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Abstract

Graphical network inference is used in many fields such as genomics or ecology to
infer the conditional independence structure between variables, from measurements
of gene expression or species abundances for instance. In many practical cases, not all
variables involved in the network have been observed, and the samples are actually
drawn from a distribution where some variables have been marginalized out. This
challenges the sparsity assumption commonly made in graphical model inference,
since marginalization yields locally dense structures, even when the original network
is sparse. We present a procedure for inferring Gaussian graphical models when some
variables are unobserved, that accounts both for the influence of missing variables
and the low density of the original network. Our model is based on the aggregation
of spanning trees, and the estimation procedure on the Expectation-Maximization
algorithm. We treat the graph structure and the unobserved nodes as missing vari-
ables and compute posterior probabilities of edge appearance. To provide a complete
methodology, we also propose several model selection criteria to estimate the number
of missing nodes. A simulation study and an illustration flow cytometry data reveal
that our method has favorable edge detection properties compared to existing graph
inference techniques. The methods are implemented in an R package.
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1 Introduction

1.1 Motivations

Graphical models have been extensively studied and used in a wide variety of contexts,

to represent complex dependency structures. In many practical cases however, it is more

than likely that some variables involved in the network were in fact not observed. Such

missing variables are interpreted as actors that were not measured but nonetheless influence

the measurements, or experimental conditions that were not taken into account. In the

perspective of unrevealing the conditional independence structure, this can lead to both

inference issues and interpretation problems.

The existence of unobserved variables can be naturally encompassed in the graphi-

cal model framework, by assuming there exists a ’full’ graph describing the conditional

independence structure of the joint distribution of observed and hidden variables. Obser-

vations are then samples of the marginal distribution of the observed variables only. From

a graph-theoretical point of view, marginalizing hidden variables means removing them

from the node set and marrying their children together, thus forming complete subgraphs,

i.e. cliques. Hence, the conditional independence structure among observed variables is

described by a marginal graph containing locally dense structures. This violates the spar-

sity assumption on which the majority of graph inference methods are based. Moreover,

an identifiability problem arises in the hidden variable setting, since infinitely many full

graphs induce the same marginal structure.

In this paper we are interested in both checking if some variables are indeed missing in

the graph and, if it is the case, inferring the complete graphical model. We address these

problem in the context of Gaussian graphical models.

1.2 Incomplete Gaussian graphical models

Consider a multivariate Gaussian random vector parametrized by its precision matrix

X P Rp`r
„ N p0, K´1

q, p, r ě 1, K P Rpp`rqˆpp`rq ą 0, (1)
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where ą denotes positive definiteness. We assume that X can be decomposed as

X “ pXO, XHq,

where XO P Rp denotes a set of observed variables and XH P Rr a set of hidden variables.

In genomics, the hidden variables are understood as genes or experimental conditions that

were not measured but nonetheless influence the results of the experiments. The goal

of graphical model inference is to uncover the conditional independence structure of X,

described by the following full graph

G “ pt1, . . . , p, p` 1, . . . , p` ru, Eq, (2)

where E is the set of undirected edges, such that ti, ju P E if and only if Xi and Xj are

dependent conditionally to Xt1,...,p`ruzti,ju, which we denote Xi M Xj|Xt1,...,p`ruzti,ju. In the

Gaussian setting we consider, the set of edges E is nicely determined by the non-zero entries

of K (Lauritzen, 1996):

For all pi, jq P t1, . . . , p` ru2, i ‰ j, ti, ju P E if and only if Kij ‰ 0. (3)

The precision matrix K can be written block-wise to differentiate the terms corresponding

to observed and latent variables:

K “

¨

˝

KO KOH

KHO KH

˛

‚. (4)

From (4) and the Schur complement formula (Boyd and Vandenberghe, 2004, Example

3.15) we deduce that the marginal distribution of the observed variables is

XO „ N p0, K´1
m q, Km “ KO ´KOHK

´1
H KHO. (5)

The conditional independence structure of X0 is thus described by the following marginal

graph

Gm “ pt1, . . . , pu, Emq,

where Em is the set of undirected edges given by the non-zero entries of Km. Con-

sider a sample pX1
O, . . . , X

n
Oq of n independent realizations of the marginal distribution

of XO „ N p0, K´1
m q. From such measurements, standard statistical tasks are to infer the

full graph G or the marginal graph Gm; in this article we tackle both problems.
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1.3 Contributions and related work

Methods to perform graphical model inference with unobserved variables have been pro-

posed in the past. Some use the Expectation-Maximization (EM) algorithm (Dempster

et al., 1977), its variational approximation described in Beal and Ghahramani (2003), or

the Bayesian structural EM algorithm (Friedman, 1998). A lot of attention has also been

brought to a regularized approach described in Chandrasekaran et al. (2012), based on the

analysis of the sum of low-rank and sparse matrices. Alternatives based on this method

were also proposed by Meng et al. (2014), Lauritzen and Meinshausen (2012) and Giraud

and Tsybakov (2012).

