The Hyperbolic-type Point Process - Archive ouverte HAL
Article Dans Une Revue Journal of the Mathematical Society of Japan Année : 2019

The Hyperbolic-type Point Process

Pierre Lazag
  • Fonction : Auteur

Résumé

In this paper, we introduce a two-parameters determinantal point process in the Poincar\'e disc and compute the asymptotics of the variance of its number of particles inside a disc centered at the origin and of radius $r$ as $r$ tends to $1$. Our computations rely on simple geometrical arguments whose analogues in the Euclidean setting provide a shorter proof of Shirai's result for the Ginibre-type point process. In the special instance corresponding to the weighted Bergman kernel, we mimic the computations of Peres and Virag in order to describe the distribution of the number of particles inside the disc.

Dates et versions

hal-01687018 , version 1 (18-01-2018)

Identifiants

Citer

Nizar Demni, Pierre Lazag. The Hyperbolic-type Point Process. Journal of the Mathematical Society of Japan, 2019, 71 (4), pp.1137-1152. ⟨10.2969/jmsj/79417941⟩. ⟨hal-01687018⟩
178 Consultations
0 Téléchargements

Altmetric

Partager

More