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Abstract

The elastic strain and stress fields between mwables of different sizes and different
pressures were estimated by using the fundameetalltr of Eshelby. The equivalent
inclusion method was extended to the case of twlusons in an infinite elastic solid. This
approach, which remains totally analytical, was parad successfully to finite element
calculations. The mean stress provides informadioout gas diffusion between the bubbles:
according to the results, the bubbles are likelgrmgressively equalize their sizes. Moreover,
the derivation of the von Mises equivalent strdssaged that its value, in the vicinity of the
bubbles, is larger than the elasticity limit. THere, for a complete mechanical description of
the problem, plasticity should be taken into act¢oim spite of its simplicity, this method

nevertheless leads to results, which are very ¢tmiee prediction of numerical calculations.

Keywords : nuclear fuel, aging, bubbles, stressentration, equivalent inclusion method.



1. Introduction

The elastic interaction of two spherical cavitiggh internal pressure (bubbles) is
important from the standpoint of materials engimegand has already been investigated by
several authors. One of the common applicatiotisesaging of nuclear fuels: nuclear fission
produces helium atoms, which form bubbles that exadly damage the material (Lasser [1]).
The knowledge of the stress field between two beslgives information about their further
evolutions. More specifically, the von Mises eqleve stress level is related to the possible
occurrence of local damage associated with plastain, while the mean stress (hydrostati}:
pressure) is associated with bubble growth. Anydical or/and numerical approach on this
kind of material is necessary, since it is veryidifit to carry out direct measurements of the
material evolution with time. It is also relevard terive analytical expressions of the
mechanical interaction between two bubbles, thaldccbe simply implemented into more
complex numerical models. Sternberg and Sadowskwé2e the first to be interested in the
problem of interaction of two spherical cavitiestioé same size. They solved it for a uniform
field of tension at infinity using the Boussine&j ftress-function approach to obtain a series
expansion solution. Other authors then extendedntigthod to more than two cavities and for
cavities of different sizes under uniaxial loadialpng the common axis of the cauvities,
Miyamoto [4], and uniaxial tension in the directiparpendicular to the axis of the cavities,
Tsuchida, Nakahara and Kodama [5]. Shelley and &y $till following Sternberg and
Sadowsky [2], developed this method for inclusidbeen and Acrivos [7] extended it to an
arbitrary strain field applied at infinity. Williand Bullough [8] proposed a slightly different
approach: they considered the total energy of thables, i.e. the elastic energy, the energy of
the gas, and the surface energy. Their approachtiveasfore not only mechanical but also
thermodynamical. They gave a solution for the epergeraction between two excess

pressure bubbles but they did not derive precigeystress field from their results.
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All the above authors, except Willis and Bullougbtarted their analysis with
Boussinesq [3], Papkovitch [9] or Neuber [10] fuoos and gave series expansion solutions.
In this work, a different approach is proposed,edasn the fundamental result of Eshelby
[11] extended to two inhomogeneities. The detertionaof the eigenstrain of each inclusion
from the equivalent inclusion method is used taveethe stress and strain fields between the
inclusions. The present approach involving cavitigh an internal pressure is the same as
for cavities in a material submitted to externaldmg, but it seems important to explain the
transposition from one problem to the other. Thethnd is quite general since it allows the
interaction between two gas bubbles of differerdesi and different pressures to be
investigated. Three configurations are analysea, tivo identical bubbles with the same
pressure, two bubbles of different sizes with it&htpressures and two identical bubbles
with different pressures. For each case, the m#asssand von Mises equivalent stress are
displayed along the symmetry axis of the bubbleas iarthe form of iso-value maps. These
results are then discussed by comparison withefiaiement calculations that are described
later. It should be noted that, although finiteneéeit calculations generally give accurate
results for linear problems, they may neverthekesaetimes depart from the exact solution.
In particular, finite element solutions around \®ate very mesh sensitive. Numerical results

need therefore be considered carefully when condpaith the analytical derivations.