A major concern in the latent variable framework is identifiability; in general, identifi-

ability constraints are very complex, as those derived in Chandrasekaran et al. (2012) for

their model, which rely on algebraic geometry properties of low-rank and sparse matrices.

On the contrary, in the particular case of trees (acyclic graphs), the conditions for iden-

tifying the joint graph from the marginal graph only, described in Pearl (1988), are very

simple. In this article, we propose to exploit this property to build an inference strategy

based on the EM algorithm and spanning trees.

Latent tree models were studied in the context of phylogenetic tree learning; the

Neighbor-Joining algorithm (Saitou and Nei, 1987) among others is a popular method

in this field. More recently, a method called Recursive Grouping was proposed in Choi

et al. (2011), to reconstruct tree structures from partially observable data. We emphasize

the fact that all these methods learn a single tree from data. In the present, we take advan-

tage of two key properties of tree-structured graphical models. First, we can specify under

which conditions they remain identifiable in presence of missing variables. Second, treating

trees as random, we can easily integrate over the whole set of spanning trees, thanks to

an algebra result called the Matrix-Tree theorem (Chaiken, 1982). To our knowledge, no

method for latent variable graphical model inference is based on mixtures of trees, which

constitute the main novelty of our approach.

Our contribution can be casted in the framework of Meilă and Jordan (2000), who

considered a special mixture of Bayesian network (as defined by Geiger and Heckerman,

1996) where each network involved in the mixture is tree-shaped. Meilă and Jordan (2000)
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show the interest of such a model both in terms of tractability and interpretation. Meilă

and Jaakkola (2006) also use the same framework to estimate the joint distribution of the

observed variables and Shiers et al. (2015) aim at characterizing such distributions, but

none of them is interested in the inference of the structure of the graphical model itself.

A first difference with these tree-based methods is that we do not limit ourselves to a

fixed number of trees but consider a mixture over all possible trees. Second, and more

importantly, we extend the framework to the hidden variable setting.

Our inference strategy is based on the EM algorithm. The computations at the E step

are tractable thanks to the Matrix-Tree theorem, which enables us to integrate over the

whole set of spanning trees, as opposed to the M step of Meilă and Jordan (2000) that relies

on the Chow-Liu algorithm (Chow and Liu, 1968). This approach enables us to compute

posterior probabilities of edge appearance, as proposed by Schwaller et al. (2015) in the fully

observable setting. To our knowledge, no other existing approach provides such an edge-

specific measure of reliability. The final inference of the graph relies on the ranking of these

probabilities, therefore we estimate graphs with general structures, though our method is

based on trees. Although we mostly focus on the inference of the graph structure, we also

obtain an estimate of the precision matrix of the joint distribution of the observed and

hidden variables, as a by-product of the EM algorithm.

Our first contribution is to define, in Section 2, a latent tree aggregation model for

graphical model inference in the presence of hidden variables and to give identifiability

conditions. In Section 3, we introduce our procedure based on the EM algorithm to infer the

parameters of the joint distribution and probabilities of edge appearance, and to estimate

the number of missing nodes. In Section 4 we show on synthetic data that our method

compares favorably to competitors in terms of edge detection. Finally we illustrate the

procedure on flow cytometry data analysis in Section 5.
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2 Latent Tree Aggregation Model

2.1 Identifiability conditions

Assume the full graph G defined in (2) is tree structured. We now characterize the class

of trees that are statistically identifiable in our model, i.e. such that the full graph G is

uniquely determined by the marginal structure Gm. We assume without loss of generality

that the observed and hidden variables are ordered, i.e. Xi is observed for all i P t1, . . . , pu

and hidden for all i P tp`1, . . . , p`ru, and denote for some set A by CardpAq its cardinality.

For i P t1, . . . p` ru, we define

Ei “ tj P t1, . . . p` ru; ti, ju P Eu .

The following conditions on G and K, derived from Pearl (1985), Pearl (1988) and Choi

et al. (2011), guarantee statistical identifiability.

Assumption 1 (Identifiability conditions)

(i) For all pi, jq P tp` 1, p` ru2, ti, ju R E;

(ii) For all i P tp` 1, p` ru, CardpEiq ě 3;

(iii) Two nodes connected by an edge are neither perfectly independent nor perfectly de-

pendent.

