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Abstract

This article presents a new method to recycle the solution space of an adaptive multi-preconditioned finite ele-
ment tearing and interconnecting (AMP-FETI) algorithm in the case where the same operator is solved for multiple
right-hand sides like in linear structural dynamics. It accelerates the computation from the second time step on by
applying a coarse-space that is generated from Ritz approximations of local eigenproblems, using the solution space
of the first time step. These eigenproblems are known to provide very efficient coarse-spaces but must usually be
solved a priori at high computational cost. Their Ritz approximations are much smaller and less expensive to solve.
Recycling methods based on Ritz approximations of global eigenproblems have been published for classical FETI
algorithms but their efficient application to multi-preconditioned variants is not possible. The article also presents
the application of a simpler recycling procedure, which reuses plain solution spaces, to AMP-FETI. Numerical re-
sults of the application of the presented methods to four test cases are shown. The new Ritz approximation method
leads to coarse-spaces which turn out to be as efficient as those obtained from solving the unreduced eigenproblems.
It is the most efficient recycling method currently available for multi-preconditioned dual domain decomposition
techniques.
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1 Introduction
The finite element tearing and interconnecting algorithm, FETI for short, was originally published in [1].
Based on a non-overlapping decomposition of the domain into substructures, the problem is expressed
only in terms of the Lagrange multipliers that connect the substructures. The resulting smaller set of
equations is called interface problem. Solving it iteratively, e.g. by a conjugate gradient, results in a
highly parallelizable algorithm which exhibits advantageous spectral properties. The singularity of the
stiffness matrices of floating substructures in static problems introduces a type of coarse grid correction
which implicates global propagation of error information and is thus responsible for the good scalability
of the algorithm as shown in [2].

While the algorithm works well for homogeneous structures whose mesh is decomposed in substruc-
tures with smooth boundaries and balanced aspect ratios, several factors can cause bad conditioning of
the linear problem to be solved. In the case of heterogeneities where the coefficients, i.e. stiffness, exhibit
jumps from one substructure to another, a scaling method presented in [3] greatly improves the perfor-
mance. However, slow convergence or even breakdown of the algorithm still results when the boundaries
of such jumps in material coefficients cross the boundaries of substructures. As demonstrated in [4], this
can sometimes be circumvented by choosing the decomposition aligned with the material distribution,
though this solution might lead to very bad aspect ratios which again harm the performance.

A further enhancement of the dual substructuring methods was the introduction of arbitrarily chosen
deflation spaces in [5] and [6], which were already known for conjugate gradient algorithms before [7].
The solution procedure then involves another coarse problem similar to those originating from rigid
body modes in statics. The deflation space is usually called coarse space in this context, and domain
decomposition methods augmented in such manner are called two-level methods. An a priori computed
coarse space, based on the solution of local eigenproblems, was introduced in [8], called Generalized
Eigenvalues in the Overlaps, abbreviated as GenEO. It identifies the so-called bad modes and effectively
removes high, separated eigenvalues from the spectrum of the linear operator, so that robustness and fast
convergence can be restored well even for strong, randomly distributed heterogeneities. Later, an alter-
native method, building on an idea originally proposed in [9], was published in [10]. Opposed to GenEO,
no a-priori calculation is carried out. Instead, the standard conjugate gradient algorithm is extended to
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a multi-preconditioned conjugate gradient, exploiting the additive structure of the preconditioner. This
algorithm, originally called simultaneous FETI or S-FETI, exhibits similar robustness and convergence
as GenEO. In [11], it was found to belong to the class of multi-preconditioned Krylov solvers [12].

The FETI method was already applied to linear structural dynamics, e.g. in [13] and [14]. Different
from static problems, no coarse grid correction is introduced automatically in the space of rigid body
modes. Therefore, a coarse grid correction must be introduced artificially when applying the FETI
method to dynamic problems in order to maintain scalability. A distinctive feature of linear structural
dynamics is that the matrix, which describes the system of equations to be solved, remains constant
while the right-hand side changes from one time step to the next. This suggests reusing the information
gathered during a solution process, similar to what direct solvers can do by storing the factorization
of the matrix. Of course, this is not possible for FETI solvers because they work iteratively and the
global problem is never assembled but instead remains distributed over the individual substructures. The
general case of solving a problem on the same structure for multiple right-hand sides has been addressed
in [15] and [16] by exploiting the potential of a standard conjugate gradient algorithm to efficiently reuse
previously built Krylov spaces. This recycling strategy of reusing the plain, unprocessed solution spaces
was also applied in the case of changing operators when solving nonlinear problems in [17] and [18].
That certain eigenvectors of the system comprise an ideal coarse space for a conjugate gradient algorithm
was already described in [7]. These techniques were refined in the context of domain decomposition
in several publications like [19], [20] and [21] by approximating eigenvectors of the preconditioned
operator inside the generated Krylov space, based on a Ritz ansatz similar to the Lanczos procedure.

Unfortunately, this global Ritz approximation breaks down if multi-preconditioning is employed be-
cause the actual preconditioner changes from one iteration to another and short recurrences of the clas-
sical conjugate gradient as well as important orthogonality relations do not hold any longer. The authors
know no publications about the application of either established or newly developed recycling strategies
to multi-preconditioned algorithms. However, as the multi-preconditioning is able to precisely consider
local effects of substructure behavior instead of blurring them as it happens in the classical FETI meth-
ods, the generated solution spaces should be excellently suited to capture the local bad-modes, necessary
to accelerate the iterative process. This article presents a method that allows accessing this potential by
projecting the GenEO eigenproblems on the solution-space generated in the first time step, leading to
much smaller eigenproblems that require a minimum of computational cost to be assembled and solved.
From their solutions, a highly efficient coarse space is constructed. Finally, one more method is pre-
sented that applies the idea of reusing plain, unprocessed solution spaces as coarse space, like it was
done for single-preconditioned procedures in [15, 16, 17, 18, 20, 21], to AMP-FETI.

The structure of the article is organized as follows. First, the discrete, linear dynamic equations and
their decomposition in substructures as well as the applied time stepping scheme are introduced in section
two. In section three, the basic framework of adaptive multi-preconditioning for FETI is explained. The
methods to construct coarse spaces by recycling solution spaces are presented in section four, and their
numerical results in section five. The conclusion, the references, and additional information on the
algorithm and results in the appendix complete the article.