2. Theequivalent inclusion method of Eshelby

Eshelby has established the following fundamergallt. Let D be an elastic and
isotropic infinite body. Consideé® as a part of D, small in comparison with D. We tsnfate
fictitiously Q which is supposed to represent an ellipsoidalusioh. Now remove this
inclusion from D and impose to it an eigenstrinthat has no relation with any stress: for

example, a thermal deformation or a phase transttoom If the inclusion is replaced into D,

which has not been transformed yet, its deformagamo longer free due to the influence of
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the surrounding matrix. Thus, a stress field app@af2 and D. The inclusion deformation,

&, due to the presence of the matrix D, is relatethé eigenstrain by =S: 3, whereS is

the fourth order Eshelby tensor. Through this deron, Eshelby showed that the deformation
of an ellipsoidal inclusion embedded in an infinhtemogeneous medium, submitted to
uniform remote loading, is homogeneous. This realdivs the inhomogeneity problem to be
dealt with. Consider now an ellipsoidal regionereéd to as an inhomogeneity, in an infinite
medium, with elastic constants different from thstrof the material.

The Eshelby result is applied to the inhomogend&iynsider the infinite elastic body

of Hooke tensorC, submitted toc’ and the corresponding straigl’ at infinity. The

ellipsoidal inhomogeneit® with Hooke tensorgi disturbs locally the stress field. The aim

of the analysis is to determine the perturbatianssed by this inhomogeneity. The basic idea
of Eshelby is to substitute to the inhomogeneityhamogeneous inclusion with the same
properties as the matrix, but submitted to an etyjam. The eigenstrain must be determined

such as to produce the same stresses and straitise @®rmer inhomogeneity. In the
inhomogeneity, the elastic strain §8 +¢&, whereas in the equivalent inclusion it is given b
g’ +& —B. The equivalence condition for the stresses inrthemogeneity and the inclusion

is therefore:
c:f°+g)=cile’+&-p) (1)

which, combined with =S: 3 allows the eigenstrain tengdrto be determined.

3. Extension of the equivalent inclusion method of Eshelby
While the problem of interacting inhomogeneitiearuat be solved in closed form (the
"exact" solution involves infinite series expansi¢h2]), an approximate analytical derivation

is proposed below. In a first step, the interacttbtwo bubbles with equal internal pressures
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will be dealt with. Using the superposition prineipllustrated in Fig. 1 (a), (b), and (c), it is
sufficient to consider merely cavities. Applicatiaf the equivalent inclusion method
extended to two inclusions then leads accordingljntroduce two eigenstraing! andp",

that depend on the space coordinates. For theadammplicity, they will be approximated by
their values at the centers of the respective lmshbh a second step, the effect of a pressure
differenceAp between the two bubbles will be addressed irfdha of a small perturbation

to the above solution. It is worth to note that boeindary conditions at the bubble surfaces,
i.e.or=— p ando = 0, are not strictly fulfilled by such an estinmatiof the exact solution.

Solid inhomogeneities will first be considered, lutfurther derivations their elastic
constants will be set equal to zero in order tol agth cavities. The problem, which is
axisymmetric, will be solved in a plane containthg centre of the two inhomogeneities. In
Fig. 1, the transition from gas bubbles to cavitsethout internal pressure is shown, with p
greater than p p=(p, +p,)/2 andAp =m-p. The case illustrated in Fig. 1 (b) is more
difficult to solve than the other ones that aretgobvious. It seems important to remind that
the applied stress at infinity is hydrostatic, Isatts® is a diagonal tensor.

Problem (b) of Fig. 1 will first be solved for iaimogeneities. Consider two ellipsoidal

inhomogeneitie€; andQ, with Hooke tensor€' andC" in a matrix with Hooke tensaZ

under remote stress’. Deformation in inhomogeneity | is influenced mhomogeneity I
such that:

g =g’ +& +n’ (2)
with g =s:p (3)
where S is constant and the same for the two inclusiorests expression depends only on

the shape of the inclusions, which are both sphEniere,
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and ﬂII :2“ :B“ (4)

whereg” is the influence tensor associated with includiohus, the strairn” represents
the influence of inclusion Il on inclusion I. Indlsame way, the influence of inclusion | on
inclusion Ilisn'.
Note that the eigenstrains could be expanded iynpaohial series, e.g.

Biljl (X) = Biljl + Biljlkxk + Biljlkl X X+ (5)

As§:

e

:B andn=D:B, they could be expanded in polynomial serieheésame way.

