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Abstract. The hygroscopic and volatility properties of sec-
ondary organic aerosol (SOA) produced from the nebu-
lization of solutions after aqueous phase photooxidation of
methacrolein was experimentally studied in a laboratory, us-
ing a Volatility-Hygroscopicity Tandem DMA (VHTDMA).
The obtained SOA were 80% 100◦C-volatile after 5 h of re-
action and only 20% 100◦C-volatile after 22 h of reaction.
The Hygroscopic Growth Factor (HGF) of the SOA produced
from the nebulization of solutions after aqueous-phase pho-
tooxidation of methacrolein is 1.34–1.43, which is signifi-
cantly higher than the HGF of SOA formed by gas-phase
photooxidation of terpenes, usually found almost hydropho-
bic. These hygroscopic properties were confirmed for SOA
formed by the nebulization of the same solutions where NaCl
was added. The hygroscopic properties of the cloud droplet
residuals decrease with the reaction time, in parallel with
the formation of more refractory compounds. This decrease
was mainly attributed to the 250◦C-refractive fraction (pre-
sumably representative of the highest molecular weight com-
pounds), which evolved from moderately hygroscopic (HGF
of 1.52) to less hygroscopic (HGF of 1.36). Oligomerization
is suggested as a process responsible for the decrease of both
volatility and hygroscopicity with time. The NaCl seeded
experiments enabled us to show that 19±4 mg L−1 of SOA
was produced after 9.5 h of reaction and 41±9 mg L−1 af-
ter 22 h of in-cloud reaction. Because more and more SOA
is formed as the reaction time increases, our results show
that the reaction products formed during the aqueous-phase
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OH-oxidation of methacrolein may play a major role in the
properties of residual particles upon the droplet’s evapora-
tion. Therefore, the specific physical properties of SOA pro-
duced during cloud processes should be taken into account
for a global estimation of SOA and their atmospheric im-
pacts.

1 Introduction

Aerosol particles play an important but still poorly-
understood role in the atmosphere. Indeed, atmospheric
aerosol particles affect human health and the earth’s radiation
balance in various ways (IPCC, 2007). First, aerosol particles
absorb and scatter solar radiation (direct effect), and second,
aerosols are activated to cloud droplets (indirect effect). The
direct and indirect effects are both dependent on the size dis-
tribution and chemical composition which drive optical and
hygroscopic properties of the aerosol particles. The capacity
of water to condense onto aerosol particles influences hetero-
geneous reactions (Ravishankara, 1997), light extinction and
visibility (Dick et al., 2000), whereby aerosol water is most
relevant for the direct radiative forcing of the Earth’s climate
(Pilinis et al., 1995).

The particles composition varies with size, time, and lo-
cation, reflecting their diverse origins and atmospheric pro-
cessing. The hygroscopic properties of main inorganic salts
present in atmospheric particles are well known (Ansari et
al., 1999; Colberg et al., 2003; Kreidenweis et al., 2005).
Among all the organic compounds identified in the atmo-
spheric aerosol (Decesari et al., 2000; Shimmo et al., 2004;
Putaud et al., 2004), the hygroscopic properties of more and
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more known organic mixtures have been studied (Bilde et
al., 2004; Chan et al., 2003; Koehler et al., 2006). Scarcer
are the studies of hygroscopic changes with aerosol ageing
(Kanakidou et al., 2005; Vesna et al., 2008). Hydrophobic
particles such as combustion aerosols are expected to gain
hygroscopicity when ageing (Swietlicki et al., 2008) while
hygroscopic salts were observed to lose hygroscopicity when
ageing (Sellegri et al., 2008). Thus, the resulting aged am-
bient aerosols are often moderately hygroscopic with Hygro-
scopic Growth Factor (HGF) between 1.3 and 1.5 when away
from the sources (Mc Figgans et al., 2006; Swietlicki et al.,
2008).

The Volatility Hygroscopicity Tandem DMA (VHTDMA)
technique (Villani et al., 2008; Johnson et al., 2005) has been
recently used to investigate the effect of ageing on the hygro-
scopic properties of aerosol by studying the change in HGF
due to the 90◦C volatile fraction of aerosol (Villani et al.,
2009). The technique has shown that the 90◦C volatile frac-
tion of the marine aerosol present in the accumulation mode
slightly decreases its hygroscopicity compared to pure sea
salt, indicating that a chemical ageing takes place on ma-
rine aerosols (Sellegri et al., 2008). Photooxidation of or-
ganic compounds in the gas phase may lead to secondary
organic aerosols (SOA) which experience significant chemi-
cal changes while ageing, which can be tracked by the study
of their volatility properties. For instance, photooxidation
of trimethylbenzenes in a smog chamber show that a sub-
stantial fraction of the organic aerosol mass is composed of
oligomers, which, after ageing for more than 20 h, result in a
lower volatility SOA (Kalberer et al., 2004). The processes
responsible for hygroscopic changes through ageing can be
due to the condensation of gas phase compounds, heteroge-
neous reactions at the aerosol surface, or in-cloud reactions.
The role of water in the atmospheric oxidation processes dur-
ing ageing has been shown to be crucial (Vesna et al., 2008;
Warren et al., 2009; Perri et al., 2009). The effects of age-
ing on aerosol properties through in-cloud reactions, though,
have scarcely been addressed. Up until now, the modifica-
tion of the inorganic fraction has been investigated mainly
in modeling studies (Wurzler et al., 2000) and scarcely ex-
perimentally (Levin et al., 1996). In natural clouds, cloud
processing has indirectly been shown to increase the hy-
groscopic properties of aerosol particles (Crumeyrolle et al.,
2008). However, the aerosol physical properties (hygroscop-
icity and volatility) change due to aqueous-phase photooxi-
dation has never, to our knowledge, directly been quantified
with identified compounds.