2 Dual Domain Decomposition for Linear Dynamics
The linear dynamics of a mechanical structure can be described by the system of equations

Mü(t) +Ku(t) = f(t) .

with a mass matrix M and a stiffness matrix K. The structure is loaded by an arbitrary time dependent
force f(t). The values of the initial displacement u(0) and the initial velocity u̇(0) are given. To
simplify the formulas, the time dependency of ü, u̇, u and f is omitted from here on. The domain Ω
is now decomposed into Ns non-overlapping subdomains Ωs, s = 1, . . . , Ns, called substructures in the
context of FETI. After decomposition, the local substructure equations and the compatibility constraints
imposed on the accelerations read

M süs +Ksus + tsTBsTλ = fs

Ns∑
s=1

Bstsüs = 0

The local substructure equations contain Lagrange multipliers λ which enforce the compatibility con-
straints, i.e. they make sure that the displacement field of connected substructures is the same on their
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interface. The constraints are formulated with signed Boolean operators Bs, also called dual assembly
operators, and trace operators ts. The constraints are imposed on the accelerations to enable spectral
stability even for time-integration schemes without numerical dissipation [22].

After discretization in time by applying the Newmark Beta scheme [23] and [24], the equations to be
solved read

Dsüs,n+1 = gs,n+1 − tsTBsTλ (1)
Ns∑
s=1

Bstsüs = 0 (2)

where n denotes the current time step index and

Ds = M s + h2βKs

gs,n+1 = fs,n+1 −Ks

[
us,n + hu̇s,n + h2

(
1

2
− β

)
üs,n

]
The matrix Ds is called stepping matrix. The parameters γ and β determine the Newmark Beta time
stepping scheme. From the equations (1) and (2), the interface problem

Fλ = d (3)

can be built, where

F =

Ns∑
s=1

F s =

Ns∑
s=1

BsSs−1BsT and d =

Ns∑
s=1

BstsDs−1gs

using the Schur complementSs which is the stepping matrixDs of substructure s condensed on its inter-
face degrees of freedom. Note that Ds is always symmetric positive definite because of the presence of
the mass matrixM s. This is related to the fact that rigid body modes still possess kinetic energy. Conse-
quently, the coarse space projection, which is mandatory in FETI for static problems to solve the problem
in the nullspace of the operator, vanishes. However, an auxiliary coarse space projection, resulting in a
FETI-2 algorithm, can still be applied [25]. We apply the well known Dirichlet preconditioner

H =

Ns∑
s=1

Hs =

Ns∑
s=1

B̃
s
SsB̃

sT

which was introduced for FETI in [25]. We further use scaled dual assembly operators

B̃
s

= βsBs

with diagonal scaling matrices βs. In what follows, the so-called stiffness or superlumped scaling is
applied. Originally developed and published in [3] for static problems, this procedure defines a mechan-
ically consistent preconditioner by scaling the gaps and the estimated correction forces not only based
on the multiplicity, but on the stiffnesses of the interface degrees of freedom. It is adapted to dynamic
problems here by using the coefficients of the stepping matrixDs instead of the stiffness coefficients.



4

3 Adaptive Multi-Preconditioned FETI
This section shortly describes the deflated, adaptive multi-preconditioned FETI algorithm on which all
presented methods in this paper are built on. In general, the algorithm is a preconditioned conjugate
gradient that is deflated by a projection step. Because of the rapid loss of orthogonality in the presence
of large, well-separated eigenvalues [26], full orthogonalization is carried out in every iteration as it was
suggested for domain decomposition methods in [27]. Exploiting the additive structure of the precondi-
tioner then leads to a multi-preconditioned conjugate gradient. The procedure as explained in this section
is listed in Algorithm 1.

The adaptive multi-preconditioning is based on a classical FETI algorithm which solves the interface
problem (3) by applying a preconditioned conjugate gradient procedure. With the residual in iteration i
being defined as

ri = d− Fλi

the preconditioning step of a standard or single-preconditioned FETI algorithm computes the search
direction zi as

zi = Hri =

Ns∑
s=1

Hsri

by summing up individual contributions from every substructure. Based on the idea to compute the
optimal step direction not only in the space of one but multiple search directions which was originally
proposed in [9], the simultaneous FETI or S-FETI as published in [10] considers these individual contri-
butions as independent search directions

zsi = Hsri

Zi =
[
z1i | z2i | ... | z

Ns
i

]
They span a space inside which the energy of the solution is minimized. To keep the computational costs
of this minimization step low, the algorithm has been enhanced by an adaptive selection criterion in [11]
where it was also classified as a multi-preconditioned conjugate gradient. The adaptive selection is based
on the τ -criterion, which selects only certain local contributions zsi as basis vectors of the minimization
space. First, the measure

Ξs
i =

αT
i W

T
i F

sW iαi

rTi+1H
sri+1

is defined for each substructure in each iteration. The columns of W i are the individual step directions
and αi the corresponding step lengths used in iteration i to build the adaption of λi. The measure Ξs

i

then compares the energy αT
i W

T
i F

sW iαi of the taken step in iteration i with the energy rTi+1H
sri+1

of the resulting error, both localized to substructure s. Furthermore, a tolerance τ is defined by the user
and the individual contributions zsi of all those substructures s which fulfill the criterion

Ξs
i < τ

are selected as individual basis vectors of the minimization space. This selection is based on a conver-
gence estimate that makes an educated guess in which parts of the global domain convergence can be
accelerated by the extra cost of solving the minimization problem. Several examples have been analyzed
in [11] and [28] concerning the optimal choice of τ . A value of 0.1 has shown to be a reasonable choice
that leads to robust behavior in the majority of cases.

Let J = (j1, j2, . . .) be the numbers of the selected substructures for a specific iteration i. The remain-
ing directions are summed up to a single direction so that the actual minimization space in iteration i is
then spanned by the columns of

Zi =

[∑
s /∈ J

zsi

∣∣∣∣ zj1i ∣∣∣∣ zj2i ∣∣∣∣ ...
]

The procedure is furthermore augmented by a projection, also called deflation. This means effectively
that in a certain, well-chosen subspace C, the solution is calculated a priori, typically using a direct
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solver like described in [29]. During the iterations, all columns of W i must be made F -conjugate not
only to themselves but also to the chosen coarse space C such that

CTFW i = 0

holds for all i. This can be realized by applying a projection

W i ← PCW i

using the projector

PC = I −C(CTFC)−1CTF

Solving the coarse problem described by the operator CTFC introduces global communication within
one iteration, while in all other operations only neighbors need to exchange information. Such kind of
global communication, meaning propagation of information throughout the whole domain, is absolutely
indispensable for this class of algorithms to be scalable. For that reason, almost any FETI method is
equipped with a projection or some other type of coarse grid correction.

Algorithm 1: Deflated Adaptive Multi-Preconditioned FETI

Let the columns of C span the deflation space.

