Raman measurements
were done using a green laser with l ¼ 532 nm, a 600 tr mm#1

grating and a 100( objective.

3. Results and discussion

3.1. Electrochemical characterizations

Figs. 1 and 2 present the evolution of the different electro-
chemical parameters that were monitored during the ageing of SC

A and SC B. The two SCs suffered from the ageing process in
different ways, as can be seen by comparing Figs. 1 and 2.

After ageing, the capacitance and the internal resistance of SC A
degrade almost linearly (Fig. 1a). The leakage current (Ileakage)

(Fig. 1b) also presents a peak at the very beginning of the ageing
process which is accompanied by a sharp increase in the integrated

charge (Qi). This phenomenon is probably linked to the consump-

tion of impurities. This period in the ageing process occurs during
the drop in capacitance seen at the very beginning (1st ageing cycle

to 10th ageing cycle). After the initial peak, the leakage current stays
close to zero. Consequently, the integrated charge increases slowly

with a slope much less important than before. After ageing, the
shape of the galvanostatic charge discharge plot shrinks consider-

ably compared to the cycles performed before ageing (Fig. 1c). The
impedance spectra (Fig. 1d) shows that the high frequency resis-

tance at Z” ¼ 0, that is ESR (Equivalent series resistance) changed
from 0.9 U cm2 to 2.9 U cm2 following ageing. The increase of ESR

indicates changes in the total cell resistance from the modification
of the electrical percolation network in the electrode. The EIS plot

shows as well the presence of a small RC loop at high frequency,
initially not present in the system, reaching a diameter value of

7.3 U cm2 following the ageing process. The latter may have several
origins, such as changes in the contact interface between the

electrode film (activated carbon) and the current collector [22] and/
or the formation of a passive layer on the porous carbon surface due

to electrolyte oxidation/reduction; carbon surface degradation

Table 1

Characteristics of carbon A and carbon B.

Product name A (YP-50F) B

Specific area (m2 g#1)a 1732 1297

Porosity typea Micropore (%) 92 72

Mesopore (%) 8 28

Total volume (cc g nm#1)a 0.791 0.755

Microporous volume (cc g nm#1)a 0.726 0.543

Mesoporous volume (cc g nm#1)a 0.065 0.213

Pore's medium diameter (nm)a 0.76 1.06

Water (wt%)b 3 3

Ash (wt%)b <1 10

a Measured information.
b Supplier's datasheet.
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(oxidation) would also lead to increase such kind of behavior. As a
result, the capacitive behavior (increase of the imaginary part of the

impedance) is shifted to lower frequencies and higher resistance, as
can be seen in Fig. 1d.

In contrast to SC A, the capacitance for SC B stays almost the
same throughout the ageing process. However, the series resistance

increases sharply starting at the 45th ageing cycle (Fig. 2a). There
are differences in the leakage current profile of SC B as well. The

leakage current of SC B increases quickly from the 1st ageing cycle
until 45th ageing cycle, then it decreases until last ageing cycle.

Consequently, the integrated charge plot has a steep slope near the
45th ageing cycle (Fig. 2b). A significant ohmic drop is observable

after ageing on the galvanostatic plots (Fig. 2c); however, the slope
of the capacitive region of the plot does not change, thus con-

firming that the capacitance of SC B stays the same during the
ageing and only the internal resistance increases. More information

can be found by comparing the impedance spectra of SC B from
before and after ageing. Following ageing, ESR for SC B is equal to

1 U cm2, which is the same value obtained before ageing. However,
a large high frequency RC loop of 84 U cm2 diameter appeared after

ageing. The latter is much larger than was observed for SC A after

ageing. The internal resistance is the sum of ESR and RC loop.
Consequently, the increase of the internal resistance is due to the

increase of RC loop. As for the capacitive part, it is consistent with
the results discussed earlier (Fig. 2d).