Methacrolein is a major gas phase reaction product of iso-
prene (Lee et al., 2005) that can be widely found in the
gas phase and in cloud and fog waters (van Pinxteren et al.,
2005). Hence, it’s study can be valuable as an example of
terpene oxidation product that can be correlated with other
SOA ageing studies in El Haddad et al. (2009), we confirm
that significant amounts of SOA are formed by the nebu-
lization of solutions after aqueous-phase photooxidation of

methacrolein, as already shown by Chen et al. (2008). The
aim of this study is to investigate the hygroscopic and volatil-
ity properties of the SOA formed by the nebulization of so-
lutions after aqueous-phase photooxidation of methacrolein,
and evaluate the impact that such a simulated cloud process-
ing may have when a hygroscopically active salt (NaCl) is
present in the droplet solution.

2 Methods

As described in Liu et al. (2009) and El Haddad et al. (2009),
SOA produced from the nebulization of solutions after
aqueous-phase photooxidation of methacrolein at 25◦C, was
studied at different reaction times. Briefly, OH-oxidation of
methacrolein was studied in a 450 mL Pyrex thermostated
reactor, illuminated by a Xenon arc lamp. OH radicals were
obtained from the irradiation of 0.4 M H2O2. For further de-
tails, the reader is referred to Liu et al. (2009) and El Haddad
et al. (2009). The experimental setup used for the aerosol
generation experiments is presented in Fig. 1.

Liquid samples taken from the photoreactor (during the
OH-oxidation of methacrolein) at specific reaction times
(0 h, 5 h, 9.5 h, 14 h and 22 h) were nebulized at a flow rate of
4.2 L min−1, with a TSI 3079 atomizer, at room temperature
(constant 20◦C). Then, the aerosol flow was dried by mix-
ing with pure dry air at a flow rate of 5 L min−1 and passing
through a silica gel diffusion dryer. After drying, the aerosol
was delivered into a 200 L Teflon (PTFE) mixing chamber.
At these operating conditions, the average residence time of
the aerosol in the whole setup was about 20 min.

Two sets of aerosol generation and characterisation exper-
iments were carried out. In the first set, the liquid samples,
taken at different aqueous phase reaction times, were nebu-
lized. The resulting SOA is called “Pure SOA” in the follow-
ing. In the second set, sodium chloride (100 mg L−1) was
added to the same samples prior to nebulization. The result-
ing aerosol is called “SOA+NaCl” in the following. NaCl
was added to simulate the inorganic fraction of the aerosol.
For comparison purposes, a solution of NaCl (100 mg L−1)

diluted in pure water was nebulized following the same pro-
cedure. Before each nebulization experiment, the 200 L mix-
ing chamber was flushed for about 2 h (∼6 times) with syn-
thetic air, and aerosol blanks were controlled by Scanning
Mobility Particle Sizer (SMPS) measurements prior to each
new experiment. For all experiments, the aerosols obtained
were characterized in terms of size distribution, hygroscop-
icity and volatility.

The size distribution of the generated aerosol was mon-
itored using a SMPS connected to the mixing chamber
(Fig. 1). The SMPS is composed of a Long-column Differen-
tial Mobility Analyzer (L-DMA, GRIMM Inc.; France) and a
Condensation Particle Counter (CPC, model 5.403, GRIMM
Inc.; France). The DMA aerosol and sheath operating flow
rates were 0.3 and 3 L min−1, respectively.
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Fig. 1. Scheme of the aerosol generation and characterization experimental setup.

The aerosol hygroscopic growth measurements were con-
ducted at subsaturation using a Volatility-Hygroscopicity
Tandem DMA (VHT-DMA). This instrument consists
mainly of two tandem DMA-CPCs (TSI), separated by a con-
ditioning unit composed of an oven and a humidification de-
vice in series. The measurements were performed first by
passing the aerosol from the chamber through a silica gel
dryer (at a flow rate of 2 L min−1) to remove the aerosol re-
maining bound water, at low RH (<15%). The aerosol was
then classified at a constant voltage in the first DMA to a
specified diameter (Dpdry) in the size range of the cham-
ber aerosol. The mono-disperse particles from the classify-
ing DMA were then brought to a specified relative humid-
ity (usually 90%) by the way of the humidification device
(H-scan), or to a specific temperature in the oven (V-scans)
or to a specific temperature and humidity successively (VH-
scans). The humidification system was composed of a semi-
permeable membrane condenser (Nafion). It was refrigerated
together with the second DMA to achieve higher and more
stable RH values. The residence time of the particles in the
humid environment was 2 s. The new aerosol size distribu-
tion (Dpwet) obtained after the water uptake, or after volatil-
isation, or the combination of the two were measured by the
second DMA-CPC operating in scanning mode. The hygro-
scopic growth factor (HGF) is defined by Eq. (1).

HGF =
Dpwet

Dpdry
(1)

Where Dpwet is the humidified particles diameter, and Dpdry
the dry classified particles diameter. Chemical reactions at
the aerosol surface, which might be promoted by the water

vapour in the humidified sections, are regarded as negligi-
ble compared to the liquid-phase chemical reactions which
occurred previously over several hours and irradiated condi-
tions.