PC = I −C(CTFC)−1CTF

λ0 = C(CTFC)−1CTd

r0 = d− Fλ0

for s = 1, . . . , Ns do
zs0 = Hsr0

Z0 =
[
z10 | z20 | . . . | z

Ns
0

]
W 0 = PCZ0

i = 0

while
√∥∥rTi Hri∥∥ > ε do

Qi = FW i = FPCZi −
∑i−1

j=0Qjβi,j

∆i = QT
i W i γi = W T

i ri αi = ∆+
i γi

λi+1 = λi +W iαi

ri+1 = ri −Qiαi

Zsum = 0 Zi+1 = ∅
for s = 1, . . . , Ns do

zsi+1 = Hsri+1

Ξs
i = (W iαi)

TF sW iαi

rTi+1H
sri+1

if Ξs
i < τ then
Zi+1 ←

[
Zi+1 | zsi+1

]
else

Zsum ← Zsum + zsi+1

Zi+1 ← [Zi+1 |Zsum]

i← i+ 1

for 0 ≤ j ≤ i− 1 do
Φi,j = QT

j Zi βi,j = ∆+
j Φi,j

W i = PCZi −
∑i−1

j=0W jβi,j

m = i
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What must be considered is the possible degeneration of the minimization space basis, i.e. a linear
dependency of the chosen basis vectors. While such degeneration is very unlikely in statics or fully
excited structures in dynamics, it happens usually in the first few time steps of a dynamic problem
where the initial configuration of the structure is a state of equilibrium and external load is applied only
on a small portion of the whole domain [30]. In this case, local parts of the residual and thus certain
directions zs can become exactly or numerically zero. It was demonstrated in [30] that the τ -criterion
has the tendency to select these zero-directions.

To handle this problem, a pseudo inverse ∆+ is introduced and built by removing linearly dependent
directions from W i and Qi. As suggested in [10], this is done by applying a rank revealing LDLT

decomposition

∆i = PLALTP T (4)

with a rectangular permutation matrix P , a full rank diagonal matrix A, and a lower triangular matrix
L. The algorithm then proceeds with the substitutions

W i ←W iPL
−T Qi ← QiPL

−T ∆+
i = A−1 αi = A−1(PL−T )Tγ (5)

The construction of ∆i implies global communication and thereby allows for good scalability, just as a
coarse grid correction by projection does.
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4 Recycling of Solution Spaces
When applying a time stepping scheme to solve a problem of linear dynamics, the stepping matrices
Ds remain constant over the time steps and so do the operator F and the preconditioner H . Thus, the
same operator with changed right-hand side needs to be solved repeatedly. Several publications have
addressed the need to recycle the gathered information from former solves to accelerate the future ones
and appropriate procedures were proposed. They all have in common that they build up a coarse space
which is subsequently removed from the iterative solution process, either by means of deflation through
projection or by re-conjugation, usually depending on whether a basis orthonormal in the metric of the
operator is available or not.

However, all known procedures of this kind were designed for single-preconditioned conjugate gradient
methods. In this section, two techniques to realize solution space recycling for multi-preconditioning are
introduced. In Section 4.3, the idea from single-preconditioning to reuse solution spaces without any
additional processing is applied to multi-preconditioning. In Section 4.4, a new method that is based on
a local Ritz approximation is presented.

4.1 Activation of the whole Structure in Time Step One
Before developing methods to reuse solution spaces, an important issue must be considered first. As
already addressed before, the adaptive multi-preconditioned FETI algorithm is likely to produce search
directions close to zero in the first time step because the deformation has not yet spread throughout the
whole domain. This typically occurs in soft structures with localized loads and small time steps. In case
of such degeneration of the search space, the performance of any method to reuse the solution space will
drop. This happens, because it could not collect the necessary information about the inactive parts of the
structure, while this information becomes mandatory in later time steps when those parts of the structure
are activated.

A simple and obvious solution to this problem is to activate the recycling strategy at a later time step,
but of course, this includes the significant drawback that several solutions must be computed without or
at least with only a suboptimal coarse space. A different way to make the method robust against such
difficulties is suggested here, independent of the mentioned influencing factors. Instead of using a zero
vector as start value for λ, the vector λ0 is constructed by putting loads with alternating directions on
the interfaces so that also high frequencies are excited.

For example, if λ0 contains the degrees of freedom of the interface nodes in sequential order, beginning
with substructure one, it is set to

λ0 = λactivate =



λ11,x

λ11,y

λ12,x

λ12,y

λ13,x

...


=



+1

+1

−1

−1

+1

...


(6)

In the case of a consecutive numbering of the interface nodes, this leads to an interface loading of
substructure one as shown in Figure 1. A random initialization of λ, like it was applied in [10] for the

x

y
λ1
1

λ1
2

λ1
3 λ1

4 λ1
5 λ1

6

λ1
7

Figure 1. Initialization of λ

same reason, is also possible and leads to similar results but was not applied here in order to achieve
maximum comparability and reproducibility.
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Using such an initialization technique, the structure is already fully activated in the first time step.
We observe a slight increase of iterations for the first time step in that case, but it is considered negli-
gible compared to the advantage gained. What has become evident during the experiments, is that the
magnitude η of that initial excitation, defined by the relation

η =
‖Fλ0‖
‖d‖

is crucial. If the magnitude is chosen too high, for example η = 1, the performance of the method drops.
In all experiments, η is set to 0.05 leading to almost the same performance as if the recycled solution
space had been taken from a later time step when the structure is fully activated naturally. This ratio of
magnitudes can be achieved by first building a λ0 with the desired structure and arbitrary magnitude,
e.g. filling it with +1 and −1 like in (6) and after computation of Fλ0, the result as well as λ0 are
scaled such that η = 0.05 holds. This modified initialization phase is listed in detail in Algorithm 2 in
Appendix A.1.

4.2 Desirable Coarse Spaces
The coarse space that is built within any recycling procedure should satisfy essentially two requirements.
On the one hand, it should be as small as possible and on the other hand, chosen such that the conver-
gence of the conjugate gradient, finding the solution in the remaining space, is as fast as possible. The
convergence behavior of the preconditioned conjugate gradient algorithm is mainly dependent on the
eigenspectrum of the preconditioned operatorHF . This was thoroughly analyzed and demonstrated for
the particular case of the dual Schur complement problem in [31]. If it does not converge quickly towards
the solution, this is most likely due to the high part of the eigenspectrum, which typically consists of few
high, well-separated eigenvalues. They often originate from local effects, which are accordingly called
bad modes in this context. Once they have been captured during the solution process of the conjugate
gradient, the rate of convergence increases as shown extensively in [32]. When the corresponding eigen-
vectors are removed from the solution process by deflation or re-conjugation, the conjugate gradient
behaves as if they were not present in the spectrum. This can be interpreted by reducing the so-called
effective condition number, and thereby accelerating convergence. Consequently, it would be desirable
to find a coarse space that is as close as possible to the eigenvectors of the high, separated part of the
spectrum.

