
Designing co-simulation with multi-agent
tools: a case study with NetLogo

Thomas Paris*, Laurent Ciarletta*, and Vincent Chevrier*

* Université de Lorraine, CNRS, LORIA, F-54000 Nancy, France
firstname.name@loria.fr

December, 2017

Abstract

Multi-agent approach has demonstrated its benefits for complex system modeling
and simulation. This article focuses on how to represent and simulate a system
as a set of several interacting simulators, with a focus on the case of multi-agent
simulators. This raises a major challenge: multi-agent simulators are not conceived
(in general) to be used with other simulators.

This article presents a preliminary study about the rigorous integration of multi-
agent simulators into a co-simulation platform. The work is grounded on the Net-
Logo simulator and the co-simulation platform mecsyco.

Keywords: Complex system, Multi-agent system, Co-simulation, mecsyco,
NetLogo

1 Introduction

The modeling and simulation (M&S) of complex systems is one of the key challenges in
research. One of the difficulties is to combine several perspectives of the same system [Seck
and Honig, 2012] into a coherent one (multi-modeling). It needs to manage the system
with several levels (micro, macro), different scales (time, space, . . . ), etc. Handling such
heterogeneities calls for the development of new approaches and tools.

One of the most promising approaches to face these challenges is co-simulation [Gomes
et al., 2017]. It consists in making different simulators interact into a simulation by
ensuring the synchronization and the data exchanges between them. It enables the reuse
of existing simulators used in specific domains. However, this implies to be able to manage
the heterogeneities of the simulators both at software level (how to control simulators
execution to make them interact?) and at formal one (how to make compatible the
different dynamics?).

In parallel, multi-agent approach is convenient to represent and simulate systems com-
posed of numerous interacting entities (which is a definition of complex systems [Ramat,
2007]). It makes possible to represent both the individual and collective levels [Michel
et al., 2009]. Then multi-agent approach is a relevant choice to model and simulate
complex systems.

1



The general question we address in this paper is How can we represent and simulate
a complex system with different multi-agent systems, each representing a complementary
perspective of the whole. We adopt a co-simulation approach to answer it. The issue
we are now facing becomes how to make the multi-agent simulators interact to exchange
information and synchronize their execution. We limit our scope in this article to spatial
coupling of multi-agent systems: one agent is present in one simulator at a time, agents in
different simulators can not interact. Interactions are restricted to events that pass from
one simulator to another. Our goal is to rigorously integrate multi-agent simulators in
an hybrid co-simulation which uses both continuous and discrete simulators. We do not
consider ad-hoc solutions (potentially source of errors), nor the rewriting of models into
one single simulator (source of errors, waste of time,. . . ).

The problem we focus on can be solved by answering two questions: i) how to manage
the time and the synchronization of the multi-agent simulator with the rest of the sim-
ulation ?; and ii) how to manage information exchanges between the simulator and the
other simulators of the co-simulation ?

We demonstrated that these questions can be answered in the mecsyco middleware
[Camus, 2015] by using the DEVS formalism as a formal basis for integration. This
article details how we answer these questions and build a DEVS wrapper in the case of
the NetLogo multi-agent simulator.

The remaining of the article is structured as follows: The section 2 presents related
works; next section 3 introduces concepts used to build our proposal. The section 4
presents the principles of our proposal which is detailed in 5. The section 6 presents
different use-cases that illustrate the possibilities of the proposal. Section 7 discusses the
approach and section 8 concludes the article.

2 Related works

Several works dealt with the simulation of a multi-agent system as the integration of
different subsystems.

A first question is to position that integration with respect to the modeling and sim-
ulation process. We use the structuring of [Galán et al., 2009] which distinguishes four
steps as represented in figure 1. From this point of view, the integration of subsystems is
possible at the interface of these 4 levels.

In the first case, a conceptual formulation describes the integration by proposing means
of exchanges of information between components and of components synchronization, as
for example, patterns [Gangat et al., 2012], or models [Morvan et al., 2013, Maudet et al.,
2013]. These works limit the integration of the different components of the multi-agent
system into the same conceptual framework and the same tool.

The second case considers a formalism as a pivot for a rigorous integration. It is the
case of the VLE (Virtual Laboratory Environment)[Quesnel et al., 2009], from which we
retain its ideas under the wrapping perspective.

The third case envisages the integration as a software interoperability problem, the
conceptual and formal issues are solved from an ad-hoc manner.