These conditions stem from the simple graphical properties of spanning trees. Indeed, the

maximal cliques of a tree are of size two, therefore if (i) no edge connects two hidden nodes

and (ii) all hidden variables have at least three neighbors, there is exactly one hidden node

for every clique of size more than or equal to 3 in Gm, as illustrated in Figure 1, and the

class of identifiable trees is now fully characterized. In particular, hubs (central hidden

nodes) are identifiable, while recovering chains of hidden nodes, or hidden nodes located

at the leaves of the tree, is hopeless. An important feature is that our identifiability

conditions allow sparsity in Gm, contrary to what happens in the sparse plus low-rank

model of Chandrasekaran et al. (2012). Indeed, identifiable graph structures in their case

will typically have a small number of central hidden variables (hubs), and marginal graphs
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will therefore be densely connected, nay complete. This is an important difference with our

model, and we will see in Section 4 that the inferred marginal structures are in fact very

different.
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Figure 1: Effect of marginalizing one hidden variable (h). Full graph (all edges except

blue), marginal graph (all edges except red).

2.2 Fixed unknown tree

We now turn to the description of our Latent Tree Aggregation model, and start with a

simple procedure where we infer a single tree structure. Let T be the set of spanning trees

with p ` r nodes, and assume the graphical model associated with X, that we now write

T P T , is tree-shaped. Assume further that, conditionally on T , the vector X “ pXO, XHq is

drawn from the Gaussian distribution N p0, K´1
T q, where KT has a tree-structured support

determined by the edges of T , and can be decomposed in

KT “

¨

˝

KT,O KT,OH

KT,HO KT,H

˛

‚. (6)

In the complete data setting where X is fully observed but T is unknown, the Chow-Liu

algorithm (Chow and Liu, 1968) computes the tree of maximum likelihood T̂ from empirical

observations, and the coefficients of the matrix KT̂ can be computed easily using a result

of Lauritzen (1996) and the empirical covariance matrix. Building T̂ in this case boils

down to finding a maximum spanning tree, which can be done with Kruskal’s algorithm

(Kruskal, 1956). If variables are now hidden but the underlying tree T and KT are known,

the conditional distribution of the hidden variables given the observed ones is

XH |XO „ N pµH|O, K
´1
H|Oq, µH|O “ ´KT,HOXO, KH|O “ KT,H .
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From these two results, we can derive an EM algorithm to infer the tree-structured graph

underlying the distribution of X in the hidden variables setting, which runs iteratively until

convergence, with the following steps at iteration h` 1, h ě 1.

E-step: Evaluation of the conditional expectation of the complete log-likelihood with re-

spect to the current value Kh of the parameter, namely:

EXH |XO;Kh log ppXO, XH ;Kq. (7)

M-step: Maximization of (7) with respect to K to update Kh into Kh`1, using the Chow-

Liu algorithm.

2.3 Random unknown tree

The inference method described above is very simple, but the tree assumption is restrictive,

and we expect poor results when it is violated. To overcome this, we choose to treat T as

a random variable. Doing so, we are able to compute a posterior probability of appearance

for every possible edge in the graph. Ranking them in the decreasing order, we can infer

a graph of general structure, even though our model is based on spanning trees. Denote

by ET the set of edges of T . We assume T to be drawn from a distribution defined by a

matrix π such that

πij “ P pti, ju P ET q.

The edges of T are drawn independently, such that

P pT q9
ź

ti,juPET

πij. (8)

Prior information about the existence of each edge is easily encoded in a distribution of

this form, and a non-informative choice of prior is to set the πij to be equal for all i, j, i.e.

all trees have the same probability to be drawn so every edge has the same probability to

be part of the drawn tree. We then assume the existence of a full symmetric matrix K

with block decomposition given in (4), the entries of which have to be estimated. For every

T P T we define the corresponding pp ` rq ˆ pp ` rq matrix KT , with off-diagonal term

KT,ij “ Kij if ti, ju P ET and zeros otherwise. The diagonal term KT,ii both depend on Kii
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and on the degree of node i in T . Its expression derived from Lauritzen (1996) is given in

(19), Appendix A. Note that K does not need to be positive definite, although it may be

desirable for the numerical stability of the algorithm. The joint distribution of pXO, XHq

is a mixture of centered Gaussian distributions:

pXO, XHq „
ÿ

TPT
ppT qN pX0, XH ; 0, K´1

T q.

We develop this random unknown tree model further in Section 3 where we propose an

inference procedure. For every possible edge ti, ju, we will compute the quantity

αij “
ÿ

TPT
TQti,ju

P pT |XOq,

that we interpret as edge specific probabilities of appearance. First, we derive conditional

distributions that will be necessary. In particular, we show that these distributions factorize

over the edges.

2.4 Some conditional distributions

Let us first compute the joint distribution of T and XH conditionally on XO which will be

needed in Section 3:

P pT,XH |XOq “ P pT |XOqP pXH |XO, T q.