4.3 Plain Reuse of Solution Spaces
First, the simplest approach is the plain reuse of the solution space built during the iterations, that is to
say, to employ that solution space completely or partially as coarse space without any further processing.
This approach has been applied to classical single-preconditioned algorithms in [15, 16, 17, 18, 20,
21], where the solution space is a Krylov space, constructed by applying the preconditioned operator
repeatedly. This suggests that the eigenvectors of few high, well-separated eigenvalues are captured well
in the solution space. Thus, using the whole solution space of a former time step as coarse space seems
a reasonable but possibly inefficient procedure.

The solution space of the multi-preconditioned methods is not a Krylov space anymore, and the pre-
conditioner varies effectively from one iteration to another. However, the bad modes, as they originate
from local effects, are likely to be captured well in the individual contributions W i. Furthermore, when
the rank revealing LDLT decomposition is applied as in Equations (4) and (5), all columns of all W i

are each F -conjugate to one another. Consequently, using them to build the coarse space, results in a
diagonal coarse problem (

CTFC
)
x = y with CTFC = diag

that must be solved each time the projector PC is applied and thus reduces computational cost. This
method of plain solution space reuse can be applied to multi-preconditioning by setting

C ←
[
C
∣∣W 0

∣∣W 1

∣∣ . . . ∣∣Wm−1
]

at the end of a time step when the algorithm has converged after m iterations. If the target coarse space
size is not reached in the first time step, the coarse space is extended further in the second time step.

The method has the potential to deliver more directions than a reasonable size of the coarse space
would allow, even in the first time step. Therefore, the matrixC is in fact chopped such that only the first
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or left columns, corresponding to the earlier iterations, form the coarse space. This automatically implies
a reasonable selection, as the well-separated extremal eigenvalues in the high part of the spectrum are
likely to be captured in these earlier iterations. Also the sorting of the columns within the W i matrices
might become important. They are sorted in descending order with respect to the corresponding pivot
elements in the rank revealing LDLT decomposition used to compute ∆+ and α, and should thus be
roughly sorted in the order of their importance for the solution.

4.4 Approximation of Local Eigenproblems
The unprocessed reuse of solution spaces is easy to implement and no computational extra cost is re-
quired to build the coarse space bases. However, the number of generated directions is large and the
efficiency gain, that is the computational cost saved in relation to the additional cost caused by the
growth of the coarse problem, might be low. In this section, a new method is presented. It is based
on the idea to extract the essence out of the available spaces at the extra cost of approximating certain
eigenproblems.

In [8], a local generalized eigenvalue problem called generalized eigenvalues in the overlaps, GenEO
for short, was proposed. It is designed to compute the bad modes, slowing down the convergence. When
its solutions are employed as coarse space, it effectively removes the high, extremal part of the spectrum
of the deflated, preconditioned operator. For every substructure s, the generalized eigenproblem reads

Ssys = ΘsBsTHBsys (7)

The coarse space is then chosen as

C =
[
C1
∣∣C2

∣∣ . . . ∣∣CNs

]
where Cs =

[
HBsys

1

∣∣HBsys
2

∣∣ . . . ∣∣HBsys
ks

]
(8)

The contributionCs to the coarse space of a substructure s should in general be built from the directions
ys
i with the ks smallest eigenvalues Θs

i . An appropriate global threshold for Θ can be found by setting
an explicit limit on the coarse space size. Another approach that is known to be very efficient is to search
for a significant jump in the GenEO eigenvalues Θs

i of each substructure, when sorted in ascending order.
The matrix Cs of substructure s is then constructed by considering all eigenvalues before the jump. We
make use of both methods here and indicate this by (j) for the jump-criterion and (n) for an explicitly set
coarse space size limit.

As it is a generalized eigenvalue problem involving the Schur complements of the substructure itself
and its neighbors, the computational cost of its solution is significant although easily parallelizable as
proposed in [33]. The GenEO coarse space results in robust and fast convergence for various types
of difficulties like arbitrary heterogeneities, jagged interfaces and bad aspect ratios, but it would be
favorable to reduce the cost of its computation by making use of the information gathered once the
linear system has been solved for the first time. Considering only the cost of computing the first time
step, a multi-preconditioned FETI method is more efficient than computing an a priori coarse space as
expensive as GenEO. However, it would be a waste of resources to ignore all the information gathered
when proceeding with the next time steps.

4.4.1 Construction of a Local Ritz Ansatz

As remarked in [10], the multi-preconditioned FETI method bears a close resemblance to the GenEO
deflated FETI method in the sense that both are able to detect local effects, which are very important
for the iterative solution. Where the standard preconditioner blurs the important local modes by simply
summing up the substructure contributions, the multi-preconditioned FETI computes their optimal com-
bination W iαi. Therefore, the space spanned by the solution increments W iαi is likely to capture the
local bad modes in some way.

On the one hand, the local eigenproblems of Equation (7) deliver the desired local bad modes but
are large and costly to assemble. On the other hand, with the basis [...W iαi...] a small space, able
to represent the local bad modes within a certain accuracy, is available. The logical consequence is
to construct a Ritz space for each substructure that provides test and trial functions for approximating
the corresponding local eigenproblems of Equation (7). This results in a smaller eigenproblem, whose
solutions are Ritz approximations of GenEO eigenvectors and -values.

While numerous variants are possible to construct such a Ritz space in which the GenEO eigenvectors
are sought, it turned out that this is the most critical step. We construct the Ritz space for a specific
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substructure s as

V s = Ss−1BsTV s
W where V s

W =
[
W 0α0

∣∣W 1α1

∣∣ ... ∣∣W ns−1αns−1
]

Because a conjugate gradient algorithm captures the outliers in the operator spectrum i.e. the bad modes
first, only the solution space generated in the first ns iterations is considered. The parameter ns, deter-
mining the size of the Ritz space, is chosen individually for each substructure using a criterion explained
later. The Ritz space size is limited by the relation ns ≤ m. The Ritz ansatz to approximate Equation (7)
for substructure s then reads

V sTSsV sqs = ΘsV sTBsTHBsV sqs

or more precisely

V s
W

T BsSs−1SsSs−1BsT︸ ︷︷ ︸
=F s

V s
Wq

s = ΘsV s
W

T BsSs−1BsT︸ ︷︷ ︸
=F s

HBsSs−1BsT︸ ︷︷ ︸
=F s

V s
Wq

s

and can finally be expressed in the short form

V s
W

TF sV s
Wq

s = ΘsV s
W

TF sHF sV s
Wq

s (9)

Analogously to how the coarse space is constructed from the GenEO modes in the GenEO method in
Equation (8), the coarse space is constructed in the same way from the approximations by setting

C =
[
C1
∣∣C2

∣∣ . . . ∣∣CNs

]
where

Cs =
[
HF sV s

Wq
s
1

∣∣ HF sV s
Wq

s
2

∣∣ . . . ∣∣ HF sV s
Wq

s
ks

]
This results in a coarse space size of

rank(C) =

Ns∑
s=1

ks

while ks ≤ ns must hold. In the Appendix A.2, a reorganization of the algorithm is presented that allows
to assemble the reduced eigenproblem in Equation (9) without any further application of the local op-
erators F s. Only a small number of applications of the local preconditioners Hs between neighboring
substructures and a few vector products remain to be computed. The results show that Ritz space sizes
ns using only a small fraction of the available m iterations already lead to very satisfying results. This is
desirable as smaller Ritz spaces reduce the number of additionally required applications ofHs. Further-
more, it is sufficient in linear structural dynamics to solve the reduced eigenproblems of Equation (9) of
size ns only once after the first time step to obtain a coarse space that works efficiently for the rest of the
simulation.

