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NUMERICAL APPROXIMATIONS OF MCKEAN ANTICIPATIVE BACKWARD

STOCHASTIC DIFFERENTIAL EQUATIONS ARISING IN VARIATION

MARGIN REQUIREMENTS ∗

A. Agarwal1, S. De Marco2, E. Gobet3, J. G. López-Salas4, F. Noubiagain5

and A. Zhou6

Abstract. We introduce a new class of anticipative backward stochastic differential equations with a
dependence of McKean type on the law of the solution, that we name MKABSDE. We provide existence
and uniqueness results in a general framework with relaxed regularity assumptions on the parameters.
We show that such stochastic equations arise within the modern paradigm of derivative pricing where
a central counterparty (CCP) demands each member to deposit initial and variation margins to cover
their exposure. In the case when the variation margin is proportional to the Conditional Value-at-Risk
(CVaR) of the contract price, we apply our general result to obtain existence and uniqueness of the
price as a solution of a MKABSDE. We also provide several linear and non-linear approximations,
which we solve using different numerical methods.

Keywords: non-linear pricing, CVar variation margins, anticipative BSDE, weak non-linearity.
MSC2000: 60H30, 65C05, 65C30

Résumé. Nous introduisons une nouvelle famille d’équations différentielles stochastiques rétrogrades
anticipatives ayant une dépendance par rapport à la loi de la solution, que nous appelons MKABSDE.
Ces équations apparaissent dans le contexte moderne de la valorisation de dérivés en présence d’appels
de marge de la part d’une chambre de compensation. Nous démontrons un résultat d’existence et unicité
sous des hypothèses relativement faibles sur les coefficients de l’équation. Dans le cas oú les appels de
marge sont proportionnels à la VaR conditionnelle (CVaR) du prix du contrat, notre résultat général
entrâıne l’existence et unicité pour le prix en tant que solution d’une MKABSDE. Nous considérons
plusieurs approximations linéaires et non-linéaires de cette équation, que nous abordons avec différentes
méthodes numériques.
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1. Variation margin and McKean Anticipative BSDE (MKABSDE)

1.1. Financial context and motivation

The paradigm of linear risk-neutral pricing of financial contracts has changed in the last few years, influenced
by the regulators. Nowadays, banks and financial institutions have to post collateral to a central counterparty
(CCP, also called clearing house) in order to secure their positions. Everyday, the CCP asks each member to
post a certain amount according to the exposure of their Over-the-Counter (OTC) contracts. The initial and
variation margin deposits correspond to a collateral in order to cover a new contract at inception, respectively
to cover the daily change in market value of the contract (see, for example, [Bas15] for details). In this work we
focus only on the variation margin requirement (VM for short), and we investigate how it affects the valuation
and hedging of the contract. As stated in [Bas15, p.11 3(c)], “VM protects the transacting parties from the
current exposure that has already been incurred by one of the parties from changes in the mark-to-market value
of the contract after the transaction has been executed. The amount of VM reflects the size of this current
exposure. It depends on the mark-to-market value of the derivatives at any point in time.” In this work, we will
consider VM deposits that are proportional to the Conditional Value-at-Risk (CVaR) of the contract price over
a future period of lenght ∆ (typically ∆ = 1 week or 10 days). We focus on CVaR rather than Value-at-Risk
(VaR) due to its pertinent properties; it is indeed well established that CVaR is a coherent risk measure whereas
VaR is not [ADEH99].

We make some distinctions in our analysis according to the way the contract price is computed in the presence
of VM. While [Bas15] refers to a mark-to-market value of the contract that can be seen as an exogenous value, we
investigate the case where this value is endogenous and is given by the value of the hedging portfolio including the
additional VM costs. By doing so, we introduce a new non-linear pricing rule, that is: the value of the hedging
portfolio Vt together with its hedging component πt solve a stochastic equation including a term depending
on the law of the solution (due to the CVaR). We justify that this problem can be seen as a new type of
anticipative Backward Stochastic Differential Equation (BSDE) with McKean interaction [McK66]. From now
on, we refer to this kind of equation as MKABSDE, standing for McKean Anticipative BSDE; the subsection
1.2 gives a toy example of such a model. In Section 2, we derive stability estimates for these MKABSDEs,
under general Lipschitz conditions, and prove existence and uniqueness results. In Section 3, we verify that
these results can be applied to a general complete Itô market [KS98], accounting for VM requirements. Then,
we derive some approximations based on classical non-linear BSDEs whose purpose is to quantify the impact
of choosing the reference price for VM as exogenous or endogenous, and to compare with the case without VM.
Essentially, in Theorem 3.1 we prove that the hedging portfolio with exogenous or endogenous reference price
for VM coincide up to order 2 in ∆ when ∆ is small (which is compatible with ∆ equal to few days). Section 4 is
devoted to numerical experiments: we solve the different approximating BSDEs using finite difference methods
in dimension 1, and nested Monte Carlo and regression Monte Carlo methods in higher dimensions.

1.2. An example of anticipative BSDE with dependence in law

We start with a simple financial example with VM requirements, in the case of a single tradable asset. A
more general version with a multidimensional Itô market will be studied in Section 3. Let us assume that the
price of a tradable asset, denoted S, evolves accordingly to a geometric Brownian motion

dSt = µStdt+ σStdWt, (1.1)

where (µ, σ) ∈ R× R+ and W is an one-dimensional Brownian motion.
In the classical financial setting (see, for example, [MR05]), consider the situation where a trader wants to

sell a European option with maturity T > 0 and payoff Φ (ST ), and to hedge it dynamically with risky and
riskless assets S and S0, where S0

t = ert for t ∈ [0, T ] and r is a risk-free interest rate. We denote by (V, π) ,
the value of the self-financing portfolio and π the amount of money invested in the risky asset, respectively. In
order to ensure the replication of the payoff at maturity, the couple (V, π) should solve the following stochastic
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equation dVt = r (Vt − πt) dt+ πt
dSt
St

, t ∈ [0, T ],

VT = Φ(ST ).
(1.2)

Eq (1.2) is a BSDE since the terminal condition of V is imposed. Because all the coefficients are linear in V
and π, (1.2) is a linear BSDE (see [KPQ97] for a broad overview on BSDEs and their applications in finance).

Accounting for VM requirement will introduce an additional cost in the above self-financing dynamics. We
assume that the required deposit is proportional to the CVaR of the portfolio over ∆ days (typically ∆ = 10
days) at the risk-level α (typically α = 99%). The funding cost for this deposit is determined by an interest
rate R.1 Therefore, the VM cost can be modelled as an additional term in the dynamics of the self-financing
portfolio as

dVt =
(
r (Vt − πt)−R CVaRα

Ft (Vt − Vt+∆)
)

dt+ πt
dSt
St

, (1.3)

where the CVaR of a random variable L, conditional on the underlying sigma-field Ft at time t, is defined by
(see [RU00])

CVaRα
Ft(L) = inf

x∈R
E
[

(L− x)+

1− α
+ x
∣∣∣Ft] . (1.4)

Since Vt+∆ may be meaningless as t gets close to T , in (1.3) one should consider V(t+∆)∧T instead. Rewriting
(1.3) in integral form together with the replication constraint, we obtain a BSDE

Vt = Φ(ST ) +

∫ T

t

(
−r (Vs − πs)− µπs +R CVaRα

Fs
(
Vs − V(s+∆)∧T

))
ds−

∫ T

t

πsσdWs, t ∈ [0, T ]. (1.5)

The conditional CVaR term is anticipative and non-linear in the sense of McKean [McK66], for it involves the
law of future variations of the portfolio conditional to the knowledge of the past. This is an example of McKean
Anticipative BSDE, which we study in broader generality in Section 2.

Coming back to the financial setting, (V, π) stands for a valuation rule which treats the VM adjustment as
endogenous (in the sense that CVaR is computed on V itself). One could alternatively consider that CVaR is
related to an exogenous valuation (the so-called mark-to-market), for instance the one due to (1.2) (assuming
that (1.2) models the market evolution of the option price). Later in Section 3, we give quantitative error bounds
between these different valuation rules. Without advocating one with respect to the other, we rather compare
their values and estimate (theoretically and numerically) how well one of their output prices approximates the
others. As a consequence, these results may serve as a support for banks and regulators for improving risk
management and margin requirement rules.

1.3. Literature review on anticipative BSDEs and comparison with our contribution

BSDEs were introduced by Pardoux and Peng [PP90]. Since then, the theoretical properties of BSDEs with
different generators and terminal conditions have been extensively studied. The link between Markovian BSDEs
and partial differential equations (PDEs) was studied in [PP92]. Under some smoothness assumptions, [PP92]
established that the solution of the Markovian BSDE corresponds to the solution of a semi-linear parabolic
PDE. In addition, several applications in finance have been proposed, in particular by El Karoui and co-authors
[KPQ97] who considered the application to European option pricing in the constrained case. In fact, [KPQ97]
showed that, under some constraints on the hedging strategy, the price of a contingent claim is given by the
solution of a non-linear convex BSDE.