On the one hand P pXH |XO, T q “ N pµH|O,T , KH|O,T q. On the other hand,

P pT |XOq 9P pT qP pXO|T q

9

¨

˝

ź

ti,juPET

πij

˛

‚

detpKT,mq
n
2

p2πq
np
2

loooooomoooooon

p1q

expp´
n

2
trpKT,mΣOqq

loooooooooooomoooooooooooon

p2q

, (9)

where KT,m “ KT,O ´ KT,OHpKT,Hq
´1KT,HO. Terms (1) and (2) can be expressed as

products over the edges of T . We directly give the results and leave the derivations to

Appendix A. Let us define

dij “

ˆ

KiiKjj ´K
2
ij

KiiKjj

˙

n
2

tij “ exp p´nKijΣijq

@ti, ju P t1, . . . , pu2, (10)
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fih “ exp

˜

n

2

ÿ

kPO

KihKhkΣki

Khh

¸

@ti, hu P t1, . . . , pu ˆ tp` 1, . . . , p` ru (11)

and finally

mij “

$

’

’

’

’

’

&

’

’

’

’

’

%

tij if ti, ju P t1, . . . , pu2

fij if ti, ju P t1, . . . , pu ˆ tp` 1, . . . , p` ru

fij if ti, ju P tp` 1, . . . , p` ru ˆ t1, . . . , pu

1 if ti, ju P tp` 1, . . . , p` ru2

. (12)

We obtain that the conditional distribution P pT |XOq nicely factorizes over the edges of T :

P pT |XOq 9 P pT qP pXO|T q 9
ź

ti,juPET

πijdijmij. (13)

We also need to compute the normalizing constant of P pT q and P pT |XOq – that is,

respectively,
ÿ

T

ź

ti,juPET

πij and
ÿ

T

ź

ti,juPET

πijdijmij.

Those constants can be computed with the same complexity as a determinant, i.e. in

Opp3q operations, using the Matrix-Tree theorem that we now state. For a matrix W of

weights wij, we define the Laplacian ∆ “ p∆ijqi,jPV 2 associated to matrix W by

∆ij “

$

&

%

´wij if i ‰ j,
ř

j wij if i “ j.

Theorem 1 (All minors matrix tree theorem, Chaiken (1982)) Let W “ pwijqpi,jqPV 2

be a symmetric matrix of weights and ∆ its associated Laplacian. For pu, vq P V 2, let ∆uv

be the pu, vq-th minor of ∆. Then all ∆uv are equal and

∆uv “
ÿ

TPT

ź

ti,juPET

wij :“ ZpW q.

In Section 3, we will need to compute similar quantities after removing a given edge.

Furthermore, we will need to compute such a quantity for all possible edges. This can be

achieved in an efficient manner for all edges at a time thanks to a corollary of Theorem 1

given in Kirshner (2007), Theorem 3.
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3 Inference of the random unknown tree model

3.1 EM algorithm

Because the proposed model involves unobserved variables, the EM algorithm (Dempster

et al., 1977) is a natural framework to carry the inference out. Importantly, two hidden

layers appear in the model: the latent tree T and the signal at the unobserved nodes XH .

We show that these two hidden layers can be handled, thanks to the matrix-tree theorem

(Chaiken, 1982) introduced in Section 2. We first remind that the EM algorithm aims

at maximizing the log-likelihood of the observed data log ppXO;Kq with respect to the

parameter K, alternating two steps in an iterative manner. At iteration h we perform:

E-step: Evaluation of all the conditional moments involved in the the conditional expec-

tation of the complete log-likelihood with the current value Kh of the parameter,

namely:

EXH ,T |XO;Kh log ppXO, XH , T ;Kq; (14)

M-step: Maximization of (14) with respect to K to update Kh into Kh`1.

We now give the details of how those two steps are performed.

E-step. The conditional expectation of the complete log-likelihood writes

ET |XO;Kh

`

EXH |XO,T log ppXO, XH , T ;Kq
˘

“ ET |XO;Kh

`

log ppT q ` EXH |XO,T ;Kh rlog ppXO, XH |T ;Kqs
˘

.

Thanks to the tree structure of the graphical model, we have a simple form for the latter

term:

EXH |XO,T ;Kh rlog ppXO, XH |T ;Kqs “
ÿ

ti,juPT

pijpKq,

where pijpKq is ´2Kij
pΣij if both i ‰ j are observed, 2KijW

h
ij if i is observed and j is

hidden, ´Kii
pΣii if i “ j is observed and ´KiiB

h
ii if i “ j is hidden, variance and covariance
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matrices being given by

W h
HO “ pKh

Hq
´1Kh

HO
pΣO,

V h
H “ pKh

Hq
´1Kh

HO
pΣOK

h
OHpK

h
Hq
´1,

Bh
H “ pKh

Hq
´1
` V h

H .

