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Lattès maps and the interior of
the bifurcation locus

Sébastien Biebler
Abstract

We study the phenomenon of robust bifurcations in the space of holo-
morphic maps of P2(C). We prove that any Lattès example of sufficiently
high degree belongs to the closure of the interior of the bifurcation locus.
In particular, every Lattès map has an iterate with this property. To
show this, we design a method creating robust intersections between the
limit set of a particular type of iterated functions system in C2 with a
well-oriented complex curve. Then we show that any Lattès map of suffi-
ciently high degree can be perturbed so that the perturbed map exhibits
this geometry.
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1 Introduction

1.1 Context
In the article [15], Mañé, Sad and Sullivan, and independently Lyubich in [14],

introduced a relevant notion of stability for holomorphic families (fλ)λ∈Λ of rational
mappings of degree d on the Riemann sphere P1(C), parameterized by a complex
manifold Λ. The family (fλ)λ∈Λ is J-stable in a connected open subset Ω ⊂ Λ if
in Ω the dynamics is structurally stable on the Julia set J . It can be shown that
this is equivalent to the fact that periodic repelling points stay repelling points inside
the given family. The bifurcation set is the complementary of the locus of stability.
A remarkable fact is that the J-stability locus is dense in Λ for every such family.
Moreover, parameters with preperiodic critical points are dense in the bifurcation
locus.

In higher dimension, less is known. We will only discuss the 2-dimensional case in
this paper. The research in this field mostly takes inspiration from two different types
of maps with different behaviour : polynomial automorphisms of C2 and holomorphic
endomorphisms of P2(C). Knowledge about bifurcations of polynomial automorphisms
is growing quickly. Let us quote the work of Dujardin and Lyubich ([10]) which
introduces a satisfactory notion of stability and shows that homoclinic tangencies,
which are the 2-dimensional counterpart of preperiodic critical points, are dense in the
bifurcation locus.

From now on, we are interested in the case of holomorphic endomorphisms of P2(C).
The natural generalization of the one-dimensional theory was designed by Berteloot,
Bianchi and Dupont in [3]. Their notion of stability is as follows : let (fλ)λ∈Λ be
a holomorphic family of holomorphic maps of degree d on P2(C) where Λ is simply
connected. Then the following assertions are equivalent:

1. The function on Λ defined by the sum of Lyapunov exponents of the equilibrium
measure µfλ : λ 7→ χ1(λ) + · · ·+ χk(λ) is pluriharmonic on Λ.

2. The sets (J∗(fλ))λ∈Λ move holomorphically in a weak sense, where J∗(fλ) is
the support of the measure µfλ .

3. There is no (classical) Misiurewicz bifurcation in Λ.
4. Repelling periodic points contained in J∗(fλ) move holomorphically over Λ.

If these conditions are satisfied, we say that (fλ)λ∈Λ is J∗-stable. If (fλ)λ∈Λ is not
J∗-stable at a parameter λ0, we will say that a bifurcation occurs at λ0.

A major difference with the one-dimensional case is the existence of open sets
of bifurcations. Recently, several works have shown the existence of persistent bi-
furcations near well-chosen maps. By [3], to obtain open subsets in the bifurcation
locus, it is enough to create a persistent intersection between the postcritical set and
a hyperbolic repeller contained in J∗. Dujardin gives in [9] two mechanisms leading
to such persistent intersections. The first one is based on topological considerations
and the second uses the notion of blender, which is a hyperbolic set with very special
fractal properties. Both enable to get persistent bifurcations near maps of the form
(z, w) 7→ (p(z), wd +κ). The results of Dujardin have been improved by Taflin in [18].
Taflin shows that if p and q are two polynomials of degree bounded by d such that
p is a polynomial corresponding to a bifurcation in the space of polynomials of de-
gree d, then the map (p, q) can be approximated by polynomial skew products having
an iterate with a blender and then by open sets of bifurcations. Note that the idea
of blender arised in the work of Bonatti and Diaz on real diffeomorphisms ([6]) and
already appeared in holomorphic dynamics in the work of the author ([5]).

Lattès maps are holomorphic endomorphisms of P2(C) which are semi-conjugate
to an affine map on some complex torus T (see [11] for a classification and [4] for
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a characterisation of Lattès maps in terms of the maximal entropy measure). It is
natural to be interested in these maps in the context of bifurcation theory because
their Julia set is equal to the whole projective space P2(C). This property seems to
have a great potential to create persistent intersection between the postcritical set
and the Julia set even after perturbation. Berteloot and Bianchi proved in [2] that the
Hausdorff dimension of the bifurcation locus near a Lattès map is equal to that of the
parameter space.

1.2 Main result
Dujardin asked in [9] if it was possible to find open sets of bifurcations near any

Lattès map. In this article we give a partial answer to this question. Here is our main
result :

Theorem. For every two-dimensional complex torus T, there is an integer d (depend-
ing on the torus T) such that every Lattès map defined on P2(C) of degree d′ > d
induced by an affine map on T is in the closure of the interior of the bifurcation locus
in Hold′ .

Let us remark that the degree d is unknown (the situation here is similar to Buz-
zard’s article [7]). Moreover, d depends on the torus T. This is due to the necessity
of making only holomorphic perturbations. Let us also point out that it is always
possible to find Lattès maps of arbitrarily high degree associated to a given torus T
(see the remark after Proposition 3.1.6). As an immediate consequence of the theorem
we get :

Corollary. For every Lattès map L of degree d, there is an integer n(L) such that for
every n ≥ n(L), the iterate Ln is in the closure of the interior of the bifurcation locus
in Holdn .

1.3 Outline of proof
To prove this result, we create persistent intersections between the postcritical set

and a hyperbolic repeller contained in the Julia set. Our proof has two main parts :
first, we create a toy-model which allows to obtain intersections between the limit set of
some particular type of IFS, called correcting IFS, and a curve that is "well-oriented".
Then, in a second time, we perturb the Lattès map to create both the correcting
IFS and the well-oriented curve inside the postcritical set. This construction exhibits
properties somehow similar to the blenders of Bonatti-Diaz ([6]), with the difference
that the covering property holds at the level of the tangent maps of the IFS (see also
the notion of parablenders appeared in the work of Berger ([1])).

In a first part, we develop an intersection principle (see Proposition 2.1.6). A grid
of balls G in C2 is the union of a finite number of balls regularly located at N4 vertices
of a lattice defined by a R-basis of C2. If we consider a line C, a pigeonhole argument
ensures that if C is well oriented and G has a sufficient number of balls N = N(r)
(where r is the relative size of a ball compared to the mesh of the grid) then C intersects
a ball of G. We consider a class of IFS such that each inverse branch is very close to a
homothety. When we iterate them, a drift can appear : the iterates become less and
less conformal. Our class of IFS (called correcting IFS) is designed so that they have
the property of correcting themselves from the drift. A linear correction principle is
given in Proposition 2.1.10. In subsections 2.2 and 2.3, we treat the case of a curve
close to a line and an IFS close to be linear. Our interest in such IFS is that any well-
oriented quasi-line C intersects the limit set of a correcting IFS. To prove this result,
which is Proposition 2.3.1, we ensure that at each step the quasi-line C intersects a
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grid of ball Gj which is dynamically defined with the inverse branches of the IFS.
Then we use inductively the intersection and the correction principles to ensure that
at the next step, C intersects a grid of balls Gj+1 with bounded drift. The intersection
of the grids Gj is in the limit set, so we produce an intersection between C and the
limit set of the IFS. Since the property of being correcting is open, this intersection is
persistent.

In the second part, we make three successive perturbations of a Lattès map L,
denoted by L′, L′′ and L′′′, in such a way that L′′′ has a robust bifurcation. We work
in homogenous coordinates and do explicit perturbations of the following form :

[P1 : P2 : P3]→ [P1 +R1P3 : P2 +R2P3 : P3]

where R1 and R2 are rational maps. An important technical point (Proposition 3.2.1)
is that we can choose the coordinates so that P3 splits. Then if R1 and R2 are well
chosen the degree does not change. The first perturbation L′ (Propositions 4.4.4 and
4.4.5) is intended to create a correcting IFS in a ball B in C2. Another important
technical point is that we can find some critical point c which is preperiodic, with
associated periodic point pc such that both the preperiod nc and the period npc of the
preperiodic critical orbit are bounded independently of L (see Proposition 3.3.1). Then
we want to create a well-oriented quasi-line inside the postcritical set which intersects
B. The second perturbation L′′ in Lemma 4.5.10 ensures that the postcritical set at
pc is not singular. The third and last perturbation L′′′ is given in Lemma 4.5.11. It is
intended to control the differential at pc. This allows us to fix the orientation of the
postcritical set at pc and then we use the linear dynamics of the Lattès map L on the
torus T in order to propagate this geometric property up to B (see Proposition 4.5.3).
Note that the periodic point need not lie in B. At this stage we have both a correcting
IFS and a well-oriented quasi-line so we are in position to conclude in section 5.

1.4 Plan
In section 2, we develop the theory of intersection between a quasi-line and the

limit set of a correcting IFS : the intersection principle and the correction principle
are stated in subsection 2.1 and we prove the intersection result in subsection 2.3. In
section 3, we provide background on Lattès maps and prove a few properties which
will be useful later. Some complications arise from Lattès maps whose linear part is
not the identity. In section 4, we develop the perturbative argument. After giving
some preliminaries (subsection 4.1) and fixing many constants (subsections 4.2 and
4.3), we create a correcting IFS in subsection 4.4. In subsection 4.5, we create a well
oriented curve inside the postcritical set. Finally, we conclude in section 5 by applying
the formalism of subsection 2.3 to the perturbed map L′′′.

Acknowledgments : The author would like to thank his PhD advisor, Romain
Dujardin. This research was partially supported by the ANR project LAMBDA, ANR-
13-BS01-0002.

2 Intersecting a curve and the limit set of an IFS

2.1 Linear model
In this section, we will work with an IFS, whose maps are small perturbations of

homotheties of the form 1
a
· Id with a ∈ R∗ and |a| > 1. This IFS will be obtained by

perturbating a Lattès map and its limit set will have persistent intersections with a
curve.
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Definition 2.1.1. Given a R-basis (u1, u2, u3, u4) ∈ (C2)4, a point o ∈ C2, an in-
teger N and r ∈ (0, 1), by a grid of balls we mean the union of the balls of radius
r.min1≤i≤4 ||ui|| centered at the points o + iu1 + ju2 + ku3 + klu4 where −N ≤
i, j, k, l ≤ N . We will denote it by G = (u, o,N, r). The middle part of G is
the set {o + xu1 + yu2 + zu3 + wu4, 0 ≤ |x|, |y|, |z|, |w| ≤ N

2
}. The hull of G is

the set {o + xu1 + yu2 + zu3 + wu4, 0 ≤ |x|, |y|, |z|, |w| ≤ N}. The size of G is
size(G) = 2N ·max1≤i≤4 ||ui||.

In the following, the parameter r will be bounded from below and we will let
max1≤i≤4 ||ui|| → 0 so that the radius of the balls r.min1≤i≤4||ui|| will tend to 0. The
integer N will be taken sufficiently large to satisfy some conditions depending on the
degree of the Lattès map. Herebelow the notions of "opening" and "slope" are relative
to the standard euclidean structure of C2.

Notation 2.1.2. For a non zero vector w ∈ C2 and θ > 0, we will denote Cw,θ the
cone of opening θ centered at w.

Notation 2.1.3. For any quadruple of non zero vectors w1, w2, w3, w4 in C2, we will
denote w = (w1, w2, w3, w4) its projection onto P(R8). For any matrix U ∈ GL2(C),
we simply denote by U · the induced action on P(R8).

Definition 2.1.4. The middle part of a ball (resp. the 3
4
-part) is the ball of same

center and 1
2
times its radius (resp. 3

4
times its radius).

Definition 2.1.5. A holomorphic curve C is a (ε, w)-quasi-line if C is a graph upon
a disk in C ·w of slope bounded by ε relative to the projection onto w. A (ε, w)-quasi-
diameter of a ball B is a (ε, w)-quasi-line C intersecting the ball of same center as B
and of radius 1

10
times the radius of B.

Here is our "intersection principle" :

Proposition 2.1.6. For every u ∈ (C2)4, r > 0, η > 0 and w0 ∈ C2, there exists a
neighborhood N (u) of u in P(R8), there exists θ > 0, N(r) > 0 and a vector w ∈ C2

with ||w − w0|| < η such that the following property (P) holds :

(P) For every grid of balls G = (u, o,N, r) such that u = (u1, u2, u3, u4) ∈ N (u)
and N > N(r), for every (θ, w)-quasi-line of direction in Cw,2θ intersecting the mid-
dle part of the grid of balls G, there is a non empty intersection between the line and
the middle part of one of the balls of the grid.

Moreover, property (P) stays true for w′ sufficiently close to w.

Proof. Let us first prove the result in the case of a line intersecting the grid of
balls. After composition by a real linear isomorphism if necessary, we can suppose
(u1, u2, u3, u4) = (e1, ie1, e2, ie2) where e1 = (1, 0) and e2 = (0, 1) so that the centers
of the balls of the grid have integer coordinates. Let us take w1 = α1

β
e1+ α2

β
ie1+ α3

β
e2+

α4
β
ie2 such that ||w1−w0|| < η with rational coordinates α1, α2, α3, α4, β ∈ Z. We take

m = b 10
r
c. Then, let us take the vector w = w1 + 1

mβ
e1 + 1

m2β
ie1 + 1

m3β
e2 + 1

m4β
ie2 and

N > 10βm5 = N(r). We can increase m if necessary so that w satisfies ||w−w0|| < η.