1This interest rate corresponds to the difference of a funding rate minus the interest rate paid by the CCP for the deposit,
typically R ≈ 3%
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Recently, a new class of BSDEs called anticipated BSDEs (ABSDEs for short) was introduced by Peng
and Yang [PY09]. The main feature of this class is that the generator includes not only the value of the
solution at the present, but also at a future date. As in the classical theory of BSDEs, there exists a duality
between these ABSDEs and stochastic differential delay equations. In [PY09] the existence, uniqueness and
a comparison theorem for the solution is provided under a kind of Lipschitz condition which depends on the
conditional expectation. One can also find more general formulations of ABSDE in Cheredito and Nam [CN17].
As in the case of classical BSDEs, the question of weakening the Lipschitz condition considered in [PY09] has
been tackled by Yang and Elliott [YE13], who extended the existence theorem for ABSDEs from Lipschitz to
continuous coefficients, and proved that the comparison theorem for anticipated BSDEs still holds. They also
established a minimal solution.

At the same time, Buckdahn and Imkeller [BI09] introduced the so-called time-delayed BSDEs (see also
Delong and Imkeller [DI09, DI10]). As opposed to the ABSDEs of [PY09], in this case the generator depends
on the values of the solution at the present and at past dates, weighted with a time delay function. Assuming
that the generator satisfies a certain kind of Lipschitz assumption depending on a probability measure, Delong
and Imkeller [DI10] proved the existence and uniqueness of a solution for a sufficiently small time horizon or
for a sufficiently small Lipschitz constant of the generator. These authors also showed that, when the generator
is independent of y and for a small delay, existence and uniqueness hold for an arbitrary Lipschitz constant.
Later, Delong and Imkeller [DI12] provided an application of time-delayed BSDEs to problems of pricing and
hedging, and portfolio management. This work focuses on participating contracts and variable annuities, which
are worldwide life insurance products with capital protections, and on claims based on the performance of an
underlying investment portfolio.

More recently, Crépey et al. [CESS17] have worked in a setting which is close to the problem we tackle here,
introducing an application of ABSDEs to the problem of computing different types of valuation adjustments
(XVAs) for derivative prices, related to funding (X=F), capital (X=F) and credit risk (X=C). In particular,
they focus on the case where the variation margins of an OTC contract can be funded directly with the economic
capital of the bank involved in the trade, giving rise to different terms in the price evolution equation. The
connection of economic capital and funding valuation adjustment leads to an ABSDE, whose anticipated part
consists of a conditional risk measure of the martingale increment of the solution over a future time period.
These authors have showed that the system of ABSDEs formed by the FVA and the KVA processes is well-
posed. Mathematically, the existence and uniqueness of the solution to the system is established through the
convergence of Picard iterations.

Inspired by the dynamics of the self-financial portfolio in 1.5, we consider a new type of ABSDEs (the McKean
ABSDEs) where the generator depends on the value of the solution, but also on the law of the whole trajectory
between the present and a future date, possibly up to maturity. We state a priori estimates on the differences
between the solutions of two such MKABSDEs. Based on these estimates, we derive existence and uniqueness
of the solution to a MKABSDE via a fixed-point theorem.

2. A general McKean Anticipative BSDE

In order to give meaning to (1.5) and to more general (multidimensional) cases such as eq (3.2) below, we
now introduce a general mathematical setup for studying existence and uniqueness of solutions.

2.1. Notation

Let T > 0 be the finite time horizon and let (Ω,F ,P) be a probability space equipped with a d-dimensional
Brownian motion, where d ≥ 1. We denote (Ft)t∈[0,T ] the filtration generated by W , completed with the P-null
sets of F . Let t ∈ [0, T ], β ≥ 0 and m ∈ N∗. We will make use of the following notations:

• For any a = (a1, ..., am) ∈ Rm, |a| =
√∑m

i=1 a
2
i .

• Given a process (xs)s∈[0,T ], we set xt:T := (xs)s∈[t,T ].

• L2
T (Rm) =

{
Rm-valued FT -measurable random variables ξ such that E

[
|ξ|2
]
<∞

}
.
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• H2
β,T (Rm) =

{
Rm-valued and F-adapted stochastic processes ϕ such that E

[∫ T
0
eβt|ϕt|2dt

]
<∞

}
. For

ϕ ∈ H2
β,T (Rm), we define ||ϕ||H2

β,T
=

√
E
[∫ T

0
eβt|ϕt|2dt

]
.

• S2
β,T (Rm) =

{
Continuous processes ϕ ∈ H2

β,T (Rm) such that E
[
supt∈[0,T ] e

βt|ϕt|2
]
<∞

}
. For ϕ ∈

S2
β,T (Rm), we define ||ϕ||S2β,T =

√
E
[
supt∈[0,T ] e

βt|ϕt|2
]
.

Note that H2
β,T (Rm) = H2

0,T (Rm) and S2
β,T (Rm) = S2

0,T (Rm), for any β ≥ 0. The additional degree of freedom

given by the parameter β in the definition of the space norm will be useful when deriving a priori estimates (see
Lemma 2.2).

2.2. Main result

Our aim is to find a pair of processes (Y,Z) ∈ S2
0,T (R)×H2

0,T

(
Rd
)

satisfying

Yt = ξ +

∫ T

t

f (s, Ys, Zs,Λs (Ys:T )) ds−
∫ T

t

ZsdWs, t ∈ [0, T ], (2.1)

for a certain mapping Λt(·) to be defined below. We call Equation (2.1) McKean Anticipative BSDE (MKAB-
SDE) with parameters (f,Λ, ξ). In order to obtain existence and uniqueness of solutions, we require that the
mappings f and Λ satisfy some suitable Lipschitz properties (specified below), and that the terminal condition
ξ be square integrable.

Assumption (S). For any y, z, λ ∈ R×Rd ×R, f(·, y, z, λ) is a F-adapted stochastic process with values in R
and there exists a constant Cf > 0 such that almost surely, for all (s, y1, z1, λ1), (s, y2, z2, λ2) ∈ [0, T ]×R×Rd×R,

|f (s, y1, z1, λ1)− f (s, y2, z2, λ2)| ≤ Cf (|y1 − y2|+ |z1 − z2|+ |λ1 − λ2|) .

Moreover, E
[∫ T

0
|f (s, 0, 0, 0)|2 ds

]
<∞.

Assumption (A). For any X ∈ S2
0,T (R), (Λt (Xt:T ))t∈[0,T ] defines a stochastic process that belongs to H2

0,T (R).

There exist a constant CΛ > 0 and a family of measures (νt)t∈[0,T ] on R such that for every t ∈ [0, T ], νt has

support included in [t, T ], ν ([t, T ]) = 1, and for any y1, y2 ∈ S2
0,T (R), we have

∣∣Λt (y1
t:T

)
− Λt

(
y2
t:T

)∣∣ ≤ CΛE

[∫ T

t

∣∣y1
s − y2

s

∣∣ νt (ds)
∣∣∣Ft] ,dt⊗ dP a.e. .

Moreover, there exists a constant κ > 0 such that for every β ≥ 0 and every continuous path x : [0, T ]→ R,

∫ T

0

eβs
∫ T

s

|xu| νs (du) ds ≤ κ sup
t∈[0,T ]

eβt|xt|.

We will say that a function f̃ (resp. a mapping Λ̃) satisfies Assumption (S) (resp. (A)) if that assumption holds

for the choice f = f̃ (resp. Λ = Λ̃). We can now give the main result of this section.

Theorem 2.1. Under Assumptions (S) and (A), for any terminal condition ξ ∈ L2
T (R) the BSDE (2.1) has a

unique solution (Y,Z) ∈ S2
0,T (R)×H2

0,T

(
Rd
)
.
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2.3. Proof of Theorem 2.1

The proof uses classical arguments. We first establish apriori estimates in the same spirit as in [KPQ97] on
the solutions to the BSDE. Then for a suitable constant β ≥ 0, we use Picard’s fixed point method in the space
S2
β,T (R)×H2

β,T

(
Rd
)

to obtain existence and uniqueness of a solution to Equation (2.1).