As explained in Section 2, the diagonal term Kii should actually depend on the tree T .

We work here with a common parameter Kii, which may result in non-positive definite

matrices KT . To circumvent this issue, we project the estimated matrix K on the cone of

definite-positive matrices at each step of the EM algorithm. In the case where the tree T

is supposed to be fixed, the calculation of the conditional distribution (9) is replaced by

the determination of the conditionally most probable tree, likewise in the classification EM

introduced by Celeux and Govaert (1992).

M-step. Combined with ppT q9
ś

ti,juPT πij and with the conditional distribution of T ,

ppT |XO;Khq9
ś

ti,juPT γij given in (9) (with γij “ πijdijmij), we get that

EXH ,T |XO;Kh log ppXO, XH , T ;Kq 9 EXH ,T |XO;Kh

»

–

ÿ

ti,juPT

log πij ` pijpKq

fi

fl

9
ÿ

T

¨

˝

ź

tk,`uPT

γhk`

˛

‚

»

–

ÿ

ti,juPT

log πij ` pijpKq

fi

fl

where the normalizing constant does depend on Kh but not on K. Hence, at the M-step

we need to maximize with respect to K

ÿ

T

¨

˝

ź

tk,`uPT

γhk`

˛

‚

»

–

ÿ

ti,juPT

pijpKq

fi

fl “
ÿ

iăj

Aij pijpKq (15)

where all Aij “
ř

T :ti,juPT

´

ś

tk,`uPT γ
h
k`

¯

can be computed in Oppp` rq3q using Theorem 3

from Kirshner (2007). The resulting update formulas of K are given in Appendix B.

Initialization. The behavior of the EM-algorithm is known to strongly depend on its

starting point. Our initialization strategy is described in Appendix C.
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3.2 Edge probability and model selection

In this section, we derive a series of quantities of interest for practical inference.

Edge probability. In the perspective of network inference, we need to compute the

probability for an edge to be part of the tree given the observed data, that is, for edge

tk, lu,

αkl :“ P ptk, lu P T |XOq. (16)

This probability can be computed for all edges at a time in Oppp` rq3q thanks to Theorem

3 from Kirshner (2007). It depends on the marginal distribution of the tree P pT q given

in (8) parametrized with πij, which controls the marginal probability of the edge p0ij :“

P pti, ju P ET q in a complex manner. In a decision making perspective, it may be desirable

to set this probability to an uninformative value such as 1{2. This probability change can

be achieved in Opp` rq2 (Schwaller et al., 2015).

Conditional entropy of the tree. We are also interested in the variability of the dis-

tribution of the tree given the observed data, measured by its entropy. Denoting ZO the

normalizing constant of the conditional distribution P pT |XOq, we have that

HpT |XOq “ ´
ÿ

T

P pT |XOq logP pT |XOq

“ ´
ÿ

T

P pT |XOq

˜

´ logZO `
ÿ

klPT

log γkl

¸

“ logZO ´
ÿ

kl

log γkl

˜

ÿ

T :klPT

P pT |XOq

¸

“ logZO ´
ÿ

kl

αkl log γkl (17)

which can be computed with complexity Oppp ` rq2q, once the edge probabilities αkl have

been computed.

Because our model involves two hidden variables (T and XH), one may be interested in

the conditional entropy of all hidden variables, that is

HpT,XH |XOq “ HpT |XOq ` ET |XO
rHpXH |T,XOqs .

13



For the second term, we observe that the conditional distribution of XH given both T and

XO is a Gaussian distribution with variance K´1
H (which is diagonal), whatever T and XO.

As a consequence, HpXH |T,XOq is constant, so we get that

ET |XO
rHpXH |T,XOqs “

r logp2πeq

2
´

1

2

ÿ

iPH

logpKiiq.

Model selection. We now turn to the estimation of the unknown number of hidden nodes

r. First, a standard Bayesian Information Criterion (BIC) can be defined as BICprq “

log ppXO; pKq ´ penprq where the penalty term depends on the number of independent

parameters in K, that is

penprq “

ˆ

ppp` 1q

2
` rp` r

˙

log n

2
.

Note that the maximized log-likelihood can be computed as

log ppXO; pKq “ Erlog ppXO, XH , T q|XO; pKs `HpXH , T |XO, pKq.

In the context of classification, Biernacki et al. (2000) introduced an Integrated Complete

Likelihood (ICL) criterion where the conditional entropy of the hidden variable is added

to the penalty. The rationale behind ICL is a preference for models with lower uncertainty

for the hidden variables. Because we are mostly interested in network inference, it seems

desirable to penalize only for the conditional entropy of the tree. This leads to the following

criterion

ICLT prq “ log ppXO; pKq ´HpT |XOq ´ penprq

where HpT |XOq is given by (17). In situations where a reliable prediction of the hidden

node XH is of interest, both entropies can be used in the penalty leading to

ICLT,XH
prq “ log ppXO; pKq ´HpT,XH |XOq ´ penprq.