Alternatively, different multi-agent simulators are able to simulate a system as a set
of different (logical or physical) environments (such as Madkit1, or Repast[North et al.,
2013]), but are not open to include environments coming from other tools. An effort for

1http://www.madkit.net/madkit/

2



Figure 1: The different steps of the modeling process. Source [Galán et al., 2009]

a more standard integration has been done in [Behrens et al., 2011] by considering an
interface for agent/environment interaction. As far as we know, the issue of integrating a
multi-agent simulator into a co-simulation is not tackled, nor the rigorous management of
synchronization. Existing works we know (except [Quesnel et al., 2009]) propose different
multi-agent concepts to define the integration of components into a simulation but are
not open to a wider scope.

3 Prerequisites

3.1 DEVS

DEVS (Discrete EVent System specification) is an event-based formalism proposed by
Bernard P. Zeigler in 1970 [Zeigler et al., 2000]. One interesting properties of DEVS is its
ability to integrate different formalisms. Thanks to its universality property, DEVS has
a pivot place for the integration of formalisms [Vangheluwe, 2000].

As summarized by [Quesnel et al., 2005], the integration of a formalism in DEVS can
be performed either by a mapping or a wrapping strategy. While the former consists in
establishing the equivalence between the formalisms, the latter implies bridging the gap
between the abstract simulators.

The advantage of the wrapping strategy is to enable the reuse of preexisting models
already implemented in some simulation software. This is the choice we make in this
article.

3.1.1 Description of models

DEVS distinguishes atomic from coupled models. A DEVS atomic model describes the
behavior of the system and corresponds to this structure: M = (X, Y, S, δext, δint, λ, ta)
where:

X = {(p, v)|p ∈ InPorts, v ∈ Xp} is the set of input ports and values. These ports can
receive external input events,

3



Y = {(p, v)|p ∈ OutPorts, v ∈ Yp} is the set of output ports and values. These ports can
send external output events,

S is the set of the model states,

δext : Q×X → S is the external transition function (describing how the model reacts to
input events) where

Q = {(s, e)|s ∈ S, 0 ≤ e ≤ ta(s)} is the total state of the model,

e is the elapsed time since the last transition,

δint : S → S is the internal transition function describing the internal dynamic of the
model -i.e. the function processes an internal event which changes the model state,

λ : S → Y is the output function describing the output events of the model according to
its current state,

ta : S → R+
0,∞ is the time advance function describing the time during which the model

will stay in the same current state (in the absence of input event). The function is
used to get the date of the next internal event.

A coupled model describes the structure of the system, that is how atomic models are
connected together to describe a system. As we do not refer directly to this concept for
our proposal we shall not detail it here.

3.1.2 Wrapping and simulation

DEVS formalism proposes different abstract simulation algorithms. It imposes five func-
tions (detailed below) in order to perform a simulation with an atomic model. Defining
a wrapper for a multi-agent system corresponds to define an interface with the simulator
that implements these five functions. Once implemented, the simulator can be used as an
atomic model and be rigorously integrated in a DEVS co-simulation.

3.2 NetLogo

NetLogo [Wilensky, 1999] is an environment for modeling and simulating multi-agent
systems. NetLogo can be controlled through an API that eases its integration in a wider
project. A NetLogo model is composed of a graphical interface which makes possible for a
user to interact with the simulation and view its evolution; a script (written in the NetLogo
language) that describes the behavior of the agents (called turtles), the dynamics of the
environment and, more generally, which actions to perform during simulation. NetLogo
language permits the definition of methods; the command ones that act on the world and
the report ones that collect data; and a model documentation that explains the model,
its functioning and how to experience it.

Conventionally, the simulation parameters are initialized by the setup method and
the simulation is ran with successive calls to the go command that makes the simulation
progress step by step. The graphical interface proposes buttons associated with these
commands, and sliders to select parameters values.