Lemma 2.2. Let
(
Y 1, Z1

)
,
(
Y 2, Z2

)
∈ S2

0,T (R) × H2
0,T

(
Rd
)

be solutions to MKABSDE (2.1) associated re-

spectively to the parameters
(
f1,Λ1, ξ1

)
and

(
f2,Λ2, ξ2

)
. We assume that f1 satisfies Assumption (S) and that

Λ1 satisfies Assumption (A). Let us define δY := Y 1− Y 2, δZ := Z1−Z2, δξ := ξ1− ξ2. Finally, let us define
for s ∈ [0, T ],

δ2fs = f1
(
s, Y 2

s , Z
2
s ,Λ

2
(
Y 2
s:T

))
− f2

(
s, Y 2

s , Z
2
s ,Λ

2
(
Y 2
s:T

))
, and δ2Λs = Λ1

s

(
Y 2
s:T

)
− Λ2

s

(
Y 2
s:T

)
.

Then there exists a constant C > 0 such that for µ > 0, we have for β large enough

||δY ||2S2β,T ≤ C
(
eβTE

[
|δξ|2

]
+

1

µ2

(
||δ2f ||2H2

β,T
+ Cf1 ||δ2Λ||2H2

β,T

))
,

||δZ||2H2
β,T
≤ C

(
eβTE

[
|δξ|2

]
+

1

µ2

(
||δ2f ||2H2

β,T
+ Cf1 ||δ2Λ||2H2

β,T

))
.

Proof. The proof is based on similar arguments used in [KPQ97]. Let us use the decomposition:

|f1(s, Y 1
s , Z

1
s ,Λ

1
s(Y

1
s:T ))− f2(s, Y 2

s , Z
2
s ,Λ

2
s(Y

2
s:T ))|

≤
∣∣f1(s, Y 1

s , Z
1
s ,Λ

1
s(Y

1
s:T ))− f1(s, Y 2

s , Z
2
s ,Λ

2
s(Y

2
s:T ))

∣∣
+
∣∣f1(s, Y 2

s , Z
2
s ,Λ

2
s(Y

2
s:T ))− f2(s, Y 2

s , Z
2
s ,Λ

2
s(Y

2
s:T ))

∣∣
≤ Cf1

(
|δYs|+ |δZs|+ |Λ1

s(Y
1
s:T )− Λ2

s(Y
2
s:T )|

)
+ |δ2fs|

≤ Cf1

(
|δYs|+ |δZs|+ |Λ1

s(Y
1
s:T )− Λ1

s(Y
2
s:T )|+ |δ2Λs|

)
+ |δ2fs|.

By Itô’s lemma on the process t→ eβt|δYt|2, where β ≥ 0, and using the previous inequality, we have that

eβt|δYt|2 + β

∫ T

t

eβs|δYs|2ds+

∫ T

t

eβs|δZs|2ds

= eβT |δξ|2 + 2

∫ T

t

eβsδYs
(
f1(s, Y 1

s , Z
1
s ,Λ

1
s(Y

1
s:T ))− f2(s, Y 2

s , Z
2
s ,Λ

2
s(Y

2
s:T ))

)
ds− 2

∫ T

t

eβsδYsδZsdWs

≤ eβT |δξ|2 + 2

∫ T

t

eβs|δYs|
(
Cf1

(
|δYs|+ |δZs|+ |Λ1

s(Y
1
s:T )− Λ1

s(Y
2
s:T )|+ |δ2Λs|

)
+ |δ2fs|

)
ds

− 2

∫ T

t

eβsδYsδZsdWs. (2.2)

Applying Young’s inequality with λ, µ 6= 0, we have

2|δYs|
(
Cf1(|δZs|+ |Λ1

s(Y
1
s:T )− Λ1

s(Y
2
s:T )|+ |δ2Λs|) + |δ2fs|

)
≤
Cf1

λ2
|δZs|2 + λ2Cf1 |δYs|2 +

Cf1

λ2
|Λ1
s(Y

1
s:T )− Λ1

s(Y
2
s:T )|2 + λ2Cf1 |δYs|2

+
Cf1

µ2
|δ2Λs|2 + µ2Cf1 |δYs|2 +

1

µ2
|δ2fs|2 + µ2|δYs|2

≤
(
µ2 + Cf1(µ2 + 2λ2)

)
|δYs|2 +

Cf1

λ2
|δZs|2 +

Cf1

λ2
|Λ1
s(Y

1
s:T )− Λ1

s(Y
2
s:T )|2
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+
Cf1

µ2
|δ2Λs|2 +

1

µ2
|δ2fs|2.

Then plug this bound into (2.2) to get

eβt|δYt|2 + β

∫ T

t

eβs|δYs|2ds+

∫ T

t

eβs|δZs|2ds

≤ eβT |δξ|2 +
(
µ2 + Cf1(2 + µ2 + 2λ2)

)∫ T

t

eβs|δYs|2ds+
Cf1

λ2

∫ T

t

eβs|δZs|2ds

+
Cf1

λ2

∫ T

t

eβs|Λ1
s(Y

1
s:T )− Λ1

s(Y
2
s:T )|2ds+

Cf1

µ2

∫ T

t

eβs|δ2Λs|2ds+
1

µ2

∫ T

t

eβs|δ2fs|2ds

− 2

∫ T

t

eβsδYsδZsdWs. (2.3)

Choosing λ2 > Cf1 and

β ≥ µ2 + Cf1(2 + µ2 + 2λ2), (2.4)

we get from (2.3) that

E

[∫ T

t

eβs|δZs|2ds

]
≤ λ2

λ2 − Cf1

E

[
eβT |δξ|2 +

Cf1

λ2

∫ T

t

eβs|Λ1
s(Y

1
s:T )− Λ1

s(Y
2
s:T )|2ds

]

+
λ2

λ2 − Cf1

E

[
Cf1

µ2

∫ T

t

eβs|δ2Λs|2ds+
1

µ2

∫ T

t

eβs|δ2fs|2ds

]
. (2.5)

Here we have used that the stochastic integral in (2.3) is a true martingale, by invoking δY ∈ S2
0,T (R), δZ ∈

H2
0,T

(
Rd
)
, the computations like in (2.8) and a localization procedure. From (2.3) we also have that

E

[
sup
t∈[0,T ]

eβt|δYt|2 +

(
1−

Cf1

λ2

)∫ T

0

eβs|δZs|2ds

]

≤ E

[
eβT |δξ|2 +

Cf1

λ2

∫ T

0

eβs|Λ1
s(Y

1
s:T )− Λ1

s(Y
2
s:T )|2ds+

Cf1

µ2

∫ T

0

eβs|δ2Λs|2ds+
1

µ2

∫ T

0

eβs|δ2fs|2ds

+ 2 sup
t∈[0,T ]

∣∣∣∣∣
∫ T

t

eβsδYsδZsdWs

∣∣∣∣∣
]
. (2.6)

As Λ1 satisfies Assumption (A), the Jensen inequality yields that

E

[∫ T

0

eβs|Λ1
s(Y

1
s:T )− Λ1

s(Y
2
s:T )|2ds

]
≤ C2

ΛE

[∫ T

0

eβs
∫ T

s

|δYu|2νs(du)ds

]

≤ κC2
ΛE

[
sup
t∈[0,T ]

eβt|δYt|2
]
. (2.7)

By the Burkholder-Davis-Gundy inequality, there exists a positive constant C1 such that

E

[
sup
t∈[0,T ]

∣∣∣ ∫ T

t

eβsδYsδZsdWs

∣∣∣] ≤ C1E

(∫ T

0

e2βs|δYs|2|δZs|2ds

)1/2

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≤ C1E

( sup
s∈[0,T ]

eβs|δYs|2
)1/2(∫ T

0

eβs|δZs|2ds

)1/2
 . (2.8)

Therefore, by Young’s inequality with γ > 0, we have

2E

[
sup
t∈[0,T ]

∣∣∣∣∣
∫ T

t

eβsδYsδZsdWs

∣∣∣∣∣
]
≤ C1

γ2
E

[
sup
t∈[0,T ]

eβt|δYt|2
]

+ γ2C1E

[∫ T

0

eβs|δZs|2ds

]

≤ C1

γ2
E

[
sup
t∈[0,T ]

eβt|δYt|2
]

+
γ2C1λ

2

λ2 − Cf1

E

[
eβT |δξ|2 +

Cf1

µ2

∫ T

t

eβs|δ2Λs|2ds

+
1

µ2

∫ T

t

eβs|δ2fs|2ds+
Cf1

λ2

∫ T

t

eβs|Λ1
s(Y

1
s:T )− Λ1

s(Y
2
s:T )|2ds

]
. (2.9)

Combining Inequalities (2.6)–(2.9) leads to(
1− C1

γ2
−
κCf1C2

Λ

λ2
−
κCf1C1C

2
Λγ

2

λ2 − Cf1

)
E

[
sup
t∈[0,T ]

eβt|δYt|2
]

+
(

1−
Cf1

λ2

)
E

[∫ T

0

eβs|δZs|2ds

]

≤
(

1 +
γ2C1λ

2

λ2 − Cf1

)(
E
[
eβT |δξ|2

]
+

1

µ2
E

[
Cf1

∫ T

0

eβs|δ2Λs|2ds+

∫ T

0

eβs|δ2fs|2ds

])
.