The Volatility “growth” factor (VGF) can be derived from
the Volatility scan. It is the relative size change of a particle
due to thermal conditioning, at a constant RH of 10%. For
a given thermo-desorbing temperatureT ◦, it is calculated as
the ratio between the particle diameter (D

10,T ◦

p ) at T ◦ and
the particle diameter at RH=10% and ambient temperature,
here 20◦C (D10,T ◦amb

p ) (Eq. 2).

VGF =
D

10,T ◦

p

D
10,T ◦amb
p

(2)

The residual volumic fraction (RVF) is the ratio between the
particles volume after and before volatilization. It is derived
from the VGF according to Eq. (3).

RVF =

(
D

10,T ◦

p

D
10,T ◦amb
p

)3

= VGF3 (3)

For a thermo-desorbing temperature ranging from ambient
temperature to 300◦C, the resulting residence time in the
oven heating path (30 cm) was 1 s.

The Volatility-Hygroscopic growth factor (VHGF) is the
hygroscopic growth of a thermally processed particle (Eq. 4):

VHGF =
D

90,T ◦

p

D
10,T ◦

p

(4)

Where D
90,T ◦

p is the particle diameter at RH=90% and
T ◦>T ◦

amb. The VHGF is therefore calculated considering
the “new” diameter resulting from thermo-desorption.

www.atmos-chem-phys.net/9/5119/2009/ Atmos. Chem. Phys., 9, 5119–5130, 2009



5122 V. Michaud et al.: In-cloud processes of methacrolein under simulated conditions

Table 1. Stability of relative humidity (RH) and temperature (T ◦) measured in the system. Means and standard deviations were calculated
independently for each experiment.

Diameter (Dp0) 40 nm

Settings HTDMA VTDMA VHTDMA

Parameters
controlled RH (%) T ◦ (◦C) RH (%) T ◦ (◦C)

5 h 89.7±0.4 249.5±0.3 89.6±0.4 248.7±0.6
Time 9.5 h 89.9±0.2 247.6±0.4 90.0±0.5 247.8±0.5
reaction 14 h 89.3±0.7 247.6±0.3 89.8±0.1 247.0±0.3

22 h 89.5±0.1 249.8±0.3 89.6±0.4 250.2±0.5

The humidity in the system was piloted using a CEM
(Controlled Evaporation Mixing) unit, creating a saturated
air flow, and a system of Nafion tubes. The temperature in
the oven was controlled by software and a thermocouple.
Humidity and temperature were measured by RH-T sensors
(Model Rotronic, HygroClip 05). The reader is referred to
Villani et al. (2008) for a full description of the instrument.

Regarding its hygroscopic growth measurement perfor-
mances, the HTDMA was intercompared with six other Eu-
ropean HTDMA in the frame of the EUSAAR project (http:
//www.eusaar.net), and performed well with less than 2.5%
deviation to the theoretical deliquescence RH of ammonium
sulphate (Duplissy et al., 2008). The volatility condition-
ing unit behaviour was modeled to evaluate its performances,
and further tested with standard aerosol particles (Villani et
al., 2006).

During the SOA experiments presented here, two differ-
ent aerosol sizes were studied, both belonging to the same
mode produced by the nebulization device, as checked on the
SMPS size distributions. Dry scans (RH<20%,T =ambient)
were performed regularly to track the relationship between
the selected aerosol diameter in DMA1 and the particle di-
ameter detected in DMA2. The uncertainty on HGF deter-
mination is mainly linked to the precision and stability of the
RH sensors.

The average and standard deviations on the humidifying
device RH and ovenT ◦ during the experiments are reported
in Table 1. The relative humidity is homogeneous among the
different experiments (the average values vary between 89.3
and 90.0%) and stable within a given experiment (standard
deviation≤0.7%). According to Duplissy et al. (2008), a RH
variability lower than 2% is required on a given scan to val-
idate the HGF measurements. In our case, the uncertainty
associated with our RH variability (less than 0.7%) would
be, as an example for a 50 nm ammonium sulfate particle,
of ±0.025 on the HGF. The oven temperature was also rela-
tively homogeneous (247.0◦C to 250.2◦C) and stable (stan-
dard deviation≤0.6◦C) (Table 1). In terms of precision, the
RH sensors were corrected by using NaCl as a calibration
salt.

For each experiment, an average of the scans realized
under specific conditions (ambient dry, VTDMA, VHT-
DMA, HTDMA) were calculated. Each average hygroscopic
growth distribution was then fitted using a Gaussian fit algo-
rithm.

3 Results

The chemical analysis of the aqueous phase composition
denoted the formation of high molecular weight multifunc-
tional products containing hydroxyl, carbonyl and carboxylic
acid moieties, and some of them can be assimilated to
oligomers (Liu et al., 2009; El Haddad et al., 2009). The abil-
ity of these compounds to produce SOA upon water droplets
evaporation, was experimentally examined. We hypothesise
that the difference in temperatures between the liquid sam-
ples in which chemical analysis were performed (25◦C) and
the liquid samples which were nebulized (20◦C) do not imply
additional chemical changes of the solution. This hypothesis
is strengthened by the fact that no chemical reaction is ob-
served as soon as light is turned off (Liu et al., 2009). The
results clearly showed a significant production of SOA. A
clear evolution of the particle size, number and mass concen-
tration with the reaction time was obtained: an increase of the
aerosol mass from 0.03µg m−3 to 27.8µg m−3, within 22 h
of reaction was observed. The evaluated SOA yield ranged
from 2 to 12% (El Haddad et al., 2009). It is not realistic
that the same particle experiences more than 9.5 h under light
conditions in a cloud droplet. However, we expect that suc-
cessive cloud processes would have the same effect than our
experiments performed during 22 h of photooxidation.