What remains to be determined is the number of iterations ns that should be included in the Ritz space
V s

W for a specific substructure, as well as the number of computed Ritz vectors ks that should be selected
from the solution of the reduced eigenproblem of a substructure s to be included into the coarse space.

4.4.2 Selection of Basis for Ritz Space

To determine the size of the Ritz space ns, i.e. how many of the first iterations should be included, it is
reasonable to consider the behavior of the τ -criterion. When it selects the local contribution of a sub-
structure as individual basis vector for the minimization space, it means that the convergence was bad
in this region because the conjugate gradient was supposedly busy catching high, well-separated eigen-
values. Consequently, it can be assumed that those search directions are very important to approximate
the corresponding bad modes that should be included in the coarse space. Contrary to that, when the
τ -criterion stops selecting individual contributions in later iterations, the conjugate gradient is finding
parts of the solution that correspond to lower, clustered eigenvalues whose eigenvectors would create a
very inefficient coarse space.

Altogether, this suggests to include iterations up to the point where the τ -criterion remains inactive for
a certain substructure and its neighborhood. Precisely speaking, all those iterations are included into the
Ritz space for a specific substructure until neither the substructures own, nor one of its neighbors search
space contributions is selected individually by the τ -criterion.
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4.4.3 Selection of Basis for Coarse Space

To choose for each substructure individually how many of the computed GenEO vector approximations
V s

Wq
s
i will be included in the coarse space, i.e. to determine ks, the same methods as for GenEO can

be employed. With the jump criterion, the Ritz approximation works completely autonomously. For
better comparability with the results of the GenEO method, a fixed coarse space size equal to that of the
GenEO method can be prescribed, selecting globally the lowest Ritz values. In everything what follows,
the jump method is indicated by (j) and the fixed coarse grid size by (n).

5 Numerical Results
The previously described methods are applied to four different test cases. An overview of their setup and
the summarized numerical results are presented in Appendix B in tabular form.

In this section, the first case is studied in detail. Figure 2 shows its mesh, decomposition, material
distribution, and the loading over time. The material distribution is strongly heterogeneous. While the
main part is a softer, less dense matrix, the thin horizontal fibers or stripes have a higher stiffness and
density. The nodes on the left border of the structure are fixed. The structure is decomposed into 18
substructures using METIS. Some substructures exhibit bad aspect ratios as well as jagged interfaces,
what makes the problem even harder. The loading is applied on a large part of the upper face so that
a bending movement is induced. The load is increased and decreased linearly in the first half of the
considered time span, beginning and ending at zero. At the given time step size of 10−3 s, the impulse is
10−2 s wide and thus approximately 32 times smaller than the period of the first eigenfrequency, which
is 3.2× 10−1 s long. We will identify this case as Stripes/Metis/Bending.

0 5 10 15 20
0

0.5

1

# time step

lo
ad

Figure 2. Problem setup for case Stripes/Metis/Bending. Left: Mesh, decomposition, material distribution, and
applied load. Right: Scaling of the load over time.





{

Group Short Name A Priori Coarse Grid Reuse Space Structure Eigenproblem Size

reference algorithms
None - - -

GobalEV eigenvectors ofHF - # all interface dof

GenEO GenEO - # interface dof of s

recycling algorithms PlainReuse - W i -

RitzGenEO - HF sW iαiqk Ritz space size ns

Table 1. Summary of algorithms.

All considered algorithms are summarized in Table 1, introducing short names like RitzGenEO which
will be used in the legends of the plots. The table shows for each algorithm its short name, the type of
the employed a priori coarse space, the basic structure of the space used for recycling purposes, and the
size of possible eigenproblems that must be solved. All algorithms are based on the deflated adaptive
multi-preconditioned FETI method as described in Algorithm 3 in which the adaptivity is configured by
τ = 0.1 without exception. The short names, which are derived from the source or type of the employed
coarse space, refer to the methods described in Section 3 and Section 4 as follows.

None: Different from Algorithm 3, λ is initialized as zero in any case. No a priori coarse space or
recycling technique is applied. It represents the simplest variant.

GobalEV: Different from Algorithm 3, λ is initialized as zero in any case. Uses an a priori computed
coarse space, which is built from the eigenvectors associated with the highest eigenvalues of the
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complete, assembled preconditioned conjugate gradient operator HF . This is, of course, impos-
sible for larger problems and furthermore highly inefficient. It serves as a reference in terms of the
best possible reduction of computational cost per coarse space basis vector.

GenEO(n/j): Different from Algorithm 3, λ is initialized as zero in any case. Uses an a priori computed
coarse space which is built from GenEO modes, see Equation (7). Before the solution starts, the
GenEO eigenproblem is solved for every substructure. The GenEO modes are selected by their
GenEO values. For (j), this is done by the application of the jump criterion, for (n) the coarse
space size is set manually and the globally lowest GenEO values are chosen.

PlainReuse: Reuse of individual contributions, see Section 4.3. All individual basis vectors of the min-
imization spaces from every iteration are reused. They are selected in the order of the iterations.
The individual directions within one iteration are sorted in descending order of the pivot elements
in the rank revealing LDLT decomposition. For better comparability, the size of the coarse space
is manually limited to be equal to the size of the GenEO coarse space.

RitzGenEO(n/j): A Ritz approximation of the GenEO modes is computed, see Section 4.4.1. The Ritz
space basis is selected automatically by the method presented in Section 4.4.2. The approximated
modes per substructure are selected, based on the corresponding Ritz values, as in GenEO either
by the jump (j) criterion or a fixed coarse space size (n). In the case of (n), the size of the coarse
space is chosen to be equal to the size of the GenEO coarse space to enable better comparability.

