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Abstract: Existing approaches to identify multiple solutions to combinatorial problems
in practice are at best limited in their ability to simultaneously incorporate both diversity
among generated solutions, as well as problem-specific desires that are apriori unknown, or
at least difficult to articulate, for the end-user. We propose a general framework that can
generate a set of of multiple (near-)optimal, diverse solutions for problems of a combinato-
rial nature, that are further infused with user-selected quality notions. We call our approach
solution engineering. A key novelty is that desirable solution properties need not be explic-
itly modeled in advance. We customize the framework to both the constraint programming
and mathematical programming technologies, and subsequently demonstrate its practicality
by implementing and then conducting computational experiments on existing test instances
from the literature. Our computational results confirm the very real possibility of generating
sets of solutions which otherwise might remain undiscovered.

Keywords: mathematical programming; constraint programming; diversity; quality no-
tions; solution generation framework

1. Introduction

A number of analytical technologies exist to find solutions that satisfy the constraints of

combinatorial problems. Arising from domains that include mathematical programming and

constraint programming, among others, they can solve both satisfaction and optimization

problems, for example various scheduling, assignment, routing, and configuration problems.

Generally speaking, modern progress has advanced to solve reasonably complex combinato-

rial problems in an efficient manner. Today’s solvers can routinely return a solution, should

one exist, to very large satisfaction and optimization problems.

The use of a solver depends on the ability to formally express fundamental and non-

negotiable problem attributes via a model. A model implicitly characterizes the possible
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solutions through variables, together with constraints forbidding certain variable combina-

tions. In the case of optimization, an objective function, commonly related to some measure

of cost or time, guides the search.

In practice, the prerequisite of a model raises important issues. Model parameters are

often based on most-likely estimates of uncertain and fluctuating data. Imperfect communi-

cations between the decision maker – whom we term the user – and the modeler can result

in inaccuracies. Some components can be altogether omitted due to the difficulty in expres-

sion (Schittekat and Sörensen, 2009). Even under the best of circumstances, models are at

best abstractions of reality, not without limitations. As expressed by renowned statistician

George Box, “The most that can be expected from any model is that it can supply a useful

approximation to reality: all models are wrong; some models are useful.” (Box et al., 2005).

Another challenge is that in many cases, there are subtle and nuanced model preferences

that are very desirable to the user, but for which they are apriori either unable to articulate,

or simply unaware. For example, in rostering models, while the first priority is to find a

schedule that is feasible to the hard constraints, these problems often feature other quality

notions to be considered, such as fairness or equity. Recognizing these inherent limitations

of models, and in light of advancing technology, researchers have devised clever ways to

alleviate such situations.

Decision support systems and related technologies have been designed to facilitate solu-

tion exploration through “what if?” user interaction, possibly including visualization tech-

niques (see, e.g., Shim et al., 2002). Model acquisition frameworks try to learn models from

user responses to questions (see, e.g., Beldiceanu and Simonis, 2011; Bessiere et al., 2016) or

via natural language problem descriptions (Kiziltan et al., 2016). Another approach is the

multi-cycle model design, where the solver can be enriched to provide explanations about

the internal decisions made when generating the solution (see, e.g., Ouis et al., 2003). These

explanations may help to iteratively modify the model until a satisfactory solution is found.

A number of other studies (Petit and Trapp, 2015; Trapp and Konrad, 2015; Camm, 2014;

Eiter et al., 2013; Hebrard et al., 2011; Danna and Woodruff, 2009; Schittekat and Sörensen,

2009; Hentenryck et al., 2009a; Hebrard et al., 2005; Glover et al., 2000, 1998; Kuo et al.,

1993) have demonstrated interest in exploration beyond the single solution returned by the

solver. These studies discuss generating multiple solutions to combinatorial problems, and

some further integrate diversity into their discussions. The overarching goal is to provide the

user with greater flexibility for selecting the solution that will ultimately be implemented.

Largely absent from the aforementioned studies is a means to explore feasible solutions

that, in addition to a possible objective function, incorporate various notions of quality that

form subsets of solutions having common properties. While diversity is commonly measured
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via mathematical distance measures on solution vector values, two solutions that are distinct

according to separate quality notions offer clear alternatives, even when these solutions have

many variable values in common. While it is no longer prohibitive to consider multiple

notions of quality on modern computational infrastructure, care must still be exercised –

explicitly incorporating quality notions into the model can have an adverse side effect of

overly emphasizing such quality notions. There is a delicate balance between optimizing

or constraining for a quality notion, and even more so when considering multiple notions.

This underscores the need for an approach that doesn’t require up-front, application specific,

declaration of notions of quality, but rather to use them to explore the solution space.

In this paper we propose to solve combinatorial problems via the solution engineering

framework: generating multiple diverse (near-)optimal solutions that are infused with certain

desirable quality notions not jointly expressed apriori in the original model. We purpose to

develop a general framework that can handle a wide range of quality notions, such as those

appearing in recent applications in the literature like balanced solutions (Schaus et al., 2009),

fairness (Bertsimas et al., 2012) and persistence (Brown et al., 1997; Bertsimas et al., 2006;

Morrison, 2010), so long as the notion can be expressed using the respective technology. In

particular, we focus on notions that can be represented through inclusion of one or more

variables and/or constraints, quantifying the notion via a surrogate variable that measures

the performance of the notion. The idea is to select appropriate quality notions for the model

at hand. At the end of the solution generation process, each solution is expanded with a

vector of quality scores, one per notion.

A key novelty of our framework is to circumvent issues raised by requiring all of the

desirable solution properties to be stated in the model apriori. Simultaneously, we provide a

broad spectrum of alternatives to the user. Input data include a model and, separately, a set

of quality notions. Our framework aims at identifying solution sets that perform well with

respect to each selected quality notion. From these sets, the “best” solution, from the user’s

point of view, may be identified in a second phase using data science technologies such as

SQL and filtering. Queries may be stated both on solutions and their quality scores. A first

advantage is that such queries can be very intricate and precise, much more than a usual

weighted objective for example, without any impact on the solving process since the queries

are not part of the model. A second beneficial property is that queries are set only once the

solutions have been generated, rather than blindly complicating a model without having any

idea of the solutions, as the queries operate on the outcome of the model. This provides the

user insight into the optimal structure or substructure of the variables, prior to proceeding.

We estimate that this is particularly valuable when queries express preferences about what

the user does not want in a solution. A third benefit is that one may consider generating
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myriad solutions, as queries may filter many solutions before looking deeply into the most

relevant ones.

Our contributions are fourfold. First, we present an overarching solution engineering

framework to generate a wide variety of solutions for combinatorial problems that are in-

fused with ad-hoc quality notions, which need not be specified by the user a priori. Second,

we customize the general framework to two special cases, constraint programming and math-

ematical programming, which includes theory and decompositions unique to each of these

technologies. Third, we implement the framework in these two technologies, demonstrating

its practicality. Fourth, in the process of conducting computational experiments, we provide

novel decompositions for the selected quality notions.

The remainder of this paper is organized as follows. We motivate our study in Section 2

via an introductory example. Section 3 covers relevant literature related to our study, while

Section 4 introduces both the general framework, as well as customizations to both constraint

programming and mathematical programming. In Section 5 we present the results of our

computational experiments in both technologies on a classical combinatorial optimization

problem. The study concludes in Section 6 with a review of our work and a discussion of

possible future directions. Appendices follow that contain theoretical results.

2. Introductory Example

A 
B 
C 

A 
B 
C 

Solution 1: (A,C,B,C,B,C,B,A,A) 

Solution 2: (A,C,C,C,B,B,B,A,A) 

1 

2 

Figure 1: Two solutions of an assignment problem, A, B and C are machines and gray cells are
tasks.