3.1 Pure SOA experiments

3.1.1 Volatility studies

In Table 2, the Residual Volumic Fractions (RVF) were cal-
culated at different temperatures for SOA particles of 40 and
50 nm formed from the nebulization of aqueous solutions af-
ter OH-oxidation of methacrolein during different reaction

Atmos. Chem. Phys., 9, 5119–5130, 2009 www.atmos-chem-phys.net/9/5119/2009/
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Table 2. Residual Volumic Fraction (RVF) of SOA formed at different reaction times, after heating in VTDMA at 100, 180 and 250◦C. The
diameter of the incident particles (selected in the first DMA) is 40 or 50 nm. The values of RVF are the average of two measurements.

Diameter (Dp0) 40 nm 50 nm

Temperature (◦C) 100◦C 180◦C 250◦C 100◦C 180◦C 250◦C

5 h 34% 31% 16% 34% 31% 16%
Time 9.5 h 19% 9% 8% 23% 9% 8%
reaction 14 h 85% 56% 44% 91% 58% 47%

22 h 76% 49% 41% 81% 52% 43%

times. As expected, the RVF decreases when the oven tem-
perature increases (e.g. from 34% to 16% for 40 nm particles,
respectively, from 100◦C to 250◦C at reaction time 5 h).

Figure 2 shows that att=5 h and 9.5 h, the RVF is lower
than 35%. At higher reaction times, the RVF increases dras-
tically (e.g. 81% for 50 nm particles at 100◦C and 43% at
250◦C att=22 h), indicating that the SOA formed by in-cloud
photooxidation are mostly volatile at 100◦C at the beginning
of the reaction, but become more and more refractory with
increasing oxidation time. For reaction times up to 9.5 h,
the consistency of the RVF between the 40 nm and 50 nm
particles shows that, at a given temperature, the volatilized
fraction is not dependent on the particle size, which indicates
that the volatilization may have reached equilibrium within
the VHTDMA oven, i.e. the residence time in the oven is
sufficient. However, as the reaction time increases, the dis-
crepancy between the RVF of 40 nm particles and the RVF
of 50 nm particle becomes more important, indicating that
volatilization kinetics may play a role for these less volatile
SOA, and that the aerosol may not have been evaporated to
the level of the gas/phase equilibrium corresponding to the
temperature of the oven, given the 2 s residence time. How-
ever, the discrepancy is only a few percent, and we will later
hypothesize that the RVF does not significantly depend on
the original SOA mass. An et al. (2007) measured a RVF
of ≈55% for a 100 nm particle of SOA formed after 10 h of
reaction betweenα-pinene and O3, with a residence time of
1.8 s and a temperature of 100◦C. Our results show a more
volatile SOA for similar residence time and reaction time
(RVF of around 20%). In their study, no clear relation-
ship was found between the SOA formed after 4 h of reac-
tion and the SOA formed after 10 h of reactions. Here, we
see evidence of a significant change with reaction advance-
ment, which has also been detected by Kalberer et al. (2004)
in their study of gas-phase photooxidation of trimethylben-
zenes. An increase of the concentration of high molecu-
lar weight multifunctional products associated to multiple
isomers and oligomers have been detected as a function of
reaction time by El Haddad et al. (2009) in the aqueous
phase, and may be responsible for the volatility change of the
droplet residual particle. An increase in 100◦C non-volatile
particle fraction has been attributed in the literature to poly-
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Fig. 2. Residual Volumic Fraction (RVF) of the SOA obtained after
different aqueous-phase reaction times, using VTDMA oven tem-
peratures of 100, 180 and 250◦C.

mer formation (Kalberer et al., 2004; Paulsen et al., 2006).
The VTDMA results by Kalberer et al. (2004) revealed a
polymerisation rate of 2.6% hr−1 (in volume). Here we found
that the increase of the 100◦C-refractory fraction is not lin-
ear, and that after 9.5 h of reaction, it represents 5.7–6.3%
(in volume) per hour. If all refractory material was attributed
to oligomerization, our results would show a saturation of
the oligomerization after 14 h of reaction, and a takeover by
non-oligomerizing components.

3.1.2 Hygroscopicity studies

The HTDMA measurements at 90% RH performed for 40
and 50 nm pure SOA formed upon water evaporation af-
ter different reaction times have each shown a monomodal
humidified aerosol size distribution. This behaviour sug-
gests that the SOA is an internal mixture. The pure SOA
were moderately hygroscopic, with hygroscopic growth fac-
tors varying between 1.34 and 1.43 (Table 3). These val-
ues are comparable to those reported by Prenni et al. (2003)
for oxalic acid (HGF=1.43). In the gas-phase, SOA
formed from photooxidation usually show lower hygro-
scopic growth factors. Varutbangkul et al. (2006) measured
lower HGF for SOA formed in simulation chambers during
the gas-phase photooxidation or ozonolysis of cycloalkenes
(1.14<HGF<1.22), monoterpenes (1.10<HGF<1.16) and
sesquiterpenes (1.03<HGF<1.08). Vesna et al. (2008) also

www.atmos-chem-phys.net/9/5119/2009/ Atmos. Chem. Phys., 9, 5119–5130, 2009
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Table 3. GF values for HTDMA, VTDMA and VHTDMA and calculated hygroscopicity of the 250◦C volatile volumic fraction (VVF) (see
text in Sect. 3.1.3. for details on the calculation method) of “pure SOA” formed after different reaction times for 40 nm particles. RH=90.8%
and oven temperature≈250◦C. The uncertainty is calculated as the standard deviation over the different scans performed for a given reaction
time.