4 Numerical Experiments

4.1 Experimental setup

Data synthesis in our framework requires the simulation of a graph and of a sparse inverse

covariance matrix with matching support. We simulated graphs of two different structures
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which are given in Figure 2, namely a random tree and an Erdös-Renyi graph with density

0.1 containing p “ 20 nodes. The binary incidence matrix of the graph is then transformed

by randomly flipping the sign of some elements in order to simulate both positively and

negatively correlated variables. Positive definiteness of this precision matrix K is ensured

by adding a large enough constant to the diagonal. We choose the missing nodes at random

among those that satisfy the identifiability conditions described in Section 2. The difficulty

of detecting missing edges is related to the value of the correlations between the missing

nodes and their children. Recall that the marginal precision matrix writes

Km “ KO ´KOHK
´1
H KHO.

We measure the difficulty of detecting the second term KOHK
´1
H KHO with the ratio

SNR “

›

›KOHK
´1
H KHO

›

›

2

2

}KO}
2
2

.

As it increases, the amplitude of the signal coming from the marginalized nodes indeed

increases compared to the signal coming from the observed nodes. We control this ratio by

multiplying terms in the precision matrix by a constant ε that we vary:

K “

¨

˝

KO εKOH

εKHO εKH

˛

‚.

In the experiments we will consider two settings where ε P t1, 10u. A Gaussian sample of

size n “ 30 with zero mean and the above concentration matrix is then simulated 50 times;

the results we present below are averaged over the 50 samples. The total complexity of

our inference method is Opnpp ` rq3q, where r is the (fixed) number of missing nodes. To

simulate marginalization, we simply remove in all samples the chosen variable.

4.2 Edge detection

We focus this experiment on the ability to recover existing edges of the network, that is the

nonzero entries of the concentration matrix. This is a binary decision problem where the

compared algorithms are considered as classifiers. The decision made by a binary classifier

can be summarized using four numbers: True Positives (TP ), False Positive (FP ), True
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Figure 2: Two graph structures used for simulation

Negatives (TN) and False Negatives (FN). We have chosen to draw ROC curves - power

(power “ TP {pFN ` TP q) versus false positive rate (FPR “ FP {pFP ` TNq) - to display

this information and compare how well the methods perform. The performance of five

algorithms were tested on all the simulated graph structures : the Chow-Liu algorithm

(Chow and Liu, 1968), the graphical lasso (Friedman et al., 2008) (Glasso), the EM of

Lauritzen and Meinshausen (2012) (EM-Glasso), the EM algorithm searching for a fixed

unknown tree using Chow-Liu algorithm (EM-Chow-Liu), and our EM algorithm for tree

aggregation (Tree Aggregation). Note that the Chow-Liu and Glasso algorithms do not

consider missing variables whereas all four other approaches do. We compare all methods

in terms of marginal graph inference and only the four methods considering missing nodes

in terms full graph inference. We put a special emphasis on the inclusion of ’spurious’ edges

- that is, edges resulting from marginalization - in the inferred marginal graph. Technically,

spurious edges are edges from the marginal graph linking neighbors of the missing nodes

in the full graph. To this aim, we plot the fraction IS{S of included spurious edges (IS)

among the total number of spurious edges (S) versus the density of the inferred graph:

pFP ` TP q{rppp ´ 1q{2s. The interpretation of this curve differs from ROC. An ideal

method would keep IS{S to 0 until the end, meaning that the corresponding curve should

pushed down to the bottom right corner.
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Figure 3: Simulation results for SNR “ 1. Top: Tree; Bottom: Erdös. Left: ROC for the

full graph. Center: ROC for the marginal graph; Right: spurious edges.
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Figure 4: Simulation results for SNR “ 10. Top: Tree; Bottom: Erdös. Left: ROC for the

full graph. Center: ROC for the marginal graph; Right: spurious edges.
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The results are displayed in Figures 3 and 4. The Chow-Liu algorithm and its EM

version are very fast to converge and provide very similar solutions of the inference problem.

On the marginal graph, even when the true model is a tree, both algorithms do not seem

to provide better results than Glasso. Glasso and Tree Aggregation perform equally well,

and better than EM-Glasso, at inferring the marginal graph. On the full graph Tree

Aggregation performs slightly better than EM-Glasso, which tends to overestimate the

number of children of the missing node and therefore has a higher false positive rate. This

is in accordance with its underlying model, which assumes that all observed nodes have a

hidden parent. Each of these false positive edges in the complete graph induces several false

positive edges in the marginal graph. Interestingly, though Tree Aggregation is tailored to

infer the full graph, it performs as well as Glasso at predicting the marginal graph, which

is the primary target of Glasso.