Lemma 2.1.7. There is a non empty intersection between any line of direction in
Cw,2θ intersecting the middle part of the grid of balls G and the middle part of one of
the balls of the grid of balls if θ is sufficiently small.

Proof. We divide each mesh of the lattice into m4 hypercubes. To each of these
hypercubes, we can assign the quadruple of integers given by the coordinates of a
given corner. Taking new coordinates by making a translation if necessary, we can
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suppose that the union of the middle parts of the balls of the lattice contains the
union of the hypercubes whose four coordinates are all equal to 0 modulo m. Let us
take a point x0 of the line inside the middle part of the lattice, and for every k ∈ N,
we denote : xk = x0 + k · w. Then, we have that :

bxk+βm,1c ≡ bxk,1c+ 1 (mod m) and bxk+βm2,2c ≡ bxk,2c+ 1 (mod m)

bxk+βm3,3c ≡ bxk,3c+ 1 (mod m) and bxk+βm4,4c ≡ bxk,4c+ 1 (mod m)

Since N > 10βm5 = N(r), the previous relations imply there exists some xn which
intersects some hypercube of integer coordinates congruent to (0, 0, 0, 0) inside the grid
of balls. This implies that the line intersects the middle part of one of the balls of the
grid.

This intersection persists for any line of direction in Cw,2θ and for any (u1, u2, u3, u4)
in a small neighborhood N (u) of u. Then, the result stays true if we take (θ, w)-quasi-
lines for θ sufficiently small since property in (P) is open for the C1 topology and w′

sufficiently close to w.

The following corollary gives the same conclusion as the previous result but this
time with more than one possible direction for the quadruple of vectors of the lattice.

Corollary 2.1.8. For every finite subgroupM⊂ Mat2(C), for every u ∈ (C2)4, there
exists a neighborhood N (u) of u in P(R8) such that for every r > 0, there exists θ > 0,
N(r) > 0 and a vector w ∈ C2 such that the following property (P) holds :

(P) For every U ∈M, for every grid of balls G = (u, o,N, r) such that u ∈ N (u)∪U ·
N (u) ∪ · · · ∪ Uord(U)−1 · N (u) and N > N(r), for every (θ, w)-quasi-line of direction
in Cw,2θ intersecting the middle part of the grid of balls G, there is a non empty in-
tersection between the line and the middle part of one of the balls of the grid.

Moreover, this proposition remains true for w′ sufficiently close to w.

Proof. We just have to apply ord(M) times Proposition 2.1.6.

Notation 2.1.9. We will denote by Mat2(C) the metric space of (2, 2) complex ma-
trices with the distance induced by the norm ||.|| = ||.||2,2.

In the following, x will be a real positive parameter. We remind that in a first
reading it is advised to assume that U = I2. The following proposition is the "linear
correction principle" we discussed in the introduction.

Proposition 2.1.10. For every finite subgroupM⊂ Mat2(C), there exists an integer
n > 0, (n + 1) balls V 0, V 1, ..., V n ⊂ Mat2(C) such that for every 0 < x < 1, there
exists a neighborhood Ux of I2 in GL2(C), two open sets U ′x ⊂ U ′′x ⊂ GL2(C) which are
union of balls U ′x =

⋃
1≤p≤n(U ′x)p and U ′′x =

⋃
1≤p≤n(U ′′x )p such that : (U ′x)p ⊂ (U ′′x )p

for each 1 ≤ p ≤ n with the following properties :

(i) If M ∈ Ux, U ∈M and j ∈ N, then for every M0 ∈ (x · V 0) :

U jMU(I2 +M0) ∈ U j+1 · U ′x

(ii) If M ∈ U ′x, U ∈M and j ∈ N, then there exist two integers 1 ≤ p, p′ ≤ n such that
M ∈ (U ′x)p with the property that for every M0 ∈ (x ·V 0) and for every Mp′ ∈ (x ·V p

′
),

we have :
U jMU(I2 +M0) ∈ U j+1 · (U ′′x )p

U jMU(I2 +M0)U(I2 +Mp′) ∈ U j+2 · Ux
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Proof. We consider the vector space Mat2(C) ' R8. Let us consider a covering of the
sphere of center 0 of radius r (which will be chosen later) S(0, r) by n balls B(Xi,

1
20
r)

of radius 1
20
r. The following geometrical lemma is trivial :

Lemma 2.1.11. For every 1 ≤ p ≤ n, X ∈ B(Xi,
1
10
r), we have : ||X −Xi|| < 1

2
r

Now, let us call U1 = B(I2,
9
10
r), (U ′1)p = B(I2 + Xi,

1
20
r) and (U ′′1 )p = B(I2 +

Xi,
1
10
r) for each 1 ≤ p ≤ n, U ′1 =

⋃
1≤p≤n(U ′1)p and U ′′1 =

⋃
1≤p≤n(U ′′1 )p. Increasing

the number n of open sets (U ′1)p if necessary, we can suppose that for every U ∈ M
and for each p ≤ n, there exists p′ ≤ n such that (U ′1)p ·U = U · (U ′1)p

′
and (U ′′1 )p ·U =

U · (U ′′1 )p
′′
.

Lemma 2.1.12. There exists r0 > 0 such that if r < r0, for every Y ∈ (U ′′1 )p :
Y (I2 −Xi) ∈ B(I2,

1
2
r).

Proof. The first assertion is an easy consequence of the previous lemma. Then, the
Taylor formula gives us that at 0 at the first order in X :

(I2 +X)(I2 −Xi) = I2 +X −Xi +O(r2)

Then, if r is sufficiently small, the following lemma implies that for every X ∈
B(Xi,

1
10
r) :

(I2 +X)(I2 −Xi) ∈ B(I2,
1

2
r)

This means that for every Y ∈ (U ′′1 )p : Y (I2 −Xi) ∈ B(I2,
1
2
r).

Now, it is clear it is possible to take a sufficiently small balls V 0, V 1, ..., V n cen-
tered at 0,−X1, ...,−Xn such that :
- If M ∈ U1, then for every M0 ∈ V 0, we have : M(I2 +H0) ∈ U ′1
- If M ∈ U ′1, then there exists 1 ≤ p ≤ n such that M ∈ (U ′1)p and for every M0 ∈ V 0,
we have : M(I2 +H0) ∈ (U ′′1 )p.

The previous lemma implies that if M ∈ (U ′1)p and M0 ∈ V 0 are such that M(I2 +
M0) ∈ (U ′′1 )p, then for every Mp ∈ V p, we have that : M(I2 + M0)(I2 + Mp) ∈ U1.
Then, properties (i) and (ii) are verified for x = 1 and U = I2. For each 0 < x < 1,
let us take the balls x ·V 0, x ·V 1, ..., x ·V n ⊂ Mat2(C) and let us apply the homothety
of factor x of center I2 to the sets U1, U ′1, U ′′1 , (U ′1)p and (U ′′1 )p to get the sets Ux, U ′x,
U ′′x , (U ′x)p and (U ′′x )p such that properties (i) and (ii) are verified for x < 1 and U = I2.

Let us now suppose that U 6= I2. The two inclusions U jMU(I2 + M0) ∈ U j+1 · U ′x
and U jMU(I2 + M0) ∈ U j+1 · (U ′′x )p are still true by reducing V 0 a finite number of
times if necessary. Let us take p ≤ n and p′ ≤ n such that (U ′1)p · U = U · (U ′1)p

′
and

Mp′ ∈ V p
′
. Then :

U j · (U ′′x )p · U(I2 +Mp′) = U j · U · (U ′′x )p
′
· (I2 +Mp′)

= U j+1 · (U ′′x )p
′
· (I2 +Mp′) ⊂ U j+1 · Ux

This implies that for every M0 ∈ (x · V 0) and for every Mp′ ∈ (x · V p
′
), we have

U jMU(I2 +M0) ∈ U j+1 · (U ′′x )p and U jMU(I2 +M0)U(I2 +Mp′) ∈ U j+2 · Ux, which
concludes the proof of the result.

Let us point out the following obvious result for later reference.

Proposition 2.1.13. For every u ∈ (C2)4, there exists a positive number x(u) > 0
such that for every 0 < x < x(u), for every M ∈ U ′′x , then M · u belongs to N (u).
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2.2 Quasi-linear model
Here we slightly perturb the linear maps we used before but we show we can keep

results on persistent intersections. Let us recall that the integer n was defined in
Proposition 2.1.10. Let us remind thatM⊂ Mat2(C) is a finite subgroup.

Definition 2.2.1. Let f be a linear map defined on an open subset of C2. We say
that f is of type (x, p) for any 0 ≤ p ≤ n if f can be written f = 1

af
(Af + h) with

af ∈ C∗, Af ∈ M and h ∈ x · V p (where V p was defined in Proposition 2.1.10). The
modulus |af | is called the contraction factor of f .

Let f be a smooth map defined on an open subset of C2. We say that f is quasi-
linear of type (x, p) if f = f̃ + 1

af
ε1 with f̃ = 1

af
(Af + h) linear of type (x, p) and we

have :
||ε1||C2 <

1

1000
· ||h||

The following can be seen as a consequence of Proposition 2.1.10 in the quasi-linear
setting. Remember that x(u) > 0 was defined in Proposition 2.1.13.

Proposition 2.2.2. Let M ⊂ Mat2(C) be a finite subgroup of unitary matrices.
Reducing x(u) if necessary, for every grid of balls G = (u, o,N, r), for every quasi-
linear map f of type (x, p) such that x < x(u) and 2|af | · size(G) · ||f ||C2 < r

2
, there is

a grid of balls G′ = (u′, o′, N, r′) included inside f(G) with u′ = (Df)o · u and :

r′ = r − 2|af | · size(G) · ||f ||C2

Proof. We just have to take o′ = f(o), u′ = (Df)o · u with Dfo linear of type (x, p).
Remind that by definition, the size of G is size(G) = 2N · max1≤i≤4 ||ui||. When
||f ||C2 = 0, the image of G under f is a grid of balls G′ of same relative size r′ = r,
each of ball of G′ is the image of a ball of G under f = 1

af
(Af +h). Since Af is unitary

and h is of type (x, p), reducing x(u) > 0 (independently of f) if necessary, we have
that the radius of a ball of G′ is between 1

2|af |
and 2

|af |
times the radius of a ball of

G.

If ||f ||C2 6= 0, the image of each ball of G under f still contains a ball of G′ but
this time by the Taylor formula there is an additive term smaller than size(G) · ||f ||C2

in the differential of f . Then the relative size r′ is such that :

r′ ≥ r − size(G) · ||f ||C2

1
2|af |

≥ r − 2|af | · size(G) · ||f ||C2

2.3 Intersecting a curve and the limit set of an IFS in C2

In this subsection, we give an abstract condition ensuring the existence of an
intersection (robust by construction) between a holomorphic curve in C2 and the limit
set of an IFS. This will be the model for robust bifurcations near Lattès maps. Remind
that n was defined in Proposition 2.1.10, N , w, θ in Proposition 2.1.6. Remind that
the middle part and the 3

4
-part of a ball were defined in Definition 2.1.4, the middle

part and the hull of a grid of balls were defined in Definition 2.1.1. In the following,
for a holomorphic map G defined on a (closed) ball B ⊂ C2, we will denote ||G||C2 =
maxB ||D2G||.

Proposition 2.3.1. Let (G1, ...,Gq) be a IFS given by q maps defined on a ball B ⊂ C2

of radius R > 0 satisfying the following properties :
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1.
⋃

1≤j≤q Gj(B) contains a grid of balls G1 = (u1, o1, nG, r
1) with q = (2nG + 1)4

such that each Gj(B) contains a ball of G1

2. the contraction factor of the IFS (G1, ...,Gq) is |a| ≥ 2

3. there exist (n+ 1) balls B0,B1, ...,Bn ⊂ B of radius larger than ν ·R (0 < ν <
1), such that the 3

4
-parts of B0,B1, ...,Bn are included in the hull of G1, and

satisfying the following property : for each 1 ≤ j ≤ q such that Gj(B) ⊂ Bp, Gj
is quasi-linear of type (x, p) with x < x(u1) and : Gj = g̃j+

1
a
εj = 1

a
(A+hj)+

1
a
εj

with : ||εj ||C2 < 1
1000
· ||hj ||. Moreover,

⋃
1≤j≤q Gj(Bp) contains a grid of balls

Γ1
p = (u1, o1

p, nG, s
1) for each 0 ≤ p ≤ n with s1 ≥ ν · r1

4. nG > 10
ν
·N( ν·r

1

10
)

5. |a| ·R ·max1≤j≤q(||Gj ||C2) < ν·r1
100

Let C be a (θ, w)-quasi-line of direction in Cw,2θ such that C intersects the middle part
of G1.

Then C intersects the limit set of the IFS (G1, ...,Gq).