4



3.3 MECSYCO

mecsyco [Camus et al., 2015] is a DEVS wrapping platform2 that takes advantage of the
DEVS universality for enabling multi-paradigm co-simulation of complex systems. It is
currently used for the M&S of smart electrical grids in the context of a partnership between
LORIA/Inria3 and EDF R&D (leading French electric utility company) [Vaubourg et al.,
2015].

mecsyco is based on the AA4MM (Agents & Artifacts for Multi-Modeling) paradigm
[Siebert et al., 2010] (from an original idea of Bonneaud [Bonneaud, 2008]) that sees
an heterogeneous co-simulation as a multi-agent system. Within this scope, each couple
model/simulator corresponds to an agent, and the data exchanges between the simulators
correspond to the interactions between the agents4. Originality with regard to other multi-
agent multi-model approaches is to consider the interactions in an indirect way thanks
to the concept of passive computational entities called artifacts [Ricci et al., 2007]. By
following this multi-agent paradigm from the concepts to their implementation, mecsyco
ensures a modular, extensible (i.e. features such as an observation system can be easily
added), decentralized and distributable parallel co-simulation. mecsyco implements the
AA4MM concepts according to DEVS simulation protocol for coordinating the executions
of the simulators and managing interactions between models.

So far, we successfully define DEVS wrappers for discrete and continuous modeling
tools like the telecommunication network simulators NS-3 and OMNeT++ [Vaubourg
et al., 2016], the FMI standard [Blochwitz et al., 2012], or application-specific wrapper
for the NetLogo simulator [Camus et al., 2015].

4 Proposal

Til now, the integration of NetLogo in mecsyco obliges to specify a new wrapper each
time a new NetLogo model is used. This drawback comes from the absence of declarative
representation of DEVS concepts; i.e., the declaration of inputs, outputs and parameters
(model specific elements) were made directly in the code of the wrapper, making it model
specific.

Specifying a DEVS wrapper for mecsyco implies to create an interface between the
simulator and the five functions of the DEVS simulation protocol:

• init sets the parameters and the initial state of the model,

• processExternalEvent makes the simulator process its external input event(s)
coming from other simulators, it is dependent of the input ports of the model and
the kinds of information associated with,

• processInternalEvent makes the simulator process its internal event(s) at a given
time (makes the simulator progress according time),

• getOutputEvent returns external output event(s) to be sent to other simulators, it
is dependent of the output ports of the model

2mecsyco is available on www.mecsyco.com under AGPL license.
3French IT research institute.
4Please note that multi-agent systems appear at two levels in this article: as a middleware architecture

for co-simulation, and as simulation models to be integrated in a co-simulation.

5



• getNextInternalEventTime returns the time of the earliest scheduled internal
event. The simulator scheduling policy must have temporal meaning in order to
determine that value.

These five methods handle the time management, the synchronization and the date
exchanges between a simulator and the remaining of the co-simulation. To design a generic
wrapper, these functions must be independent of the simulated models. In particular,
this implies for each model m to specify the sets of input and output ports (X and Y
respectively). These information are rarely present in multi-agent system (mostly because
there are not conceived to be connected to other models and not thought as a port-based
architecture). We propose to define explicitly these sets and the corresponding events in
a documentation associated with the model (in the same sense as the XML description of
the FMI standard). Similarly, we have to express what has to be done when input events
are received, how to get the data corresponding to output events and how to set initial
parameters.

As the multi-agent simulators adopt various strategies of implementation and meta-
model, we don’t target a unified way to design wrapper, but rather try to propose a generic
wrapper for NetLogo for which we take advantage of the possibility to send commands to
the simulator thanks to an interpreter provided by the API.

It must be underlined that the processInternalEvent function makes evolve the simu-
lation state and cannot be broken into different subfunctions. As a consequence, we have
no mean to make agents from different simulator interact together in the same simulation
step (or we stop respecting DEVS simulation protocol).

5 The DEVS wrapper for NetLogo

This part details the wrapping of the NetLogo tool through the definition of the wrapper
documentation. Figure 2 summarizes the principles behind it.

5.1 Documentation information

Until now, the NetLogo wrappers of mecsyco embedded in their Java code the infor-
mation related to the input and output ports, as well as the statements to process when
executing each of the five DEVS methods. We propose to provide them separately in the
wrapper documentation. That means providing the name of input and output ports, and
what to process for each method of the DEVS protocol.

init(): We suppose the setup method of NetLogo can be used as the init method5.
We add the concept of parameters in the documentation in order to provide values to set
instead of the default ones used by setup (generally defined by sliders in the interface).

getNextInternalEventTime(): We suppose a constant time step simulation strategy in
which each tick has no special temporal meaning. It is the responsibility of the modeler
to propose a meaning of a tick in term of co-simulation time (e.g. one tick represent 0.1
unit of time simulation).

processInternalEvent(): We suppose6 the go method corresponds to the statements to
process at each tick and can correspond to the processInternalEvent one.