To illustrate the motivations of our approach, we first consider an illustrative example

where tasks are assigned to three machines A, B and C. Figure 1 shows two solutions to

this problem. They are not overly diverse if one considers mathematical norms, such as

Hamming: 7 of the 9 tasks are assigned to the same machine in both solutions. From

a human point of view, however, there is a difference between solution 1 and solution 2.

Assignments to machines B and C are alternated in solution 1, while in solution 2 the two
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machines are used without interruption. In practice, this may have significant influence on

the choice of solution. On the other hand, a common property of the two solutions is the

fair task distribution on the machines: each machine has exactly three tasks. Obviously,

one may consider a solution close to Solution 2 but where machine C is used only twice

and B is used four times, just by changing one value. Again, although very close, such

two solutions may not be considered as equivalent by the user. Despite its simplicity, this

example highlights that there exist meaningful ways to differentiate solutions beyond simple

mathematical norm-based measures used in most existing approaches (see, e.g., Hebrard

et al., 2005, 2007; Trapp and Konrad, 2015).

As a second example, consider the minimization version of the Generalized Assignment

Problem (GAP), shown to be NP-hard in Fisher et al. (1986). Given n jobs J = {1, 2, ..., n}
and m agents A = {1, 2, ...,m}, the goal is to determine a minimum cost scheme that assigns

each job to exactly one agent while satisfying a resource constraint for each agent. Assigning

job j to agent i has a cost of cij and consumes an amount aij of resource, whereas the total

amount of the resource available for agent i is capi.

A solution is a surjective mapping J → A. A(j) denotes the agent assigned to job j ∈ J .

The problem is then formulated as follows:

minimize
∑
j∈J

cA(j)j

subject to ∀i ∈ A,
∑

j∈J :A(j)=i

aij ≤ capi.
(1)

For illustrative purposes, we assume a practical context where the problem has an ad-

ditional temporal component that is not explicity stated in the model: jobs will start in

sequence according to their index in J , so that no two jobs start at the same time. We may

consider many quality notions that would likely discriminate solutions, independently from

the mathematical distances that are classically used to state that two solutions are diverse.

Let us consider three examples.

1. The number of jobs assigned to agents may vary more or less. We call this number

the cardinality of an agent. As a quality notion, we consider the maximum distance

between any two cardinalities of agents in A.

2. The sum of resources consumed by each agent also varies. We consider, over all pairs

of agents, the maximum distance between total resources used.

3. As jobs are assumed to be executed in sequence, solutions can be assessed according to

the variation of costs incurred by any two consecutive jobs in J . We count the number
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of differences of more than gap = k units of cost among all pairs of consecutive jobs.

A solution is denoted smooth if this number is “low”, that is, having relatively smooth

cost transitions between consecutive jobs.

Figure 2: Three solutions of a GAP minimization problem, depicted by the three concentric curves
delineating respective score vectors: the scores of solutions according to the original objective value
and four distinct quality notions.

It is worth noticing that the number and relevance of quality notion candidates vary

according to the problem. If there are only a few solutions to the problem that satisfy

the model constraints, our framework suffers a fate similar to that of other state-of-the-art

diversity approaches.

Figure 2 shows three solutions of a GAP instance (GAPa 5 100) selected from a publicly

available test library (Chu and Beasley, 1997). We remark that the scale of each quality

notion is not precisely known in advance. This highlights a first argument against requiring

all solution criteria and features to be expressed in the original model. Conversely, once

the solutions sets are generated, the scales become known, and one may state value-based

queries to refine the choice of solution.

Moreover, solutions can substantially differ according to their quality notion values, and

consequently, these notions can be used to classify solutions. Established distance measures
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such as Hamming and Manhattan distances may entirely overlook such differences. Solutions

1 and 2 are respectively optimal and very near-optimal (minimized original objective value

is 1698), but vary according to cardinality and resource distances. Solution 3 is comparable

to Solution 1, but with a slightly inferior objective value and an optimized smooth quality

score when considering a gap of 15.

Our goal is to develop a framework that permits the generation of many solutions, which,

at the conclusion of the process, may be infused with any variety of quality notions. To

accomplish this, we intend to keep the solution process as stable as possible, by allowing the

user to pass an existing combinatorial model. The complexities of solution generation are

handled internally by the framework, transparent to the user.

3. Background and State-of-the-Art

In combinatorial problems, solutions are defined as vectors of variable values that satisfy

problem constraints. For satisfaction problems, this is the single distinguishing criteria –

whether or not a vector of variable values satisfies all constraints. For optimization problems,

a key additional distinguishing criteria is the evaluation of the solution via the objective

function. The objective function essentially separates optimal from suboptimal solutions,

and thereby proving that no better solution exists. Hence in standard optimization problems

the objective function is the de facto arbiter of quality.

3.1 Multiple Solutions to Combinatorial Problems

A wide variety of research using diverse technologies such as mathematical programming,

constraint programming, SAT, (meta)heuristics, and others have investigated the concept

of finding multiple solutions to combinatorial problems, the majority of which being imple-

mented using the first two technologies. The processes used to obtain multiple solutions can

be described as either offline (i.e., simultaneous) or online (i.e., sequential).

A few studies outline ways to find multiple solutions, independent of the concept of

diversity. In Danna et al. (2007) the authors develop several online, tree-based algorithms

to find multiple optimal and near-optimal solutions. Similarly, in Tsai et al. (2008) the

authors propose an online approach to identify all multiple optima for pure integer programs.

A somewhat simpler sequential approach, inspired by integer cuts (Balas and Jeroslow,

1972), is outlined in Camm (2014) for the case of 0–1 integer linear optimization problems.

In Voll et al. (2015) the authors also employ cuts on integer variables on mixed-integer

nonlinear programs to obtain multiple optima and near-optima. They make an intriguing
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comment that further investigation is warranted on the structural properties of these optima

and near-optima, which in many ways is related to the present work. Some approaches

put the focus on compiled representations of the solution space, e.g., through automata

in Amilhastre et al. (2002) or multi-valued decision diagrams (MDDs) in Hadzic et al. (2009).

Such representations can be exploited in real-time using knowledge-compilation techniques.

3.2 Multiple, Diverse Solutions

Additional works incorporate the task of diversification among these sets of solutions, as it

is often desirable to the user that solution sets are structurally distinct from one another.

Most frameworks in the literature consider diversity between solutions through mathematical

distance measures, where two solutions are diverse if the pairwise distance between variable

values is “high”. In particular, two studies consider satisfaction problems with the aim of

incorporating diversity into the solution set. In Hebrard et al. (2005) and Hebrard et al.

(2007), the authors use online constraint programming techniques to generate solution sets

that maximize both diversity and similarity metrics. A similar method is used in Hentenryck

et al. (2009b), in the context of automatic generation of architectural tests. In Nadel (2011), a

similar task is undertaken of sequentially finding a set of diverse solutions with a SAT solver.

For the task of finding a diverse set of solutions to combinatorial optimization prob-

lems, Kuo et al. (1993) maximize a diversity metric over a given set of elements to simulta-

neously obtain the subset that is maximally diverse. In Glover et al. (1998), a similar problem

is considered, however the authors instead develop heuristic approaches to find diverse sets

of solutions, which are empirically demonstrated to be of high quality. It should be noted

that (pairwise) diversity in this context is measured apriori between set elements, whereas

diversity in other contexts has to do with actual variable values in the solution vector. In

the context of recommender systems, Adomavicius and Kwon (2014) develop techniques to

find sets of solutions that maintain both diversity and accuracy.