When the conditions 1 to 5 are satisfied, we summarize them by saying that
(G1, ...,Gq) is a correcting IFS. The proposition will be the immediate consequence
of the following lemma :

Lemma 2.3.2. There exist (n + 2) sequences of grids (Gj)j≥1 = (uj , oj , nG, r
j)j≥1

and (Γjp)j≥1 = (uj , ojp, nG, s
j)j≥1 with 0 ≤ p ≤ n such that we have the following

properties :

1. For every j > 1, Gj is included inside a ball of Gj−1 and for every j > 1, there
are i1, ..., ij−1 ≤ q such that : Gj ⊂ (Gi1 ◦ ... ◦ Gij−1)(G1)

2. For every j > 1, 0 ≤ p ≤ n : Γjp ⊂ (Gi1 ◦ ... ◦ Gij−1)(Γ1
p)

3. For every j ≥ 1, D(Gi1 ◦ ... ◦ Gij−1)o1 ∈ Aj−1 · U ′′x and for j ≥ 2 :

rj ≥ r1−2|a|·R· max
1≤j≤q

(||Gj ||C2)

j−2∑
l≥0

1

|a|l and sj ≥ s1−2|a|·R· max
1≤j≤q

(||Gj ||C2)

j−2∑
l≥0

1

|a|l

4. For every j > 1, there exists 1 ≤ pj ≤ n such that the quasi-line C intersects the
middle part of a ball of Γjpj

Proof. The proof of this lemma is based on an induction procedure. We begin by an
initialisation called Case 0 where we pick the grids of balls at the first level G1 and
Γ1
p for 0 ≤ p ≤ n. We intersect for the first time the quasi-line C with a ball and we

construct the grids at the second level. Case 0 is somewhat different from the rest of
the demonstration because we do not not control the initial position of C. Then, Case
1 has to be thought as the most frequent situation : C intersects a grid of balls whose
geometry is good enough, and we can intersect C with a new grid whose geometry is
very close to the previous one. Then, it may happen a time when the geometry of this
grid is too deformed. Then we apply a "correction" (Cases 2 and 3), which leads back
to Case 1.

Case 0 : initialization

By hypothesis,
⋃

1≤j≤q Gj(B) contains a grid of balls G1 = (u1, o1, nG, r
1) and simi-

larly
⋃

1≤j≤q Gj(Bp) contains a grid of balls Γ1
p = (u1, o1

p, nG, s
1) for each 0 ≤ p ≤ n

with s1 ≥ ν · r1. So, for the first step j = 1, the (n + 2) grids of balls are already
constructed.
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By Corollary 2.1.8, C intersects in its middle part a ball of Γ1
0 : indeed, Γ1

0 is a
grid of balls such that u1 ∈ A · Ux ⊂ A · U ′′x , we have s1 ≥ ν · r1 > ν·r1

10
and

nG > 10
ν
· N( ν·r

1

10
) > N( ν·r

1

10
) (beware that the matrix A corresponds to the ma-

trix denoted by U in Corollary 2.1.8 ). Then it intersects the middle of the ball Gi1(B)
of G1 which contains this ball of Γ1

0. According to Proposition 2.2.2, there exists a grid
of balls G2 = (u2, o2, nG, r

2) included in Gi1(G1). We have u2 ∈ A · N (u1) and r2 ≥
r1−2|a|·size(G1)·max1≤j≤q(||Gj ||C2) ≥ r1−2|a|·R·max1≤j≤q(||Gj ||C2) > ν·r1

10
. Apply-

ing Proposition 2.2.2 to the grids of balls Γ1
p (0 ≤ p ≤ n), there exist (n+1) grids of balls

Γ2
p = (u2, o2

p, nG, s
2) included in Gi1(Γ1

p) for 0 ≤ p ≤ n. We have : u2 ∈ A · N (u1) and
s2 ≥ s1− 2|a| · size(Γ1

p) ·max1≤j≤q(||Gj ||C2) ≥ s1− 2|a| ·R ·max1≤j≤q(||Gj ||C2) > ν·r1
10

.

Let us now suppose by induction that the (n + 2) sequences of grids of balls satis-
fying (1),(2),(3) and (4) are constructed up to step j with the additional properties
that C intersects in its middle part a ball of Γj−1

pj−1
and that the following property is

verified :

(Q) For every i such that (Gi1 ◦ ... ◦ Gij−1 ◦ Gi)(G1) ⊂ Γj−1
pj−1

, we have :

D(Gi1 ◦ ... ◦ Gij−1 ◦ Gi)o1 ∈ A
j · U ′′x

Let us construct the grids of balls at the next step. The proof is inductive, at each step
of the proof we are in one of the three cases we are going to discuss, which differ by
two parameters. We have a quasi-line intersecting a grid of balls and we have to make
a different choice to intersect a ball corresponding to one of the (n + 1) types of dif-
ferentials we introduced earlier. Note that after Case 0, we will necessarily be in Case 1.

Case 1 : D(Gi1 ◦ ... ◦ Gij−1)o1 ∈ Aj−1 · Ux and pj−1 = 0

By construction, C intersects in its middle part a ball Bj−1
0 of the grid of balls Γj−1

0 .
Since Γj0 = (uj , oj0, nG, s

j) is a grid of balls such that Γj0 ⊂ (Gi1 ◦ ... ◦ Gij−1)(Γ1
0)

and D(Gi1 ◦ ... ◦ Gij−1)o1 ∈ Aj−1 · Ux, we have according to Proposition 2.1.13 that
uj ∈ Aj−1 · N (u1). The relative size of B0 compared to B is equal to ν, the 3

4
-part of

B0 is included in the hull of G1 and nG > 10
ν
·N( ν·r

1

10
). Then it is possible to take an

union of balls of Γj0 included in Bj−1
0 which form a grid of balls Γ′ of basis uj , relative

size sj and with ( 1
10
ν · nG)4 balls. By construction, we can take Γ′ such that C inter-

sects the middle part of Γ′. Since uj ∈ Aj−1 ·N (u1), sj > ν·r1
10

and 1
10
ν ·nG > N( ν·r

1

10
)

we have according to Corollary 2.1.8 that C intersects in its middle part a ball of Γj0.
This ball is included inside (Gi1 ◦ ... ◦ Gij )(B) with Gij quasi-linear of type 0.

In particular, C intersects the middle part of a grid of balls Gj+1 ⊂ (Gi1 ◦ ...◦Gij )(G1).
According to Propositions 2.1.10, 2.2.2 and Property (Q), Gj+1 is a grid of balls
Gj+1 = (uj+1, oj+1, nG, r

j+1) with D(Gi1 ◦ ... ◦ Gij )o1 ∈ Aj · U ′x and :

rj+1 ≥ rj − 2|a| · size(Gj) · max
1≤j≤q

(||Gj ||C2) ≥ rj − 2|a| · R

|a|j−1
· max

1≤j≤q
(||Gj ||C2)

rj+1 ≥ r1 − 2|a| ·R · max
1≤j≤q

(||Gj ||C2)

j−2∑
l≥1

1

|a|l >
ν · r1

10

Still according to Propositions 2.1.10, 2.2.2 and Property (Q), there exist (n+1) grids
of balls Γj+1

p (for 0 ≤ p ≤ n) included in (Gi1 ◦ ... ◦ Gij )(Γ1
p) such that :

sj+1 ≥ sj − 2|a| · size(Γjp) · max
1≤j≤q

(||Gj ||C2) ≥ sj − 2|a| · R

|a|j−1
· max

1≤j≤q
(||Gj ||C2)

10



sj+1 ≥ s1 − 2|a| ·R · max
1≤j≤q

(||Gj ||C2)

j−2∑
l≥1

1

|a|l >
ν · r1

10

The grids of balls Gj+1 and Γj+1
p (for 0 ≤ p ≤ n) satisfy (1),(2),(3),(4). In particular,

C intersects in its middle part a ball of Γj0.

Since D(Gi1 ◦ ... ◦ Gij )o1 ∈ Aj · U ′x and pj = 0, by Proposition 2.1.10, if (Gi1 ◦ ... ◦ Gij ◦
Gi)(G1) ⊂ Γjpj for some i, then (Gi1◦...◦Gij ◦Gi)(G1) is a grid of balls (uj,i, oj,i, nG, r

j,i)j

such that D(Gi1 ◦ ... ◦ Gij ◦ Gi)o1 ∈ Aj+1 · U ′′x , this means that (Q) is verified.

Then, after Case 1 and according to Proposition 2.1.10, only two cases can occur. If
D(Gi1 ◦ ...◦Gij )o1 ∈ Aj ·Ux and we can apply Case 1 once again. If D(Gi1 ◦ ...◦Gij )o1 ∈
Aj ·(U ′x−(U ′x∩Ux)), there exists 1 ≤ p ≤ n such that D(Gi1 ◦ ...◦Gij )o1 ∈ Aj ·(U ′)p. In
this case, we are going to "correct" the next grids in a procedure given by Cases 2 and 3.

Case 2: D(Gi1 ◦ ... ◦ Gij−1)o1 ∈ Aj−1 · (U ′x)p and pj−1 = 0

By construction, C intersects in its middle part a ball of the grid of balls Γj−1
0 . We

have according to Proposition 2.1.13 that uj ∈ Aj−1 · N (u1). Then, using the same
argument as in Case 1, we have according to Corollary 2.1.8 that C intersects in its
middle part a ball of Γjpj included inside (Gi1 ◦ ... ◦ Gij−1)(B) where Gij−1 is quasi-
linear of type 0 and pj = p′ is chosen according to Proposition 2.1.10. In particular, C
intersects the middle part of a grid of balls Gj+1 ⊂ (gi1 ◦ ... ◦ gij )(G1). According to
Propositions 2.1.10 and 2.2.2, Gj+1 is a grid of balls Gj+1 = (uj+1, oj+1, nG, r

j+1) with
D(Gi1 ◦ ... ◦ Gij )o1 ∈ Aj · (U ′′x )p, there exist (n+ 1) grids of balls Γj+1

p (for 0 ≤ p ≤ n)
included in (Gi1 ◦ ... ◦ Gij )(Γ1

p) and rj+1, sj+1 satisfy the inequalities of property 3.
The grids of balls Gj+1 and Γj+1

p (for 0 ≤ p ≤ n) satisfy (1),(2),(3),(4).

Since |a| · R ·max1≤j≤q(||Gj ||C2) < ν·r1
100

we have for every 0 ≤ p ≤ n, for every j ≥ 1

the following bounds : rj , sjp > ν·r1
10

. Since D(Gi1 ◦ ...◦Gij )o1 ∈ Aj ·(U ′x)p and pj = p′ is
chosen according to Proposition 2.1.10 (see Proposition 2.1.10 for the definition of p′),
we have for every i such that (Gi1 ◦ ... ◦Gij ◦ gi)(G1) ⊂ Γjpj that (Gi1 ◦ ... ◦Gij ◦Gi)(G1)

is a grid of balls (uj,i, oj,i, nG, r
j,i)j such that D(Gi1 ◦ ... ◦ Gij ◦ Gi)o1 ∈ Aj+1 · Ux, this

means that (Q) is verified.

After Case 2, it follows from Proposition 2.1.10 that necessarily the two conditions
of the following Case 3 are satisfied.

Case 3: D(Gi1 ◦ ... ◦ Gij−1)o1 ∈ Aj−1 · (U ′′x )p and pj−1 6= 0

Induction shows that pj−1 had been chosen to get special composition properties (see
Case 2, beware that the number denoted here by pj−1 corresponds to the number
denoted by "pj" in Case 2), let us pick pj = 0. By construction, C intersects in its
middle part a ball of the grid of balls Γj−1

pj−1
. Once again : uj ∈ Aj−1 · N (u1) and we

have according to Corollary 2.1.8 that C intersects in its middle part the ball of Γj0
included inside (Gi1 ◦ ... ◦ Gij )(B) with Gij quasi-linear of type pj−1. In particular, C
intersects the middle part of a grid of balls Gj+1 ⊂ (Gi1 ◦ ...◦Gij )(G1). Once again, we
can construct grids of balls Gj+1 and Γj+1

p (for 0 ≤ p ≤ n) which satisfy (1),(2),(3),(4)
but this time with D(Gi1 ◦ ...◦Gij )o1 ∈ Aj · Ux. In particular, C intersects in its middle
part a ball of Γjpj . Moreover, Proposition 2.1.10 still insures that (Q) is verified.

Since D(Gi1 ◦ ... ◦ Gij )o1 ∈ Aj · Ux, we are now in Case 1 once again.
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Proof of Proposition 2.3.1. According to the previous lemma, for each j ≥ 1, C in-
tersects Γjpj ⊂ (Gi1 ◦ ... ◦ Gij−1)(Γ1

pj ). But Γ1
pj ⊂

⋃
1≤j≤q Gj(Bpj ) ⊂

⋃
1≤j≤q Gj(B).

This shows that for each j ≥ 1, there exist q ≥ i1, ..., ij ≥ 1 such that C intersects
(Gi1 ◦ ... ◦ Gij )(B). This implies that C intersects the limit set of the IFS (G1, ...,Gq).

3 Preliminaries on Lattès maps

3.1 Definitions
Definition 3.1.1. A Lattès map is a holomorphic endomorphisms of P2(C) which is
semi-conjugate to an affine map on the torus. For such a map, we have the following
commutative diagram :

T L //

Π

��

T

Π

��
P2(C)

L
// P2(C)

where T is a complex torus of dimension 2, Π is a ramified covering of the projective
space P2(C) by the torus T and L is an affine map.

Proposition 3.1.2. The periodic points of any Lattès map are dense in P2(C). The
Julia set of any Lattès map is equal to P2(C).