By using Equation (3) the diffusion coefficients, Dion, of two the
SC systems can be calculated. Dion for SCs A and B are plotted versus

integrated charge in Fig. 3 to compare ion diffusion in the two
different SC systems. For the SC A, Dion stays almost constant until

around 200 mA h (200th ageing cycle, according to Fig. 1b) then it
decreases quickly. This means that the degradation of materials

begins near the 200th ageing cycle and the degradation of SC A

becomes irreversible following this point. The change in Dion during
ageing for SC B is completely different from the behavior seen for SC

A. Dion for SC B decreases continuously from the start of the ageing
process. From this result, since SC B undergoes a continuous ageing

leading to a decrease of the diffusion coefficient, one would ascribe
this behavior to surface functional groups at the carbon surface.

However, according to IsoElectric Point (IEP) analysis, B has a higher
IPE than A (Supplementary information Fig. A.2) which means that

less acidic functions are present at the carbon B surface. This point
is not consistent with Yoshida et al.’s observations who correlated

important ageing together with the presence of acidic group on the
carbon surface [18]. Thus, the apparent continuous ageing of carbon

B should be driven by another parameter.
To conclude these previous results, there were two different

ageing mechanisms for the two different types of activated carbons
used in SCs A and B. For SC A, ageing occurred slowly and contin-

uously, with degradation seen in both the capacitance and the in-
ternal resistance, beginning near the 200th ageing cycle. For SC B,

degradation begins near the 45th ageing cycle where Ileakage reaches
its maximum, but only the internal resistance shows any notable

changes during cyclingwhile the capacitance is kept constant. From

the EIS plot, a significant RC loop appeared after ageing. Addition-
ally, the ion diffusion coefficient Dion for SC B decreases continu-

ously all along the ageing cycle. At this point, one can assume the
formation of a passive layer on the activated carbon B during ageing

instead of degradation of the activated carbon. This passive layer
should be ionically conductive since the capacitance of SC B did not

decrease with ageing, but the passive layer should electronically
resistive which would explain the presence of the high frequency

RC loop following ageing, leading to a resistance increase. From
these characteristics, it can be seen as a Solid Electrolyte

Interphase-Like film at the surface of the carbon B.

Fig. 1. Electrochemical Characterization of SC A: (a) evolution of the internal resistance and capacitance during ageing; (b) evolution of the leakage current and the integrated

charge during ageing; (c) comparison of the GC before and after ageing; (d) comparison of the EIS before and after ageing.
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3.2. Materials characterizations

Coupling these results together with physical characterizations

of the electrode materials from before and after electrochemical
ageing could provide more insight into the proposed ageing

mechanisms for SCs A and B. A series of TGAmeasurements showed
very few differences between the initial electrodes and negative

electrodes after the ageing process (see Supplementary
information Fig. A.3 and Fig. A.4). According to the literature,

negative electrodes suffer less from ageing than positive electrodes
[10] [11] [12] [13]. For this reason, only positive electrodes and

initial electrodes were analyzed and compared by TG-IR.
Fig. 4 illustrates results of positive electrodes after ageing for SC

A (Fig. 4a and b) and for SC B (Fig. 4c and d). The common

characteristic observed for both the initial electrodes and the aged

positive electrodes is that they are all oxidized into CO2 under the
O2 environment and no other gasses are detected. This means that

the activated carbons' chemical composition doesn't change during
ageing. For every electrode material that went through the aging

process, the carbons react with O2 at lower temperatures, which
could be explained by an increased disorder of activated carbon due

to oxidation. To be more specific, for SC A, the aged positive elec-
trode reacts with O2 at two different temperatures: one major part

at 450 %C and one minor part at 300 %C (demonstrated by the dTG
and Integrated Infrared CO2 Peak Area). Thus, not only did the

carbon became globally more disordered, but there was also the
modification of a minor part of the activated carbon during ageing

which resulted in some of the carbon having more defects (Fig. 4a
and b). A similar process also seems to have happened to the aged

positive electrode of SC B. However, one difference is that the
electrode from SC B still presents a minor peak around 600 %C in the

initial electrode and the aged positive electrode. Compared to the
initial electrode, the presence of this minor peak - slightly lower in

terms of temperature e shows that a part of the carbon structure
was not affected by the ageing process (Fig. 4c and d).