Diameter (Dp00) 40 nm

Settings H GF V GF VH GF H GF of VVF

5 h 1.43±0.02 0.55±0.01 1.52±0.04 1.41
Time 9.5 h 1.40±0.00 0.43±0.00 1.49±0.02 1.39
reaction 14 h 1.34±0.04 0.76±0.00 1.32±0.01 1.36

22 h 1.41±0.00 0.75±0.00 1.36±0.00 1.44

measured lower HGF during the ozonolysis of unsaturated
fatty acids (1.03<HGF<1.09). This difference can be ex-
plained in two ways: i) the influence of the chemical struc-
ture of the precursor VOC; ii) the formation mechanism of
the SOA. (i) Compared to methacrolein, higher-molecular
weight hydrocarbon precursors tend to produce larger oxi-
dation and less hygroscopic products (Varutbangkul et al.,
2006). ii) The higher hygroscopicity of the SOA obtained
here could be associated with its formation mechanisms,
as differences exist between aqueous phase and gas phase
reaction products. Vesna et al. (2007) showed in labora-
tory experiments that during the heterogeneous ozonolysis
of arachidonic acid particles, hygroscopic changes induced
by humidity are accompanied by about a doubling of the ra-
tio of carboxylic acid protons to aliphatic protons. The au-
thors suggest that, under humid conditions, the reaction of
water with the Criegee intermediates might open a pathway
for the formation of smaller acids that lead to more signif-
icant changes in hygroscopicity. Chen et al. (2008) have
suggested from an aqueous-phase ozonolysis study of methyl
vinyl ketone and methacrolein that pathways leading to hy-
drogen peroxide via hydroxy-hydroperoxides might be im-
portant. The decomposition of the hydroperoxides may also
lead to acids. Therefore, humidity might have a significant
effect on the yield of hygroscopic products. It has already
been reported that the aqueous phase processes yield higher
amounts of carboxylic acids than the gas phase oxidation
(Blando and Turpin, 2000; Monod et al., 2000). Sorooshian
et al. (2007) found that the ratio of oxalic acid-to-sulfate was
significantly increased above clouds, and attributed this in-
crease to aqueous-phase reactions. This is also supported,
in the samples used in the present study, by the MS/MS
analysis of the aqueous phase products that reveals the pres-
ence of multifunctional carboxylic acids (El Haddad et al.,
2009). These products are believed to be hydrophilic and
hence increase the hygroscopicity of the SOA, compared to
gas phase oxidation products. In this study, the HGF seems
to experience a slight decrease from 1.43 to 1.36 with reac-
tion time until 14 h of reaction, and then an increase back to
1.41. The oligomerization is expected to decrease the parti-

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

10 30 50 70 90 110

Relative Humidity

G
ro

w
th

 F
ac

to
r

Measurements

Fit

GF=1+[0.486*(RH/100)4.69]
R²=0.995

���������
	��Fig. 3. Humidogram of Pure SOA particles at 50 nm and for a reac-
tion time oft=14 h.

cle hygroscopicity with time, which is in agreement with the
volatility study for the first 14 h. After 14 h of reaction, the
formation of non-oligomerizing compounds would slightly
enhance the HGF again. Varutbangkul et al. (2006) have
also found a decreasing hygroscopicity with reaction time
for SOA formed by the photooxidation of sesquiterpene, at-
tributed to oligomer formation. Our results seem to agree
with their postulate according to which the oligomerization
is competing with the formation of more hygroscopic polar
oxidized species.

At the reaction time 14 h, the RH in the HTDMA humidi-
fication chamber was ramped up from 50% to 90%, in order
to better describe the SOA formed in the aqueous phase. The
resulting hygroscopic growth curve, presented in Fig. 3, does
not exhibit a deliquescence behaviour, which is characteristic
of organic aerosol particles (Dick et al., 2000; Rudich et al.,
2007).

The experimental data were fitted using the empirical
functional form reported previously by Varutbangkul et
al. (2006) for SOA formed from several VOC precursors in
the gas phase:

Atmos. Chem. Phys., 9, 5119–5130, 2009 www.atmos-chem-phys.net/9/5119/2009/



V. Michaud et al.: In-cloud processes of methacrolein under simulated conditions 5125

GF = 1 +

[(
1 −

RH

100

)−A

× B

(
RH

100

)C
]

(5)

Where, RH is the relative humidity, andA, B, andC are pos-
itive empirical parameters. The fit parameterA, more rep-
resentative of the inorganic fraction (Swietlicki et al., 2000)
was not significantly different from 0, and the second func-
tional term (B=0.486;C=4.69), frequently used to model di-
carboxylic acids (Wise et al., 2003) was sufficient to satis-
factorily represent our data (R2=0.995; Fig. 3). This sug-
gests that the hygroscopic behaviour of the obtained SOA
is similar to photooxidized biogenic organics reported by
Varutbangkul et al. (2006). This parameterization allows
for the computation of the SOA at any given RH. Inor-
ganic salts usually exhibit a deliquescence point below which
the aerosol stays in the dry state. A SOA coating such as
the one which would be formed through in-cloud processes
of methacrolein would, hence, allow water uptake at lower
RHs than the pure inorganic portion alone, modifying among
other parameters, its optical properties and interactions with
other trace gases.