Notation 3.1.3. In the following, for every τ ∈ C such that Im(τ) > 0, we will denote
L(τ) the lattice in C given by : L(τ) = Z + τ · Z and by L2(τ) the associated product

lattice L2(τ) = L(τ) ·
(

1
0

)
+ L(τ) ·

(
0
1

)
. We also let ξ = ei

2π
6 .

The following proposition can be found in [13].

Proposition 3.1.4. If an affine map on a torus T induces a Lattès map L on P2(C),
then the torus T is of the form C2/Λ where Λ is one of the six following lattices and
the projection Π : T → P2(C) is given (in some affine chart for Cases 1,2,3,4) by the
following formulas :

Case 1 Λ = L2(τ), (x, y) 7→ [℘(x) + ℘(y) : ℘(x)℘(y) : 1]

Case 2 Λ = L2(ξ), (x, y) 7→ [℘′(x) + ℘′(y) : ℘′(x)℘′(y) : 1]

Case 3 Λ = L2(i), (x, y) 7→ [℘2(x) + ℘2(y) : ℘2(x)℘2(y) : 1]

Case 4 Λ = L2(ξ), (x, y) 7→ [(℘′)2(x) + (℘′)2(y) : (℘′)2(x)(℘′)2(y) : 1]

Case 5 Λ = L2(i), (x, y) 7→ [(℘(x)℘(y) + e2
1)2 : (℘(x) + ℘(y))2 : (℘(x)℘(y)− e2

1)2]

Case 6 Λ = L(τ) ·
(
−1
1

)
+ L(τ) ·

(
ξ2

ξ

)
, (x, y) 7→ [℘′(x1) − ℘′(y1) : ℘(x1) − ℘(y1) :

℘′(x1)℘(y1)− ℘(x1)℘′(y1)]

where τ ∈ H, e1 = ℘( 1
2
) and (x1, y1) is the function of (x, y) given by :

x1

(
−1
1

)
+ y1

(
ξ2

ξ

)
=

(
x
y

)
In the following, we will denote π the projection from C2 to T2 = C2/Λ.
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Definition 3.1.5. A Ueda map is a holomorphic map on P2(C) such that there exists
a Lattès example L̃ on P1(C) such that we have :

L ◦ η = η ◦ (L̃, L̃)

where η is the map between P1(C)×P1(C) and P2(C) which is just the projectivization
of (x, y) 7→ (x+ y, xy), given by :

η : ([x : x′], [y : y′]) 7→ [xy′ + x′y : xy : x′y′]

Such a map L is semi-conjugate to an affine map on the complex torus T and is a
Lattès map.

Lattès maps corresponding to Cases 1,2,3 and 4 of Proposition 3.1.4 are Ueda maps.

The following is an easy consequence of Propositions 3.1 to 3.6 of [11].

Proposition 3.1.6. Let Λ, Π be one of the lattices and associated coverings de-
fined in Proposition 3.1.4. There exists a finite group of unitary matrices GLattès =
GLattès(Λ,Π) of finite order such that every Lattès map has its linear part of the form
aA where a ∈ C∗, |a| ≥ 1 and A ∈ GLattès.

Remark. Here, the scaling factor a takes discrete values. Moreover, arbitrarily large
values of |a| can be obtained (it can be easily seen by taking the composition of a
Lattès map with itself). The equality of the two topological degrees gives : (d′)2 =
|a|4 · |det(A)|2 where d′ is the algebraic degree of L.

Since according to the previous result, there are only finitely many possible linear
parts A for a Lattès map (up to multiplication by the factor a) which are all of finite
order, we can define the following integer.

Definition 3.1.7. We denote by ordLattès the product of all the orders of the possible
linear parts A for a Lattès map.

It can be found in [11] that ordLattès is equal to 62 · 82 · 12 · 24. In a first reading,
we encourage the reader to consider only the case where the linear part of the Lattès
map is equal to Id. In the other cases, the dynamical ideas are the same but with
a few additional technicalities from algebra. In particular, it is sufficient in order to
prove in some cases the corollary of the main result (see subsection 1.2).

3.2 An algebraic property of Lattès maps
The goal of this subsection is to prove the following result.

Proposition 3.2.1. For every torus T, there exists an integer i = i(T2) such that for
any k > 0, there exists an integer dk > 0 such that for any Lattès map L of algebraic
degree d > dk, coming from an affine map on T, there exists a homogenous change
of coordinates ϕ on P2(C) such that : ϕ−1 ◦ L ◦ ϕ is a holomorphic endomorphism of
P2(C) of the form [P 1 : P 2 : P 3] where the polynomial P 3 is a product of irreducible
factors P 3,j such that at least k factors P 3,j are of degree bounded by i.

Definition 3.2.2. Let v be a vector of C2 which belongs to a lattice Λ and v0 ∈ C2. We
suppose that the action of Λ upon C ·v by translation is cocompact. Let T2 = C2/Λ and
π : C2 → T2 be the natural projection. Then, then we say that π(v0 +C·v) is a compact
line of the torus T of direction v. It is compact and π(v0 + C · v) ' π(v0) + C/Λ′ · v
for some subgroup Λ′ ⊂ Λ. The family of compact lines of the torus T of direction v is
the family of all the compact lines of the torus of direction v obtained by varying v0.

13



Let us point out the fact that v ∈ Λ is not sufficient to conclude that the action of
Λ upon C · v by translation is cocompact.

Proposition 3.2.3. Let Λ, Π be one of the lattices and associated coverings defined
in Proposition 3.1.4. Let v be a vector of C2 which belongs to Λ such that the action
of Λ upon C · v by translation is cocompact. The family of images under Π of compact
lines of direction v on the torus T is a family of algebraic curves of P2(C) of degree
bounded by i = i(v,T2).

Proof. Let F be the family of images of compact lines of direction v on the torus T
under Π. The family F is a holomorphic compact family of compact curves so that by
the GAGA principle it is an algebraic family of curves and in particular their degree
is bounded by some i = i(v,T2)

Proposition 3.2.4. Let Λ, Π be one of the lattices and associated coverings defined
in Proposition 3.1.4. Then, there exists a line δ in P2(C) such that Π−1(δ) contains
at least one compact line D of T.

Proof. In each case, the following compact lines are convenient for δ and we give the
preimage compact lines D. The first four cases cover the case of a Ueda map.

Case 1 : δ = {Y = 0} Indeed, Y = 0 if and only if ℘(x)℘(y) = 0. Π−1({Y = 0})
is an union of compact lines of the torus of the form {x0} × T1 and T1 × {y0} where
the x0, y0 are in ℘−1({0}).

Case 2: δ = {Y = 0} Indeed, Y = 0 if and only if ℘′(x)℘′(y) = 0. Π−1({Y = 0}) is
an union of compact lines of the torus of the form {x′0}×T1 and T1 ×{y′0} where the
x′0, y

′
0 are in (℘′)−1({0}).

Case 3: δ = {Y = 0} Indeed, Y = 0 if and only if ℘2(x)℘2(y) = 0. Π−1({Y = 0}) is
an union of compact lines of the torus of the form {x0}×T1 and T1 ×{y0} where the
x0, y0 are in ℘−1({0}).

Case 4: δ = {Y = 0} Indeed, Y = 0 if and only if (℘′(x))2(℘′(y))2 = 0. Π−1({Y = 0})
is an union of compact lines of the torus of the form {x′0} × T1 and T1 × {y′0} where
the x′0, y′0 are in (℘′)−1({0}).

Case 5: δ = {X = Z} Indeed, X = Z if and only if (
℘(x)℘(y)+e21
℘(x)℘(y)−e21

)2 = 1, this means if

and only if 4e2
1℘(x)℘(y) = 0. Π−1({X = Z}) is an union of compact lines of the torus

of the form {x0} × T1 and T1 × {y0} where the x0, y0 are in ℘−1({0}).

Case 6: δ = {Z = 0} Indeed, Z = 0 if and only if ℘′(x1)℘(y1) − ℘(x1)℘′(y1) = 0.
Π−1({Z = 0}) contains the compact line of the torus {x1 = y1} (in the coordinates
x1, y1).

In all the cases, the preimage of δ by Π contains a compact line of the torus.

Proposition 3.2.5. If an affine map L of linear part aA on a torus T induces a
Lattès map L on P2(C) and D is the preimage under Π of the compact line δ given by
Proposition 3.2.4, then the preimage of D under L is a finite union of compact lines
of the torus. Moreover, the number of possible directions is finite. For each k > 0,
there exists dk > 0 such that for every Lattès map L of algebraic degree greater than dk
induced by an affine map L on T, there exist at least k distinct irreducible components
of degree bounded by i which are preimages of δ by L.
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Proof. From Proposition 3.1.6, we know that the linear part of L is of the form aA with
A ∈ GLattès. Let v ∈ Λ be the direction of L. Since (aA)−1(v) ∈ Λ (because L induces
a Lattès map), any preimage of D by L is a compact line of the torus. GLattès is fi-
nite and so the possible number of directions is finite. Let D′′ be a preimage of D by L.

We have the following straightforward property : for every lines ∆1,∆2 of direc-
tion v in C2, if π(∆1) = π(∆2), then every two points respectively in ∆1 and ∆2 are
joined by a vector which lies in (0, 1) · v + (0, 1) · i · v + Λ. Let us take λ1, λ2 ∈ Λ
non R-colinear such that A−1λ1 and A−1λ2 are not colinear to D′′. Then, there is
some constant ak > 0 such that if |a| > ak, then at least 100k vectors in the set
Z · (aA)−1(λ1) +Z · (aA)−1(λ2) won’t belong to (0, 1) · v+ (0, 1) · i · v+ Λ and then at
least 100k images of D′′ by translations of vectors in Z · (aA)−1(λ1) + Z · (aA)−1(λ2)
are distinct preimages of D by L.

Their images under Π are irreducible components of degree bounded by i. If |a| > ak,
at least k (this term k is not optimal and we get it by projection of the previous 100k
lines) of them are distinct preimages of δ by L. But |a| > ak if deg(L) is superior to
some value dk,Λ,A. Then, it suffices to take for dk the maximal value of dk,Λ,A when
varying Λ and A in the finite sets they belong (see Propositions 3.1.4 and 3.1.6).

Proof of Proposition 3.2.1. Let δ be a line in P2(C) as in Proposition 3.2.4. The result
is a consequence of Proposition 3.2.5 because after a suitable change of coordinates, we
can take δ = {Z = 0}. Then {P 3 = 0} contains at least the k irreducible components
of degree bounded by i which are preimages of δ by L.

3.3 A periodic orbit in the postcritical set
Remind that the integer ordLattès was defined in Definition 3.1.7. Beware that in

the following, the period of a periodic point is the exact period.

Proposition 3.3.1. There exists an integer K > 0 such that for every Lattès map L
defined on P2(C), there exists a point c in the critical curve of L which is sent after
nc iterations on a periodic point pc of period npc such that :

1. nc + npc ≤ K
2. npc is a multiple of ordLattès

Proof. Let us start with the case of one dimensional Lattès maps.

Lemma 3.3.2. Let L̃ be a one-dimensional Lattès map. There exists a critical point
c̃ of L which is sent after ñc ≤ 12 iterations on a periodic point p̃c of period ñpc ≤ 12.

Proof. The Lattes map L̃, according to Lemma 3.4 of [16], is such that the postcritical
set PL̃ of L̃ is entirely included inside the set of critical values of the covering Θ of
P1(C) by the complex torus T1. This implies that every critical point of L̃ is sent after
one iteration inside the set of the critical values of Θ. Moreover, let us bound from
above the number of critical values. This number cr is bounded from above by the
number of critical points (counted with multiplicity). Still according to [16], Θ can
only be a covering of orders ord(Θ) = 2, 3, 4 or 6. The Riemann-Hürwitz formula gives
us that : χ(T1) = ord(Θ)χ(P1(C)) − cr which implies cr = 2 · ord(Θ). In particular,
this means that the image of every critical point c̃ of L̃ is sent after ñc ≤ 12 iterations
on a periodic point p̃c of period ñpc ≤ 12 .

Lemma 3.3.3. Let L be a Ueda map. There exists a point c in the critical curve of L
which is sent after nc ≤ 12 iterations on a periodic point pc of period npc ≤ 24·ordLattès

which is a multiple of ordLattès. In particular, we have : nc +npc ≤ 12 + 24 · ordLattès.
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Proof. We take a critical point c̃ of L̃ given by the previous lemma. We take a periodic
point p̃ of L̃ of period 2 · ordLattès (it can be found in [12] that such a point actually
exists because any rational map on P1(C) of degree greater than 2 has a point of strict
period 2 · ordLattès > 4 ). Then the point c = η(c̃, p̃) is a critical point of L. It is sent
after nc ≤ 12 iterations on a periodic orbit η(p̃c, L̃

nc(p̃)). The period of p̃c is ñpc ≤ 12
and p̃ is of period 2 · ordLattès. This implies that in P1(C)× P1(C), the periodic point
(p̃c, L̃

nc(p̃)) for (L̃, L̃) is of period a multiple of 2 · ordLattès bounded by 24 · ordLattès.
Since the map η is a two-covering, in P2(C), the periodic point η(p̃c, L̃

nc(p̃)) for L
is of period npc which is a multiple of ordLattès bounded by 24 · ordLattès. Then
nc + npc ≤ 12 + 24 · ordLattès.