Even though similar things happened to electrodes from both SC

A and SC B, TGA-IR results bring interesting information. The main
decomposition peak decreases by 70 %C in the case of SC B,

compared to 130 %C for SC A (initial electrode TG-IR graphs in
Supplementary information Fig. A.3). Also, in terms of TG weight

loss, the new peak seen at ~300 %C accounts for 15% of the weight
loss for SC B, while the same peak accounts for around 20% weight

loss for SC A. All this information proves that SC A suffered more
from ageing than SC B.

Fig. 5 presents the Raman spectra of the electrode materials of

Fig. 2. Electrochemical Characterizations of SC B: (a) evolution of the internal resistance and the capacitance during ageing; (b)evolution of the leakage current and the integrated

charge during the ageing process; (c) comparison of the GC before and after ageing; (d) comparison of the EIS before and after ageing.

Fig. 3. Evolution of diffusion coefficients versus integrated charge.
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SC A and SC B. In Fig. 5a, the aged positive electrode of SC A has a
more prominent D G peak overlap phenomenon than that of the

initial electrode and the aged negative electrode. According to [23],
the D and G peaks' overlap is more important when the crystallite

sizes La decreases, La being the crystallite size of the organized
graphite. Thus, the crystallite sizes La should be smaller in the aged

positive electrode. Whereas, this is not the case in SC B where the
overlap is the same for both the aged and initial electrodes.

Cançado et al. [23] mentions that the loss of sharpness of the
second order features (a broad feature from ~2300 to ~ 3200 cm#1

modulated by the 2D, D þ D0 and 2D0, see Fig. 5 zoom 2 of (a) and
(b)) can be obtained from LD ¼ 2 nm, where LD is the distance be-

tween defects which is measured by Scanning Tunneling Micro-
scopy (STM). Our Raman spectra all contain broad second order

features and so we can speculate that our sample initially had a
LD < 2 nm.

Apart from the D G peak overlap observation, it is also important
to analyze the differences in full width at half-maximum for the

spectra of each material. The intensity represents the phonon
modes/molecular vibration involved in most resonant Raman

processes, the full width at half-maximum, denoted as FWHM or G,

is a measure of structured disorder [24]. Cançado et al. [23]
observed that GD and GG increase as the LD decreases (defects in-

crease). In our case, GD and GG of SC A's aged positive electrode are
larger than those of both the aged negative electrode and the initial

electrodes (∆GD ¼ þ 30 cm#1 and ∆GG ¼ þ 40 cm#1). But for SC B,
only slight differences of GD are observed between the aged elec-

trodes and the initial electrodes (∆GD¼þ 10 cm#1) (Supplementary
information Table A.1).

To summarize the Raman characterization, we have an increase
of the overlap phenomenon in the case of SC A's aged positive

electrode that proves that the crystallite size decreases in the
positive electrode during the ageing process. In addition to this, GD

and GG for SC A's aged positive electrode show more drastic
changes, which means the density of defects increases in the pos-

itive electrode of SC A following ageing. Defects occurring at the
positive electrodes (undergoing possible oxidation) can be related

to the size of nanocrystallite, point defects in the sp2 carbon lattice
and may also lead to the creation of some sp3 sites by the attach-

ment of O, F, or H functionalities at different carbon sites.
For SC B, only small changes in ID/IG and GD were observed. This

is also proof that SC B suffered from the ageing process, but the

Fig. 4. Results of TGA and Infrared analysis (a) SC A's positive electrode: TG, dTG, and Integrated Infrared CO2 Peak Area versus temperature; (b) SC A's positive electrode: infrared

spectra of the gasses evolved at different temperatures during TGA, where gas is released after sample reacted with oxygen; (c) SC B's positive electrode: TG and dTG versus

temperature; (d) SC B's positive electrode: infrared spectra of the gasses evolved at different temperatures during TGA.
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degradation is less evident than that seen in SC A.
The results of the TG-IR and Raman spectroscopy analysis

indicate that SC A sufferedmore ageing than SC B, so it is surprising
that nitrogen gas adsorption/desorption analysis show results that

may seem contradictory to previous results. For SC A, the plot of
volume versus pore width shows a gradual decrease with ageing