The authors in Greistorfer et al. (2008) consider the question of whether online or offline

approaches are more efficient in identifying two solutions to binary integer linear programs

that are mutually diverse. In Glover et al. (2000) the authors consider online, heuristic

approaches to identify diverse and “good” solutions to mixed-integer programming problems.

The same problem is tackled in Danna and Woodruff (2009), who provide both offline exact,

and online heuristic approaches. In Trapp and Konrad (2015) the authors devise an online

approach to iteratively identify a set of solutions to binary integer linear programs that

maximize the ratio of diversity to loss in objective value. A similar ratio is also optimized

in Petit and Trapp (2015), but in the context of constraint programming, to generate a set
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of diverse solutions that perform well with respect to the objective function. A variant of

tabu search is considered in Schittekat and Sörensen (2009) to incorporate diversity into a

set of competitive solutions.

Moreover, several works use techniques outside of mathematical programming and con-

straint programming to accomplish similar goals. In Eiter et al. (2013) the authors use

answer set programming in an iterative fashion to find diverse (and similar) optima. The

authors of Løkketangen and Woodruff (2005) discuss the development of diversity metrics

that incorporate aspects of the psychology of decision making. They employ dynamic pro-

gramming and multi-objective optimization in an online manner to locate diverse solutions

on the efficient frontier of the solution space. Finally, the authors of Hadzic et al. (2009)

exploit the MDD-based solution space representation to obtain a set of diverse optima.

3.3 Summary

Table 1 synthesizes a significant collection of state-of-the-art approaches that consider the

generation of multiple solutions. It indicates for each paper the technology used, type of

generation (online or offline), whether it additionally considers generating diverse solutions,

as well as the nature of the solution space – that is, satisfaction versus optimization; and if

optimization, whether only optimal solutions are considered, or also near-optima.

Author (Year) Technology Solution generation Diversity Solutions

Camm (2014) MP online no (near) optimal
Danna et al. (2007) MP/HEUR online yes (near) optimal
Danna and Woodruff (2009) MP/HEUR offline yes (near) optimal
Adomavicius and Kwon (2014) MP/HEUR online/offline yes (near) optimal
Eiter et al. (2013) AP online yes satisfaction problems
Glover et al. (1998) HEUR offline yes (near) optimal
Glover et al. (2000) HEUR online yes (near) optimal
Greistorfer et al. (2008) MP online/offline yes (near) optimal
Hadzic et al. (2009) DD offline yes satisfaction problems, (near) optimal
Hebrard et al. (2005) CP online yes satisfaction problems
Hebrard et al. (2007) CP online/offline yes satisfaction problems
Hentenryck et al. (2009b) CP/HEUR online yes satisfaction problems, (near) optimal
Kuo et al. (1993) MP offline yes (near) optimal
Løkketangen and Woodruff (2005) DP online yes (near) optimal
Nadel (2011) SAT online yes satisfaction problems
Petit and Trapp (2015) CP online yes (near) optimal
Schittekat and Sörensen (2009) HEUR online yes (near) optimal
Trapp and Konrad (2015) MP online yes (near) optimal
Tsai et al. (2008) MP online no only optimal
Voll et al. (2015) MP/SA online no (near) optimal

Table 1: State of the art approaches related to multiple solution generation. AP: Answer
Set Programming; CP: Constraint Programming; DD: Decision Diagrams; DP: Dynamic
Programming; HEUR: Heuristics; MP: Mathematical Programming; SAT: Constraint Satis-
fiability; SA: Specialized Algorithm.
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3.4 Incorporating Quality into Solutions

Moving beyond solely the objective function, some works have considered additional quality

notions in the literature. In constraint programming and constraint-based local search, global

constraints have been designed to encode such quality notions. Global constraints (Beldiceanu

et al., 2007) are modeling blocks for which dedicated solution techniques are devised. For

instance, the Deviation constraint introduced by Schaus et al. (2007a) is used to favor

load balancing in various problems, such as nurse to patient assignment problems (Schaus

et al. (2009)) and cloud-based data grid optimization (Sebbah et al. (2016)). Many other

examples exist in the operations research literature, such as fairness (Bertsimas et al., 2012)

and persistence (Brown et al., 1997; Bertsimas et al., 2006; Morrison, 2010). To the best of

our knowledge, all existing works consider quality notions as part of the problem statement,

either in the form of hard constraints or via objective function measures.

3.5 Relation to Multiobjective Optimization

There is very broad literature related to identifying good solutions to combinatorial prob-

lems by optimizing for explicit objectives, including multiobjective optimization approaches.

Common methods to handle a set of explicit, competing objectives include scalar approaches

and Pareto optimization. The latter is concerned with methods to identify nondominated,

Pareto efficient solutions with respect to the various objectives – that is, those solutions for

which there is no other that performs at least as well in all objectives, and strictly better

according to at least one objective. While desirable, enumerating all nondominated solu-

tions to combinatorial problems is known to be computationally demanding. The former

is perhaps a more straightforward approach that combines each individual objective into

an aggregate function through additive weighting. While attractive in that it provides a

simple mechanism to merge objective functions, a drawback is that some Pareto efficient

solutions may remain undiscovered. For a more detailed treatment of these topics, we refer

the interested reader to Ehrgott and Gandibleux (2000).

In this paper, we choose to combine quality notions, diversity measures, and (possibly)

the original objective function into a single ratio objective. While we could use multiobjective

optimization techniques, we here restate for the sake of distinction a key difference: the model

is not formulated with the desired quality notions apriori ; indeed, such notions may not even

be known with clarity by the end-user.
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4. Technical Developments

This section presents the core of the solution engineering framework and its specialization

to constraint programming and mathematical programming.

4.1 Mathematical Preliminaries

Let X be a set of n variables and a set of constraints C. We consider the following problem

p:

minimize z = f(X)

subject to C.
(2)

When f is stated to be a constant function such as f(X) = 0, then p is considered a problem

of feasibility, or satisfaction. A combinatorial model of problem p can be expressed via

variable set X, constraint set C, and possible objective function f , or more compactly via

the triplet (X, C, f). Each constraint C ∈ C implicitly states the permissible assignments

for a given subset Y of variables in X, its scope. An assignment AX of a superset X of

the variables Y satisfies C if and only if the projection on the variable scope of C does not

violate the constraint. In addition, we assume the value of each variable x ∈ X belongs to

a finite domain D(x). This domain can be viewed as a supplementary unary constraint.

A solution S to p is a pair S = (AX , z) where AX is an assignment of X, z = f(AX) and

AX satisfies all the constraints in C. A solution is optimal if and only if no other feasible

solution exists to p with a strictly lower value for z.

4.2 A New Diversity Scheme

Given k solutions of a problem on n variables, diversity is calculated using some function

∆ : (Qn)k 7→ Q+. (3)

Some functions used in the literature include a sum of mathematical distances computed

with solution pairs (see, e.g., Hebrard et al., 2005, 2007), as well as the distance to the

centroid of all other solutions (Trapp and Konrad, 2015).

To select k solutions maximally diverse among the whole set of feasible solutions to p,

one needs to solve the following problem pdiv on the model (Xk, Ck, f), obtained by making
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k copies of the variables and constraints:

maximize d = ∆(Xk)

subject to Ck.
(4)

It is possible to consider the case of diverse solutions that perform well with respect to the

objective value. The problem pdiv has then two criteria:

maximize d = ∆(Xk)

minimize z = ⊕k
i=1(f loss(Xi))

subject to Ck.