4.3 Model selection

We now assess the performance of the proposed model selection criteria on the same sim-

ulated datasets, in which r “ 1 node is missing. In all simulations, the criteria ICLT,XH

and ICLT displayed very similar results, the conditional entropy of XH being very small as

compared to this of T . As a consequence, we only provide the results for ICLT (hereafter

named simply ICL). Figure 5 shows that, for both network topologies, the BIC and ICL

criteria display very similar behaviors and that they all detect the existence of a missing

node. When the full network is tree-shaped (Figure 5, top), all criteria are maximal for

r “ 1, whereas the choice between r “ 1 and r “ 2 is more difficult for the Erdös network.

We repeat the experiment, this time without marginalizing any node. The results shown

in Figure 6 show that the BIC criterion doesn’t detect any hidden node, contrary to the

ICL criterion. Nonetheless the values of ICL for 0, 1, 2 and 3 hidden nodes are much tighter

than in the previous example.
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Figure 5: Model selection. Left block: Tree; Right block: Erdös. Top: BIC; Bottom: ICL.

Within block left: SNR “ 1, right: SNR “ 10. Dotted red line: true number of missing

nodes.
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5 Flow cytometry data analysis

We applied our procedure to the inference of the Raf cellular signaling network based on

flow cytometry data. The Raf network is implied in the regulation of cellular proliferation.

The data were collected by (Sachs et al., 2005) and later used by (Werhli et al., 2006) and

(Schwaller et al., 2015) in network inference experiments. Flow cytometry measurements

consist in sending unique cells suspended in a fluid through a laser beam, and measuring

parameters of interest by collecting the light re-emitted by the cell by diffusion or fluores-

cence. In this study, the parameters of interest are the activation level of 11 proteins and

phospholipids involved in the Raf pathway, and are measured by flow cytometry across 100

different cells. Though the true structure of this network is unknown, experiments have

highlighted a consensus pathway that we used as gold standard to assess the performance

of our algorithm. The consensus network displayed in Figure 7 is far from being a tree. We

removed one protein from the dataset, which amounts to hide the corresponding node (in

red in Figure 7), and applied our algorithm to this marginal data.

(a) Full graph (hidden node in red) (b) Marginal graph

Figure 7: Gold standard for Raf pathway

Using hierarchical clustering initialization we inferred models with r “ 0 to 3 hidden

nodes. Figure 8 (left) shows that the three proposed model selection criteria agree on the

true model, that is r “ 1. The same figure shows sthat ICLT and ICLT,XH
are almost

equal and both lower than BIC, meaning that the conditional entropy is mostly due to

21



the uncertainty on the tree.
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Figure 8: Selection of the number of hidden nodes. Left: when removing one protein.

Right: complete dataset.

The performances of the methods described in Section 4 are compared on this example

in Figure 9. The results are similar to those obtained in the simulation study. The proposed

latent tree-based approach performs better than the EM-glasso when trying to infer the

full graph. The methods also performs well for the marginal graph. In terms of spurious

edges, Tree Aggregation displays a plateau, along which the inclusion of spurious edges is

delayed compared to Glasso and EM-Glasso.
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Figure 9: ROC curves for the full (left), marginal (center) graphs and spurious edges (right).

Finally, we analyzed the complete dataset from Sachs et al. (2005), without removing

any node. Model selection criteria are given in Figure 8 (right): they all agree on the
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absence of a missing node, which is consistent with the biological consensus on the Raf

pathway.

6 Discussion

We proposed a method for graphical model inference with missing variables. Uncovering

such a latent structure provides additional hints in the interpretation of the underlying

graphical model. For example, the inference of a missing variable allows to pinpoint a

group of observed variables, which are related to this unobserved variable.

Our procedure relies on spanning trees and the computations are performed efficiently

using the Matrix-Tree theorem. We have defined a model with a two-layers hidden structure

where the graph as well as the missing nodes are treated as latent variables. We derived

conditional distributions of the latent variables given the observations and developed an

inference procedure based on the EM algorithm. We also propose model selection criteria to

determine the presence of a hidden structure, as well as the choice of the number of missing

variables. We observed on a simulation study that the tree constraint, that we overcome

by computing posterior edge probabilities, is not too costly in practice. An implementation

of the method is publicly available through the R package LITree1. Directions of future

work include the extension to non-Gaussian (such as counts) and temporal data.
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A Computation of the conditional distributions

We show that the conditional distribution of the tree given the observations factorizes over

the edges of the tree.