(Supplementary information, Fig. A.5), while SC B's volume plot
versus pore width is totally flattened after ageing (Supplementary

information, Fig. A.6). Ishimoto et al. [26] have studied the ageing
mechanisms of carbon ebased supercapacitors at high voltage in

propylene carbonate-based electrolytes. Their results also agree

with the formation of a SEI-like layer onto carbon particles during
calendar ageing at high voltage (>3V). Verma et al. [27] have shown

that the presence of defects on the carbon graphite surface led to
the formation of inhomogeneous SEI film on negative electrode of

Li-ion batteries that greatly affects the SEI properties (passivation).
Defects can be edges and surface imperfections like defects, crev-

ices, and active sites act as catalytic sites which can be active for
solvent redox reaction. The combination of electrochemistry,

Raman and TGA-IR analysis have shown that carbon A structure
was greatly affected by ageing, resulting in an important increase in

surface defects. Those highly reactive defects could form insulating
islands on the carbon surface, thus blocking the surface area and

leading to a resistance increase and a capacitance decrease. On the
other hand, the less defective carbon SC B structure obtained after

ageing could explain the formation of a protective, ionically con-
ducting film on the activated carbon of SC B during ageing [10,26].

Such a film is assumed to come from the oxidation of the electrolyte
at the positive electrode. The presence of this layer increases the

resistance of the system but does not alter the capacitance of the
carbon electrodes (while blocking gas accessibility during gas

sorption measurements). Although the origin of the difference in
ageing mechanism of the two carbons is still unclear, the difference

in isoelectric point (pH ¼ 7.8 for SC A and 8.5 for SC B), ash content
(10% for SC B vs <1% for SCA) or in surface groups (same content of

basic surface groups but three times more acidic function groups
for SC B) are thought to play an important role; this is currently

under investigation.
Finally, this work shows that the combination of electro-

chemical techniques together with Raman and TGA-IR character-
izations offers interesting perspectives for studying the ageing

mechanism of activated carbons used in supercapacitor electrodes.

4. Conclusions and outlooks

The ageing mechanisms of two supercapacitors assembled with

two different carbons are presented here. From electrochemical
characterization, the ageing of the first supercapacitor (activated

carbon A) is slow and continuous, with decreases in capacitance
and increases in the resistance happening throughout the ageing

process. In contrast, for SC B (activated carbon B) the capacitance
stays stable during ageing, and only the internal resistance begins

to increase drastically from the 45th ageing cycle. Details drew from
EIS, GC and Diffusion Coefficient analysis help with the establish-

ment of two hypotheses: SC A suffered a normal ageing process
with continuous material modification throughout the ageing

process; while for SC B system, instead, the formation of a passive
layer, which was ionically conductive and electronically resistive,

occurred during ageing.
These hypotheses were confirmed by different material char-

acterization techniques: according to TG-IR and Raman spectros-
copy, SC A suffered more significant changes in its active material

than SC B, wheremore disorder was created in SC A. The decrease of

the specific surface area of carbon B is consistent with the hy-
pothesis that a passive layer is formed on the carbon B after ageing.

Additionally, we can see that activated carbon A can have three
kinds of defects that were generated during ageing: decreases in

the sizes of nanocrystallite sp2 carbon, point defects in the sp2

carbon lattice, and the possibility that the creation of sp3 site led to

the generation of O, F, and H functionalities on the carbon surface.
The origin of these functionalities should be due to chemical attack

by HF (Supplementary information, Fig. A.7), possibly produced by
the hydrolysis of BF4

# anions [25].

For future studies, attention should be concentrated on

Fig. 5. Results of Raman spectroscopy: (a) comparison of initial SC A electrode with its aged positive and negative electrodes; (b) comparison of initial SC B electrode with its aged

positive and negative electrodes.
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modifications of the electrolytes that occur during the ageing
process. In the meantime, effort can be put into isolating and

analyzing the gaseous species that are generated during ageing. If
the knowledge obtained such studies was used in combinationwith

the results of this study, a complete picture of the ageing mecha-
nisms of these types of supercapacitors could be obtained.
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