Both recycling variants are compared against the reference algorithms measuring the number of local
solves and the effective eigenspectra after deflation. The left graph of Figure 3 shows the average number
of local solves per substructure over time. That measure counts the number of all Dirichlet and all
Neumann solves one substructure executes and depends on the number of iterations, the size of the
minimization space and on how many neighbors one substructure has. The right graph of Figure 3 shows
the size of the coarse grid in each time step. To allow a fair comparison by the number of local solves, a
fixed number of basis vectors for the coarse space is prescribed. The target size of the coarse grid was set
to the size which a GenEO(j) algorithm would have generated automatically. However, prescribing the
same coarse space size for the GenEO(n) algorithm might lead to a slightly different selection of basis
vectors among the substructures, because GenEO(j) uses individual thresholds for the GenEO values in
each substructure whereas GenEO(n) uses a global one, equal for all substructures. Figure 4 shows the
effective eigenspectrum, governing the convergence of the conjugate gradient algorithm. The lower and
the more clustered the spectrum is, the faster the convergence is expected to be. The highest eigenvalue
is equivalent to the condition number, as the spectrum of the operator in a preconditioned FETI algorithm
is always bounded from below by 1 [10].

The PlainReuse method is able to reduce the number of local solves, but its performance is inferior to
RitzGenEO. The high parts of the spectrum, shown in are clearly elevated in comparison to the refer-
ences. The Ritz approximation of the GenEO modes in RitzGenEO shows a very good performance.
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Figure 3. Performance of the recycling methods, measured by the average number of local solves per substructure
at equal target coarse space sizes.

For later time steps, it is even slightly better than GenEO itself. An explanation could be the fact that
different from the GenEO eigenproblems, the Ritz approximations are based on the right-hand side and
thus take into account the specific excitation of modes by a particular loading. In the first time step, the
numbers of local solves for the Ritz approximation-based methods are even higher than for the standard
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Figure 4. Spectrum of the projected preconditioned operator HP T
CF . The ordinate shows the eigenvalues while

the abscissa gives its number, sorted in ascending order. Zero eigenvalues, whether they are caused by cross points,
i.e. redundant Lagrange multipliers, or deflation by projection, are ignored.

multi-preconditioned algorithm None. The reason is that the additional local solves, i.e. the application
of the local preconditioners Hs between neighbors, needed to assemble the Ritz spaces as described in
Appendix A.2, are included here. However, the cost of the GenEO coarse grid that must be computed
a priori is not included in this graph. RitzGenEO performs clearly better than PlainReuse, which is
confirmed by the accumulated numbers in Table 3 in Appendix B.

The eigenspectra shown in Figure 4 confirm the capability of the Ritz ansatz to generate highly effi-
cient coarse spaces. On the one hand, the solution of RitzGenEO does not lead to a consistently good
approximation of the spectrum produced by GenEO, but on the other hand, the high part of the spectrum
of RitzGenEO is exceptionally low and clustered. About the first 710 eigenvalues coincide well with the
original and with the GenEO deflated spectrum and whats more, the condition numbers, i.e. the highest
eigenvalues, are almost the same.
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Figure 5. Size of the eigenproblem to be solved once for each substructure.

To illustrate the computational cost more in depth, Figure 5 shows the size of the eigenproblem that
must be solved once for each substructure. For RitzGenEO, the size of an eigenproblem is equal to
the number of solution increments that have been considered to build the specific Ritz space for this
substructure.

This measure is much smaller for the Ritz approximations than for GenEO. Building the Ritz eigen-
problems requires only a small number of vector exchanges between neighbors and vector products as
well as some additional local solves, which are already incorporated in Figure 3. For GenEO, the full
Schur complements of the iteration matrices must be exchanged between all neighbors and are then
assembled to a significantly larger eigenproblem.

A comparison over a longer period of time can be found in Figure 9 in Appendix B.

5.1 Effect of Increasing the Ritz Space Size
This section illustrates one of the most significant findings of this research: A very rough and thus cheap
approximation of the GenEO coarse space is sufficient to achieve a similar reduction of local solves.
This is shown by comparing different Ritz space sizes because as a larger Ritz space results in a better,



14

but more expensive approximation. Figure 6 and Figure 7 show the performance by means of local
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Figure 6. Performance of the Ritz approximation-based methods with different Ritz space sizes, compared to Ge-
nEO.
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Figure 7. Effective spectra for the different Ritz space sizes, governing the convergence of the conjugate gradient
algorithm. The ordinate shows the eigenvalues of the projected preconditioned operatorHP T

CF while the abscissa
gives its number, sorted in ascending order. Zero eigenvalues, whether they are caused by cross points, i.e. redundant
Lagrange multipliers, or deflation by projection, are ignored.

solves and the effective operator spectra. The Ritz space size, averaged over all substructures as each
substructure can use a different size, is given for each variant in the legend in brackets. The Ritz space
size of 15.1 results from the automatic selection method in Section 4.4.2, the others were set manually.

The results confirm the assumption on which the Ritz space basis selection method in Section 4.4.2 was
built: Not all available solution increments must be taken into account to build an efficient coarse space,
but only those, where the τ -criterion identifies bad convergence and the minimization step computes a
favorable combination of neighboring contributions. The automatic selection criterion leads to the small
Ritz space size of 15.1 but already achieves the same performance as GenEO. Approximating the GenEO
coarse space much more precisely, like a Ritz space size of 37 does, is not efficient.

5.2 Further Testcases
The methods are applied to three more test cases. A detailed overview of the setup of all four test cases as
well as all results in tabular form are given in Appendix B. On average, the RitzGenEO algorithm saves
40% of the local solves after the first time step, when compared to the standard deflated AMP FETI.

For the homogeneous material distribution as well as for the case of a rectangular decomposition,
the original GenEO coarse space gains advantage over its Ritz approximation, although the differences
between the two algorithms remain small for all four cases.
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6 Conclusions
This research presents recycling methods for the recently developed adaptive multi-preconditioned FETI
(AMP-FETI). Their aim is to efficiently reuse information from prior solution processes, when the same
linear operator is solved repeatedly. To the best of the authors’s knowledge, this issue has not been
addressed in any publication before. Two such methods are presented and assessed by application to
four test cases. Both methods work by building a coarse space that is then employed to accelerate the
AMP-FETI.

The first method, called PlainReuse here, is a straightforward application of an existing method for
single-preconditioned FETI. It reuses the plain solution space without further processing as coarse space.
It showed minor performance in the results. However, it is very easy to implement and can thus serve as
a quickly set up acceleration technique in AMP-FETI for multiple right-hand side problems.