(5)

In (5), ⊕ is any aggregation function and f loss evaluates the solution with respect to

the objective of problem p, e.g., the distance to the best objective value found so far. Due

to variable set duplication, even for very small problems solving exactly pdiv is prohibitive.

To remedy this issue, both offline and online approaches can be considered. In the offline

case, starting from a set of solutions Sp generated by an oracle, the problem consists of

extracting a subset that maximizes diversity. In the online case, problem p is transformed

into a new problem that integrates a diversity component into the objective. Solutions to p

are then computed incrementally (one by one), with each new solution explicitly considering

the diversity from previously generated solutions. In this paper we consider an online diverse

solution scheme based on the concept of quality notion.

Definition 1 (Quality notion) Given the model (X, C, f) of a problem p, a quality notion

Q(Y,V) is one or more constraints defined on the variables Y ∪V, such that the three following

conditions are true: (1) Y ⊆ X; (2) V ∩X = ∅; (3) V ⊇ {q}, where q is an integer variable.

Variable q is the score of the quality notion. Without loss of generality, we consider

the lower the value of q , the better the quality of the assignment of values is to Y . In

constraint programming, many global constraints involve a particular variable that charac-

terizes a property on the other constrained variables, such as Among (Bessière et al., 2005),

Balance (Bessiere et al., 2014), Deviation (Schaus et al., 2007b), Focus (Narodytska

et al., 2013), NValue (Cambazard and Fages, 2015), NVector (Chabert et al., 2009; Petit

and Petit, 2016), Spread (Pesant and Régin, 2005), and others. Using other technologies,

stating quality notions may require specific modeling constructs such as additional variables

and constraints to properly characterize the desired quality notions.
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Definition 2 (Quality enhanced solution) Let Q be a set of m quality notions, ZQ =

{q1, q2, . . . , q`, . . . , qm} be the quality variable representing each Q` ∈ Q, S = (AX , z) a

solution to p with original objective value z, and AZQ an assignment of values to variables

in ZQ. Then a quality enhanced solution to p is a pair SQ = (S,AZQ), such that AX ∪AZQ

satisfies all the constraints in Q.

Our approach aims at generating a diverse solution set of optima or near-optima, where

each solution is augmented by a vector of quality notion scores, or quality score vector. The

score vector captures the solution performance across all quality notions (and possibly, the

original objective function). We first maintain to separately generate, for each quality no-

tion, a set of solutions that are diverse and emphasize this specific quality notion, though

nothing prohibits any pair of quality notions (Qi, Qj) to be aggregated to form a new quality

notion Qk, e.g., by stating qk = α×qi+β×qj, where α and β are constants. Therefore, while

our framework allows the generation of solutions sets that simultaneously consider multiple

quality notions, we choose to isolate a specific quality notion for each set of solutions.

Algorithm 1 generates a set S` of k diverse solutions according to quality notion Q` ∈ Q.

It requires the following parameter list L:

• A model M = (X, C, f) for p.

• A positive integer k, the number of solution to be generated providing that p admits

at least k feasible solutions.

• A first solution S0 to problem p, preferably optimal or near-optimal.

• A function f loss for evaluating the optimality of a solution with respect to f(S0). For

instance, f loss can be defined as:

f loss(X) = max(0, f(X)− f(S0)). (6)

• A quality notion Q`(Y`,V`), such that {q`} ⊆ V`.

• A set of functions {∆1
` ,∆

2
` , . . . ,∆

k
`} such that ∀h ∈ {1, . . . , k},∆h

` : (Qn)h+1 7→ Q+.

• A new objective function r defined from ∆, f loss and q`, that attempts to balance

three measures: solution diversity, original objective function of p, and quality notion

Q`. For each new solution to be generated, let S` be the set of previously generated

solutions by the Algorithm (initially S` = ∅). This could be accomplished, for example,

by stating r as a ratio, and using three constants a, b and c for normalizing the three

quantities:
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r =
a×∆h

` ({X} ∪ S` ∪ {S0})
b× q` + c× f loss(X)

. (7)

input : List of parameters L.
output: A set of k diverse solutions generated using quality notion Q`(Y`, q`).

1 S` := ∅;
2 h := 1;
3 M ′ := M ;
4 while h ≤ k do
5 X := X ∪ V`;
6 C := C ∪ C` ∪ {Constraint(s) to forbid repeating any solution in S};
7

maximize r

subject to C.

if No solution within (optional) time limit, then return S` ;

8 Save the data (r ,∆h
` ({X} ∪ S` ∪ {S0}), f(X));

9 h := h+ 1;
10 S` := S` ∪ {values assigned to variables X in the solution};
11 M := M ′;

12 return S`;
Algorithm 1: Online Generation for quality notion Ql.

Given a set of quality notions Q, Algorithm 2 uses Algorithm 1 to generate a set S =

{S1,S2, . . . ,S|Q|} of solution sets mapped in a one-to-one fashion with a data matrix of score

vectors Ψ = {Ψ1,Ψ2, . . . ,Ψ|Q|}. Each Ψ` ∈ Ψ is a matrix of k × |Q| values, that provides

quality scores for each solution Sj ∈ S`. Algorithm 2 considers that ∀` ∈ {1, 2, . . . , |Q|}, k =

|S`|, but there exist no restriction about generalizing it to the case where solutions sets can

have different sizes depending on quality notions is obvious.

Algorithm 2 requires solving |Q| (potentially) NP-hard problems in Algorithm 1. Hence,

one may envision stating a fixed time limit for Algorithm 1, returning the best found so-

lution thus far. Moreover, Algorithm 2 is impartial to the technology used for solving the

combinatorial problem derived from p. As such, we choose in the next two sections to demon-

strate the implementation of Algorithm 1 in both mathematical programming and constraint

programming.
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input : A model M = (X, C, f) for problem p, a set of quality notions Q, and an integer
k > 0.

output: A set S of solution sets and a |Q| × (k× |Q|) matrix of score vectors, i.e., one set of
k |Q|-length score vectors per quality notion.

1 S0 := first solution to p;
2 S := ∅;
3 optional: constrain using constant K ≥ 0 the objective function in p:
C = C ∪ {obj ≤ f(S0) +K};

4 for ` ∈ {1, 2, . . . , |Q|} do
5 Generate the parameter list L according to Q`;
6 S` = Algorithm 1(L);
7 S := S ∪ {S`};
8 Ψ = ∅;
9 for ` ∈ {1, 2, . . . , |Q|} do

10 Ψ` := |S`| × |Q| integer matrix;
11 for Sj ∈ S` do
12 for m ∈ {1, 2, . . . , |Q|} do
13 Ψ`[j][m] := Score of qm when evaluating Qm on solution Sj ;

14 Ψ := Ψ ∪ {Ψ`};
15 Return (S,Ψ);

Algorithm 2: Quality Enhanced Solution Generation.

4.3 Solution Engineering Framework Implemented in Constraint

Programming

An integer constraint programming (CP) model is defined over a set X of domain variables, a

finite subset D of Z called the domain union, and a set of constraints C. A constraint c ∈ C
is a pair {var(c), rel(c)}, where var(c), its scope, is a subset of X, and rel(c) is a relation

that restricts the allowed combinations of simultaneous value assignments for the variables

in var(c). Each variable x ∈ X is defined by a domain (unary) constraint, that holds if and

only if x takes its value in D(x) ⊆ D. The minimum and maximum values in D(x) are x

and x. During the search for a solution, domains are modified by the solver, e.g., through

a branch and bound scheme. The search strategy specifies the branching (variable order,

domain cut/assignment policy). To avoid future useless branching below the current node

in the search tree, each constraint has an associated propagator, which dynamically removes

domain values that cannot be part of a solution to that constraint. Depending on the

propagators used, domain reduction of constraints can be more or less effective: the notion

of consistency characterizes propagator effectiveness. A propagator that only keeps domain

values that participate in a solution to its constraint achieves generalized arc-consistency

(GAC). A solution to a constraint is obtained when the domains of all its variables are
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singletons (the variables are fixed). Any solution to the problem must satisfy all the stated

constraints, including domain constraints. Optimization problems are modeled through a

specific variable to be minimized or maximized.