3.1.3 Volatility-hygroscopicity combined studies

The hygroscopicity at RH=90% of the refractory core after
volatilization at 250◦C (VHGF) were calculated according
to Eq. (4) and are reported in Table 3. It can be observed
that the hygroscopic properties of the 250◦C-refractory frac-
tion significantly changes with the reaction time contrarily to
the HGF of the whole “pure SOA” aerosol, as it becomes
less hygroscopic. The VHGF varies from 1.52 (t=5 h) to
1.36 (t=22 h). It should be emphasised here that for a given
particle composition, smaller particles would tend to show
smaller HGF than larger particles (Kelvin effect). Hence, the
larger HGF observed for the small refractory fraction at 5 h
(RVF=16%) compared to the ones at 22 h (RVF=42%) can
not be due to a change of size, and this fraction, presumably
representative of the highest molecular weight compounds,
become less hygroscopic with the reaction time. This be-
haviour indicates that the decrease in hygroscopicity with
time is attributed to both the formation of more refractory
material, and a decrease of hygroscopicity of this refractory
fraction.

From the HGF of the total “pure SOA” aerosol volume
and of the refractory fraction, the HGF of the volatile volu-
mic fraction (VVF, calculated as (1-RVF), Table 3) has been
calculated using the ZSR (Zdanovskii-Stokes-Robinson) the-
ory (Eq. 6), according to which the water uptake of a mixture
is the sum (by mass) of the water uptake of each individual
component.

GF =
3
√

α.HGF3
α + β.HGF3

β (6)

Where HGFα and HGFβ are the HGF of the component
present in the particle with the respective fraction of alpha

and beta. This theory has been used by many authors (Mar-
colli and al., 2004) with good results. In our case,α andβ are
respectively the 250◦C-RVF and 250◦C-VVF of the aerosol
particles.

One can observe that the 250◦C-volatile fraction does not
vary much with time (from 1.36 to 1.41, Table 3). Before
t=9.5 h, the 250◦C-refractory fraction is significantly more
hygroscopic than the volatile fraction, but because it repre-
sents only 8 to 16% of the total particle volume (Table 2),
the effect is not detected on the total particle hygroscop-
icity. During the gas phase ozonolysis of sesquiterpene-
caryophyllene, Asa-Awuku et al. (2009) found on the con-
trary that the hygroscopic fraction of the SOA is volatile.
This is another difference which might be due to aqueous
phase SOA formation compared to gas-phase reactions. At
reaction times higher than 9.5 h, the 250◦C-refractory vol-
ume increases (Table 2), and in parallel, its hygroscopicity
decreases. As a consequence, the hygroscopicity of the total
volume of SOA particles does not evolve linearly with the
reaction time.

The goal of next section is to observe the effect of the pro-
duction of such a moderately hygroscopic SOA in a droplet
which would originally contain an hygroscopic salt (sea salt).

3.2 SOA+NaCl experiments

3.2.1 Volatility studies

The volatility scans are all mono-modal, indicating that SOA
and the sea salt (NaCl) are internally mixed aerosol. Table 4
shows the refractory fractions of the mixture SOA and NaCl
at different temperatures and reaction times. As expected,
the mixed particles are much more refractory than the pure
SOA particles, due to the presence of sea salt. The refractory
fraction does not linearly evolves with the reaction time, be-
cause it is the result of the combination between an increase
of the SOA mass fraction in the SOA+NaCl mixture (increas-
ing volatility of the total mixture), and a decreasing volatility
of this SOA fraction.

From the volatilized volume measured during the pure
SOA experiments, and the volatilized volume reported in Ta-
ble 4, we can calculate the volumic fraction of SOA (χSOA)

mixed with NaCl for each reaction time according to Eq. (7):

χSOA =
VVF(NaCl + SOA)

VVF(SOA)

(7)

Equation (7) is valid only if the organic solutions (sampled
during the aqueous-phase photooxidation of methacrolein)
are not influenced by the presence of an inorganic salt such
as NaCl. This should be the case since the NaCl salt was
added to the aqueous solution after the reaction had taken
place. This hypothesis will be confirmed hereafter using the
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Table 4. Residual Volumic Fraction (RVF) of “SOA+NaCl” aerosol formed after different reaction times, after heating in VTDMA at 100,
180 and 250◦C. The diameter of the incident particles (selected in the first DMA) is 40 or 50 nm. The values of RVF indicated are obtained
starting from the average of two measurements. ND stands for Not Detected.

Diameter (Dp00) 40 nm 50 nm

Temperature (◦C) 100◦C 180◦C 250◦C 100◦C 180◦C 250◦C

5 h ND ND ND ND ND ND
Time 9.5 h 90% 85% 87% 94% 89% 88%
reaction 14 h 92% 87% 87% 94% 91% 89%

22 h 90% 83% 82% 95% 89% 86%

Table 5. SOA volume fraction for each reaction time and each volatilization temperature, calculated according to Eq. (7). The approximated
mass fraction was calculated using a density of 1.4 for SOA.