5In other cases, either the documentation provides the command to call, either it provides the code
to execute.

6In other cases, it has to be specified the same as for setup.

6



Figure 2: Principle of the NetLogo wrapper.

processExternalEvent(): The concept of input ports doesn’t exist in NetLogo and must
be defined for each model. Additionally, it has to be precised how to process each incoming
event on each port.

getOutputEvent(): Again, the concept of output ports doesn’t exist in NetLogo and
must be defined for each model. Additionally, it has to be precised how to process each
external event on each port.

5.2 Management of the simulation time

As in [Quesnel et al., 2005], we choose to let the modeler define the meaning of a
tick as a constant duration t (as a consequence the ta function will constantly return
currentT ime + t. This is a simple solution. More complex ones are possible since Net-
Logo authorizes the modeler to define its own time progression. Wrapping can easily be
extended to make a call to the ticks function and return the appropriate value.

5.3 Management of the inputs, outputs and parameters

As said previously, NetLogo architecture does not have the concept of ports associated
with events but proposes an API through which the interaction with the model is pos-
sible via an interpreter. It consists in providing a string that corresponds to a NetLogo
command to execute in order to modify the model or to a NetLogo report to fetch data
from the model.

We propose to define in the wrapper documentation the port names of the inputs and
outputs in association with the NetLogo methods to execute.

In the case of input events, we distinguish three cases:
1) the port accepts events which do not depend of data from other simulators: the

model has to run some commands (with no parameters) defined by the modeler ;

7



2) the port accepts events which contains only single data from other simulators: this
data should be integrated in the simulation through a NetLogo command that modifies
environment variables or turtles attributes ;

3) the port accepts events which contains a list of data from other simulators: the
command has to be adapted to process these data.

In case of output events, two cases can be envisaged:
1) the event corresponds to one or several data (the value of one attribute, . . . ). In

this case, one or several reports will be used to access these values. This kind of event
has no impact on the NetLogo model

2) In the second case, the event has an impact on the model (for example, turtles are
exiting the model). One or more commands should be used to define this impact (e.g.,
suppress the turtles from the model).

The δext of the DEVS interface processes input events with NetLogo command, whilst
the λ one makes use of report to collect data and to convert them into events (some
commands can be used to maintain a coherent state of the model, e.g., suppress turtles).

The parameters specified in the documentation will be set by a single command to
modify a value before the call to setup.

5.4 The wrapper

The basic principle of definition of the wrapper is to associate each function of the DEVS
protocol to the corresponding NetLogo code. This is done by a java code using the
NetLogo API facilities.

As the code to be executed is specified in the wrapper documentation, the wrapper
becomes generic and can be used for any NetLogo models.

To summarize, as NetLogo proposes two functions associated to initialization (init)
and to the simulation of one step (go), we reuse them. When one step of simulation is
executed, the time progress of a constant value. As the simulation of one step is atomic (it
can not be broken and we don’t have something equivalent to the elapsed time function),
processing of incoming events is undertaken at the next time step of the simulator by
modifying the model state, the next invocation of ”go” will perform the reaction of the
model.

6 Proofs of concepts

6.1 Experiment goal

The goal of the following experiments is to illustrate what can be done with such an
approach, notability by showing how a NetLogo component can be used in a co-simulation
with mecsyco.

Two experiments are detailed. The first shows how we can modify the state of the
simulation by modifying variables that impact the agents behavior (as the GUI could have
done). The second illustrates the spatial coupling between several NetLogo models by a
transfer of agents between them.

Before describing these proofs of concepts we make two remarks. First, we do not
recall what a mecsyco co-simulation is but just provide an intuitive definition through
the example. We orient the reader who wishes more details to the mecsyco website where
several tutorials explain the main concepts used and illustrate co-simulation. Second, we

8



Figure 3: DSL definition for example 1.

use a DSL (see figure 3) to describe the wrapper documentation. It is out of the article
scope to detail the possibility of the DSL. We just provide the key elements necessary to
the understanding.

6.2 Variation on prey-predator model

The NetLogo Wolf-Sheep-Predation model7 describes how the populations of wolves and
sheep interact and evolve according to time as in a prey-predator ecosystem. Several
parameters can be changed to observe their impact and the populations dynamics. We
do not modify the original model but extend it in order to illustrate the possibility to
modify model parameters, to define input events that modify at runtime some features of
the model. Namely we want to:

• set initial values of some parameters,

• provide some input events that modify environment features,

• collect periodically information about the population to draw graphics (externally
to NetLogo).