4.3.1 Propagating the Diversity Constraint

At each new generation of a solution, diversity should be measured according to all the

previous solutions, within the set S. We represent diversity through a constraint that embeds

an integer variable div that represents a diversity measure.

We consider a decomposable diversity function, that is, at each new solution generation,

part of the diversity value comes exclusively from previously computed solutions and can be

aggregated into the current calculation. This approach was introduced in CP for a diversity

constraint based on the Hamming distance in Hebrard et al. (2005). We extend it to any

distance measure function decomposable by considering solution pairs, that is, based on a

function δ : (Zn)2 7→ Z+ that returns the distance of a pair of solutions by comparing the

value of each variable in the two solutions. The distance is then an aggregation of the values

obtained for each solution pair.

Definition 3 (DiverseSum) Let prev be a (not necessarily strictly) positive constant, X =

{x1, . . . , xn} be a set of variables, div a variable, S a set of previous k − 1 assignments of

X and δ : (Zn)2 7→ Z+ be a distance measure, based on pairwise comparisons of the values

taken by each variable in X, that is, for any solution Sj ∈ S,

δ(X,Sj) =
n∑

i=1

δx(Sj[i], xi). (8)

DiverseSum(X, div ,S, δ, prev) is satisfied if and only if:

div ≤
|S|∑
j=1

δ(X,Sj) + prev . (9)

Definition 3 makes the assumption that variable div would likely be maximized. If one

wished to minimize diversity between solutions, the arithmetic operator ≤ can easily be

replaced by the operator ≥. Moreover, there is no need to utilize the Hamming or other

commonly-used mathematical distances. For instance, one may define the distance δx be-

tween the values v1 and v2 taken by variable x using an ad hoc constraint, e.g., δx =

min {max {0, |v1 − v2| −K} , 1}, where K ≥ 0 is a constant. This example states that if two

values are such that the absolute value of their difference is less than or equal to K then
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they are considered as “not diverse” (i.e., the diversity value is 0), otherwise the diversity

value is 1.

1 dist : integer matrix |X| ×maxx∈X(|D(x)|);
2 foreach xi ∈ X do
3 foreach vj ∈ D(xi) do
4 dom := copy of D(xi);
5 D(xi) := {vj};
6 dist [i][j] :=

∑|S|
k=1 δ

x(xi, Sk[i]);
7 D(xi) := dom;

8 # Update div
9 maxSum :=

∑n
i=1 maxj∈[0,|dist [i ]|](dist [i][j]) + prev ;

10 div := min(maxSum, div); # Fail if div < div ;
11 # Update problem variables

12 foreach xi ∈ X do
13 foreach vj ∈ D(xi) do
14 if maxSum −maxl∈[0,|dist [i ]|](dist [i][l]) + dist [i][j] < div then

15 D(xi) := D(xi) \ {vj};

Algorithm 3: filterDiverseSum.

The DiverseSum constraint of Definition 3 requires the design of a specific propagator.

We propose a technique based on a principle initially provided for the specific case of the

Hamming distance by Hebrard et al. (2005). Algorithm 3 generalizes it to any function δ.

Assuming δx(Sk[i], xi) can be computed in constant time, the time complexity of Algorithm 3

is O(|S| ·
∑

xi∈X |D(xi)|).

Proposition 1 Algorithm 3 is correct.

Proof: See Appendix 7.1.

Proposition 2 Algorithm 3 achieves generalized arc-consistency.

Proof: See Appendix 7.2.

4.3.2 Propagating Objective Function and Quality Notions

Constraint solvers routinely embed predefined constraints for designing arithmetic expres-

sions on variables and constants, using standard operators +, ∗, −, /, as well as predefined

constraints, such as |x − y| = z. Recall that, using integer domains, / is integer division.

Therefore, encoding f loss (to state the ratio r in in Algorithm 1), as well as performing a
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weighted sum or a ratio of quantities that are represented through variables, is standard in

CP. When no state-of-the-art constraint exists for representing a desired quality notion or

when a constraint is not in the list of predefined constraints of the solver, the quality notion

can be decomposed into a set of constraints (see, e.g., Bessiere et al. (2009)).

4.3.3 Specialized Online Scheme

Algorithm 2 is independent from the technology used. Nevertheless, this procedure calls

Algorithm 1, which we now implement in the CP framework. We use the notation of Algo-

rithm 1 and consider that the new objective is a ratio between: (1) diversity, and (2) a scalar

product of the quality score and loss from the best objective value found so far (solution S0).

Other ratios could be similarly considered. In addition to the notation of Algorithm 1, we

declare:

• div as an integer variable used for diversity measure.

• zloss as an integer variable used for representing objective loss value, Cobj (X, zloss , S0)

a constraint used for representing the objective loss function f loss , where S0 is the first

solution to p generated in Algorithm 2.

Two existing online schemes (Hebrard et al., 2005; Petit and Trapp, 2015) can be viewed

as particular cases of Algorithm 4 (neither featured quality notions and, in Hebrard et al.

(2005), it was restricted to satisfaction problems). Both represent the new problem objec-

tive through a variable, corresponding to r in Algorithm 4. However, there is a technical

difference: in our implementation, the diversity variable domain does not explicitly represent

the sum of diversity values of all solution pairs, which makes our algorithm more robust to

the generation of large solution sets. This avoids reaching a limit induced by maximum and

minimum representable integers (see Appendix 7.3 for details).

A negative table constraint (e.g., see Lecoutre et al. (2015)) is stated to forbid dupli-

cating any solution in S, that is, a constraint explicitly stated through a set of forbidden

combinations of values for the variables in its scope. We call this constraint Table(X,S`).

4.3.4 Search Strategies

A simple and efficient way to adapt the search strategy str originally defined in the model of

problem p is to assign first all the model variables using str , and then the additional variables

for the new objective and quality notion, using a lexicographical order, for instance. As such

variables represent a quantity stemming from model variables, this simple principle appears

to be quite robust. This was confirmed by our experiments. Efficiency may be affected,
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1 S` := ∅;
2 h := 1;
3 M ′ := M ;
4 prev := 0;
5 mindiv := div ;
6 sumdiv := 0;
7 while h ≤ k` do
8 prev := max(h×mindiv − sumdiv , 0) ;

9 D(div) := [prev , div ];

10 X := X ∪ V` ∪ {div} ∪ {zloss} ;

11 C := C ∪C` ∪{Table(X,S`)}∪ {Cobj (X, zloss , S0)}∪ {DiverseSum(X,S` ∪{S0}, div , 0)};
12

maximize r =
a× div

b× q` + c× zloss

subject to C.

if No solution then return S` ;
13 Save the data (r , div , q`, f(X)) ;
14 h := h+ 1;
15 S` := S` ∪ {values assigned to variables X in the solution};
16 sumdiv := sumdiv + div ;
17 M := M ′;

18 return S`;
Algorithm 4: Online Generation for quality notion Ql in CP.

however, if stating the quality notion Q` requires the addition of many auxiliary variables in

addition to q`. In this case, the principle of delaying their assignment after model variables

remains valid, but it is necessary to define an appropriate strategy for the new variables,

rather than a simple lexicographical order.