Let us now prove 3.3.1. It was shown in [11] (Theorems 4.2 and 4.4) that :
1. Either one map in {L,L2, L3} is a Ueda map. In this first case, the previous

lemma shows that one of the maps in {L,L2, L3} has a point of its critical curve
which is sent after at most 12 iterations onto a periodic orbit of period a multiple
of ordLattès bounded by 24 · ordLattès. This implies that there exists a critical
point of L which is sent after nc iterations onto a periodic orbit of period npc
which is a multiple of ordLattès with nc + npc ≤ 3 · (12 + 24 · ordLattès).

2. One of the maps Lk in {L,L2, L3, L6} is preserving an algebraic web associated
to a smooth cubic (see [8] for this notion). This implies (see the remark after
Theorem A in [8]) that the critical set of Lk is sent after one iteration into the
set of critical values of Π which is a curve PC. In this second case, we have
that Lk(PC) ⊂ PC and Lk induces by restriction a map on PC. Taking the
normalization of PC if necessary, we can suppose that PC is regular. There are
two possibilities. Either PC is isomorphic to P1(C) and Lk induces a rational
map so it has a periodic point of period ordLattès(again, it can be found in [12]
that such a point actually exists). Either PC is isomorphic to a complex torus
and Lk induces a multiplication on this torus which also has a periodic point of
period ordLattès. In both cases, we see that L has a critical point which is sent
after at most 6 iterations on a point of period a multiple of ordLattès bounded
by 6 · ordLattès.

Then, taking K = max(3 · (12 + 24 · ordLattès), 6 + 6 · ordLattès), the proof of the
proposition is done.

4 Perturbations of Lattès maps

4.1 Some useful lemmas
In this subsection, we prove two lemmas about complex analysis. The constants

which are involved in these lemmas will be fixed in the two next subsections.

Lemma 4.1.1. For every m > 0, for every ball B̃, for every 1 > f1 > 0, 1 > f2 > 0,
there exist constants ρ = ρ(m, B̃) > 0, σ = σ(m, B̃) > 0 such that for rational function
h of degree equal to m, there exists a ball B ⊂ B̃ ⊂ C2 of radius larger than ρ such that

∀z ∈ B, ||Dh(z)||
|h(z)| ≤ σ (1)

∀(z, z′) ∈ B2,
|h(z)|
|h(z′)| ≤ 1 + f1 (2)

∀(z, z′) ∈ B2, arg(h(z))− arg(h(z′)) ≤ f2 (3)

The proposition will be a consequence of the following lemma.
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Lemma 4.1.2. For every m > 0, for every ball B̃, there exist constants ρ = ρ(m, B̃) >
0, τ = τ(m, B̃) > 0 such that for rational function h of degree m, there exists a ball
B ⊂ B̃ ⊂ C2 of radius larger than ρ such that :

infB|h|
supB|h|

≥ τ

Proof. Let us denote Rnorm the set of rational maps of degree m which can be written
h = h1

h2
where h1 and h2 are two polynomials whose coefficients (aij) and (bij) are

such that : max(aij) = max(bij) = 1. Rnorm is a compact set. For a given h ∈ Rnorm,
since h 6= 0, there exists ρh > 0, τh > 0, a ball Bh ⊂ B̃ ⊂ C2 of radius ρh such that :

infBh |h|
supBh |h|

≥ τh

The constants ρh and τh can be chosen locally constant for rational functions in Rnorm

near h. Since Rnorm is compact, if we choose ρ = ρ(n, B̃) the minimum of the ρh and
τ = τ(n, B̃) the minimum of the τh for a finite covering of Rnorm, we have : for rational
map h ∈ Rnorm of degree m, there exists a ball B ⊂ B̃ ⊂ C2 of radius larger than ρ
such that :

infB|h|
supB|h|

≥ τ

Since every rational map h of degree m can be written h = Cste · h̃ with h̃ ∈ Rnorm,
the result is true for every rational map of degree m.

Proof of Proposition 4.1.1. We fix such a ball B. Up to multiplying h by a constant,
which does not affect (1), we can suppose that |h|∞ = 1. We denote 1

τ
= σ. Then by

the Cauchy inequality we have : ||Dh(z)||
|h(z)| ≤

1
τ

= σ, this is (1). Then (2) and (3) are
simple consequences of (1). The proposition is proven.

Let us point out for further the following interpolation result. Remind that the
integer n was defined in Proposition 2.1.10.

Lemma 4.1.3. Let us take n balls V1, ...,Vn ⊂ Mat2(C). There exists an integer
d̃ = d̃(V1, ...,Vn) and two real numbers 1 > f1 > 0 and 1 > f2 > 0 such that for every
ξ > 0, there exists a constant ν = ν(n, ξ) > 0 such that : for every ball B ⊂ C2 of radius
bounded by 1, for every θ0 ∈ R, there exist a polynomial map H = H(V1, ...,Vn,B, θ0)
of C2 of degree d̃ and (n+ 1) balls B0, ...,Bn ⊂ B of radius greater than ν · rad(B) such
that on each Bj :

∀t ∈ (1− f1, 1 + f1),∀θ ∈ (θ0 − f2, θ0 + f2) : −eiθ · t ·DH ∈ Vj and 2 · |H|∞ < ξ

Proof. We call ṽ1, ..., ṽn the centers of the balls V1, ...,Vn ⊂ Mat2(C). Let us take the
ball B = B(0, 1). For a given θ0 ∈ [0, 2π], there exists H having its differentials at
n points pi ∈ B(0, 1) satisfying H(pi) = 0 and DHpi = e−i.θ0 · ṽj by interpolation.
Taking sufficiently small balls B1, ...,Bn of radius ν around the points pi, this gives the
result for a given θ0 ∈ [0, 2π] and t = 1. Moreover, since the required condition are
open, H can be taken uniform on a small interval of values of θ and a small interval
(1 − f1, 1 + f1) of values of t. Then d̃, ν and f1 can be taken locally constant in θ.
Since [0, 2π] is compact, we take the maximal value of d̃ and the minimal values of
ν and f1 on a finite covering of [0, 2π] by intervals where d̃, ν and f1 can be taken
constant on each interval of the covering. In particular, since this covering is finite,
there exists f2 > 0 such that for each θ0 ∈ [0, 2π], it is possible to find constant
H,m, ν, f1 for every θ ∈ (θ0 − f2, θ0 + f2). This gives us the result for the fixed ball
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B(0, 1). Then, the result follows for any ball B(γ, r) with r ≤ 1 by taking the map
H̃ = (r·Id+γ)◦H◦( 1

r
·Id−γ). It is easy to check that : −eiθ0 ·t·DH̃ = −eiθ0 ·t·DH ∈ Vj

and 2 · |H̃|∞ < 2 · r · |H|∞ < ξ.

4.2 Fixing the constants relative to the torus T and the
matrix of the linear part A

In the two next subsections, we fix some notation and define a certain number of
constants and objects in the following specified order. As a guide for the reader objets
denoted in roman letters are relative to P2(C), and gothic letters are relative to the
torus.

1. We fix a torus T and euclidean coordinates π : C2 → T. We fix the projection
Π : T→ P2(C) as in Proposition 3.1.4. We fix the group GLattès = GLattès(T,Π)
given by Proposition 3.1.6.

2. We fix a Fubini-Study metric ||.||FS on P2(C).
3. We fix the matrix of the linear part A with A ∈ GLattès. We fix a line δ as in

Proposition 3.2.5. We fix affine coordinates [z1, z2, z3] on P2(C) as in Proposition
3.2.1 in which δ = {z3 = 0}. In the following, we dehomogenize by working in
the chart {[z1, z2, z3] : z3 6= 0} on P2(C).

4. We first need a proposition.

Notation 4.2.1. We will denote : V j = vj + rj · B(0, 1) (remind the balls V j

were defined in Proposition 2.1.10). 1
4
· V j will denote the ball of same center

as V j and with quarter of radius.

We fix p0 ∈ T such that Π(p0) ∈ {[z1, z2, z3] : z3 6= 0} and DΠp0 is invertible.
There exist invertible matrices M1, ...,Mn such that for every j :

(DΠ−1)Π(p0)·
(
DΠp0 ·A·(DΠ−1)Π(p0)

)−1

·Mj ·
(
DΠp0 ·A·(DΠ−1)Π(p0)

)−1

·DΠp0 = vj

Then, by continuity we have :

Lemma 4.2.2. There exists a ball B̃ = B̃(T, A) ⊂ T (remind we have fixed
euclidean coordinates on T) where Π is invertible such that Π(B̃) b {[z1, z2, z3] :
z3 6= 0}, a constant σ′ = σ′(T, A) > 0 and n balls V1, ...,Vn ⊂ Mat2(C) with :

∀pi ∈ B̃, (DΠ
−1

)Π(p1)·
(
DΠp2

·A·(DΠ
−1

)Π(p3)

)−1
·Vj ·

(
DΠp4

·A·(DΠ
−1

)Π(p5)

)−1
·DΠp6

∈
1

4
·V j

Lemma 4.2.3. Reducing B̃ if necessary, there exists a constant σ′ = σ′(T, A) >
0 such that for every w with ||w|| = 1, we have :

inf
p∈B̃
||D(Π ◦A ◦Π−1)Π(p)(w)|| ≥ σ′ · (sup

p∈B̃
||DΠp||) · ||A|| · (sup

p∈B̃
||(DΠ−1)Π(p)||)

Proof. We take :

σ′ =
1

2
·

inf(Sp((D(Π ◦A ◦Π−1)Π(p0))

(supp∈B̃ ||DΠp||) · ||A|| · (supp∈B̃||(DΠ−1)Π(p)||)

and the condition holds reducing the size of the ball B̃ around p0 if necessary.

We fix such a ball B̃, a constant σ′ > 0 and n balls V1, ...,Vn ⊂ Mat2(C) of
centers ṽ1, ..., ṽn.

5. We will use the following notation :

Notation 4.2.4. In the following, we still denote ||M || the norm ||.||2,2 of a fixed
matrix. We will denote ||DΠ|| = supp∈B̃ ||DΠp|| and ||DΠ−1|| = supp∈B̃ ||(DΠ−1)Π(p)||.
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6. We fix B̃ = B̃(T, A, B̃) a ball included in Π(B̃). There exists some constant
ι > 0 such that for every ball B ⊂ B̃ of radius r, Π−1(B) ∩ B̃ contains a ball of
radius ι · r. We fix such a constant ι. We take the restriction of ||.||FS on B̃.
Since B̃ b {[z1, z2, z3] : z3 6= 0}, this restriction is equivalent to the euclidean
metric on {[z1, z2, z3] : z3 6= 0}.

7. We fix the integer m = d̃ and the reals f1, f2 > 0 given by Lemma 4.1.3 associ-
ated to the balls V1, ...,Vn ⊂ Mat2(C).

8. We fix the constants ρ = ρ(m) > 0, σ = σ(m) > 0 given by Lemma 4.1.1
associated to the integer m = d̃, the ball B̃ and the two reals f1, f2.

9. We take a constant ξ = ξ(T,Π,Vi, A, σ, σ′) satisfying the following inequality :

0 < ξ <
1

4
·min1≤j≤nrj ·min(

σ′ · ||A||2

2||Π−1||C2 · ||DΠ|| ,
||A||2

2σ · ||DΠ||3 · ||DΠ−1||3 )

10. From 4.2.7 and 4.2.8 Lemma 4.1.3 gives us a new constant ν = ν(m, ξ) > 0.
11. Corollary 2.1.8 gives us a constant N( νρ

10
).

12. We fix a constant d1 defined as follows. Let us point out that for any Lattès
map L of algebraic degree d′ coming from an affine map L on T, of linear part
aA, the equality of the two topological degrees gives : (d′)2 = |a|4 · |det(A)|2.
There are (d′)2 = |a|4 · |det(A)|2 disjoint preimages of the torus T by the affine
map L of volume vol(T)

|a|4·|det(A)|2 . Let us denote volr the volume of a ball of radius

r. Let us take d1 such that both (d1)2 · volι·ρ
10·vol(T)

> ( 1
ν
· N( νρ

10
))4 and (d1)2· ≥

100 · maxA∈GLattès |det(A)|2. In particular, this last condition implies that for
any Lattès map of algebraic degree d′ ≥ d1, we have |a| ≥ 2.

13. i was defined in Proposition 3.2.1 and K in Proposition 3.3.1, we fix nH =
E(m+2K

i
)+1. We fix d2 = dnH+100 (this integer was also defined in Proposition

3.2.1). We fix d3 = 2K.
14. We fix d = max(d1, d2, d3).

4.3 Fixing the constants relative to the Lattès map
15. Let L be a Lattes map L = [P 1 : P 2 : P 3] of degree d′ > d associated to an

affine map on T of linear part aA.
16. According to Proposition 3.2.1, in the coordinates [z1, z2, z3] which were fixed

in 3. we have that :

P 3(z1, z2, z3) =
∏

1≤j≤J

P 3,j(z1, z2, z3)

with P3,j irreducible and deg(P 3,i) ≤ i = i(T2) for J ≥ j ≥ J −m − 2K + 1
(remind that K was defined in Proposition 3.3.1). In plain words, the last
factors of the product have degree bounded by a constant i depending only on
the chosen torus T. We will consider the restriction of L to {[z1, z2, z3] : z3 6=
0} ∩ L−1({[z1, z2, z3] : z3 6= 0}). We have :

L(z1, z2) = (
P1(z1, z2, 1)

P3(z1, z2, 1)
,
P 2(z1, z2, 1)

P3(z1, z2, 1)
)

We denote Pi(z1, z2) = P i(z1, z2, 1).
17. There exists a periodic point pc of period npc (which is a multiple of ordLattès)

which belongs to the postcritical set of L, according to Proposition 3.3.1, we fix
it once for all. We call c the point of the critical curve such that pc is in the
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orbit of c and we have nc + npc ≤ K according to Proposition 3.3.1, where K is
independent of the choice of T and L. Since pc is repelling, we can suppose that
c is the only critical point in {c, L(c), ..., pc, ..., L

npc−1}. We choose homogenous
polynomials of degree 1 denoted by Q1, ..., Qnc+npc−1 such that :

Q1(c) = Q2(L(c)) = ... = Qnc(pc) = Qnc+npc−1(Lnpc−1(pc)) = 0 (4)

It is possible to take these polynomials such that at least one of the coefficients
of z1 and z2 is non equal to 0 so we take the polynomials with this property.