Let us define the continuous function Γ by

Γ(γ, λ) = 1− C1

γ2
−
κCf1C2

Λ

λ2
−
κCf1C1C

2
Λγ

2

λ2 − Cf1

for any γ > 0 and any λ > 0 with λ2 > Cf1 . Observe that if we set γ(λ) =
√
λ with λ > 0, we have

limλ→∞ Γ(γ(λ), λ) = 1, so there exist λ, γ large enough such that Γ(γ, λ) > 0. For such a choice of γ and λ, we
then obtain the announced result with the constant

C =
1 + C1γ

2λ2

λ2−Cf1

min
(

Γ(γ, λ), 1− Cf1

λ2

) .
Recall that β is large enough according to λ (see inequality (2.4)). �

Proof of Theorem 2.1. We use the previous apriori estimates in the case where (Y 1, Z1) and (Y 2, Z2) solve
respectively the BSDEs

Y 1
t = ξ +

∫ T

t

fs
(
U1
s , V

1
s ,Λs

(
U1
s:T

))
ds−

∫ T

t

Z1
sdWs,

Y 2
t = ξ +

∫ T

t

fs
(
U2
s , V

2
s ,Λs

(
U2
s:T

))
ds−

∫ T

t

Z2
sdWs.

Here, (U1, V 1), (U2, V 2) ∈ S2
0,T (R) × H2

0,T

(
Rd
)

are given processes. Therefore fs
(
U1
s , V

1
s ,Λs

(
U1
s:T

))
and

fs
(
U2
s , V

2
s ,Λs

(
U2
s:T

))
define processes in H2

0,T (R) owing to the Assumptions (S) and (A). Therefore, the

existence and uniqueness of (Y 1, Z1) and (Y 2, Z2) in S2
0,T (R) × H2

0,T

(
Rd
)

as solutions of standard BSDEs is

automatic (see [KPQ97, Theorem 2.1, Proposition 2.2]).
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In addition, the process Y 1 − Y 2 is then solution to the BSDE Y 1
t − Y 2

t =
∫ T
t
δ2fsds −

∫ T
t

(
Z1
s − Z2

s

)
dWs,

where the driver δ2fs = fs
(
U1
s , V

1
s ,Λs

(
U1
s:T

))
− fs

(
U2
s , V

2
s ,Λs

(
U2
s:T

))
does not depend on Y 1

s nor Y 2
s . Using

Lemma 2.2 for Cf = 0 and µ > 0, we have that for β > 0 large enough,

||δY ||2S2β,T + ||δZ||2H2
β,T
≤ C

µ2
||δ2f ||2H2

β,T
.

Moreover,

||δ2f ||2H2
β,T

= E

[∫ T

0

eβs|fs
(
U1
s , V

1
s ,Λs

(
U1
s:T

))
− fs

(
U2
s , V

2
s ,Λs

(
U2
s:T

))
|2ds

]

≤ 3C2
fE

[∫ T

0

eβs
(
|δUs|2 + |δVs|2 + |Λs

(
U1
s:T

)
− Λs

(
U2
s:T

)
|2
)

ds

]
.

As we have that ||δU ||2H2
β,T
≤ T ||δU ||2S2β,T , and

E

[∫ T

0

eβs|Λs
(
U1
s:T

)
− Λs

(
U2
s:T

)
|2ds

]
≤ C2

ΛE

[∫ T

0

eβs
∫ T

s

|δUu|2νs (du) ds

]
≤ κC2

Λ||δU ||2S2β,T .

We obtain that

||δY ||2S2β,T + ||δZ||2H2
β,T
≤

3CC2
f

µ2

((
κC2

Λ + T
)
||δU ||S2β,T + ||δV ||2H2

β,T

)
.

We now choose µ2 > 3CC2
f (κC2

Λ + T + 1), and obtain that for β large enough, the mapping φ : (U, V )→ (Y, Z)

is a contraction in the space S2
β,T (R)×H2

β,T (Rd). Hence, we get existence and uniqueness of a solution to the

BSDE (2.1). �

3. The Case of CVaR variation margins

In this section, we apply the previous results on MKABSDE to equation (1.5) and to its generalizations (with
respect to the dimension of S, the underlying dynamic model and the terminal condition) that will be defined
below. Beyond usual existence and uniqueness results, our aim is to analyse related approximations, obtained
when CVaR is evaluated using Gaussian expansions (justified as ∆→ 0, see Theorem 3.1).

3.1. A well posed problem

Let us consider a general Itô market with d tradable assets [KS98, Chapter 1]. The riskless asset S0 (money

account) follows the dynamics
dS0

t

S0
t

= rtdt, and we have d risky assets
(
S1, ..., Sd

)
following

dSit
Sit

= µitdt+

d∑
j=1

σijt dW j
t , S

i
0 = si0 ∈ R, 1 ≤ i ≤ d. (3.1)

The processes r, µ :=
(
µi
)

1≤i≤d , σ :=
(
σij
)

1≤i,j≤d are F-adapted stochastic processes with values respectively

in R,Rd, and the set of matrices of size d × d. Moreover, we assume that dt ⊗ dP a.e., the matrix σt is
invertible and the processes r and σ−1 (µ− r1) are uniformly bounded, where we define the column vector

1 := (1, ..., 1)
> ∈ Rd. For a path-dependent payoff ξ paid at maturity T , the dynamics of the hedging portfolio
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(V, π) with CVaR variation margin requirement (over a period ∆ > 0) is given by

Vt = ξ +

∫ T

t

(
−rsVs + πs (rs1− µs) +R CVaRα

Fs
(
Vs − V(s+∆)∧T

))
ds−

∫ T

t

πsσsdWs.

Here π is a row vector whose ith coordinate consists of the amount invested in ith asset. The derivation is
analogous to that of Section 1.2. This equation rewrites, with the variables (V,Z = πσ),

Vt = ξ +

∫ T

t

(
−rsVs + Zsσ

−1
s (rs1− µs) +R CVaRα

Fs
(
Vs − V(s+∆)∧T

))
ds−

∫ T

t

ZsdWs. (3.2)

Existence and uniqueness of a solution to the above MKABSDE are consequences of Theorem 2.1.

Corollary 3.1. For any square integrable terminal condition ξ, the CVaR variation margin problem (3.2) is
well posed with a unique solution (V,Z) ∈ S2

β,T (R)×H2
β,T (Rd) for any β ≥ 0.

Proof. The driver of the BSDE has the form

f (t, v, z, λ) = −rtv + zσ−1
t (rt1− µt) + λ, t ≥ 0, v, λ ∈ R, z ∈ Rd,

and we also introduce the functional

Λt (Xt:T ) := R CVaRα
Ft
(
Xt −X(t+∆)∧T

)
= R inf

x∈R
E

[(
Xt −X(t+∆)∧T − x

)+
1− α

+ x | Ft

]
, t ∈ [0, T ], X ∈ S2

0,T (R).

Since r and σ−1 (µ− r1) are uniformly bounded, f clearly satisfies Assumption (S). We now check that Λ
satisfies Assumption (A). For X ∈ S2

0,T (R) and x ∈ R, we have

E
[
Xt −X(t+∆)∧T

∣∣Ft] ≤ inf
x∈R

E
[

(Xt −X(t+∆)∧T − x)+

1− α
+ x

∣∣∣∣Ft] ≤ E
[

(Xt −X(t+∆)∧T )+

1− α

∣∣∣∣Ft] , (3.3)

where for the left hand side (l.h.s.) we use the fact that as α ∈ (0, 1), for z, x ∈ R, (z−x)+

1−α + x ≥ z, and

for the right hand side (r.h.s.), we upper bound the infimum with the value taken at x = 0. As it is easy to
check that both the l.h.s. and the r.h.s. of (3.3) belong to H2

0,T , we conclude that Λt (X) ∈ H2
0,T (R). Now, let

X1, X2 ∈ S2
0,T . Then, we have that

|Λt
(
X1
)
− Λt

(
X2
)
| ≤ RE

∣∣∣∣∣∣
X1
t −X2

t −
(
X1

(t+∆)∧T −X
2
(t+∆)∧T

)
1− α

∣∣∣∣∣∣ | Ft


≤ R

1− α
E

[∫ T

t

∣∣X1
s −X2

s

∣∣ νt (ds) | Ft

]
,

where for the first inequality, we use the fact that
∣∣infx∈R g

1(x)− infx∈R g
2(x)

∣∣ ≤ supx∈R
∣∣g1(x)− g2(x)

∣∣ for

any functions g1, g2 : R → R and the 1-Lipschitz property of the positive part function, and for the second
inequality, νt(ds) := δt(ds) + δ(t+∆)∧T (ds), where for u ≥ 0, δu is the Dirac measure on {u}. Moreover, for
β ≥ 0, ∫ T

0

eβs
∫ T

s

∣∣X1
u

∣∣ νs (du) =

∫ T

0

eβt
(∣∣X1

t

∣∣+
∣∣∣X1

(t+∆)∧T

∣∣∣)dt ≤ 2 sup
t∈[0,T ]

eβt
∣∣X1

t

∣∣ ,
so Assumption (S) holds with κ = 2 and CΛ = R

1−α . We finally apply Theorem 2.1 to complete the proof. �
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3.2. Approximation by standard BSDEs when ∆� 1

The numerical solution of (3.2) is challenging in full generality. In fact, it is a priori more difficult than solving
a standard BSDE, for which we can employ, for example, regression Monte-Carlo methods (see e.g. [GT16] and
references therein). In this work, we take advantage of the fact that ∆ is small (recall ∆ = one week or 10 days)
in order to provide handier approximations of (V,Z), given in terms of standard non-linear or linear BSDEs.
Below we define these different BSDEs and provide the error estimates of such approximations.