4.4 Solution Engineering Framework Implemented in Mathemat-

ical Programming

Algorithm 5 customizes Algorithm 1 to the mathematical programming paradigm, and in

particular, we consider combinatorial optimization problems modeled using 0–1 variables.

Specifically, for quality notion Q`(Y`, q`), it takes as input a list of parameters L as outlined

in Section 4.2, including (possibly empty) sets of variables V` and constraints C`. As output,

it generates a set S` of k diverse solutions with respect to Q`(Y`, q`).

To construct such a set S` of diverse solutions, it is necessary to enforce that a unique

solution, if one exists, is returned upon each call, so that previously discovered solutions are

not revisited on subsequent iterations. This can be accomplished by prohibiting a known
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solution Sj through the following inequality (Balas and Jeroslow, 1972):∑
i:Sj [i]=0

xi +
∑

i:Sj [i]=1

(1− xi) ≥ 1. (10)

Concerning diversity, the metric ∆h
` considers k reference solutions S1, . . . , Sk, and mea-

sures the distance from their centroid c =

(
ci = 1

k

k∑
j=1

Sj[i], i = 1, . . . , n

)
in the following

fashion:

∆h
` =

n∑
i=1

{(1− ci)xi + ci(1− xi)} =
n∑

i=1

ci +
n∑

i=1

(1− 2ci)xi. (11)

Moreover, at every algorithmic iteration i, a feasible solution X is generated that opti-

mizes r, which is defined as the ratio:

r =
a×∆h

` ({X} ∪ S` ∪ {S0})
b× q` + c× f loss(X)

. (12)

input : List of parameters L.
output: A set of k diverse solutions generated using quality notion Q`(Y`, q`).

1 S` := ∅;
2 h := 1;
3 M ′ := M ;
4 while h ≤ k do
5 X := X ∪ V`;
6 C := C ∪ C` ∪ {Constraints (10) ∀ j ∈ S`};
7 maximize r as expressed in (12), subject to C;
8 if No solution then return S` ;

9 else Save data (r ,∆h
` ({X} ∪ S` ∪ {S0}), q`, f(X)) ;

10 h := h+ 1;
11 S` := S` ∪ {values assigned to variables of X in the solution};
12 M := M ′;

13 return S`;
Algorithm 5: Online Generation for quality notion Ql in MP.

Algorithm 5 adds to model M any necessary auxiliary variables V` and constraints C`
to properly express quality notion Q`, along with constraints of the form (10) that forbid

previously generated solutions. The objective function is a nonlinear ratio to be maximized.

Specifically, the numerator expresses the weighted diversity, while the denominator is a sum

of the weighted quality notion and the weighted loss from the best objective value found so

far. The signs are chosen on the three expressions so that diversity, quality, and the original

objective function all improve whenever the ratio is maximized.
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The nonlinearity of the ratio objective function r can be addressed via Dinkelbach’s Al-

gorithm (Dinkelbach, 1967), which is capable of solving optimization problems with ratio

objectives. It does so by solving a sequence of linearized problems that are related to the

original nonlinear fractional programming problem. The following algorithm details our im-

plementation, which is called when performing Line 7 in Algorithm 5. At iteration k, λk

represents an estimate of the ratio r. The feasibility set induced by constraints C is denoted

feas(C). Moreover, ε is a small positive constant.

input : Ratio r as expressed in (12), initial solution X0 (e.g., S0).
output: Optimal solution xk.

1 k := 0;
2 repeat

3 λ(k+1) := r(X0);
4 k := k + 1;

5 Xk := argmax
X∈feas(C)

{
a×∆h

` ({X} ∪ S` ∪ {S0})− λk
[
b× q` + c× f loss(X)

]}
;

6 until
∣∣a×∆h

` ({X} ∪ S` ∪ {S0})− λk
[
b× q` + c× f loss(X)

]∣∣ < ε;

7 return Xk;
Algorithm 6: Dinkelbach Algorithm: Find Solution that Optimizes r.

The algorithm operates by computing the value for parameter λk with respect to solu-

tion Xk. It subsequently uses that value to solve the parametrized optimization problem,

returning Xk. When the parameter λk reaches a value such that the resulting Xk satisfies

the stopping condition in Line 6, the algorithm terminates. Upon completion at iteration

k, it returns an optimal solution Xk that maximizes the ratio of relative solution diversity

to relative deterioration in objective function quality. While each subproblem with integer

variables is, in general, an NP-hard problem, Dinkelbach’s algorithm itself has been shown

to have superlinear convergence (see, e.g., Schaible, 1976).

5. Computational Experiments

We implemented two prototypes of the solution engineering framework, one in constraint pro-

gramming (CP), and one in mathematical programming (MP). All CP experiments were run

on an Intel core i7-2720QM computer with 2.20GHz and 8.0 GB RAM running OS X 10.10.3,

using the Java constraint programming solver Choco 3.3.3 (Prud’homme et al., 2015). All MP

experiments were run on an Intel core i7-6700HQ computer with 2.60GHz and 64.0 GB RAM

running 64-bit Windows 10 Enterprise, using IBM ILOG CPLEX optimizer (IBM, 2017) in

conjunction with the C callable library. These prototypes were implemented using the diver-

sity measures and specialized algorithms as presented in Sections 4.3 and 4.4, respectively.
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As our framework takes any model and any formulation of quality notions as arguments,

the solving efficacy may substantially vary depending on these parameters. Moreover, differ-

ent technologies tend to outperform others on different problem classes. Hence, rather than

compare technologies, the goal of our computational studies is to demonstrate that what we

have proposed can be implemented in a realistic manner to achieve the desired output: a

set of (near-) optimal, diverse solutions infused with quality notions. Further, we seek to

ascertain whether it is possible to partition the solution space into sets of solutions having

specific features, thereby making solutions in one set distinct from the solutions of other

sets. A lack of such evidence would suggest that our approach is primarily theoretical.

To reach this objective, we analyzed the solution sets obtained on GAPa instances (Chu

and Beasley, 1997) of the GAP problem (as described in Section 2), with the following quality

notions Qi, i ∈ {2, 3, 4, 5}:

• Set 1: Original problem, no quality notion.

• Set 2: Q2: Maximal cardinality distance between any two agents.

• Set 3: Q3: Maximal resource distance between any two agents.

• Set 4: Q4: Smooth violations between sequential jobs, gap = 15.

• Set 5: Q5: Smooth violations between sequential jobs, gap = 5.

The above quality notions correspond to the examples discussed in Section 2. As all

GAPa instances lead to similar outcomes, in the following we focus on the first instance of

GAPa (Chu and Beasley, 1997), namely GAPa 5 100, which has 5 constraints and 100 vari-

ables. Prior to presenting the experimental analysis and the results, we formally define the

quality notions used. We define them as modeling blocks that are stated by their satisfaction

condition (so-called global constraints in CP). We describe their implementation using CP

and MP.

5.1 Quality Notions

The maximal pairwise distance in a set of integer variables can be encoded using the following

global constraint.

Definition 4 (MaxDistance, Katsirelos et al. (2012); Quimper et al. (2006))

MaxDistance holds on integer variables {x1, . . . , xn} and an integer variable q if and only

if |xi − xj| ≤ q for all i 6= j, i ∈ {1, . . . , n}, j ∈ {1, . . . , n}.
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Smoothing violations, that is, constraining the number of consecutive variables whose ab-

solute difference is strictly greater than a certain gap, can be encoded using the following

global constraint.

Definition 5 (Smooth, Beldiceanu et al. (2007)) Let X = {x1, . . . , xn} be a set of in-

teger variables, p a positive integer and q an integer variable, Smooth holds if and only

if q = |{(xi, xi+1) such that |xi − xi+1| > p}|.