18. Putting
P̃3(z1, z2) =

∏
J−2(nc+npc)−m+1≤j≤J

P3,j(z1, z2),

let us denote by h the rational function defined by :

h(z1, z2) =

∏
1≤j≤nc+npc−1(Qj(z1, z2, 1))2

P̃3(z1, z2)

19. We denote : h(Π(p0)) = |h(Π(p0))|eiθ1 .
20. We choose the ball B ⊂ B̃ of radius larger than ρ according to Lemma 4.1.1

applied to the ball B̃ chosen in 4.2.6 and to the the constants m, f1, f2 chosen
in 4.2.7. We pick a ball B ⊂ Π−1(B) ∩ B̃. According to 4.2.6, B can be taken
with its radius equal to ι · ρ and this bound on its radius (not the ball itself,
but the bound on its radius) is independent of L. Since d′ ≥ d ≥ d1 with
(d1)2 · volι·ρ

10·vol(T)
> ( 1

ν
· N( νρ

10
))4, there are at least ( 1

ν
· N( νρ

10
))4 preimages of B

by the affine map L inside B which form a grid of balls.
21. We fix the polynomial map H = H(V1, ...,Vn,B, θ0) of C2 of degree m = d̃ and

(n + 1) balls B0, ...,Bn ⊂ B given by Lemma 4.1.3 and corresponding to this
ball B and the value θ0 = θ1 − 2 arg(a) where θ1 was defined in 4.3.19. Each of
them has its radius larger than ν times the radius of B. We take (n + 1) balls
B0 ⊂ B ∩ Π−1(B0), ...,Bn ⊂ B ∩ Π−1(Bn) of radius ι · (ν · rad(B)). Then the
quotient rad(Bj)

rad(B)
is equal for each j ∈ {1, ..., n} to ι·(ν·rad(B))

rad(B)
= ι·(ν·ρ)

ι·ρ = ν. Let
us point out that this bound on the radius is still independent of L.

4.4 Creating a correcting IFS
Notation 4.4.1. In the following we construct three holomorphic families of holomor-
phic maps of P2(C) which are successive perturbations of L : L′ = L′ε1 , L

′′ = L′′ε1,ε2
and L′′′ = L′′′ε1,ε2,ε3 where ε1, ε2, ε3 ∈ D. We have L′0 = L, L′′ε1,0 = L′ε1 and
L′′′ε1,ε2,0 = L′′ε1,ε2 . We often forget the εi and just denote L′, L′′, L′′′ for simplicity
when there is no risk of confusion.

Notation 4.4.2. We consider the q = q(d) preimages of Π(B) under L included inside
Π(B) and the corresponding local inverses (gj)1≤j≤q which form an IFS. We denote by
(Gj)1≤j≤q the corresponding maps on B. For further perturbations L′, L′′, L′′′ of L,
we consider the analogous objects and we call them (g′j)1≤j≤q, (g′′j )1≤j≤q, (g′′′j )1≤j≤q
and (G′j)1≤j≤q, (G′′j )1≤j≤q, (G′′′j )1≤j≤q.

Notation 4.4.3. In the following, we will consider the continuation p(L′) (resp.
p(L′′), p(L′′′)) of the periodic point pc. This one is well defined according to the im-
plicit function Theorem since pc is repelling. In fact, for the successive perturbations
that we will consider, we will always have p(L′) = p(L′′) = p(L′′′) = pc.

Proposition 4.4.4. Let L be a Lattès map of degree d′ > d coming from an affine
map on T, of linear part aA. Let L = (P1

P3
, P2
P3

) be the expression of L in the chart
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{[z1, z2, z3] : z3 6= 0} defined in 4.2.3. Then the family of rational maps (L′ε1)ε1 where
L′ = L′ε1 = (

P ′1
P3
,
P ′2
P3

) defined by :

P ′1(z1, z2) = P1(z1, z2) + ε1h(z1, z2)P3(z1, z2)H1(z1, z2) (5)

P ′2(z1, z2) = P2(z1, z2) + ε1h(z1, z2)P3(z1, z2)H2(z1, z2) (6)

where h was defined in 4.3.18, H in 4.3.21 and ε1 ∈ D is such that :

1. For every ε1 ∈ D, L′ = L′ε1 extends to a holomorphic map of P2(C) of the same
degree as L and (L′ε1)ε1 is a holomorphic family of holomorphic maps of P2(C)

2. p(L′) = pc is periodic for L′ and is in the forward orbit of c : pc = (L′ε1)nc(c)
and (L′ε1)npc(pc) = pc. Moreover D(L′ε1)c = D(L)c, · · · , D(L′ε1)(L′ε1

)npc−1(pc)
=

DLLnpc−1(pc)
for every ε1 ∈ D

Proof. Let first remark that since P3 admits at least nH = (E(m+2K)
i

) + 1) fac-
tors of degree bounded by i, the degrees of hP3H1 and hP3H2 are bounded by
deg(P1) = deg(P2). Since the property of being a holomorphic mapping is open,
L′ is a holomorphic mapping for sufficiently small values of ε1. For simplicity we will
suppose that this is true for ε1 ∈ D after rescaling if necessary. Since ε1 is just a linear
factor, (L′ε1)ε1 is a holomorphic family of holomorphic maps of P2(C). Thus item 1 is
proven. Item 2 is a consequence of the quadratic terms Q2

j in h (see 4.3.18).

Proposition 4.4.5. Let a Lattès map L of degree d′ > d coming from an affine map
on T, of linear part aA. We are working in the chart {[z1, z2, z3] : z3 6= 0} defined
in 4.2.3. In this chart, L = (P1

P3
, P2
P3

). Let L′ as in Proposition 4.4.4. Then there
exists t > 0 such that for every 0 ≤ p ≤ n, for every real 0 < ε1 < 1, there exists a
ball Bp ⊂ B ⊂ C2 of radius rad(Bp) ≥ ν · rad(B) and a neighborhood Xε1 of L′ in
Hold′ such that for every L′′′ ∈ Xε1 , if j is such that G′′′j (B) ⊂ Bp then G′′′j is of type
(tε1, p).

Proof. In the following, we omit the index j on gj , g′j , Gj and G′j and we take 0 <
ε1 < 1. Let us remind we work in the chart : [z1, z2, z3] 7→ ( z1

z3
, z2
z3

) on P2(C). We first
show the result for L′. We have for every p ∈ B ∩ G′(B) :

DG′p −DGp = DΠ−1
g′(Π(p)) ·Dg

′
Π(p) ·DΠp −DΠ−1

g(Π(p)) ·DgΠ(p) ·DΠp =

(DΠ−1
g′(Π(p)) −DΠ−1

g(Π(p))) ·Dg
′
Π(p) ·DΠp +DΠ−1

g(Π(p)) · (Dg
′
Π(p) −DgΠ(p)) ·DΠp

with :

Dg′Π(p)−DgΠ(p) =
(
I2+(DLg(Π(p)))

−1·D(ε1.h.H)g(Π(p))

)−1

·(DLg(Π(p)))
−1−(DLg(Π(p)))

−1

= −(DLg(Π(p)))
−1 · ε1D(h.H)g(Π(p))(DLg(Π(p)))

−1 + o(ε1)

D(h.H)g(Π(p)) = h(g(Π(p))) ·DHg(Π(p)) +H(g(Π(p))) ·Dhg(Π(p))

Then we have :

Dg′p−Dgp = η1+η2−DΠ−1
g(Π(p))·(DLg(Π(p)))

−1·ε1·h(g(Π(p)))·DHg(Π(p))·(DLg(Π(p)))
−1·DΠp+o(ε1)

where η1 = (DΠ−1
g′(Π(p)) −DΠ−1

g(Π(p))) ·Dg
′
Π(p) ·DΠp and :

η2 = −DΠ−1
g(Π(p)) · (DLg(Π(p)))

−1 · ε1 ·H(g(Π(p))) ·Dhg(Π(p)) · (DLg(Π(p)))
−1 ·DΠp
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Lemma 4.4.6. For any p ∈ B ∩ G′(B) we have :

−DΠ−1
g(Π(p))·(DLg(Π(p)))

−1·ε1·h(g(Π(p)))·DHg(Π(p))·(DLg(Π(p)))
−1·DΠp ∈

1

4|a|2 ·ε1·|h(Π(p0))|·V j

Proof. This is due to the fact that H has been taken so that −h(Π(p))

a2 · D(H)g(Π(p))

belongs to |h(Π(p0))|
|a|2 · Vj and by the definition of Vj (see Lemma 4.2.2).

Lemma 4.4.7. We have : ||η1|| < 1
4|a|2 · ε1 · |h(Π(p0))| ·min1≤j≤n rj

Proof. Since 2 · |H|∞ ≤ ξ and by Lemma 4.2.3 for every p ∈ B ∩ G′(B) we have :

||g′(Π(p))− g(Π(p))|| ≤ ε1 · |h(g(Π(p)))|.ξ
inf||w||=1||D(Π ◦ aA ◦Π−1)(w)||

<
ε1 · |h(g(Π(p)))| · ξ

σ′ · |a| · ||A|| · ||DΠ|| · ||DΠ−1||

Then we have :

||η1|| = ||(DΠ−1
g′(Π(p)) −DΠ−1

g(Π(p))) ·Dg
′
Π(p) ·DΠp||

≤ ||DΠ−1
g′(Π(p)) −DΠ−1

g(Π(p))|| · ||Dg
′
Π(p)|| · ||DΠ||

<
ε1 · |h(g(Π(p)))| · ξ

σ′ · |a|||A|| · ||DΠ|| · ||DΠ−1|| · ||Π
−1||C2 · ||Dg′Π(p)|| · ||DΠ||

<
ε1 · 2|h(Π(p0))| · ξ

σ′ · |a| · ||A|| · ||DΠ|| · ||DΠ−1|| · ||Π
−1||C2 · ( 1

|a| · ||A|| · ||DΠ|| · ||DΠ−1||) · ||DΠ||

<
1

4|a|2 · ε1 · |h(Π(p0))| ·min1≤j≤nrj

by the inequality on ξ.

Lemma 4.4.8. We have : ||η2|| < 1
4|a|2 .ε1.|h(Π(p0))|.min1≤j≤n rj,

Proof.

||η2|| ≤ ||DΠ−1|| · ||DL−1|| · ε1 · ||H|| · ||Dh|| · ||DL−1|| · ||DΠ||

≤ ||DΠ−1|| ·
( 1

|a| · ||A|| · ||DΠ|| · ||DΠ−1||
)2

· ε1 · ξ · ||Dh|| · ||DΠ||

=
1

|a|2 · ε1 · ξ ·
1

||A||2 · ||DΠ||3 · ||DΠ−1||3 · ||Dh||

≤ 1

4|a|2 · ε1 · |h(Π(p0))| ·min1≤j≤nrj

by the inequality on ξ and because : ∀z ∈ B, ||Dh(z)|| ≤ σ ·|h(z)| ≤ σ ·2|h(Π(p0))|.

The three previous lemmas imply that on B∩G′(B), DG′p−DGp belongs to t · V j

with t = ε1·|h(Π(p0))|
|a|2 . Then by continuity, for a given ε1 (and then a given L′),

there exists a neighborhood Xε1 of L′ in Hold′ such that for every sufficiently small
perturbation L′′′ ∈ Xε1 of L′, if j is such that G′′′j (B) ⊂ Bp then G′′′j is of type
(tε1, p). This proves the first item of Proposition 4.4.5. The proof of Proposition 4.4.5
is complete.
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4.5 Well oriented postcritical set
Notation 4.5.1. We fix pc a point of Π−1(pc).

Notation 4.5.2. We denote by PCrit(L) the postcritical set of L, this is the set
PCrit(L) =

⋃
n≥0(L)n(Crit(L)) where Crit(L) is the critical set of L. The notation

will be the same for perturbations L′, L′′, L′′.

We pick a vector w1 and a value θ given by Corollary 2.1.8 corresponding to
the 4-tuple u of the four vectors of a basis of Λ. Still according to Corollary 2.1.8,
there exists an open set of admissible values for w1 so we choose to take it in the
following way. The map Lnpc·ord(A) is an affine map on the torus T of linear part
anpc·ord(A) · Anpc·ord(A) = anpc·ord(A) · Inpc2 = anpc·ord(A) · I2 with |a| ≥ 2 (see 3.2.12).
Points with dense forward orbit for Lnpc·ord(A) are dense in T. Moreover, since npc
divides npc · ord(A), pc is a fixed point of Lnpc·ord(A). We pick w1 such that pc + w1

is a point of dense forward orbit for Lnpc·ord(A). Since the linear part of Lnpc·ord(A) is
anpc·ord(A) · I2 and pc is a fixed point of Lnpc·ord(A), we have that the whole forward
orbit of pc+w1 by Lnpc·ord(A) is contained in the line going through pc and pc+w1. In
particular, this line is dense in the torus T. We pick w2 such that (w1, w2) is a basis
of C2 and w2 is not tangent to Π−1(PCrit(L)) at pc.