At the lowest order in the parameter
√

∆, for s ∈ [0, T ], formally we have that, conditionally to Fs,

Vs − V(s+∆)∧T ≈ −
∫ (s+∆)∧T

s

ZudWu
(d)
= −|Zs|

√
(s+ ∆) ∧ T − s×G,

where we freeze the process Z at current time s and G
(d)
= N (0, 1) is independent from Fs. This is an

approximation of CVaR using the “Delta” of the portfolio (see [GHS00, Section 2]). Plugging this approximation
into (3.2), and defining

Cα := CVaRα (N (0, 1)) =
e−x

2/2

(1− α)
√

2π

∣∣∣∣∣
x=N−1(α)

, (3.4)

we obtain a standard non-linear BSDE

V NLt = ξ +

∫ T

t

(
−rsV NLs + ZNLs σ−1

s (rs1− µs) +RCα
√

(s+ ∆) ∧ T − s|ZNLs |
)

ds−
∫ T

t

ZNLs dWs. (3.5)

Seeing V NL as a function of the small parameter ∆ appearing in the driver, and making an expansion at
the orders 0 and 1 w.r.t.

√
∆ by following the expansion procedure in [GP15], we obtain two linear BSDEs,

respectively (V BS , ZBS) and (V L, ZL) where

V BSt = ξ +

∫ T

t

(
−rsV BSs + ZBSs σ−1

s (rs1− µs)
)

ds−
∫ T

t

ZBSs dWs, (3.6)

V Lt = ξ +

∫ T

t

(
−rsV Ls + ZLs σ

−1
s (rs1− µs) +RCα

√
(s+ ∆) ∧ T − s|ZBSs |

)
ds−

∫ T

t

ZLs dWs. (3.7)

Let us comment on these different models.

• The simplest equation is (V BS , ZBS), corresponding to the usual linear valuation rule [KPQ97, Theorem
1.1] without VM requirement. When the model is a one-dimensional geometric Brownian motion and
ξ = (ST −K)+, the solution is given by the usual Black-Scholes formula.

• The second simplest equation is (V L, ZL) where the VM cost is computed using the “Delta” of an
exogenous reference price given by the simplest pricing rule (V BS , ZBS) without VM. This is still a
linear BSDE but its simulation is not simple though, since one needs to know ZBS to simulate (V L, ZL).
We use a nested Monte-Carlo procedure in our experiments.

• The third equation is (V NL, ZNL) where the VM cost is computed using the “Delta” of the endogenous
price (V NL, ZNL) itself.

Existence and uniqueness of a solution to the BSDEs (3.5), (3.6) and (3.7) are direct consequences of [PP90],
as the respective drivers satisfy standard Lipschitz properties and the processes r and σ−1(r1−µ) are bounded.

Proposition 3.1. The standard BSDEs (3.5), (3.6) and (3.7) have a unique solution in the L2-space S2
0,T×H2

0,T ,
and their norms are uniformly bounded in ∆ ≤ T .

The main result of this part is the following theorem.
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Theorem 3.1. Define the L2 time-regularity index of ZNL by

ENL(∆) :=
1

∆
E

[∫ T

0

∫ (t+∆)∧T

t

∣∣ZNLs − ZNLt
∣∣2 dsdt

]
. (3.8)

We always have sup0<∆≤T ENL(∆) < +∞. Moreover, there exist constants K1,K2,K3 > 0, independent from
∆, such that

||V L − V BS ||2S20,T + ||ZL − ZBS ||2H2
0,T
≤ K1∆, (3.9)

||V NL − V L||2S20,T + ||ZNL − ZL||2H2
0,T
≤ K2∆2, (3.10)

||V − V NL||2S20,T + ||Z − ZNL||2H2
0,T
≤ K3∆

(
∆ + ENL(∆)

)
. (3.11)

In addition, we have

ENL(∆) = O(∆), (3.12)

and thus ||V −V NL||2S20,T + ||Z −ZNL||2H2
0,T

= O(∆2) provided that the additional sufficient conditions below are

fulfilled:

(i) the terminal condition is a Lipschitz functional of S, that is, ξ = Φ(S0:T ) for some functional Φ satisfying

|Φ(x0:T )− Φ(x′0:T )| ≤ CΦ sup
t∈[0,T ]

|xt − x′t|,

for any continuous paths x, x′ : [0, T ]→ Rd;
(ii) the coefficients r, σ, µ are constant.

Let us remark that the results from [Zha04] used in the proof of estimate (3.12) and consequently the estimate
(3.12) itself should also hold under (i) and the following more general assumptions:

(iii) the processes r, σ, µ are Markovian, i.e. rt = r̂(t, St), σ
ij
t = σ̂ij(t, St) and µit = µ̂i(t, St) for some

deterministic functions r̂, µ̂i, σ̂ij ;
(iv) the functions x→ µ̂i(x)xi, x→ σ̂ij(x)xi are globally Lipschitz in (t, x) ∈ [0, T ]×Rd, for any 1 ≤ i, j ≤ d;
(v) the functions r̂ and σ̂−1 (r̂1− µ̂) are globally Lipschitz in (t, x) ∈ [0, T ]× Rd.

As mentioned above, we may expect that ENL(∆) = O(∆) also under (i)-(iii)-(iv)-(v), so that (V,Z) and
(V NL, ZNL) are very close to each other. These approximation results illustrate that there is a significative

difference (at the order of
√

∆) between valuation with or without variation margin cost (see (3.9)); however,
the other valuation rules yield comparable values as soon as ∆� 1 (see (3.10)-(3.11)).

3.3. Proof of Theorem 3.1

B Estimate on ENL(∆). We start with a deterministic inequality. For any positive function Ψ and any β ≥ 0,
we have ∫ T

0

eβt

(∫ (t+∆)∧T

t

Ψsds

)
dt ≤ ∆

∫ T

0

eβsΨsds. (3.13)

Indeed the left hand side of (3.13) can be written as

∫ T

0

∫ T

0

eβtΨs1t≤s≤(t+∆)∧Tdsdt =

∫ T

0

Ψs

(∫ T

0

eβt1t≤s≤(t+∆)∧Tdt

)
ds, (3.14)
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which readily gives the announced result. Using (a+ b)2 ≤ 2a2 + 2b2 and (3.13) with β = 0 gives

ENL(∆) ≤ 2

∆
E

[∫ T

0

∫ (t+∆)∧T

t

(|ZNLs |2 + |ZNLt |2)dsdt

]
≤ 4E

[∫ T

0

∣∣ZNLt ∣∣2 dt

]
, (3.15)

which is uniformly bounded in ∆ (Proposition 3.1).
We now derive finer estimates that reveal the L2 time-regularity of ZNL under the extra assumptions (i)-(ii).