However, to a first approximation, the eigenstra@isand " will be assumed uniform,

whence:
g =s:p (6)
is constant while

Ny (X) = Djq (X)By (7)
remains a function of the space variables throbghnfluence tensor.
The equivalence conditions for the stresses invtleeinhomogeneities and the two inclusions
can now be written:

l) in Q1
I i
) in Qo

¢ ®)

c' - 50+E| +r]“ —C: £O+EI+I‘]” _
C=3” ) €0+E” +_n| -

Since the material is isotropic, the constitutigei@ion can be written in the following form:
0; = ug; + (K - 21/3) €1 0; 9)

wherek and p are the bulk and shear moduli, respectively.

Equation (8) then becomes:
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21’62 +S,,BL + DIy B )+ (k' = 21" /3) (€%, +SumBl + DBl ), |
= (g0 +S,, Bl + DBl —B! )+ (k = 21/3) (€% + SecmBln + DlkemBl Bl )3, In €2

(10)
24 (gti}+%kl o T BB )+(K” - 2&/:) (*‘Sk + o B+ Ianan) 9

=2u(8:i)+§kl I|I + [aqﬁ%: _ﬁ")-'-(K_ 2”13(%1 t ﬁllln + lpmnﬁnn _mk) q

in Q,

As seen above, the Eshelby tensors are the sanip famdQ,. The above system must now

be solved in order to determine the eigenstraingdgh inclusion.

4. Analytical resolution
4.1. Derivation of the influence tensorgD

The expression of fd for a spherical inclusion of radius a is givenNbyra [12]:

8T[(1_V)Dijkl (x)= W, i —2V0,® _(1_V)[q)!kl Oy +®,, 6j| +®,, 5, +®, 6jk (11)

)|J '|J

with ® :%[w\) - X X, I \)] and W, =X—2i[|(x) =X X (V) =a* (,(A) =xx (V)] (12)

4ma’d

(2n +1)(a® +\) "2

and A=xZ+x2+x5-a®, and | ,(\)= (13)

Here, the following convention is used: summatioont 1 to 3 is extended over repeated
lower case indices; capital indices take the saahgeg as the corresponding lower case ones
but without summation. Note that, in equation (1B8& number of indices n=0, 1 or 2.

As seen before, the unknown eigenstrain ten@'oremdg" are assumed to be uniform
in each inclusion. Owing to axisymmetry, the expr@ss of the eigenstrains can be
simplified (Fig. 2):
Since B11=B22, Bi13=P23 andP12=0, only three eigenstrain components are to beréed,
namelyf11, B33 andPis. The linear system (10) then decomposes into anef $eur equations

for the "diagonal" unknowns;,, Bi;, Bi;, and B;, on the one hand, and a set of two
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equations for the "non-diagonal” unknows and B;,. This system will be solved for two

inclusions centered at (0,0,0) and (0,0,d). Thegtant) values of the two eigenstrain tensors
are those derived at the center of the associatdgision, although such a choice is somewhat

arbitrary since they could be calculated anywherthe inclusions. The derivation is detailed

below for one inclusionQ;. Thus, owing to axisymmetry can be written in the following
form:

N 0 Ny
n= 0O Ny N (14)
Nz Nz Nas

Therefore only 3x6=18 f3 components are needed:

D =D _ 905 +505(1-2v) b _ 1505 -1003(2-V)
11171 2222~ 30(1—\}) 3333~ 15(1—\})
305 -503 (1-2v) _ _—6aj +5a3 (1-2v)
D3315= D332~
30(L-v) 151-v)

D1127= Doo11=

Droc D _—6a3 +503 (L+V) D cD _ —12a3 +503 (L+V)
1133~ L2233~ 15(1—V) 1313~ L2323~ 30(1—V)

and all the other {=0.

In the above equationay=a/d, and for the second inclusion the correspondmgponents

are the same withi;=a,/d.

4.2. Derivation of the eigenstrains and the stfiesd

As seen above;, can be written in the following form:

211 0 ElS
§: 0 511 513 (15)
513 513 533

with thel8 associated;&
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_ _ _ 7-5 _ _ _ 4-5
S1117= S0~ SgazF 150-v) S1217 S35 S13t 150-)

5v -1
151-v)

Si1127 S235 Ssai= Si1zF S Sz and all the other;@=0.