These elements are detailed below. They are summarized in Table 1 and followed by
their definition in the NetLogo DSL we defined in mecsyco. Note that parameters of
NetLogo commands are denoted by %s.

7Provided in the models library.

9



Table 1: Summary of wrapper documentation.
Parameters

Name Value Command
grass true ”set grass? %s”

grass regrowth time 10 ”set grass-regrowth-time %s”

initial number sheep 100 ”set initial-number-sheep %s”

initial number wolves 50 ”set initial-number-wolves %s”

Input ports

Name Command
grass regrowth ”set grass-regrowth-time %s”

sheep coming ”create-sheep %s [set color white
set size 1.5
set label-color blue - 2
set energy random
(2 * sheep-gain-from-food)

setxy min-pxcor max-pycor]”

wolf hunt ”ask n-of %s wolves [die]”

Output ports

Name Report statement
nb sheep ”count turtles with [breed = sheep]”

nb wolves ”count turtles with [breed = wolves]”

nb grass ”grass”

We use the following parameters: grass, the grass dynamics is active (contrarily to the
default value of the GUI); grass regrowth time, the time needed for grass to regrow in
tick); initial number sheep, the initial number of sheep; and, initial number wolves,
the initial number of wolves.

We create the following input ports (each event contains the value to be applied for
the modification): grass regrowth implies a modification of the time of grass to regrow
(We have defined a port name that is different of the name of the environment variable);
sheep coming, results in an increase of the sheep number; and wolf hunt that results
in a decrease of the wolves number. Each port corresponds to one event coming from
separate simple models (each sends a single event at a specified time).

We define the following output ports that are connected to a graphic drawer in order to
display graphics: nb sheep,the current number of sheep; nb wolves, the current number
of wolves; and nb grass, the grass quantity.

Figure 4 shows the results obtained with that configuration. We can observe the
impact of the different events (arrivals of 100 sheep at t=100; death of 25 wolves at
t=175, increase of the time needed for grass to regrow at t =400).

This proof of concept shows that we are able to provide initial values (e.g. the grass
is active), to modify some characteristics of the model (remove wolves, add sheep or
modify environment features) by input events (coming from other models) and to collect
information from the simulation (here the numbers of wolves and sheep, and the grass
quantity) through output events that will be used in other model (here a graphical drawer).

10



Figure 4: Impact of different events on the prey-predator model.

6.3 Spatial coupling

In this experiment, we show the possibility to transfer turtles from one NetLogo model
to another. We connect three models together as follows: a prey-predator model ”sends”
sheep to a pedestrian model (a model in which turtles travel from left to right as pedes-
trians in a corridor do) which, when turtles arrive at the right extremity, sends them to
another prey-predator model.

The first model is the same as the previous experiment, we add a new output port
sheep escaping that is associated to the sheep present at the right side of the model.
Data are collected as a list of sheep features (ordinate and energy).

The second model is initially empty and sheep, coming from the sheep escaping port,
arrive through the input port (called left in). Sheep move from left to right. An output
port (right out) is associated to the sheep present at the right side.

The third model is again a prey-predator model on which we add an input port
sheep loop arrival that accepts a list of sheep to be created on the left side of the
environment with attributes whose values are specified in the event coming from he
sheep escaping port). This model is initialized with empty populations of wolves and
sheep. Figure 5 illustrates the connections and shows a snapshot of the three NetLogo
windows.

These connections are possible because the types of events are compatible between the
ports we use here and the pedestrian model for coherence purpose does define an ”energy”
attribute.

One interesting thing to notice is that the pedestrian model definition we used here en-
ables the connection of several instances, one following the other, by the reuse of the same

11



Figure 5: Connections between model for spatial coupling.

wrapper documentation. A model becomes a modular component for the co-simulation
platform.

7 Discussion

The possibility of integrating a NetLogo model into a co-simulation as a component that
can be added/removed or switched enables to define models of systems as the coupling of
different sub-models.