P pT |XOq 9P pT qP pXO|T q

9

¨

˝

ź

ti,juPET

πij

˛

‚

detpKT,Mq
n
2

p2πq
np
2

loooooomoooooon

p1q

expp´
n

2
trpKT,MΣOqq

loooooooooooomoooooooooooon

p2q

, (18)

We first focus on the det term (1). A linear algebra result based on the Schur complement

states that

detpKT q “ det

¨

˝

KT,O KT,OH

KT,HO KT,H

˛

‚

“ detpKT,Hq detpKT,O ´KT,OHpKT,Hq
´1KT,HO

loooooooooooooooooomoooooooooooooooooon

KT,M

q,

which finally gives with detpKT,Hq ą 0 by definition detpKT,Mq “ detpKT q{detpKT,Hq.

The assumptions on the hidden nodes for identifiability give that KT,H is diagonal and

detpKT,Hq “
ś

hPH Khh is independent of T . Therefore we only need to express detpKT q

as a product over the edges of T . We know from a result of Lauritzen (1996) on decom-

posable graphs that the precision matrix and determinant of tree-structured graphs can be

decomposed simply, with rKtI,Jus denoting the matrix equal to K on indices I ˆ J and 0

elsewhere,

KT “
ÿ

iPV

rKti,ius `
ÿ

ti,juPV 2ti,juPET

rKti,jus ´ rKti,ius ´ rKtj,jus, (19)

which gives

trpKTΣq “
ÿ

iPV

KiiΣii `
ÿ

ti,juPV 2ti,juPET

2KijΣij ´KiiΣii ´KjjΣjj. (20)

The approximation mentioned in Section 3 arises precisely here, where Kii should actually

be KT,ii. We can also decompose the determinant of KT as

detpKT q “
ź

iPV

detprKti,iusq
ź

ti,juPET

detprKti,jusq

KiiKjj

, (21)
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where rKti,jus stands for the sub-matrix K where only the ith and jth rows and columns

are kept and with detpKT,Hq “
ś

hPH Khh and V “ O
Ť

H,

detpKT,Mq “
ź

iPO

detprKti,iusq
ź

ti,juPET

detprKti,jusq

KiiKjj

. (22)

B Formulas for the M-step

We need to set the derivative of the objective function E given (15) wrt to each Kij to 0.

Depending on the status of nodes i and j, Kij must satisfy the following:

i, j P O2, i ‰ j : Kh`1
ij “

ˆ

1´

b

1` 4pΣ2
ijK

h
iiK

h
jj

˙

M

2pΣij ;

i, j P O ˆH : Kh`1
ij “

´

´1`
b

1` 4pW h
ijq

2Kh
iiK

h
jj

¯

L

2W h
ij ;

i “ j P O :
1

Kh`1
ii

`
ÿ

kPV

pKh
ikq

2

Kh`1
ii Kh

kk ´ pK
h
ikq

2
αh
ik “

pΣii;

i “ j P H :
1

Kh`1
ii

`
ÿ

kPV

pKh
ikq

2

Kh`1
ii Kh

kk ´ pK
h
ikq

2
αh
ik “ Bh

ii.

C Initialization

As the EM-algorithm is highly dependent on its starting point, initialization should be

carefully undertaken. As a consequence, although this step is overlooked in most publica-

tions, we choose to describe it precisely in this appendix. In our case, it requires an initial

graph structure as well as initial values for the missing nodes. Our initialization scheme

relies on three stages. First we perform a clustering step and treat the clusters as groups

of nodes which share a hidden parent. Then, we initialize the missing variables as the first

principal component of the matrix containing their children. Finally, from this completed

data, we infer an initial tree using the Chow-Liu algorithm.

Let us now describe the details of the clustering procedure. We span all the possible

triplets of nodes, and merge together the triplet for which the assumption that they had a

common hidden parent resulted in the biggest gain in terms of likelihood of the observed

realizations. Once the ’best’ triplet is selected, we can repeat the same procedure iteratively

in order to form clusters in a hierarchical manner. At every level of the hierarchy we have
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Figure 10: Dendrogram of the hierarchical clustering procedure used for initialization. The

colored nodes correspond to the clusters at the height chosen with the BIC criterion.

a set of cliques in which the nodes share the same parent and a set of nodes that have not

yet been assigned to a clique. For computational reasons we restricted the search to the

triplets in which at least one pair of nodes was connected by an edge in the current estimate

of the structure. The likelihood gain induced by merging two cliques was penalized for the

complexity of the model with the BIC criterion (Schwarz, 1978). We show on Figure 10 the

dendrogram obtained with this hierarchical clustering procedure, and the cliques (colored

nodes) obtained by cutting the hierarchy at the level chosen with BIC. This was done on

synthetic data, where we generated 2000 samples of a Gaussian network with 50 nodes.
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