The system (10) can now be solved. For i and jFi.|8ads very easily to:
Bis =B1:=0 (16)

so that the system reduces to four equations fiyr fomr unknowns. The elastic modull,

u', k' andk" are now set equal to zero, since cavities areideres!, and the hydrostatic

loading is accounted for by specifyim@z(plsk)éij. The following system is obtained:

AP +ALBL AR, + AR 33 =-p
A B + A B + AR +A LB 33 =-p
APy + AP + Ay +ABs 33 =-p
AuBiy+ A Bas + A + A LB =P

(17)

where the coefficients ;A given in the Appendix, depend on the componehthe Eshelby

and influence tensors. Once the eigenstrains aerndimed (see Appendix), the interaction

fields between the inclusions can be calculatedi Wie help of the influence tenso@ and

5]

The strain field in the matrix associated with tese of Fig. 1 (b) can now been

written in the form:
g=€"+D"(X;,X;,,%;3) 1B +D" (X;,X,,%5) B’ (18)

Owing to the axisymmetric configuration, the int#rans are analyzed in the plane

(x1,X3). Since the eigenstrain tensor has the followilagohal form:

PBu 0 O
O By O (19)
0 0 Bg
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the only required components of the influence tease O, and Qss. The interaction strains

for the case of Fig. 1 (b) are given by:
r]11 = (Dill.lll + D:|I.122) B:ll.l + D:II.133[3I33 + (Dill.llll + Dill.I122) ::.Il + D:|I.|13 g3
Na2 =Ny (20)
r]33 = (DI3311 + DI3322) B:ll.l + DI3333[3I33 + (Dg311 + Dg322) :ll.ll + Dg33 g3
Therefore, only 12 components of the influencedenged be calculated. The stresses for the
case of two cavities with the same pressure phane dbtained from the constitutive equation
(9). Furthermore, the effect of a pressure diffeeeetween the two bubbles may be
estimated to a first approximation by adding thiesstes determined in (25) below.
It is worth to note that the general solution o€ throblem proposed here is only an
estimation. Indeed we first assumed the eigenstramform. The second approximation is
related to the boundary conditions. In order tolapipe principle of linear superposition, the
tangential components due to the pressure differdretween the bubbles are neglected.
Under such approximation, the equality betweenbitnendary conditions illustrated in Fig. 1
remains correct.
For two cavities with the same internal pressuria@ solution of the case depicted in
Fig. 1 (c) is:
&5 =(-p/3)3; (21)
Since £§°+£;’=O, the strain field for two interacting cavitiestivthe same pressure is the
linear superposition of solutions for the problahustrated in Fig. 1 (b) and 1 (c):
€=D"(Xy,X,,X5) 1B +D" (X;,X,,X;) 1 B (22)
The case depicted in Fig. 1 (d) is easy to anaism the stress field of an isolated bubble in

an infinite elastic solid has an analytical expi@sslf an internal pressup is applied in the

absence of remote loading, the displacement figtabés spherical symmetry:
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u=u(r) & (23)
wheree denotes the radial unit vector.

Resolution of the equilibrium equations then yields

Ap & Ap a° Ap a°

u(r) = _piz v & = __pa_3 r Eop TEgp = _pa_3 ’ (24)
a r Ar ar
B a® __ _hNpad®
Oy = _Apr_s’ Ogg = Oy “ o0 (25)
Finally the mean stress and the von Mises equivaleess are derived:
1

Om = 5(011 t0p,t 033) (26)
ow =3[0 0] +(02-0,) +(0s-0) |+ A% +ot4al) @7
Ow = 5 0,70y Oy ~ 033 O33 =0y O, 7053703 (27)

Hence the distribution of the two above quantifiestwo cavities of different sizes with
different pressures can be analyzed.

For the spherical coordinates, we changerl2- 6, and 3- ¢.