Mean SOA SOA mass
Diameter (Dp00) 40 nm 50 nm volume production
Temperature (◦C) 100◦C 180◦C 250◦C 100◦C 180◦C 250◦C Fraction (χSOA) (εSOA×100 mgL−1)

Time
9.5 h 12% 16% 14% 8% 12% 13% 13±3% 19±4

reaction
14 h 53% 30% 23% 67% 21% 21% 36±18% 48±24
22 h 42% 33% 31% 26% 23% 25% 30±6% 41±9

hygroscopicity measurements. The mass fraction of SOA
(εSOA) can be calculated by:

εSOA = χSOA
ρSOA ∗ χSOA + ρNaCl ∗ (1 − χSOA)

ρSOA

WhereρSOA is the density of the SOA andρNaCl is the den-
sity of NaCl (2.16 g cm−3). A density 1–1.2 g cm−3 has often
been used for organic particles (Presto et al., 2005; Pathak
et al., 2006). Higher values have, however, been recently
measured. Varutbangkul et al. (2006) measured a density of
1.3 for monoterpene and oxygenated terpene precursors in
seeded experiments and most recently, and a range of 1.4–
1.65 has been proposed for SOA formed from ozonolysis
of terpenes (Kostenidou et al., 2007). The density of the
SOA produced in our experiment is most likely not constant
with time, more oxygenated compounds are expected to have
higher densities (Katrib et al., 2006). We chose to estimate
the mass fraction of SOA produced in our experiment by us-
ing an average density of 1.4. The fraction of SOA in the
SOA+NaCl mixture should be constant whatever the tem-
perature of volatilization and whatever the particle selected
size (40 or 50 nm) for each reaction time, assuming that the
volatilized fraction is not dependent on the particle size, as
demonstrated in Sect. 3.1.1. Table 5 gives six different eval-
uations of the SOA mass fraction for each reaction time. The
results show that, except for the 14 h reaction time, the vari-
ability of the SOA mass fraction calculation is reasonably
low within each experiment, which gives some confidence
on this calculation.

Because the amount of NaCl dissolved in the liquid sam-
ple was 100 mg L−1, we can calculate the mass of SOA pro-
duced in the liquid phase (Table 5). The SOA mass produc-
tion has also been calculated from the SMPS size distribution
(El Haddad et al., 2009), and it was found that 14.3±4.9,
23.8±8.1 and 32.7±11.1 mg L−1 of SOA were produced, re-
spectively, att=9.5 h, 14 h and 22 h. These values, obtained
with independent calculation methods, are in good agree-
ment with the ones presented here, within the uncertainties.

3.2.2 Hygroscopicity studies

Again, the HTDMA size distributions of the droplet’s resid-
ual aerosols observed for this set of experiments showed
a single mode, confirming that the organic and the inor-
ganic fractions formed an internally mixed aerosol. At re-
action time 0 h, the aerosol HGF (2.35±0.02 at 40 nm and
RH=90.8%) was equal to that of pure NaCl, within the un-
certainties of the measurement: the hygroscopic growth of
a pure 40 nm NaCl particle is 2.33 at 90.8% (Hameri et al.,
2001).

With the reaction advancement, the HGF decreases sig-
nificantly, as the less-hygroscopic organic fraction increases
(Table 6). Using the SOA mass production (Table 5), we can
calculate the expected hygroscopic growth by combining the
HGF of “pure SOA” measured in the previous section, and
the HGF of pure NaCl measured at the beginning of the ex-
periment (average 2.35) with the ZSR relationship (Eq. 6).
We find a very good agreement between the calculated and
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measured HGF, except for the reaction time of 14 h (Table 6).
These results indicate that the hygroscopicity of the SOA
formed by nebulization of solutions after aqueous-phase pho-
tooxidation is reproducible when a salt is present in the liquid
phase. As a consequence, we can conclude that the salt does
not interact with the polar compounds that might be produced
as SOA. These results also strengthen our evaluation of the
SOA yields.

4 Summary and conclusions

The physical properties of SOA (hygroscopicity, volatility)
produced from the nebulization of solutions after aqueous-
phase photooxidation of methacrolein was studied for the
first time to our knowledge. Methacrolein was chosen be-
cause it is one of the major reaction products of isoprene in
the atmosphere, and it has been observed in natural cloud
waters (van Pinxteren et al., 2005). The hygroscopic and
volatility properties of the obtained SOA were experimen-
tally studied in laboratory, by using the VHTDMA tech-
nique. The SOA is 80% 100◦C-volatile after 5 h of reac-
tion, but the volatility drastically decreases as the reaction
time increases, and after 22 h of reaction, the SOA is only
20% 100◦C-volatile. The SOA formed through the nebu-
lization of solutions after aqueous-phase photooxidation of
methacrolein is, hence, more volatile than the ones formed
through gas-phase photooxidation of terpenes after a few
hours of reactions. This difference can be explained by i) the
difference of the chemical structure of the precursor VOC
and ii) the different formation pathways of the SOA. Age-
ing has a significant effect on the volatilization properties,
in agreement with ageing of some gas-phase terpene pho-
tooxidation products (Kalberer et al., 2004). Oligomeres
have been observed to be formed during aqueous-phase gly-
coaldehyde oxidation (Perri et al., 2009). Oligomerization
is suspected to form 100◦C-refractory compounds which can
explain our results. We observed that the oligomerization
process is in competition with the formation of other non-
oligomerizing compounds, detected as unidentified higher
molecular weight multifunctional products by El Haddad et
al. (2009). The same volatility properties characterize the
SOA formed from the nebulization of the same solutions
where NaCl was added, indicating a good reproducibility
of our results. The HGF of the SOA produced from the
nebulization of solutions after liquid-phase photooxidation
of methacrolein is 1.34–1.43, which is slightly higher than
the HGF of SOA formed from the gas-phase photooxida-
tion of terpenes. This result can be due to the presence
of hygroscopic products such as oxalic acid or dihydrox-
ymethacrylic acid (El Haddad et al., 2009), and it confirms
the volatility results. Before Oligomerization took place (at
t=5 h), we observed that the hygroscopicity of the 250◦C-
refractory fraction was higher than the hygroscocpicity of
the volatile fraction (1.52 vs. 1.41, respectively). Meyer et

Table 6. HGF of particles produced from the nebulization of
a mixture of 100 ml of NaCl and the OH-oxidation product of
methacrolein in the liquid phase, calculated from the ZSR theory
and measured at RH=90.8%.