One question not addressed in our approach is in what extend does an existing NetLogo
model be adapted to be integrated in DEVS co-simulation. Currently, we do not propose
any generic answer because of the variety of models available in NetLogo. However some
directions can be proposed. Concerning the modification of the models, NetLogo GUI
authorizes the user to modify parameters, to execute some actions at runtime. This is
compatible with our approach: an input event can do the same. As we restricted our
proposal to spatial coupling, we authorize agents to enter or exit the model. The exit of
agents can be handled by providing some properties these agents have to respect and i)
getting their features to be ”exported” as a list and ii) removing them from the model.
Agents entering the models can be represented by an event having a list of properties
from which we create turtles.

We simplified the NetLogo integration by considering the use of setup and go com-
mands instead of user defined ones. These choices can be revoked without putting into
question the principles used.

As a system can be composed of many subsystems, the performance and the scalability
of simulations can be put into question. Even if we did not focus on efficiency in the design
of mecsyco, a first answer is its architecture that can distribute the simulators execution
among several machines. This enables to scale-up in terms of simulators number whilst
keeping execution time.

This article focuses on the DEVS wrapping of NetLogo. We claim a declarative ap-
proach to bridge the gap between the DEVS simulation protocol and the model/simulator
primitives. Readers may wonder on the generalization of this to other multi-agent system.
From our experience, having a systematic approach is difficult because of the diversity
of multi-agent platform architectures and multi-agent models structures, there is still no
multi-agent standard to rely on.

12



8 Conclusion and perspectives

This article presented a preliminary work on the integration of a multi-agent simulator
in a co-simulation. Our proposal (implemented on the NetLogo platform) is grounded on
a wrapper documentation which precises i) the initial parameters, the input and output
ports; and ii) the NetLogo codes that correspond to the implementation of the DEVS
protocol functions in the model. This documentation can be written within a dedicated
DSL and is used inside the generic NetLogo wrapper (a Java code in our case) of the
mecsyco platform.

We provide two proofs of concepts that showed the possibility to integrate NetLogo
models in mecsyco, and to make them interact together or with other already integrated
simulators without any additional coding (except the one provided in the documentation).

This integration opens the possibility to reuse the wide variety of existing NetLogo
models in a co-simulation (with or without other multi-agent simulators).

However, our proposal imposes that the model has been adapted in order to be used
inside a co-simulation. A second limitation coming from the wrapping strategy imposes
that the information exchanges make the time to progress; this forbids interactions be-
tween agents situated in different simulators.

As perspectives, we want to confront our proposal with more NetLogo models in
order to gain a better understanding of how a NetLogo model has to be modified to be
integrated and to validate conceptually the approach before confronting the principles of
our proposal to other multi-agent simulators (with which we will be faced to the same
conceptual issues and to new software integration problems).

References

[Behrens et al., 2011] Behrens, T. M., Hindriks, K. V., and Dix, J. (2011). Towards
an environment interface standard for agent platforms. Annals of Mathematics and
Artificial Intelligence, 61(4):261–295.

[Blochwitz et al., 2012] Blochwitz, T., Otter, M., Åkesson, J., et al. (2012). Functional
mockup interface 2.0: The standard for tool independent exchange of simulation models.
In Proc. 9th International Modelica Conference, pages 173–184.

[Bonneaud, 2008] Bonneaud, S. (2008). Des agents-modèles pour la modélisation et la
simulation de systèmes complexes - Application à l’écosystémique des pêches. PhD
thesis.

[Camus, 2015] Camus, B. (2015). Environnement Multi-agent pour la Multi-modélisation
et Simulation des Systèmes Complexes. PhD thesis, Université de Lorraine.

[Camus et al., 2015] Camus, B., Bourjot, C., and Chevrier, V. (2015). Combining DEVS
with multi-agent concepts to design and simulate multi-models of complex systems
(WIP). In Proc. of TMS/DEVS 15, pages 85–90. SCS.

[Galán et al., 2009] Galán, J. M., Izquierdo, L. R., Izquierdo, S. S., Santos, J. I., del Olmo,
R., López-Paredes, A., and Edmonds, B. (2009). Errors and artefacts in agent-based
modelling. Journal of Artificial Societies and Social Simulation, 12(1):1.

13



[Gangat et al., 2012] Gangat, Y., Payet, D., and Courdier, R. (2012). Methodology for a
New Agent Architecture Based on the MVC Pattern, pages 230–239. Springer Berlin
Heidelberg, Berlin, Heidelberg.

[Gomes et al., 2017] Gomes, C., Thule, C., Broman, D., Gorm Larsen, P., and
Vangheluwe, H. (2017). Cosimulation: State of the art. International Mediterranean
Modeling Multiconference.