Here is the main result of this subsection :

Proposition 4.5.3. Let B be as in 4.3.20. There exists a neighborhood W(L) of L
in Hold′ such that : every map L′ = L′ε1 as in Proposition 4.4.4 is accumulated by
maps L′′′ε1,ε2,ε3 = L′′′ inW(L) such that there exists a component Γ ⊂ Π−1(PCrit(L′′′))
whose restriction to B is a (θ, w1)-quasi-diameter (remind that this notion was defined
in Definition 2.1.5).

The following lemma is well known.

Lemma 4.5.4. Let L be a linear automorphism of C2 and Γ ⊂ C2 a complex subman-
ifold through 0 such that :

1. the eigenvalues λ, µ of L are such that |λ| > |µ| > 1. Let wλ and wµ be the
respective eigenvectors.

2. wµ is transverse to Γ at 0
Then, (Lk(Γ))k≥0 converges uniformly to the line C · wλ in the C1-topology.

Proof. We can take wλ = e1 and wµ = e2. The eigenvector wµ of µ is transverse to Γ at
0. Then locally Γ is a graph γ over a small disk Dγ ⊂ D : {(t, γ(t)) : t ∈ Dγ)}. For every
k ∈ N, Lk({(t, γ(t)) : t ∈ Dγ)}) = {(λk · t, µk ·γ(t)) : t ∈ Dγ}. Since |λ| > 1, for large k,
we have D ⊂ λk · Dγ . Then Lk({(t, γ(t)) : t ∈ Dγ)}) contains {(s, µk · γ( s

λk
)) : s ∈ D}.

But there exists Cγ > 0 such that |γ(t)| < Cγ · t near 0. Then µk · γ( s
λk

) < Cγ · (µλ )k

converges uniformly to 0 on Dγ . Then, for every θ′ > 0, there exists k such that
Lk({(t, γ(t)) : t ∈ Dγ)}) contains {(s, γ̃(s)) : s ∈ D} = {(s, µk · γ( s

λk
) : s ∈ D} with

|γ̃(s)| ≤ θ′. Then by the Cauchy inequality this implies that |(γ̃)′(s)| ≤ θ′.

Notation 4.5.5. We denote for every (λ, µ) ∈ (C∗)2 by Diagλ,µ the following map
from C2 to C2 :

Diagλ,µ : (z1, z2) 7→ (λ · z1, µ · z2)

Lemma 4.5.6. The linear part A ∈ GLattès of L is diagonalizable.

Proof. Since GLattès is a finite group, we have that A is of finite order. In particular,
Aord(GLattès) = I2. Then R(A) = 0 where R(X) = Xord(GLattès) − 1 has simple roots.
Then A is diagonalizable.
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Lemma 4.5.7. Let (fε)ε∈D3 be a holomorphic family of holomorphic germs defined
in a neighborhood U of 0 such that for every ε ∈ D3, D(fε)0 is diagonalizable and 0
is a repelling fixed point for fε. We denote by λ(ε) and µ(ε) the eigenvalues of fε at
0 and wλ and wµ be associated eigenvectors. We suppose that in the family (fε)ε∈D3 ,
wλ = w1 and wµ = w2 are constant. We suppose that |λ(0)|2 > |µ(0)| ≥ |λ(0)|. Then
there exists a neighborhood U ′ ⊂ U of 0 and a neighborhood V of 0 in D3 such that for
every ε ∈ V, fε is holomorphically linearizable in U ′ : there exists a holomorphic map
ϕfε defined on U ′ such that :

Diagλ(ε),µ(ε) ◦ ϕfε = ϕfε ◦ fε

Moreover, ϕfε varies continuously with ε in the C0 topology.

The proof will be based on the following well known result (see Theorem 6.2.3 in
[17]).

Proposition 4.5.8. Let F be an invertible map with repulsive fixed point 0. Suppose
that the eigenvalues λ, µ of DF0 satisfy the condition |λ|2 > |µ| ≥ |λ| > 1. Then F is
holomorphically conjugate to Diagλ,µ.

For the resonant case we use the following lemma :

Lemma 4.5.9. Let F be an invertible map in a neighborhood of 0 with a repelling
fixed point at 0. Let us denote the eigenvalues of DF0 by λ, µ. Let us suppose that ϕ1

and ϕ2 are two holomorphic maps conjugating F to Diagλ,µ. Then ϕ
−1
1 ◦ϕ2 is linear.

Proof. Let us write χ = ϕ−1
1 ◦ ϕ2 = (χ1, χ2) and χj(z) =

∑
k≥1 χ

j
k · z

k where zk =

zk1
1 · z

k2
2 and j ∈ {1, 2}. We have that χ commutes with Lλ,µ. Then :

λ ·
∑
|k|≥1

χ1
k · zk =

∑
|k|≥1

χ1
k · (Diagλ,µ(z))k and µ ·

∑
|k|≥1

χ2
k · zk =

∑
|k|≥1

χ2
k · (Diagλ,µ(z))k

In particular, since λ, µ 6= 1 this implies that χ1
k = χ2

k = 0 for every |k| > 1.

We now prove Lemma 4.5.7.

Proof of Lemma 4.5.7. We take a neighborhood V of 0 in D3 such that for every ε ∈ V
we have that |λ(ε)|2 < |µ(ε)| and |µ(ε)|2 < |λ(ε)|. It is a consequence of Theorem 6.2.3
of [17] (this result goes back to Poincaré) that for every ε ∈ V, fε is holomorphically
linearizable at 0 in some neighborhood U ′ε of 0. We show here that the linearizing map
ϕfε varies continuously with ε in the C0 topology. This will imply in particular that
the neighborhood U ′ε can be taken uniform U ′ in ε.

For this we follow the proof of Theorem 6.2.3 of [17] and its notations. The proof
is divided into 3 steps.

The first step itself is divided into two steps. The first one is a linear change of
coordinates that we will denote by ϕlin. ϕlin is not unique but it becomes unique if
w1 is sent on e1 and w2 is sent on e2. Thus this map ϕlin = ϕlin(fε) is uniquely defined
and varies continuously in the C0 topology. The second one is a change of coordinates
that we will denote ϕ1(z) = (ϕ1

1(z1), z2) such that ϕ1
1(z1) = z1+

∑+∞
k=0

1
λk+1 ·A(fkε (z1)).

There exists a constant K such that |A(z1)| ≤ K|z1|2 for every map fε with ε ∈ V (re-
ducing V if necessary). Since ϕ1

1 is the sum of a normally convergent series whose terms
all vary continuously, ϕ1

1 and then ϕ1◦ϕlin vary continuously in the C0 topology. After
these two changes of coordinates, fε is reduced to the form (z1, z2) 7→ (λ · z1, g(z1, z2))
with g varying continuously.
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In the second step, one defines some infinite product γ(z) =
∏+∞
k=0(1 + B(Fn(z)).

We have |B(z)| ≤ K′|z|2 and reducing V if necessary, we can suppose this estimate is
true for every ε ∈ V. Then γ is normally convergent and varies continuously. The map
ψ such that ∂ψ

∂z2
then still varies continuously, just as ϕ2(z) = (z1, ψ(z)). After this

third change of coordinates, fε is reduced to the form (z1, z2) 7→ (λ · z1, µ · z2 + h(z1))
with h varying continuously.

Finally, the last change of coordinates ϕ3 is of the form (z1, η(z)) with η(z) = z2+q(z1)

and q(z1) = q1 · z1 + q2 · z2
1 + ... with qj =

hj
µ−λj for each j ≥ 2. Since h varies con-

tinuously, so do the coefficients qj for j ≥ 2. Since ϕ = ϕ3 ◦ ϕ2 ◦ ϕ1 ◦ ϕlin for every
ε ∈ V, we have that q1 is uniquely defined by Lemma 4.5.9 and varies continuously.
Finally, q and then η and ϕ3 vary continuously. This implies that for every ε ∈ V,
fε is holomorphically linearizable by ϕfε = ϕ3 ◦ ϕ2 ◦ ϕ1 ◦ ϕlin. Moreover, ϕfε varies
continuously in the C0 topology.

Remind that c is a point of P2(C) which was defined in 4.3.17 and that the notation
p(L′′) was introduced at the beginning of section 4.4. In the following lemma, we
perturb L′ = L′ε1 into L′′ = L′′ε1,ε2 to ensure that the critical point c is not singular.

Lemma 4.5.10. There exists a holomorphic family of holomorphic maps of P2(C)
denoted by (L′′ε1,ε2)(ε1,ε2)∈D2 such that :

1. for every ε1 ∈ D, L′′ε1,0 = L′ε1

2. pc is in the postcritical set of L′′ε1,ε2 and the postcritical set is not singular at
pc for ε2 6= 0

3. p(L′′ε1,ε2) = pc is periodic for L′′ε1,ε2 and is in the forward orbit of c : pc =
(L′′ε1,ε2)nc(c) and (L′′ε1,ε2)npc(pc) = pc

4. D((L′′ε1,ε2)npc)pc = D(Lnpc)pc

Proof. We first make an invertible linear change of coordinates so that in the new
coordinates [x1, x2, x3], the point c is equal to [0, 0, 1] and the point L(c) is in the
chart {x3 6= 0}. We choose homogenous polynomials of degree 1 in the variables
x1, x2, x3 denoted by R2, . . . , Rnc+npc−1 such that :

R2(L(c)) = · · · = Rnc−1(Lnc−1(c)) = Rnc(pc) = · · · = Rnc+npc−1(Lnpc−1(pc)) = 0
(7)

R2(c) 6= 0, · · · , Rnc−1(c) 6= 0 , Rnc(c) 6= 0, · · · , Rnc+npc−1(c) 6= 0 (8)

This is possible since c, . . . , Lnpc−1(pc) are distinct. We denote :

γ1(x1, x2) =
∏

2≤k≤nc+npc−1

(Rk(x1, x2, 1))2

In {x3 6= 0}, the critical set of L′ is the set {Jac(P ′) = 0} where Jac(P ′) is equal to
∂P ′1
∂x1
· ∂P

′
2

∂x2
− ∂P ′1

∂x2
· ∂P

′
2

∂x1
. The critical set at c is not singular if the gradient of the map

(x1, x2) 7→ ∂P ′1
∂x1
· ∂P

′
2

∂x2
− ∂P ′1

∂x2
· ∂P

′
2

∂x1
is non zero at c, in particular if :

∂

∂x1
(Jac(P ′))(c) =

∂2P ′1
∂x2

1

· ∂P
′
2

∂x2
+
∂P ′1
∂x1
· ∂2P ′2
∂x1∂x2

− ∂2P ′1
∂x1∂x2

· ∂P
′
2

∂x1
− ∂P ′1
∂x2
· ∂

2P ′2
∂x2

1

6= 0

If this is the case, there is nothing to do and we can take L′′ = L′. Let us suppose
this is not so. We distinguish two cases.
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First case : we suppose that ∂P ′2
∂x2
6= 0. For every ε2 ∈ C we consider the follow-

ing perturbation of L′ defined by L′′ε1,ε2 = L′′ = (
P ′′1
P ′′3
,
P ′′2
P ′′3

) with P ′′2 = P ′2, P ′′3 = P ′3
and :

P ′′1 (x1, x2) = P ′1(x1, x2) + ε2 · γ1(x1, x2) · x2
1

Because of the choice of the degree d in 4.2.13 and 4.2.14, we have deg(P ′′1 ) ≤ deg(P ′1).
Since the property of being a holomorphic mapping is open, L′′ is a holomorphic
mapping on P2(C) for sufficiently small values of ε2. Then, item 1 is obvious. Be-
cause of the quadratic terms R2

k in the definition of γ1, c stays preperiodic (with the
same periodic orbit p(L′′ε1,ε2) = pc) for L′′ε1,ε2 , this implies item 3. Still because of
the quadratic terms R2

k in γ1 we have that DL(c)(L
′′
ε1,ε2) = DL(c)(L

′
ε1) = DL(c)L,

· · · , D(L)npc−1(pc)
(L′′ε1,ε2) = D(L)npc−1(pc)

(L′ε1) = D(L)npc−1(pc)
L, so we both have

that pc is in the postcritical set of L′′ε1,ε2 and that item 4 is true. Moreover we have
DcL

′′ = DcL so c is still critical. The only second order partial derivative which
depends on ε2 is : ∂2P ′′1

∂x2
1

(c) =
∂2P ′1
∂x2

1
(c) + 2 · γ1(c) · ε2 with γ1(c) 6= 0. Then the map

ε2 7→ ∂
∂x1

(Jac(P ′′))(c) is an affine map in ε2 of non zero coefficient equal to 2·γ1(c)· ∂P
′
2

∂x2
.

Then, it is non zero for ε2 ∈ D∗. This implies that the critical set is not singular at
c. Then there is a component of the postcritical set at c which is not singular. Since
DLc, · · · ,DLLnpc (pc) are not singular, there is a component of the postcritical set at
pc which is not singular. Thus item 2 is true.