Diameter 40 nm HGF of “SOA+NaCl” aerosol
(Dp0) (38 nm)

Calculated HGF Measured HGF

0 h 2.33 2.35±0.02

Reaction
5 h ND ND

Time
9.5 h 2.20 2.23±0.03
14 h 2.04 2.18±0.01
22 h 2.09 2.10±0.01

al. (2009) and Asa-Awuku et al. (2009) had observed with
gas phase SOA formation that more volatile compounds ap-
pear to be more hygroscopic. The hygroscopic properties of
the whole cloud droplet residuals, however, do not evolve
linearly with the reaction time, as it is the result of the com-
bination between an increase of the SOA 250◦C-refractory
fraction, and a decreasing hygroscopicity of this refractory
fraction. The hygroscopic properties of its 250◦C-refractory
fraction (presumably representative of the highest molecular
weigh compounds), evolved from moderately hygroscopic
(HGF of 1.52) to less hygroscopic (HGF of 1.36). This re-
sult is in agreement with the oligomerization process which
is expected to form less hygroscopic compounds. It can
also be compared to other SOA ageing experiments. Perri
et al. (2009) observe the production of low volatility organic
acids and oligmers via aqueous photo-oxidation.

The hygroscopic properties of SOA produced from
methacrolein aqueous phase oxidation were additionally
confirmed when the nebulization was performed with the
same aqueous solutions where NaCl was added. We have
shown, for the first time, that this SOA had volatility and hy-
groscopic properties which were significantly different from
SOA formed through gas-phase photooxidation processes.

By using its volatility properties, the mass of SOA could
be evaluated relatively to the added NaCl. The results
showed that 19±6 ng L−1 and 41±9 ng L−1 of SOA were
produced after 9.5 h of reaction and after 22 h, respectively.
These results are in good agreement with those of El Haddad
et al. (2009). Hence, our results have experimentally
confirmed that cloud processes of methacrolein, one of
the major products of isoprene, can produce significant
amounts of SOA. Because more and more SOA is formed
as the reaction time increases, the impact of methacrolein
photooxidation on the residual particles becomes more and
more significant and, hence, can modify the properties of an
initially hygroscopic particle. NaCl seeded aerosols experi-
ence, at 90% RH, an hygroscocpic growth fator change of
6% after 9.5 h of reaction. We expect that the impact of the
formation of a moderately hygroscopic SOA, such as the one
which was evident in this experiment (HGF of 1.43), would
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be higher in case it is due to a coating over a hydrophobic
seed instead of a NaCl seed. But more importantly, the lack
of a deliquescence point, which is characteristic of SOA,
involves that a coated NaCl particle would take up water
at lower RH than an un-coated particle. SOA, produced
through in-cloud processes, can play an important role
in extending the range of RHs over which particle-bound
water influences aerosol properties, such as density, light
scattering, or refractive index and heterogeneous chemical
reactivity. Additional effects, such as a lower deliquescent
RH recently observed by Meyer et al. (2009) might increase
the impact of SOA on the inorganic fraction of particles.
The combination of the knowledge of SOA aqueous-phase
yields and its physical properties should be helpful to bet-
ter assess the global estimation of SOA atmospheric impacts.

Edited by: V. F. McNeill
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Villani, P.: Développement, validation et applications d’un système
de mesure des propriét́es hygroscopiques des particules atmo-
sph́eriques type VH-TDMA, PhD thesis, 2006.

Villani, P., Picard, D., Michaud V., et al.: Design and Validation
of a Volatility Hygroscopic Tandem Differential Mobility An-
alyzer (VH-TDMA) to Characterize the Relationships Between
the Thermal and Hygroscopic Properties of Atmospheric Aerosol
Particles, Aerosol Sci. Tech., 42(9), 729–741, 2008.

Villani, P., Sellegri, K., Monier, M., and Laj, P.: Influence of semi-
volatile species on particle hygroscopic growth, Atmos. Chem.
Phys. Discuss., 9, 2021–2047, 2009,
http://www.atmos-chem-phys-discuss.net/9/2021/2009/.

Warren, B., Malloy, Q. G. J.,Yee, L. D., et al.: Secondary organic
aerosol formation from cyclohexene ozonolysis in the presence
of water vapor and dissolved salts, Atmos. Environ., 43(10),
1789–1795, 2009.

Wurzler, S., Reisin, T. G., and Levin, Z.: Modification of mineral
dust particles by cloud processing and subsequent effects on drop
size distributions, J. Geophys. Res., 105(D4), 4501–4512, 2000.

Atmos. Chem. Phys., 9, 5119–5130, 2009 www.atmos-chem-phys.net/9/5119/2009/

http://www.atmos-chem-phys.net/6/2367/2006/
http://www.atmos-chem-phys.net/8/4683/2008/
http://www.atmos-chem-phys-discuss.net/9/2021/2009/