The second method, called RitzGenEO, approximates local eigenproblems (GenEO) that are known to
provide highly efficient coarse spaces. This is done by applying a Ritz ansatz and consists of three steps.
Build a Ritz space basis in which the approximation is sought, set up and solve the local eigenproblems
and finally choose which of their solutions are used to construct the coarse space. The idea to compute
a Ritz approximation of GenEO using a prior solution space of an AMP-FETI is completely novel. The
specific choice of the Ritz space basis is crucial. This work presents not only a very effective basis but
also a selection method to restrict the basis’s size such that the highly efficient RitzGenEO method re-
sults. It achieves about the same performance as the original GenEO with just a rough and thus cheap
approximation of it. For the solution of multiple right-hand side problems by a dual domain decomposi-
tion technique, RitzGenEO in combination with AMP is currently the most advanced and efficient way
available.

In addition to the new RitzGenEO method, this work also gives valuable insight into the connection
between AMP-FETI and GenEO. The results show that using a larger part of the solution space as Ritz
space basis, results in a precise approximation of GenEO’s behavior. This indicates that both identify the
same bad modes using different mechanisms.

Future work needs to be done to further assess the abilities of these methods, especially applying them
to larger, industrial examples and measuring their performance in terms of wall clock time.

A Modifications to Standard Adaptive Multi-Preconditioned FETI
The algorithm to which the recycling methods in this article have been applied to produce the results in
Section 5 is a slightly extended and modified version of the deflated adaptive multi-preconditioned FETI
procedure in Algorithm 1 as originally published in [11].

In this chapter, the modifications are explained in detail and the resulting procedure is listed in Algo-
rithm 3.

A.1 Extended Initialization Phase
All recycling methods that are applied to AMP-FETI in this article reuse the solution space of the first
time step to accelerate the solution of future time steps.

This results in two different initialization scenarios. In the first time step there is no coarse space
projection yet butλ0 is initialized as explained in Section 4.1 to activate the full structure. In all following
time steps, a coarse space projection is present but no additional initialization of λ0 is made.

As the τ -criterion involves information of the previous step direction, it is not available when the pre-
conditioner is applied to the initial residual r0. In the standard AMP-FETI in Algorithm 1, this is handled
by simply always applying full multi-preconditioning in the initialization phase. Because any chosen
coarse space is expected to be efficient, it is considered inefficient to apply full multi-preconditioning
in the initialization phase if a coarse space is present. Instead, standard single-preconditioning on r0 is
applied if the coarse space is not empty. This extended initialization phase is listed in Algorithm 2.

A.2 Assembly of the Reduced Eigenvalue Problem
In what follows, the assembly of the reduced eigenvalue problem Equation (9) is described, such that it
requires minimal extra computational cost. The resulting procedure is listed in Algorithm 3. First, we
localize the computation of Qi as it must be done anyway in a parallel environment. Furthermore, the
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Algorithm 2: Modified Initialization Phase

if C = ∅ then
PC = I λ0 = λactivate (see Equation (6))

F 0 = Fλ0 η̃ = ‖Fλ0‖ / ‖d‖ η = 0.05

λ0 ← λ0η/η̃ F 0 ← F 0η/η̃

r0 = d− F 0

for s = 1, . . . , Ns do
zs0 = Hsr0

Z0 =
[
z10 | z20 | . . . | z

Ns
0

]
else

PC = I −C(CTFC)−1CTF

λ0 = C(CTFC)−1CTd

r0 = d− Fλ0

Z0 =
∑Ns

s=0H
sr0

projection of the preconditioned residuals inZi by applying the projector PC is done before. Both steps
then read

Zi ← PCZi

Qs
i = F sW i = F sZi −

i−1∑
j=0

Qs
jβi,j

Qi =

Ns∑
s=1

Qs
i

Now F sV s
W can be expressed as

F sV s
W =

[
Qs

1α1

∣∣Qs
2α2

∣∣ ... ∣∣Qs
nsαns

]
It is important to note that the GenEO eigenvalue problem requires only the preconditioners Hs of
adjacent substructures to be combined, i.e. those that share at least one degree of freedom on their
interface. To express this topological restriction, the function

N(s) := {s, neighbors of s}

is introduced, providing the neighborhood of a given substructure s including itself. The last components
missing to assemble the reduced eigenvalue problems, and by them the coarse space itself, then read

HF sV s
W =

∑
m∈N(s)

HmF sV s
W

This means that assembling the reduced eigenvalue problem requires each substructure to solve addi-
tional Neumann problems by applying Hs to the basis vectors of its own Ritz space as well as on the
basis vectors of its neighbors’ Ritz spaces.
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Algorithm 3: Deflated Adaptive Multi-Preconditioned FETI

See initialization phase in Algorithm 2

Z0 ← PCZ0

W 0 = Z0

i = 0

while
√∥∥rTi Hri∥∥ > ε do

for s = 1, . . . , Ns do
Qs

i = F sZi −
∑i−1

j=0Q
s
jβi,j

W i = Zi −
∑i−1

j=0W jβi,j ∆i = (
∑Ns

s=1Q
s
i )

T
W i γi = W T

i ri

[P ,L,A] = RankRevealingLDLT(∆i)
for s = 1, . . . , Ns do

Qs
i ← Qs

iPL
−T

W i ←W iPL
−T ∆+

i = A−1 αi = A−1(PL−T )Tγ

λi+1 = λi +W iαi

ri+1 = ri − (
∑Ns

s=1Q
s
i )αi

Zsum = 0 Zi+1 = ∅
for s = 1, . . . , Ns do

zsi+1 = Hsri+1

Ξs
i = (W iαi)

TF sW iαi

rTi+1H
sri+1

if Ξs
i < τ then
Zi+1 ←

[
Zi+1 | zsi+1

]
else

Zsum ← Zsum + zsi+1

Zi+1 ← [Zi+1 |Zsum]

i← i+ 1

for 0 ≤ j ≤ i− 1 do
Φi,j = (

∑Ns

s=1Q
s
j)

T
Zi βi,j = ∆+

j Φi,j

Zi ← PCZi

m = i
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B Summary of Test Cases and Results
The problem settings for all four test cases are depicted in Figure 8, varying the direction and location of
the load, the heterogeneity, and the decomposition of the mesh. The physical properties are summarized
in Table 2. For all cases, the load is scaled over time according to Figure 2. Also constant among all cases
is the AMP-criterion τ = 0.1, the time step size ∆t = 10−3s and the time stepping scheme configuration
γ = 1

2 and β = 1
4 . Table 2 shows as well the periods of the three lowest eigenmodes and the period

of the highest eigenmode. While the lowest eigenmodes mainly result from the structure itself and the
Dirichlet boundary conditions, the highest eigenmode is mainly determined by the element size. Similar
to [14], the time step is selected such that the lowest structural modes are represented well.

The results are presented in Table 3, including the first case Stripes/Metis/Bending which was studied
in detail before. The most important numbers, showing the performance without any coarse space, with
a GenEO coarse space, and the Ritz approximation method, are emphasized in bold face.