In this Markovian setting, we know that ZNL has a càdlàg version (see [Zha04, Remark (ii) after Lemma 2.5]).
Then, introduce the equidistant times ti = i∆ for 0 ≤ i ≤ n := b T∆c and tn+1 = T . We claim that

ENL(∆) ≤ 4

n∑
i=0

E
[∫ ti+1

ti

∣∣ZNLs − ZNLti
∣∣2 +

∣∣∣ZNLs − ZNLti+1

∣∣∣2 ds

]
. (3.16)

With this result at hand, the estimate (3.12) directly follows from an application of [Zha04, Theorem 3.1]. To
get (3.16), set ϕ−(s) and ϕ+(s) for the grid times before and after s. Then, we write

∫ T

0

∫ (t+∆)∧T

t

|ZNLs − ZNLt |2dsdt ≤ 2

n∑
i=0

∫ ti+1

ti

∫ (t+∆)∧T

t

(|ZNLs − ZNLti+1
|2 + |ZNLt − ZNLti+1

|2)dsdt

≤ 2

∫ T

0

∫ (t+∆)∧T

t

(
|ZNLs − ZNLϕ−(s)|

2 + |ZNLs − ZNLϕ+(s)|
2
)

dsdt+ 2∆

∫ T

0

|ZNLt − ZNLϕ+(t)|
2dt

≤ 4∆

(∫ T

0

|ZNLt − ZNLϕ−(t)|
2dt+

∫ T

0

|ZNLt − ZNLϕ+(t)|
2dt

)

where we have used (3.13) with β = 0. The inequality (3.16) readily follows.
B Proof of (3.9). This error estimate is related to the difference of two linear BSDEs. The drivers of V BS and
V L are respectively fBS (s, y, z, λ) = −rsy + zσ−1

s (rs1− µs), and

fL (s, y, z, λ) = −rsy + zσ−1
s (rs1− µs) +RCα

√
(s+ ∆) ∧ T − s|ZBSs |,

for s ∈ [0, T ], v, λ ∈ R and z ∈ Rd, hence(
fL − fBS

)
(s, y, z, λ) = RCα

√
(s+ ∆) ∧ T − s|ZBSs |.

By Lemma 2.2, we obtain that for µ > 0, β large enough and K1 = C
µ2 (RCα)

2 ||ZBS ||H2
β,T

,

||V L − V BS ||2S20,T + ||ZL − ZBS ||2H2
0,T

≤ ||V L − V BS ||2S2β,T + ||ZL − ZBS ||2H2
β,T
≤ K1∆.

We are done with (3.9).

B Proof of (3.10). Then, as ξ ∈ L2, as the processes r, σ−1 (µ− r1) are bounded and as the non-linear term

t, z ∈ [0, T ]× Rd → RCα
√

(t+ ∆) ∧ T − t|z|

is Lipschitz in the variable z, uniformly in time, we obtain Inequality (3.10) as an application of [GP15, Theorem
2.4], for which assumptions H.1−H.3 are satisfied.
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B Proof of (3.11). Using computations similar to those in the proof of Lemma 2.2, we obtain existence of a
constant C > 0 such that for µ > 0 and β large enough,

||V−V NL||2S2β,T +||Z−ZNL||2H2
β,T
≤ C

µ2

∣∣∣∣∣
∣∣∣∣∣ CVaRα

F·

(
V NL· − V NL(·+∆)∧T

)
− CVaRα

F·

(
−
∫ (·+∆)∧T

·
ZNL· dWs

)∣∣∣∣∣
∣∣∣∣∣
2

H2
β,T

.

As the CVaR function is subadditive [RU00], we have that given A,B two random variables, and t ∈ [0, T ],
CVaRα

Ft (A) ≤ CVaRα
Ft (B) + CVaRα

Ft (A−B). Inverting the roles of A and B, we obtain that

0 ≤
∣∣ CVaRα

Ft (A)− CVaRα
Ft (B)

∣∣ ≤ max
(

CVaRα
Ft (A−B) , CVaRα

Ft (B −A)
)

≤ 1

1− α

(
E
[
(A−B)

+ | Ft
]

+ E
[
(B −A)

+ | Ft
])

=
E [|A−B| | Ft]

1− α
,

where for the last inequality, we have used that for U ∈ {A − B,B − A}, infx∈R E
[

(U−x)+

1−α + x | Ft
]
≤

E
[
U+

1−α | Ft
]
. We then have that

∣∣ CVaRα
Ft (A)− CVaRα

Ft (B)
∣∣2 ≤ 1

(1− α)
2E
[
(A−B)

2 | Ft
]
.

Setting, for t ∈ [0, T ], At = −
∫ (t+∆)∧T
t

ZNLt dWs and Bt = V NLt − V NL(t+∆)∧T and using the previous inequality,

we obtain that

||V − V NL||2S2β,T + ||Z − ZNL||2H2
β,T
≤ C

µ2 (1− α)
2E

∫ T

0

eβt

(
V NLt − V NL(t+∆)∧T +

∫ (t+∆)∧T

t

ZNLt dWs

)2

dt

 .
We use the following decomposition,

V NLt − V NL(t+∆)∧T +

∫ (t+∆)∧T

t

ZNLt dWs =

∫ (t+∆)∧T

t

(
−rsV NLs + ZNLs σ−1

s (rs1− µs) +RλCα
√

(s+ ∆) ∧ T − s|ZNLs |
)

ds

−
∫ (t+∆)∧T

t

(
ZNLs − ZNLt

)
dWs =: Π1(t)−Π2(t),

so that ||V − V NL||2S2β,T + ||Z −ZNL||2H2
β,T
≤ 2C

µ2(1−α)2
E
[∫ T

0
eβt
(
Π2

1(t) + Π2
2(t)

)
dt
]
. By Jensen’s inequality and

the inequality (3.13), we get

E

[∫ T

0

eβtΠ2
1(t)dt

]
≤ 3∆E

[∫ T

0

eβt
∫ (t+∆)∧T

t

((
−rsV NLs

)2
+
(
ZNLs σ−1

s (rs1− µs)
)2

+
(
RλCα

√
∆|ZNLs |

)2
)

dsdt

]

≤ 3∆2
(
|r|2∞ + |σ−1(r1− µ)|2∞ + (RCα)

2
)
E

[∫ T

0

eβt(|V NLt |2 + |ZNLt |2)dt

]
.

By invoking the uniform estimate of Proposition 3.1, we finally obtain that E
[∫ T

0
eβt (Π1 (t))

2
dt
]
≤ K̃1∆2 for

some K̃1. Moreover, using Ito’s isometry, we have that

E

[∫ T

0

eβtΠ2
2(t)dt

]
= E

[∫ T

0

eβt
∫ (t+∆)∧T

t

∣∣ZNLs − ZNLt
∣∣2 dsdt

]
≤ eβT∆ENL(∆).
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Gathering all the previous arguments leads to the (3.11). The proof of Theorem 3.1 is completed. �

4. Numerical Examples

In the absence of numerical methods to estimate the solution of the McKean Anticipative BSDE (3.2) in
full generality, we rather solve numerically the BSDE approximations (3.5) or (3.7) as discussed in Section 3.2.
For this purpose, when the dimension d is greater than one, we use the Stratified Regression Multistep-forward
Dynamical Programming (SRMDP) scheme developed in [GLSTV16]. In our numerical tests in this section, we
set the coefficients of the model (3.1) to be constant (multi-dimensional geometric Brownian motion) and we
take µi = r. Observe that setting R = 0 reduces the original BSDE to the linear equation (3.6). This will serve
us as a benchmark value in order to measure the impact of Variation Margins (VM).

4.1. Finite difference method for (V NL, ZNL) in dimension 1

In order to check the validity of our results, we first obtain a benchmark when d = 1 by solving the semi-linear
parabolic PDE related to the BSDE (3.5) when ξ = Φ(ST ), see [PR14]. By an application of Itô’s lemma, the
semi-linear PDE is given by

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ rS

∂V

∂S
+ CαRσ

√
(t+ ∆) ∧ T − t

∣∣∣∣S ∂V∂S
∣∣∣∣− r V = 0, (t, S) ∈ [0, T )× R+, (4.1)

V (T, S) = Φ(S), S ∈ R+, (4.2)

and (V NLt , ZNLt ) = (V (t, St),
∂V
∂S (t, St)σSt).

Remark 4.1. If Φ(S) = max(S −K, 0) or max(K − S, 0) for some K > 0, i.e., either a call or a put option
payoff, we expect the gradient ∂V

∂S to have a constant sign. In such a case, the PDE (4.1)–(4.2) becomes linear
and in fact has an explicit solution, given by a Black-Scholes formula with time-dependent continuous dividend
yield d(t) = −CαRσ

√
(t+ ∆) ∧ T − t sign(∂V∂S ).

We use a classical finite difference methods to solve (4.1)-(4.2) (see, for example, [AP05]). First, we perform
a change of variable, x = lnS, so that the PDE can be rewritten in the following form for the function
v(t, x) := V (t, ex):

∂v

∂t
+

1

2
σ2 ∂

2v

∂x2
+
(
r − 1

2
σ2
)∂v
∂x

+ CαRσ
√

(t+ ∆) ∧ T − t
∣∣∣∣∂v∂x

∣∣∣∣− r v = 0, (t, x) ∈ [0, T )× R, (4.3)

v(T, x) = Φ(ex), x ∈ R. (4.4)

We denote the finite difference domain by D = [0, T ]× [xmin, xmax] with −∞ < xmin < xmax <∞. The domain
D is approximated with a uniform mesh D =

{
(tn, xi) : n = 0, 1, . . . , N, i = 0, 1, . . . ,M

}
, where tn := n∆t

and xi := xmin + i∆x. Here, for N time intervals, ∆t = T/N and ∆x = (xmax − xmin)/M for M spatial steps.
Furthermore, we denote v(tn, xi) = vni . Next, consider the following finite difference derivative approximations
under the well-known ω-scheme, i.e., we replace vni by ωvni +(1−ω)vn+1

i , where ω ∈ [0, 1] is a constant parameter,
such that

∂v

∂t
(tn, xi) ≈

vn+1
i − vni

∆t
,

∂v

∂x
(tn, xi) ≈ ω

vni+1 − vni
∆x

+ (1− ω)
vn+1
i+1 − v

n+1
i

∆x
,

∂2v

∂x2
(tn, xi) ≈ ω

vni+1 − 2vni + vni−1

(∆x)2
+ (1− ω)

vn+1
i+1 − 2vn+1

i + vn+1
i−1

(∆x)2
.