[Maudet et al., 2013] Maudet, A., Touya, G., Duchêne, C., and Picault, S. (2013). Im-
proving multi-level interactions modelling in a multi-agent generalisation model: first
thoughts. In Proceedings of 16th ICA Workshop on Generalisation and Multiple Rep-
resentation, Dresden, Germany.

[Michel et al., 2009] Michel, F., Ferber, J., Drogoul, A., et al. (2009). Multi-agent systems
and simulation: a survey from the agents community’s perspective. In Uhrmacher, A.
and Weyns, D., editors, Multi-Agent Systems: Simulation and Applications, Computa-
tional Analysis, Synthesis, and Design of Dynamic Systems, pages 3–52. CRC Press -
Taylor and Francis.

[Morvan et al., 2013] Morvan, G., Veremme, A., and Dupont, D. (2013). IRM4MLS: the
influence reaction model for multi-level simulation. ArXiv e-prints.

[North et al., 2013] North, M. J., Collier, N. T., Ozik, J., Tatara, E. R., Macal, C. M.,
Bragen, M., and Sydelko, P. (2013). Complex adaptive systems modeling with repast
simphony. Complex Adaptive Systems Modeling, 1(1):3.

[Quesnel et al., 2005] Quesnel, G., Duboz, R., and Ramat, E. (2005). Wrapping into
DEVS Simulator: A Study Case. International Mediterranean Modeling Multiconfer-
ence, pages pp. 374–382.

[Quesnel et al., 2009] Quesnel, G., Duboz, R., and Ramat, E. (2009). The virtual lab-
oratory environment - an operational framework for multi-modelling, simulation and
analysis of complex systems. Simulation Modelling Practice and Theory,, (17):641–653.

[Ramat, 2007] Ramat, E. (2007). Introduction to discrete event modelling and simulation.
Agent-based Modelling and Simulation in the Social and Human Sciences, Lavoisier,
Oxford, The Bardwell Press, Phan D., Amblard F. Eds.

[Ricci et al., 2007] Ricci, A., Viroli, M., and Omicini, A. (2007). Give agents their arti-
facts: the A&A approach for engineering working environments in MAS. In AAMAS
’07. ACM.

[Seck and Honig, 2012] Seck, M. D. and Honig, H. J. (2012). Multi-perspective modelling
of complex phenomena. Comput. Math. Organ. Theory, 18(1):128–144.

[Siebert et al., 2010] Siebert, J., Ciarletta, L., and Chevrier, V. (2010). Agents and arte-
facts for multiple models co-evolution: building complex system simulation as a set of
interacting models. In Proc. of AAMAS ’10. AAMAS/ACM.

[Vangheluwe, 2000] Vangheluwe, H. L. (2000). DEVS as a common denominator for multi-
formalism hybrid systems modelling. In Computer-Aided Control System Design, 2000.
CACSD 2000. IEEE International Symposium on, pages 129–134. IEEE.

14



[Vaubourg et al., 2016] Vaubourg, J., Chevrier, V., Ciarletta, L., and Camus, B. (2016).
Co-simulation of ip network models in the cyber-physical systems context, using a devs-
based platform. In SCS/ACM, editor, Communications and Networking Simulation
Symposium (CNS’16).

[Vaubourg et al., 2015] Vaubourg, J., Presse, Y., Camus, B., et al. (2015). Multi-agent
multi-model simulation of smart grids in the MS4SG project. In Proc. PAAMS 15,
pages 240–251. Springer.

[Wilensky, 1999] Wilensky, U. (1999). Netlogo (and netlogo user manual). Cen-
ter for connected learning and computer-based modeling, Northwestern University.
http://ccl.northwestern.edu/netlogo.

[Zeigler et al., 2000] Zeigler, B. P., Praehofer, H., and Kim, T. G. (2000). Theory of
modeling and simulation : integration discrete event and continuous complex dynamic
systems. Academic press.

15


	Introduction
	Related works
	Prerequisites
	DEVS
	Description of models
	Wrapping and simulation

	NetLogo
	MECSYCO

	Proposal
	The DEVS wrapper for NetLogo
	Documentation information
	Management of the simulation time
	Management of the inputs, outputs and parameters
	The wrapper

	Proofs of concepts
	Experiment goal
	Variation on prey-predator model
	Spatial coupling

	Discussion
	Conclusion and perspectives