Second case : we suppose that ∂P ′2
∂x2

= 0. For every ε2 ∈ C we consider the following

perturbation of L′ defined by L′′ε1,ε2 = L′′ = (
P ′′1
P ′′3
,
P ′′2
P ′′3

) with P ′′3 = P ′3 and :

P ′′1 (x1, x2) = P ′1(x1, x2) + ε2 · γ1(x1, x2) · x1

P ′′2 (x1, x2) = P ′2(x1, x2) + ε2 · γ1(x1, x2) · x1x2

Because of the choice of the degree d in 4.2.13 and 4.2.14, we have deg(P ′′1 ) ≤ deg(P ′1)
and deg(P ′′2 ) ≤ deg(P ′2). Since the property of being a holomorphic mapping is open,
L′′ is a holomorphic mapping for sufficiently small values of ε2. Then, item 1 is obvious.
As in the first case, items 3 and 4 are true and pc stays postcritical. We have :

DcL
′′ = DcL

′ + ε2 · γ1(c) ·
(

1 0
0 0

)
Since at the point c, we have both ∂P ′2

∂x2
= 0 and Jac(P ′)(c) =

∂P ′1
∂x1
· ∂P

′
2

∂x2
− ∂P ′1
∂x2
· ∂P

′
2

∂x1
= 0,

this implies that we still have Jac(P ′′)(c) = 0 and the point c is still critical. The only
second order partial derivative which depends on ε2 is : ∂2P ′′2

∂x1∂x2
(c) =

∂2P ′2
∂x1∂x2

(c)+γ1(c) ·
ε2 with γ1(c) 6= 0. Then the map ε2 7→ ∂

∂x1
(Jac(P ′′))(c) is a polynomial of degree 2

in ε2 of non zero coefficient of degree 2 equal to (γ1(c))2. Then, rescaling if necessary,
it is non zero for ε2 ∈ D∗. As in case 1, we conclude that item 2 is satisfied. This
concludes the proof of the proposition.

Remind that w1 and w2 were defined just at the beginning of this subsection. The
notation p(L′′) was introduced at the beginning of section 4.4. In the following lemma,
we perturb the periodic orbit pc in such a way that we can choose the two eigenvalues
at this periodic point .

Lemma 4.5.11. There exists a holomorphic family of holomorphic maps of P2(C)
denoted by (L′′′ε1,ε2,ε3)(ε1,ε2,ε3)∈D3 such that :

1. for every ε1, ε2 ∈ D, L′′′ε1,ε2,0 = L′′ε1,ε2
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2. p(L′′′) = pc is periodic for L′′′ ((L′′′)npc(pc) = pc) and is in the postcritical set
of L′′′ (pc = (L′′′)nc(c))

3. if ε3 > 0, then the eigenvalues λ, µ of the periodic point pc are such that :
|µ|2 > |λ| > |µ|

4. the eigenvector wµ associated to µ at pc is equal to DΠpc(w2) and then transverse
to the postcritical set at pc

5. the eigenvector wλ associated to λ at pc is equal to DΠpc(w1)

Proof. We first make an invertible linear change of coordinates so that in the new
coordinates [y1, y2, y3], the point pc is equal to [0, 0, 1] and the point L(pc) is in the
chart {y3 6= 0}. We choose homogenous polynomials of degree 1 in the variables
y1, y2, y3 denoted by S1, . . . , Snc−1, Snc+1, . . . , Snc+npc−1 such that :

S1(c) = S2(L(c)) = · · · = Snc−1(Lnc−1(c)) = Snc+1(L(pc)) = · · · = Snc+npc−1(Lnpc−1(pc)) = 0
(9)

S1(pc) 6= 0 , S2(pc) 6= 0, · · · , Snc−1(pc) 6= 0 , Snc+1(pc) 6= 0, · · · , Snc+npc−1(pc) 6= 0
(10)

This is possible since c, . . . , Lnpc−1(pc) are distinct. We denote :

γ2(y1, y2) =
∏
j 6=nc

(Sj(y1, y2, 1))2

For every ε3, κi ∈ C we consider the following perturbation of L′′ defined by L′′′ε1,ε2,ε3 =

L′′′ = (
P ′′′1
P ′′′3

,
P ′′′2
P ′′′3

) with P ′′′3 = P ′′3 and :

P ′′′1 (y1, y2) = P ′′1 (y1, y2) + ε3 · γ2(y1, y2) · (κ1y1 + κ2y2)

P ′′′2 (y1, y2) = P ′′2 (y1, y2) + ε3 · γ2(y1, y2) · (κ3y1 + κ4y2)

Because of the choice of the degree d in 4.2.13 and 4.2.14, we have deg(P ′′′1 ) ≤ deg(P ′′1 )
and deg(P ′′′2 ) ≤ deg(P ′′2 ). Since the property of being a holomorphic mapping is open,
L′′′ is a holomorphic mapping on P2(C) for sufficiently small values of ε3. Then, item
1 is obvious. Then, because of the quadratic terms S2

j in γ2, it is clear that c stays
preperiodic (with the same periodic orbit pc) for L′′′ and DL(pc)L

′′′ = DL(pc)L, · · · ,
DLnpc−1(pc)

L′′′ = DLnpc−1(pc)
L. This shows item 2. In the chart {y3 6= 0}, we have :

DpcL
′′′ = DpcL

′′ + ε3 · γ2(pc) ·
(
κ′1 κ′2
κ′3 κ′4

)
with γ2(pc) 6= 0. We have DL(pc)L

′′′ = DL(pc)L, · · · , DLnpc−1(pc)
L′′′ = DLnpc−1(pc)

L.
We also have the equality : DpcL · ... ·DLnpc−1(pc)

L = anpc · I2 because the period npc
is a multiple of the order of A (see Proposition 3.3.1). Then we have :

Dpc(L
′′′)npc = anpc ·

(
I2 + ε3 · γ2(pc) ·

(
κ′1 κ′2
κ′3 κ′4

)
· (DpcL)−1

)
Let us denote by M the matrix whose two columns are DΠpc(w1) and DΠpc(w2). We
choose : (

κ′1 κ′2
κ′3 κ′4

)
=

1

γ2(pc)
·M ·

(
1 0
0 0

)
·M−1 · (DpcL)

Then :

Dpc(L
′′′)npc = anpc ·M ·

(
1 + ε3 0

0 1

)
·M−1

This equality implies that items 3,4 and 5 are satisfied and this ends the proof of the
proposition.
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We are now able to prove Proposition 4.5.3.

Proof of Proposition 4.5.3 . We consider the holomorphic family of holomorphic maps
(L′′′ε1,ε2,ε3)(ε1,ε2,ε3)∈D3 . According to Lemma 4.5.11, every L′′′ε1,ε2,ε3 is diagonalizable
and admits w1 and w2 as eigenvectors. Then according to Lemma 4.5.7, we can take
some uniform open set set Blin ⊂ P2(C), some ball Blin, such that there exists ϕL′′′
defined on Blin with values in Blin ⊂ C2 such that L′′′ is linearizable by ϕL′′′ : Blin 7→
Blin. Moreover ϕL′′′ varies continuously with L′′′. We denote by Blin some ball in
Π−1(Blin) ⊂ T.

Lemma 4.5.12. Let Γ′ be the diameter of Blin of direction w1. Then there exists n0

such that
⋃

1≤n≤n0
Ln(Γ′) contains a (0, w1)-quasi-diameter of B.

Proof.
⋃

1≤n≤+∞ L
n(Γ′) is dense in T by the choice of w1. Then there exists n0 such

that
⋃

1≤n≤n0
Ln(Γ′) contains a (0, w1)-quasi-diameter of B.

From Lemma 4.5.9, we know that ϕL ◦Π is linear. Rewriting this result in P2(C)
we have :

Corollary 4.5.13. Let Γ′′ be the diameter of Blin of direction (ϕL ◦ Π)(w1). Then
there exists n0 such that Π−1(

⋃
1≤n≤n0

Ln(ϕ−1
L (Γ′′)) ∩ B) contains a (0, w1)-quasi-

diameter of B.

By continuity of L′′′ 7→ ϕL′′′ (see Lemma 4.5.7), we have the following perturbation
result :

Corollary 4.5.14. There exists θ′ > 0, some neighborhood W2(L) of L in Hold′
and an integer n0 such that for every (θ′, (ϕL ◦ Π)(w1))-quasi-diameter Γ′′ of Blin,
for every L′′′ ∈ W2(L), we have that Π−1(

⋃
1≤n≤n0

(L′′′)n(ϕ−1
L′′′(Γ

′′)) ∩ B) contains a
(θ, w1)-quasi-diameter of B.

Remind that w2 is not tangent to Π−1(PCrit(L)) at pc. We can take a neighbor-
hood W3(L) of L such that every map in W3(L) for which pc is in the postcritical
set still satisfies this condition. We consider W(L) =W1(L) ∩W2(L) ∩W3(L). Since
the conclusions 1,2,3 and 4 of Lemma 4.5.11 are satisfied, according to Lemma 4.5.4,
there exists a disk Γ̃ included in the postcritical set of L′′′ such that Π−1(Γ̃) contains
a (θ′, w1)-quasi-diameter of Blin (remind θ′ was defined in Lemma 4.5.14). According
to Lemma 4.5.14,

⋃
1≤n≤n0

(L′′′)n(Π−1(Γ̃)) contains a (θ, w1)-quasi-diameter of B so
the conclusion follows.

5 Proof of the main result
We consider the perturbations L′′′ inW(L) as in the previous subsection and such

that L′′′ = L′′′ε1,ε2,ε3 ∈ Xε1 (the neighborhood Xε1 of Lε1 was introduced in Proposition
4.4.5, all maps in Xε1 have a correcting IFS). Let us consider the union of all the sets
G′′′j (B) ⊂ B for 1 ≤ j ≤ q. Reducing W(L) if necessary, by continuity it contains a
grid of balls G1 = (u1, o1, nG, r

1) with r1 ≥ ιρ
2

(see 4.3.20).

Proposition 5.0.15. There exists an integer d (depending only from T) such that for
every Lattès map L inducing an affine map on T of linear part aA, every map L′′′ as
given in Proposition 4.5.3 is such that :

1.
⋃

1≤j≤q G
′′′
j (B) contains a grid of balls G1 = (u1, o1, nG, r

1) with q = (2nG+1)4

such that each G′′′j (B) contains a ball of G1

2. the contraction factor of the IFS (G′′′1 , ...,G′′′q ) is |a| ≥ 2
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3. there exist (n + 1) balls B0,B1, ...,Bn ⊂ B of relative size larger than ν, such
that the 3

4
-parts of B0,B1, ...,Bn are included in the hull of G1, and satisfying

the following property : for each 1 ≤ j ≤ q such that G′′′j (B) ⊂ Bp, G′′′j is quasi-
linear of type (x, p) with x < x(u1) and : G′′′j = g̃j + 1

a
εj = 1

a
(A + hj) + 1

a
εj

with : ||εj ||C2 < 1
1000
· ||hj ||. Moreover,

⋃
1≤j≤q G

′′′
j (Bp) contains a grid of balls

Γ1
p = (u1, o1

p, nG, s
1) for each 0 ≤ p ≤ n with s1 ≥ ν · r1

4. nG > 10
ν
·N( ν·r

1

10
)

5. |a| ·R ·max1≤j≤q(||G′′′j ||C2) < ν·r1
100

6. there exists a (θ, w)-quasi-diameter of B inside Π−1(PCrit(L′′′))

Proof. The first item was stated before the proposition. The second one comes from
4.2.12 and the fourth one from 4.3.20. The fifth one can be obtained from a reduction
of W(L) if necessary. The last one is a consequence of Proposition 4.5.3. We show
the third item. The existence of the balls Bp of relative size ν is a consequence
of Proposition 4.4.5. The inclusions B0,B1, ...,Bn ⊂ B and the inequality on nG
ensure that there are sufficiently many G′′′j (B) so that the 3

4
-parts of B0,B1, ...,Bn

are included in the hull of G1. Let us now consider the (n+ 1) sets
⋃
j≤q G

′′′
j (Bp) ⊂ B

for 0 ≤ p ≤ n. Reducing W(L) a last time if necessary, by continuity each of them
contains a grid of balls Γ1

p = (u1, o1
p, nG, s

1) with s1 ≥ ν·r1
2

. The property stated in
item 3 is also a consequence of Proposition 4.4.5.

The intersection
⋂
j≥1 Gj(Π(B)) is in the Julia set of L. Since

⋂
j≥1 Gj(Π(B)) is a

basic repeller, it is a consequence of Lemma 2.3 of [9] that
⋂
j≥1 G

′′′
j (Π(B)) is in the

Julia set of L′′′ for sufficiently small perturbations L′′′ of L. According to Proposition
2.3.1 (beware that the maps G′′′j in our case correspond to the maps Gj of the proposi-
tion), we can conclude this gives us persistent intersections between the Julia set and
the postcritical set. This is true for every L′′′ defined as before and we know that
L is accumulated by such maps inside Hold′ . By [2] (see Proposition 2.5 of [9] for a
result in our case), we know that persistent intersections between the postcritical set
and a hyperbolic repeller inside the Julia set imply the presence of open sets inside
the bifurcation locus. Since they are only finitely many A ∈ GLattès for a given torus
T, d is well defined. This proves the final result.
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