The choice ω = 0.5 corresponds to Crank-Nicolson method. We also “linearize” the non-linear term by treating

it as explicit, i.e., at any time tn we take

∣∣∣∣∂v∂x (tn, xi)

∣∣∣∣ ≈ ∣∣∣∣∂v∂x (tn+1, xi)

∣∣∣∣.
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The substitution of finite difference derivative approximations in (4.3)-(4.4) along with the “linearization”
step, leads to the following tridiagonal linear system at each time step n = N − 1, . . . , 0 which can be solved by
Thomas algorithm [YG73]: Avn = bn+1, with nonzero coefficients of the tridiagonal matrix A = (ai,j) given by

a0,0 = 1, a0,1 = 0, aM,M−1 = 0, aM,M = 1,

ai,i = 1 + 2θω + κω + ρω, ai,i+1 = −θω − κω, ai−1,i = −θω, i = 1, . . . ,M − 1,

and the time dependent vector bn+1 as:

bn+1
0 = vn+1

0 , bn+1
M = vn+1

M , bn+1
i = θ(1− ω)vn+1

i−1 + (1− 2θ(1− ω)− κ(1− ω)− ρ(1− ω))vn+1
i

+ (θ(1− ω) + κ(1− ω))vn+1
i+1 + βn|vn+1

i+1 − v
n+1
i |, i = 1, . . . ,M − 1,

where vn+1
0 , vn+1

M are given by the boundary conditions and the remaining constants are defined as below

θ =
σ2∆t

2(∆x)2
, κ =

(r − 1
2σ

2)∆t

∆x
, ρ = r∆t, βn =

CαRσ∆t
√

(tn + ∆) ∧ T − tn
∆x

.

The ith coordinate of vector vn is the approximation of the value v(tn, xi).
We set the model parameters as T = 1, σ = 0.25, r = 0.02, α = 0.99 and ∆ = 0.02 (1 week) and consider

three different options – call, put and butterfly, for different strikes. We set R = 0.02 when accounting for
VM and R = 0 otherwise. The finite difference space domain is taken as [ln(10−6), ln(4K)] while for SRMDP
algorithm we take [−5, 5] to be the space domain. Furthermore, for finite difference scheme, N = 103 and
M = 106. For LP0 version of SRMDP algorithm, the number of hypercubes are 2800, the number of time steps
are 50 and the number of simulations per hypercube are 2500. In Figure 1 and Table 1, we present the results
for implied volatilities, prices and deltas of several call options including not only at the money strike but also
in and out of the money strikes. First, we compute the values using the classical Black-Scholes formula (B-S
R = 0) in order to allow the reader to assess the impact of taking into account VM. Next, we solve the non-
linear BSDE using the three discussed method:; the exact Black-Scholes formula where VM is considered as a
time dependent dividend yield (BS R = 0.02) (see Remark 4.1), the finite difference method (FD) and SRMDP
algorithm. For the last method, we compute 95% confidence intervals for price and delta of the options. We
also present the results of several put options in Figure 2 and Table 2. Finally, we consider butterfly options
with payoff function

Φ(ST ) = (ST − (K − 2))
+ − 2 (ST −K)

+
+ (ST − (K + 2))

+
.

This derivative product involves three options with different strikes, the investor buys a call option with low
strike price K − 2, buys a call option with high strike price K + 2 and sells two call options with strike price
K. Note that the sign of the first derivative of option price (delta) of a butterfly option varies with the value
of the underlying asset, therefore explicit Black-Scholes formula is not available when VM is also taken into
consideration (R = 0.02). The results are presented in Figure 3 and Table 3. In all the three cases, we observe
that SRMDP algorithm provides good accuracy when compared to the true values and finite difference estimates.

4.2. Variance reduction for solving (V NL, ZNL) using (V BS , ZBS)

In order to asses the impact of using R > 0 on the solution of the BSDE (3.5), in the case of European call and
put options in one dimension, it is better to solve the BSDE difference (V DFt , ZDFt ) = (V NLt −V BSt , ZNLt −ZBSt )
which has a reduced variance in the algorithm. Note that for a call option

ZBSt = σStΦ(d1), d1 =
ln(St/K) + (r + 1

2σ
2)(T − t)

σ
√
T − t

,
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Figure 1. Implied volatility and delta for call options with spot value S0 = 20 and different
strikes K

B-S R = 0 B-S R = 0.02 FD SRMDP
95% CI 95% CI

K B-S(0, S0) ∆(0, S0) B-S(0, S0) ∆(0, S0) V (0, S0) ∇V (0, S0) V NL
0 (S0) ZNL

0 (S0)/(σS0)

17 3.9534 0.8037 3.9835 0.8073 3.9844 0.8072 [3.9575, 3.9897] [0.7641, 0.8347]

18 3.2795 0.7345 3.3071 0.7383 3.3082 0.7382 [3.2833, 3.3161] [0.6986, 0.7598]

19 2.6863 0.6592 2.7111 0.6631 2.7123 0.6630 [2.6797, 2.7134] [0.6350, 0.6871]

20 2.1741 0.5812 2.1959 0.5852 2.1973 0.5852 [2.1730, 2.2012] [0.5656, 0.6207]

21 1.7398 0.5039 1.7587 0.5079 1.7601 0.5078 [1.7338, 1.7601] [0.4920, 0.5292]

22 1.3777 0.4301 1.3939 0.4338 1.3953 0.4338 [1.3734, 1.3975] [0.4218, 0.4571]

23 1.0805 0.3617 1.0941 0.3651 1.0954 0.3652 [1.0752, 1.0946] [0.3503, 0.3750]

Table 1. Price and delta for call options with spot value S0 = 20 and different strikes K.

where Φ is the standard Gaussian cumulative distribution function. Therefore |ZNLt | = |ZDFt + σStΦ(d1)|.
Then, the BSDE for the difference (V DFt , ZDFt ) in the case of a call option2 is given by:

V DFt = 0 +

∫ T

t

(
−rV DFs + CαR

√
(s+ ∆) ∧ T − s|ZDFs + σSsΦ(d1)|

)
ds−

∫ T

t

ZDFs dWs.

In Table 4, the BSDE (V DFt , ZDFt ) is solved for several call and put options using the SRMDP algorithm.
Besides, exact solutions (ES) are computed through the difference between Black-Scholes formula where VM’s
contribution is considered as a time-dependent dividend yield and the classical Black-Scholes formula with
R = 0.

2For a put option an analogous BSDE can be written taking into account that ZBS
t = σSt(Φ(d1) − 1).
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Figure 2. Implied volatility and delta for put options with spot value S0 = 20 and different
strikes K.

B-S R = 0 B-S R = 0.02 FD SRMDP
95% CI 95% CI

K B-S(0, S0) ∆(0, S0) B-S(0, S0) ∆(0, S0) V (0, S0) ∇V (0, S0) V NL
0 (S0) ZNL

0 (S0)/(σS0)

17 0.6168 −0.1963 0.6241 −0.1980 0.6249 −0.1981 [0.6229, 0.6328] [−0.2071,−0.1908]

18 0.9231 −0.2655 0.9331 −0.2675 0.9340 −0.2676 [0.9289, 0.9426] [−0.2827,−0.2592]

19 1.3101 −0.3408 1.3229 −0.3429 1.3239 −0.3430 [1.3186, 1.3350] [−0.3585,−0.3303]

20 1.7781 −0.4188 1.7938 −0.4209 1.7949 −0.4209 [1.7869, 1.8077] [−0.4383,−0.4046]

21 2.3240 −0.4961 2.3426 −0.4981 2.3438 −0.4981 [2.3350, 2.3557] [−0.5262,−0.4888]

22 2.9421 −0.5699 2.9635 −0.5718 2.9646 −0.5717 [2.9615, 2.9871] [−0.6128,−0.5641]

23 3.6251 −0.6383 3.6490 −0.6400 3.6501 −0.6398 [3.6436, 3.6695] [−0.6529,−0.5906]

Table 2. Price and delta for put options with spot value S0 = 20 and different strikes K.