5. Results and discussion
It is important to note that for an isolated bublilee mean stress vanishes at any
point:

3 3
o, :—Apa—s, Ogo = Ty :%a_s = 0, =0 (28)
r r

It is therefore not possible to determine the iafice ofAp on the mean stress around the two
bubbles because the contribution of the configanatllustrated in Fig. 1 (d) is zero. The
above approach is expected, however, to give a getichation of the von Mises equivalent

stress.
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The present method allows various configuratiamsé easily investigated. Three
parameters can be changed: the size and presseaeltobubble, and the distance between the
bubble centers. In the following, three differerstses are considered. The first case (i)
consists of two bubbles of same size with sameriateressure, the second one (ii) of two
different bubbles of different sizes with same pues, and the third one (iii) of two bubbles
of same size with different pressures. In the tirgi tases the mean stress and the von Mises
equivalent stress are analyzed, while for the thade only the von Mises equivalent stress
can be discussed (see above). Two representatidhg oesults are used for each case: the
stresses are displayed both along the symmetryaaxison a map in the half plang,&s). To
discuss the analytical approach, the results amgaced with numerical calculations carried
out with the Abaqus® software. An example of thesmased for two bubbles of equal size is
given in Fig. 3. It is divided into two differenégions: in the first one, close to the cauvities,
where the stress fields are to be determined migcihe elements are small. The second one,
far away from the cavities, is made of larger elet®eTo obtain the best results, the mesh
must be very fine and the elements must be closguares. Moreover, for ensuring a good
representation of an infinite solid, the mesh isyMarge compared to the bubble sizes and
infinite elements are used far away from the butbldese requirements are fulfilled in the
mesh. In Fig. 4, the stress distributions alongsyrametry axis are displayed for the two first
cases. The corresponding maps are given in Figd®%aThe last case is shown in Fig. 7. All
calculations were carried out using the elasticstamts of palladium, which is usually
employed to store nuclear fuels, kel171.3 GPa, u=42.7 GPa, avel).385.

As shown on the curves and the maps, there arét differences between the
analytical and numerical values of the mean stnebg;h are very small with respect to the
von Mises equivalent stress. This is because thezaro mean stress is induced by the
interaction of the bubbles (it vanishes for anasedl bubble), whereas this interaction only

introduces a perturbation of the von Mises equiviadtress.
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The errors brought to the exact solution by thevaboentioned approximations can
be estimated by considering the values of the nbstrasses at the bubble surfaces, in

particular along the symmetry axis.XThe discrepancies between the exact values (i.e.,
o, =—p) and that predicted by the analytical approach lass than 1% for the three

investigated configurations. The largest errorsefestimations) occur of course at points
where the two bubbles are facing. Moreover, the agignificantly smaller along the
equators of the bubbles.

In Fig. 4, it is apparent that the analytical cereee very close to the numerical results
except for a few points where the latter are shglairger than the analytical predictions. The
assumption of uniform eigenstrains is likely toresponsible for this discrepancy. Similarly,
the von Mises equivalent stresses derived anallti(see Fig. 5 and 6), exhibit local maxima
along the x and % axes, that can be related to the Taylor first oedgansions. This first
analysis therefore shows that, despite its simplifyassumptions, the present approach leads
to analytical results which are quite similar te finite element predictions.

The mean stress maps allow the material regiodgrgoing tensile or compressive
loading to be easily localized. Such results canaen into account in a diffusion model.
Helium atoms, after being created by tritium decdiffuse in the material towards the
bubbles. From the point of view of mechanics, thelwion of a pair of bubbles of different
sizes can be predicted from the mean stress mggir6. The tension mean stress is larger
near the smaller bubble than near the larger orediutd atoms will therefore diffuse
preferentially towards the small bubble, until thiter reaches the same size as the larger one.
It is thus likely that the bubbles will tend to gressively equalize their sizes. This is a part of
the mechanism of diffusion, which should be adaed thermodynamical analysis to obtain a
complete description of the evolution of the system

The above results can also be used to prediddbgrence of cracks in the vicinity of

the bubbles. The levels of the von Mises equivaitrésses also give quite an important
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information about the areas where plasticity occues at each point where the von Mises
equivalent stress is larger than the yield strés83( GPa) of the material. Therefore, a
complete mechanical description of the materialian will require to take plasticity into

account.

6. Conclusions

A new approach for the estimation of the elasétds between two bubbles loaded by
an internal pressure was proposed. In spite osiitglicity, it leads to analytical results,
which are in good agreement with finite elementulations. The diameters and pressures of
the two bubbles can be easily varied, such thabwsrconfigurations can be investigated
straightforwardly. The two main results are thédwing:
(i) According to the mean stress distributions, thechanical contribution to the diffusion
process is likely to progressively equalize thesiaf the neighbouring bubbles.
(i) The levels of the von Mises equivalent stressselicate the areas where plasticity must be

taken into account for a complete mechanical dpson of the system.
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APPENDIX

a) Analytical expressions of thg; Aoefficients of the linear system (17).