5.1.1 Quality Notion Implementation in Constraint Programming

While various propagators have been published for the two global constraints, they are

not implemented by default in most systems. Alternatively, the two global constraints

can be decomposed using constraints that are standardly available in CP solvers. To

decompose MaxDistance one may state integer variables yij for each i ∈ {1, . . . , n},
j ∈ {1, . . . , n}, i < j, and state the following constraints:

∀i ∈ {1, . . . , n},∀j ∈ {1, . . . , n}, i < j, yij = |xi − xj|. (13)(
max

(i,j):i<j
yij

)
≤ q. (14)

To decompose Smooth one may define an integer variable yi and a binary variable bi for

each i ∈ {1, . . . , n− 1}, and state the following constraints:

∀i ∈ {1, . . . , n− 1}, |xi − xi+1| = yi and bi = (yi > p). (15)

q =
n−1∑
i=1

bi. (16)

In the above definition, the notation bi = (yi > p) is used to state the binary constraint:

[bi = 0 ∧ yi ≤ p] ∨ [bi = 1 ∧ yi > p].

In our experiments we made the choice to present results obtained with those decompositions,

so as to remain faithful to the objective of using our framework without any problem specific

tuning, as a non-expert user might do.

5.1.2 Quality Notion Implementation in Mathematical Programming

Various mathematical programming techniques can be used to augment the generalized as-

signment problem (GAP) with expressions of both maximal distances, as well as smooth
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constraint violations. As discussed in Section 2, we assume there are n jobs J = {1, 2, ..., n},
m agents A = {1, 2, ...,m}, and the goal is to determine a minimum cost assignment subject

to assigning each job to exactly one agent while satisfying a resource constraint for each

agent. Assigning job j to agent i has a cost of cij and consumes an amount aij of resource,

whereas the total amount of the resource available for agent i is capi.

Define binary variables xij as:

xij =

{
1 if job j is assigned to agent i;

0 otherwise.
(17)

Minimizing Maximum Distances Between Agents. The number of jobs assigned to

any agent i is expressed as
∑n

j=1 xij, hence the cardinality distance of assigned jobs between

two agents i and k is |
∑n

j=1 xij−
∑n

j=1 xkj|. To minimize the maximum cardinality distance

of assigned jobs between all agents, we introduce new continuous variable q ∈ IR+, as well as

the following constraint set:

q ≥
n∑

j=1

xij −
n∑

j=1

xkj, i = 1, . . . ,m, k = 1, . . . ,m, i 6= k. (18)

The variable q, to be minimized, will represent the quality notion of the maximum cardi-

nality distance between all pairs of agents. This can be accomplished through one additional

continuous variable q, and m2 −m linear constraints.

We also consider the maximum distance of resources consumed between any two agents.

This can be modeled in analogous fashion by modifying (18) to account for total resources

consumed by each agent:

q ≥
n∑

j=1

aijxij −
n∑

j=1

akjxkj, i = 1, . . . ,m, k = 1, . . . ,m, i 6= k. (19)

The quality notion of the maximum distance of resources consumed between all pairs of

agents is represented by q ∈ IR+, and is to be minimized. This can similarly be accomplished

through one additional continuous variable q, and m2 −m linear constraints.

Minimizing Smooth Violations. The smooth condition captures the (absolute) change

between consecutive (weighted) variable values. In particular, we consider the smoothness

in the objective function value for the assignment of each job j to agent i. Formally, the
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objective smoothness between two consecutive jobs j and j + 1 can be expressed as:∣∣∣∣∣
m∑
i=1

cijxij −
m∑
i=1

ci,j+1xi,j+1

∣∣∣∣∣ . (20)

Suppose we are interested in finding solutions where the smoothness is bounded by (in-

teger) value s. Define and precompute constants Mj,j+1 and Mj+1,j for all j = 1, . . . , n− 1,

as:

Mj,j+1 = (max
i
cij −min

i
ci,j+1)− s, (21)

Mj+1,j = (max
i
ci,j+1 −min

i
ci,j)− s. (22)

Define n− 1 binary indicator variables yj as:

yj =

{
1 if objective smoothness (20) between jobs j and j + 1 exceeds s;

0 otherwise.
(23)

The smooth condition can be implemented using the following two constraint sets:

m∑
i=1

cijxij −
m∑
i=1

ci,j+1xi,j+1 ≤ s+Mj,j+1yj, j = 1, . . . , n− 1, (24)

m∑
i=1

ci,j+1xi,j+1 −
m∑
i=1

cijxij ≤ s+Mj+1,jyj, j = 1, . . . , n− 1, (25)

with the objective of minimizing the number of violations
∑n−1

j=1 yj. Hence, smooth can be

implemented in mathematical programming via n− 1 additional binary variables and 2n− 2

linear constraints.

5.1.3 Experimental Analysis and Results

For each prototype (CP and MP) and for each of Sets 1 to 5, we generated 50 solutions,

using a 5 minute time limit per solve. The quality score vector has also been created for

every solution in every set by evaluating and recording the respective quality notions. We

denote by q1 the value of the original objective of the GAP in each solution, while qi records

the value of quality notion Qi in the solution, i ∈ {2, 3, 4, 5}.
Regarding algorithmic specializations, for the sake of consistency we include in both tech-

nologies a constraint à la Line 3 of Algorithm 2 that bounds the original objective function

according to within 3% of the best value found so far. Hence, K = 0.03 · f(S0). Moreover,
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in both technologies the ratio to be maximized in our experiments was the following:

r =
500×∆h

` ({X} ∪ S` ∪ {S0})
50× q` + f loss(X)

, (26)

except concerning Set 1, where the q` component is absent from the ratio. These parameters

provided for diversity within the solution sets. We first discuss the relative loss concerning

the GAP objective value in the solution sets.

Set 1 Set 2 Set 3 Set 4 Set 5

CP 0.05 0.49 2.77 2.44 2.84
MP 0.05 0.47 1.1 2.94 2.94

Table 2: Average gap from the optimal objective, in %.

Table 2 demonstrates that the average gap from the optimal objective value remains

reasonable in all sets, which is to be expected as per the implemented bound on the original

objective function value. Across the five sets, there were some minor differences in optimality

gaps, essentially highlighting that two distinct technologies were used for implementations,

including different diversity measures.

To illustrate the resulting variety of generated solutions, in Table 3 we computed the

number and percentage of unique score vectors with both the objective value included, i.e.,

(q1, . . . , q5), as well as not included, i.e., (q2, . . . , q5). By unique, we mean that we do not

count score vectors appearing more than once in the same set. While it is possible that two

distinct solutions map to the same score vector, in Table 3 we focus on assessing whether

the solutions in sets have differences that are identifiable through the quality notions.

Each row of Table 3 considers 1) a technology (MP or CP), 2) an absolute count (#)

or percentage (%), and 3) either (q1, . . . , q5) or (q2, . . . , q5). The columns represent the re-

spective performance across the solution sets as well as two sets formed from unions. So,

the initial entry 19/50 indicates that among the 50 solutions in Set 1, there were 19 unique

score vectors as expressed by their entries q1, . . . , q5 (that is, 38%). In light of the fact that

two distinct technologies and diversity metrics were used to generate these solutions, the

consistency of the results in Table 3 is rather remarkable.