Once again these tests allow us to demonstrate that SRMDP algorithm provides accurate results in one
dimension.

4.3. Nested Monte Carlo for computing (V L, ZL) in dimension 1

As discussed in Section 3.2, we can further approximate the solution of non-linear BSDE V NL with a linear
BSDE V L with portfolio weight Z = ZBS . In this case, we have an explicit stochastic representation for ZBSt
given as follows

ZBSt =
∂V BSt

∂S
(σSt)

−1,
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Figure 3. Price and delta for butterfly options with spot value S0 = 20 and different strikes K.

B-S R = 0 FD SRMDP
95% CI 95% CI

K B-S(0, S0) ∆(0, S0) V (0, S0) ∇V (0, S0) V NL
0 (S0) ZNL

0 (S0)/(σS0)

11 0.0407 −0.0178 0.0415 −0.0181 [0.0410, 0.0426] [−0.0189,−0.0162]

14 0.1720 −0.0457 0.1742 −0.0461 [0.1732, 0.1769] [−0.0479,−0.0421]

17 0.3012 −0.0359 0.3036 −0.0359 [0.3027, 0.3072] [−0.0406,−0.0336]

20 0.3090 0.0021 0.3112 0.0021 [0.3098, 0.3144] [−0.0001, 0.0079]

23 0.2265 0.0265 0.2284 0.0265 [0.2261, 0.2300] [ 0.0248, 0.0304]

26 0.1334 0.0286 0.1349 0.0287 [0.1333, 0.1366] [ 0.0263, 0.0305]

29 0.0679 0.0205 0.0689 0.0207 [0.0674, 0.0699] [ 0.0190, 0.0224]

Table 3. Price and delta for butterfly options with spot value S0 = 20 and different strikes K.

ES: B-S R = 0.02− B-S R = 0 SRMDP
95% CI 95% CI

B-S(0, S0) ∆(0, S0) V DF
0 (S0) ZDF

0 (S0)/(σS0)

Call, K = 17 0.0302 0.0036 [0.0302, 0.0304] [ 0.0033, 0.0037]

Call, K = 20 0.0218 0.0040 [0.0218, 0.0219] [ 0.0038, 0.0042]

Call, K = 23 0.0136 0.0035 [0.0136, 0.0137] [ 0.0033, 0.0036]

Put, K = 17 0.0074 −0.0017 [0.0074, 0.0075] [−0.0020,−0.0016]

Put, K = 20 0.0157 −0.0021 [0.0157, 0.0158] [−0.0023,−0.0019]

Put, K = 23 0.0239 −0.0016 [0.0239, 0.0240] [−0.0018,−0.0015]

Table 4. SRMDP algorithm for BSDE (V DFt , ZDFt ).
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where V BSt (s) := E[e−r(T−t)Φ(ST )|St = s]. Then, we use the likelihood ratio method of Broadie and Glasserman
[BG96] to find out the derivative and get

ZBSt (s) =
∂

∂s
E[e−r(T−t)Φ(XT )|St = s](σs)−1 = E

[
e−r(T−t)Φ(ST )

WT −Wt

(T − t)
(σs)

∣∣∣St = s

]
(σs)−1

= E
[
e−r(T−t)

(
Φ(ST )− Φ(St)

)WT −Wt

(T − t)

∣∣∣St = s

]
. (4.5)

Therefore, in linear BSDE V L with portfolio weight ZBS , we have

V L0 = E

[
e−rTΦ (ST ) +

∫ T

0

e−rs
(
RCα|ZBSs |

√
(s+ ∆) ∧ T − s

)
ds

]
= E

[
e−rTΦ (ST ) + Te−rU

(
RCα|ZBSU |

√
(U + ∆) ∧ T − U

)]
,

where U is a uniformly distributed independent random variable on [0, T ] and ZBSs is given as in (4.5). By once
again using the likelihood ratio method, we get the following formula

ZL0 = E
[
e−rTΦ (ST )

WT

T
+ Te−rU

(
RCα|ZBSU |

√
(U + ∆) ∧ T − U

) WU

U

]
.

We solve the linear BSDE V L by taking advantage of finite difference method and Nested Monte Carlo
algorithm (Nested MC) for different payoffs (calls, puts and butterfly options) where we use the same model
parameters as earlier. In Nested Monte Carlo algorithm, we estimate ZBS as in (4.5) using 100 independent
inner sample paths for each outer Monte Carlo sample path. The results are presented in Table 5. We observe
that as the Nested Monte Carlo algorithm results are accurate in one dimension, the algorithm provides an
alternative to compute the estimates for (V L, ZL) in higher dimensions.

FD Nested MC
95% CI 95% CI

V (0, S0) ∇V (0, S0) V L
0 (S0) ZL

0 (S0)/(σS0)

Call, K = 17 3.9843 0.8072 [3.9796, 3.9856] [0.8059, 0.8082]

Call, K = 20 2.1971 0.5852 [2.1931, 2.1979] [0.5843, 0.5862]

Call, K = 23 1.0953 0.3653 [1.0924, 1.0958] [0.3644, 0.3659]

Put, K = 17 0.6249 −0.1981 [0.6233, 0.6249] [−0.1983,−0.1977]

Put, K = 20 1.7950 −0.4209 [1.7937, 1.7966] [−0.4216,−0.4205]

Put, K = 23 3.6502 −0.6398 [3.6468, 3.6511] [−0.6407,−0.6393]

Butterfly, K = 11 0.0414 −0.0181 [0.0412, 0.0415] [−0.0181,−0.0180]

Butterfly, K = 20 0.3112 0.0021 [0.3112, 0.3119] [0.0021, 0.0022]

Butterfly, K = 29 0.0689 0.0206 [0.0686, 0.0690] [0.0206, 0.0207]

Table 5. Nested MC algorithm for BSDE (V Lt , Z
L
t ).

4.4. Basket options in higher dimensions

In this section we solve the non-linear BSDE in high dimensions using SRMDP algorithm. In this setting,
traditional full grid methods like finite difference are not able to tackle the problem for dimension greater than
3.
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We consider call option on a basket of d assets where the asset process is modelled by multi-dimensional
geometric Brownian motion with constant correlation ρij = ρ = 0.75 for i 6= j and constant volatility σ0 = 0.25.
The full-rank volatility matrix σ in model (3.1) is then given by

σσ> = Σ where Σ := (Σij)1≤i,j≤d with Σij = σ2
0ρ, i 6= j and Σii = σ2

0 .

Then, A0 :=
((

(σ1S1
0)>, . . . , (σdSd0 )>

)>)−1

where σi is the ith row of σ. The payoff is given by

Φ(S1
T , . . . , S

d
T ) =

(∑
i

piSiT −K

)+

.

The option expiration is set to T = 1 year and the interest rate r = 0.2. We suppose that weights pi = 1
d for all

i. The strike price K equals 20 and the initial values of the assets S0 = (S1
0 , . . . , S

d
0 ) are specified in Table 6.

The rest of the model parameters are the same as earlier. In this table, we present prices and deltas for different
basket options with several underlyings. In the first column, classical crude Monte Carlo values are shown (MC
R = 0, VM was not considered). In the second column SRMDP values are displayed taking into account VM.

MC (R = 0) SRMDP (R = 0.02)
95% CI 95% CI 95% CI 95% CI

S0 V BS
0 (S0) ZBS

0 (S0)A0 V NL
0 (S0) ZNL

0 (S0)A0

(18, 20) [1.5102, 1.5113] [−0.0685,−0.0682] [1.5015, 1.5468] [−0.0772,−0.0649]
[0.6237, 0.6245] [0.6297, 0.6556]

(18, 20, 22) [2.0067, 2.0081] [−0.4676,−0.4671] [1.9915, 2.0447] [−0.4756,−0.4641]
[0.3813, 0.3817] [0.3873, 0.4167]
[0.7435, 0.7443] [0.7725, 0.7882]

(16, 18, 20, 22) [1.4470, 1.4481] [−0.6589,−0.6582] [1.4677, 1.5090] [−0.6689,−0.6182]
[0.1062, 0.1064] [0.0962, 0.1374]
[0.4334, 0.4338] [0.4234, 0.4628]
[0.6093, 0.6100] [0.5943, 0.6310]

(16, 18, 20, 22, 24) [1.9672, 1.9676] [−1.0467,−1.0455] [1.9928, 2.0692] [−1.0767,−1.0242]
[−0.0855,−0.0852] [−0.1155,−0.0752]

[0.3342, 0.3347] [0.3042, 0.3467]
[0.5655, 0.5662] [0.5355, 0.5762]
[0.7039, 0.7047] [0.6839, 0.7167]

Table 6. Prices and deltas for the basket call option.
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