Stripes/Metis/Bending Stripes/Metis/Traction

Homogeneous/Metis/Bending Stripes/Rectangular/Bending

Figure 8. Problem setting of the four test cases, showing the mesh, its decomposition, the material distribution and
the direction and location of applied loads.

Parameter Case 1 Case 2 Case 3 Case 4

Material distribution - Stripes Stripes Homogeneous Stripes

Decomposition - Metis Metis Metis Rectangular

Type of loading - Bending Traction Bending Bending

Youngs mod. fiber/matrix E2
E1

104 104 1 104

Density fiber/matrix ρ2
ρ1

101 101 1 101

Poisson ratio matrix ν1 0.49 0.49 0.3 0.49

Poisson ratio fiber ν2 0.3 0.3 0.3 0.3

Period of 1. eigenfreq. T1 3.2× 10−1 s 3.2× 10−1 s 3.8× 10−2 s 3.2× 10−1 s

Period of 2. eigenfreq. T2 6.6× 10−2 s 6.6× 10−2 s 7.6× 10−3 s 6.7× 10−2 s

Period of 3. eigenfreq. T3 4.2× 10−2 s 4.2× 10−2 s 6.2× 10−3 s 4.2× 10−2 s

Period of highest eig.f. Tmax 1.4× 10−5 s 1.4× 10−5 s 1.3× 10−5 s 1.5× 10−5 s

Table 2. Configuration of the four test cases. They can be uniquely identified by the descriptions of material
distribution, decomposition, and type of loading in the first three lines, e.g. read ”Stripes/Metis/Bending”.

In Figure 9, RitzGenEO and GenEO are compared over a longer period of time on the test case
Stripes/Metis/Bending. As the graph shows, the performance of RitzGenEO does not deteriorate and
stays slightly better than GenEO although the Ritz approximation was computed only once from the
solution increments of the first time step. For all later time steps, the coarse space remains unchanged.
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Stripes/Metis/Bending

Measure None GenEO(j) GenEO(n) RitzGenEO(n) PlainReuse

iterations 790 560 579 556 757

size of min. space 2300 766 773 832 960

avg. local solves per sub. in t1 92 52 55 167 94

avg. local solves per sub. in
∑20

i=2 ti 1901 1157 1193 1128 1509

size of coarse space in t20 - 67 67 67 67

avg. size of eig.space. in t1 - 88.1 88.1 15.1 -

Stripes/Metis/Traction

Measure None GenEO(j) GenEO(n) RitzGenEO(n) PlainReuse

iterations 756 602 613 602 787

size of min. space 2306 771 776 769 1055

avg. local solves per sub. in t1 100 59 59 161 100

avg. local solves per sub. in
∑20

i=2 ti 1840 1227 1249 1185 1580

size of coarse space in t20 - 67 67 67 67

avg. size of eig.space. in t1 - 88.1 88.1 12.6 -

Homogeneous/Metis/Bending

Measure None GenEO(j) GenEO(n) RitzGenEO(n) PlainReuse

iterations 720 460 331 365 573

size of min. space 1899 507 331 423 647

avg. local solves per sub. in t1 86 45 32 142 89

avg. local solves per sub. in
∑20

i=2 ti 1689 926 670 696 1115

size of coarse space in t20 - 74 74 74 74

avg. size of eig.space. in t1 - 88.1 88.1 11.1 -

Stripes/Rectangular/Bending

Measure None GenEO(j) GenEO(n) RitzGenEO(n) PlainReuse

iterations 928 394 733 785 908

size of min. space 3391 418 1560 1574 1891

avg. local solves per sub. in t1 107 34 72 158 103

avg. local solves per sub. in
∑20

i=2 ti 2164 797 1567 1632 1910

size of coarse space in t20 - 132* 74 74 74

avg. size of eig.space. in t1 - 113.3 113.3 19.0** -

Table 3. Table of results for all test cases. The number of iterations and the size of min. space were accumulated
over 20 time steps. The average number of local solves per substructure is given separately for the first time step
and accumulated over the remaining time steps.
*: The coarse space size was limited to a lower number for the (n) variants because the jump criterion leads to a very
large coarse space in this case.
**: This Ritz space size was limited manually because the automatic selection originally leads to a very large Ritz
space in this case.
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[18] Rey, C. and Léné, F. Reuse of Krylov spaces in the solution of large-scale nonlinear elasticity problems. Ninth
International Conference on Domain Decomposition Methods. 1998, 465–471.

[19] Risler, F. and Rey, C. On the reuse of ritz vectors for the solution to nonlinear elasticity problems by domain
decomposition methods. Contemporary Mathematics. Ed. by J. Mandel, C. Farhat, and X.-C. Cai. Vol. 218.
1998, 334–340. DOI: 10.1090/conm/218.



22

[20] Gosselet, P. and Rey, C. On a selective reuse of Krylov subspaces in Newton-Krylov approaches for nonlinear
elasticity. Fourteenth international conference on domain decomposition methods 2003, 419–426.

[21] Gosselet, P., Rey, C., and Pebrel, J. Total and selective reuse of Krylov subspaces for the resolution of se-
quences of nonlinear structural problems. International Journal for Numerical Methods in Engineering 2013;
94(1), 60–83. DOI: 10.1002/nme.4441.

[22] Farhat, C., Crivelli, L., and Geradin, M. On the spectral stability of time integration algorithms for a class
of constrained dynamics problems. 34th Structures, Structural Dynamics and Materials Conference. Struc-
tures, Structural Dynamics, and Materials and Co-located Conferences. American Institute of Aeronautics
and Astronautics, 1993, 80–97. DOI: 10.2514/6.1993-1306.

[23] Newmark, N. M. A method of computation for structural dynamics. Journal of the Engineering Mechanics
Division 1959; 85(85), 67–94. DOI: 0.1016/j.compgeo.2015.08.008.

[24] Geradin, M. and Rixen, D. J. Mechanical vibrations: theory and application to structural dynamics. 3rd. Wiley
& Sons, 2015, 617.

[25] Farhat, C. and Roux, F.-X. Implicit parallel processing in structural mechanics. Computational Mechanics
Advances 1994; 2(1), 1–124.

[26] Paige, C. C. Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenproblem. Linear
Algebra and its Applications 1980; 34, 235–258. DOI: 10.1016/0024-3795(80)90167-6.

[27] Roux, F.-X. Acceleration of the outer conjugate gradient by reorthogonalization for a domain decomposition
method for structural analysis problems. Proceedings of the 3rd International Conference on Supercomputing.
ICS ’89. New York, NY, USA: ACM, 1989, 471–476. DOI: 10.1145/318789.318895.
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