Perhaps the most interesting comparison is between Set 1 (no quality notion) with the

union of Sets 1 to 5 (column ∪1−5) – and also with Sets 2 to 5 (column ∪2−5). The percent-

ages of unique vectors are significantly higher for the set unions, supporting our reasoning

that the system generates solutions that have specific characteristics, that may otherwise

26



Set 1 Set 2 Set 3 Set 4 Set 5 ∪1−5 ∪2−5

CP (#): (q1, . . . , q5) 19/50 29/50 42/50 50/50 50/50 190/250 171/200
CP (#): (q2, . . . , q5) 19/50 14/50 18/50 50/50 50/50 151/250 132/200
CP (%): (q1, . . . , q5) 38 58 84 100 100 76 85
CP (%): (q2, . . . , q5) 38 28 36 100 100 60 66

MP (#): (q1, . . . , q5) 20/50 35/50 35/50 50/50 50/50 190/250 170/200
MP (#): (q2, . . . , q5) 19/50 21/50 14/50 50/50 50/50 154/250 135/200
MP (%): (q1, . . . , q5) 40 70 70 100 100 76 85
MP (%): (q2, . . . , q5) 38 42 28 100 100 61 67

Table 3: Number and % of unique quality notion vectors (qi, . . . , qj).

remain undiscovered using classical online diversity schemes. For column ∪1−5, the fact that

both the MP and CP technologies identified 190 (out of 250) unique solutions indicates

that no solutions were shared in common between the individual five sets (as 190 is the

number of unique solutions across all individual sets), further underscoring the usefulness of

the methodology. However, more analysis should be performed, for example to determine

if solutions in Sets 2 to 5 have quality notion scores that cannot be reached in Set 1. This,

and related queries, are topics for future research.

Figure 3 illustrates the minimum (small grey dashed lines) and maximum (large grey

dashed lines) score vector values of (q1, . . . , q5) in Set 1, and compares these with the average

score vector values of (q1, . . . , q5) in Sets 2 and 4 (bold solid black lines). The results obtained

from other sets are similar. The direction of optimization for all five dimensions is toward

the center of the radar charts.

Figure 3 shows that concerning the quality notion minimized in Sets 2 or 4, respectively,

the average values for both CP and MP are lower than the best value found in Set 1, further

demonstrating that the selected solutions were only discovered through the quality notions

stated in our framework. Moreover, it is apparent in Figure 3 that there are only slight

differences in the CP and MP technologies. Specifically, in MP the quality notion q4 is

slightly superior, that is, the average number of smooth violations is closer to 0, however the

CP results seem to indicate a slightly improved performance with respect to average quality

notions related to maximal distances, i.e. q2 and q3.

This experiment demonstrates the possibility for a broader exploration of the solution

space by infusing quality notions in models through a generic framework, based on rigor-

ously defined metrics. Additional limited experimentation, not detailed herein for the sake

of brevity, also indicates that similar results can be obtained by aggregating multiple quality
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Figure 3: Comparing metrics on two sets of solutions to GAPa 5 100 instance in CP and MP.

notions. This demonstrates that it is not necessary to restrict each set to contain only the

extreme solutions for one quality notion, offering even more perspectives to optimization

practitioners, for example to simplify the process of iterative design for real-world optimiza-

tion modeling.

6. Conclusion

We propose the solution engineering framework to enable the discovery of multiple optimal

or near-optimal, diverse solutions for problems of a combinatorial nature, that are further

infused with arbitrary quality notions selected by the end-user. This general framework

requires an original combinatorial model expressed in a particular technology (such as math-

ematical programming or constraint programming), together with one or more ad-hoc quality

notions that can be expressed in that particular technology. We customize the framework to
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two specific technologies, namely constraint programming and mathematical programming,

and subsequently demonstrate its practicality by implementing and further conducting com-

putational experiments on existing test instances from the literature. Our computational

results largely underscore that it is indeed possible to construct sets containing multiple, di-

verse solutions that are infused with various quality notions (including the original objective

function). To our knowledge, we are unaware of any other means to facilitate recovery of

such sets of solutions, hence remaining undiscovered.

We propose that the user simply selects desirable quality notions apriori (and external to

the original, base model) for a particular combinatorial problem. Building upon earlier work

in identifying diverse optima and near-optima to combinatorial problems (Trapp and Konrad,

2015; Petit and Trapp, 2015), we then propose an approach that sequentially constructs a set

of diverse solutions that emphasize each quality notion together with the original objective

(or if none, omitted). Subsequently taking the union of these sets effectively constructs

a superset containing solutions that have been infused with dimensions of quality. If the

resulting set of solutions is large, it can then be further explored, analyzed, ranked and

categorized via traditional data science tools, thereby complementing the natural strengths

of human decision-making. While the present work advocates for the methodology, the data

science implementation of such a system is left for future work.

7. Appendices

7.1 Appendix A: Proof of Proposition 1

A propagator is correct if it does not remove from domains values that can be part of an

assignment satisfying the constraint. Consider first div . By construction, maxSum is the

maximum possible diversity value of sum
|S|
j=1δ(X,Sj) + prev given the domains of variables

in X. From Definition 3, we must have div ≤
∑|S|

j=1 δ(X,Sj) + prev : the update of div (line

10) is safe. Let us now consider any variable xi ∈ X. Given vj ∈ D(xi), by construction of

maxSum and dist , the maximum possible diversity of the problem when xi = vj is maxSum−
maxl∈[0,|dist [i ]|](dist [i][l]) + dist [i][j], as the value maxl∈[0,|dist [i ]|](dist [i][l]) exclusively depends

on variable xi in the current solutions of S (that is, not on other variables in X). Therefore, if

maxSum−maxl∈[0,|dist [i ]|](dist [i][l])+dist [i][j] < div the condition div ≤
∑|S|

j=1 δ(X,Sj)+prev

cannot be satisfied with xi = vj. Value vj can be removed from D(xi) (line 15). No other

condition leads to value removals in Algorithm 3.
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7.2 Appendix B: Proof of Proposition 2

Assume Algorithm 3 does not achieves GAC: a value is still in a domain although it cannot

be part of an assignment that satisfies the constraint. First, consider value v ∈ D(div). If

the v cannot be part of a solution, after having applied the algorithm there must exist a valid

assignment of X ∪ {div} such that v >
∑|S|

j=1 δ(X,Sj) + prev . This stands in contradiction

with Line 10, by construction of maxSum. Secondly, consider vj ∈ D(xi), xi ∈ X, such

that vj cannot be part of a solution. Computing dist matrix and maxj∈[0,|dist [i ]|](dist [i][j])

while reducing D(xi) to {vj} should lead to
∑n

i=1 maxj∈[0,|dist [i ]|](dist [i][j]) + prev < div . By

construction of maxSum and since maxl∈[0,|dist [i ]|](dist [i][l]) exclusively depends on variable

xi, this is in contradiction with the removal condition of Line 14. As DiverseSum scope is

X ∪ {div}, the proposition holds.

7.3 Appendix C: Diversity Variable Update

The new objective is stated on the diversity variable, the objective variable of the original

model and quality notion variables. Variables are associated with domains whose minimum

and maximum values are subject to the limit of integer size of solvers; existing approaches

may prevent from generating large sets of solutions, due to the domain of variables used for

diversity and quality notions. The principle used in Algorithm 4 for updating the diversity

variable is different: we never increase its maximum value. To do so, we adjust the minimum

value to be the difference between the product of the number of previously generated solu-

tions and the initial required minimum diversity, less the current sum of diversity (Line 8). If

the result is negative then the minimum required diversity for the next solution is 0. This ad-

justment avoids too much diversity from the next solution to be generated, while the diversity

variable domain upper-bound remains the same at all iterations. Observe that in any case

all the solutions are distinct, thanks to the table constraint stated in line 11 of Algorithm 4.
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