A, =H (69T +8) A, =2H (211-8)

A, =HQIr-8) A, =16H (3t+1)

A, =H{-2a3[602(3 r+1)+5(3r 1)} A, =2A,

A =H{a [120( (3t +1)-5(3t +4)|} A,, = H{-8a2[(3a2 -5)3r +1)]}
A,y = H{-2a3[6a2(3r+1)+5(3r -1)|} Ay=2A,

A22=H{ [120( (Br+1)- 3r+4]} Ap= {—80(?[(30‘5—5)(3“)]}
A=A, A=Ay

A24:A12 A44:'0‘32

where H=15(3r;11+4) with T=E

b) Analytical expressions of the eigenstreijs

__1Aup
Bl =l
12B,, K
with Al =20(g1r® +1352 +361) alas -8 (486r° +972r% + 4861 + 72) alas
+120(271° + 6317 + 421 + 8) aSad - 75(250° + 4817 +161) a’al
+60(81r° +1712 + 961 +16) o’al - 5 (891r° + 21602 +1536 +320) oo
+30(L5t° +300% +161) a2 + (243 + 75617 + 7681 + 256)

B, = (225t2) afa§ ~144(912 + 61 +1) ata +120(912 + 91 +2) a0t
+120(91% + 91+ 2) adal ~10(117c° +144r + 40) ada? + (81r° +144r + 64)

11 P
12 B! K

permutation ofx; anda..

Similarly, B}, =

where Aj, and B}, are obtained fromA,;, and B,

by
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[31 = _iA_|33£
¥ 12BL «k
with Al =20(g1r® +1350° +361) ala -8 (486r° + 9722 + 4861 + 72) aSal
+120(271° + 6317 + 421 +8) aSa? 300312 + 41) o’
+240(91? +151 +4) alaS -5 (81r° +540r% +8161 +320) o’’’
~30(271% +60t% +321) o + (243% + 75602 + 7681 + 256)

B, = (22507 ) afa$ —144(9t% + 61 +1) a’as +120(91% + 91 + 2) a’a’
+120(91% + 91+ 2) adas ~10(1170° +1441 + 40) ada? + (81 +144r + 64)

_L1Asp
12 B}, K
permutation ofx; anda..

Similarly, B, = where A}, and B}, are obtained fromAl, and Bl, by
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Figure captions

Fig. 1. Decomposition of the problem.

Fig. 2: The two cavities and the set of Cartes@ordinates.

Fig. 3: The finite element mesh: (a) General vidy;the area close to the cavities.

Fig. 4. (a) Mean stress along axisfer two bubbles of same size with same pressine; (
Mean stress along axig for two bubbles of different sizes with same puoess(c) von Mises

equivalent stress along axis for two bubbles of same size with same pressuna,(d) von
Mises equivalent stress along axidor two bubbles of different sizes with same puess

Fig. 5. Mean stress and von Mises equivalent stress for two bubbles of same size with
same pressure

Fig. 6: Mean stress and von Mises equivalent stmegss for two bubbles of different sizes
with same pressure

Fig. 7: Von Mises equivalent stress along axiamd von Mises equivalent stress maps for
two bubbles of same size with different pressures



_20_

(@) (b) (c) (d)

Fig. 1
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Fig. 2
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1=®.25nm, &=0.75nm, d=2.5nm

a=0.5nm, d=2.5nm (a/d=0.5)

mean stress along,x=p,=0.5GPa
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Fig. 4
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mean stress map (MPa), a=0.5nm, d=2.5nm (a/d98%),=0.5GPa
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Fig. 5
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mean stress map (MPa)=8.25nm, g&=0.75nm, d=2.5nm,;pp,=0.5GPa
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von Mises equivalent stress (GPax@25nm, g=0.75nm, d=2.5nm,;pp,=0.5GPa
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Fig. 6
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von Mises equivalent stress

a=0.5nm, d=2.5nm (a/d=0.5), p1=0.6 GPa, p2=0.4 GPa

0-Mises (GPa)

- analytical method, + numerical method

von Mises equivlent stress map (GPa)
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Fig. 7




