Thierry Petit
email: thierry.petit@imt-atlantique.fr

Andrew C Trapp
email: atrapp@wpi.edu

"Solution Engineering" : génération et classification de solutions enrichies par des vecteurs de qualité

Keywords: optimisation, solutions multiples et diverses, programmation par contraintes, programmation mathématique

Introduction

Les outils permettant de générer des solutions multiples aux problèmes d'optimisation sont en pratique au mieux limités par leur aptitude à incorporer à la fois une notion de diversité entre les solutions et des contraintes métier spécifiques. Ces contraintes sont généralement imparfaitement définies, car trop difficiles à formaliser par un utilisateur avant qu'il n'ait accès à un ensemble de solutions qu'il peut évaluer. Pour pallier ce problème, nous proposons un paradigme prenant un modèle d'optimisation en donnée, permettant de générer un ensemble de solutions proches de l'optimal, diverses et classifiées à l'aide de contraintes fonctionnelles supplémentaires. Chaque solution est enrichie par un vecteur de valeurs correspondant à des métriques de qualité, qui expriment des notions génériques, e.g., une répartition homogène de coûts, une notion de persistance, une limite sur les variation d'utilisation d'une ressource, etc.

Principe, implémentation et résultats

Le principe de cette approche est de raffiner les critères d'exploration de l'espace des solutions : deux solutions distinctes selon des notions de qualité de nature sémantique peuvent tout à fait avoir de nombreuses valeurs en commun, et ainsi ne pas être identifiées comme distinctes par les techniques de génération de solutions multiples classiques. La Figure 1 Nous définissons un paradigme retournant un ensemble de solutions enrichies qui, selon le problème considéré, peut être très vaste. Un utilisateur peut alors poser des requêtes à l'aide d'outils de traitement de données (e.g., des requêtes SQL) pour obtenir la solution qui pourra être appliquée en pratique. Un point crucial est que ces requêtes n'ont pas à être intégrées directement dans le modèle sous la forme de contraintes ou de critères d'optimisation.

Après avoir généré une première solution S 0 à un problème d'optimisation, idéalement optimale, l'idée consiste à infuser dans le problème, successivement, chaque notion de qualité "générique" retenue via une contrainte fonctionnelle ; si l'utilisateur souhaite définir une métrique agrégeant plusieurs contraintes de qualité, il peut le faire sans restriction. À chaque étape, l'objectif initial du problème est remplacé par un nouvel objectif incluant un critère de diversité classique ∆ entre les solutions générées (e.g., distance de Hamming), une distance d à la valeur d'objectif de la solution S 0 et une variable q exprimant la notion de qualité. Par exemple, pour un problème de minimisation, le nouvel objectif pourra être la maximisation d'un ratio pondéré par trois constantes a, b et c : r = a×∆+b×q c×d . Soit OnlineGen(L) l'algorithme générant à chaque étape un ensemble de solutions diverses pour une notion de qualité donnée, où (L) est une liste de paramètres, contenant entre autres S 0 et la contrainte globale exprimant cette notion. L'algorithme 1 ci-dessous génère un ensemble classifié des solutions enrichies par des vecteurs de valeurs de qualité. Nous avons implémenté ce paradigme en programmation par contraintes (PPC) et en programmation mathématique (MP). Outre l'algorithme OnlineGen(L), cette implémentation requiert plusieurs contributions scientifiques : en PPC, un propagateur GAC pour une contrainte de diversité générique (inspiré d'approches existantes, e.g., [START_REF] Hebrard | Finding diverse and similar solutions in constraint programming[END_REF]) et un principe d'adaptation automatique de la stratégie de recherche du modèle fourni en entrée ; en MP, des décompositions linéaires des contraintes globales employées pour exprimer des notions de qualité. L'analyse statistique de nos résultats expérimentaux [START_REF] Petit | Enriching solutions to combinatorial problems via solution engineering[END_REF] sur des instances du problème GAP [START_REF] Chu | A genetic algorithm for the generalised assignment problem[END_REF] confirme sans ambiguité la possibilité concrète de générer des ensembles constitués de solutions que les approches de l'état de l'art ne peuvent pas identifier et/ou classifier.

2 FIG. 1 -

 21 FIG.1-Deux solutions à un problème d'affectation. A, B et C sont des machines et les cellules grises sont des tâches. Bien que les deux solutions aient 7 variables sur 9 prenant la même valeur, elles diffèrent selon des critères tels que l'alternance des machines utilisées, le nombre de fois où l'on utilise une machine, le temps d'utilisation d'une même machine en continu. Ces critères sémantiques correspondent pour la plupart à des contraintes globales connues. Ils peuvent être retenus pour exprimer la diversité entre deux solutions, au même titre que les distances mathématiques mesurant si chaque variable est affectée avec une valeur (significativement) distincte dans les deux solutions.

Algorithm 1 :

 1 input : A model M = (X, C, f) for problem p, a set of quality notions Q, and an integer k > 0. output: A set S of solution sets and a |Q| × (k × |Q|) matrix of score vectors, i.e., one set of k |Q|-length score vectors per quality notion. 1 S := ∅; 2 for ∈ {1, 2, . . . , |Q|} do 3 Generate the parameter list L according to Q ; 4 S = OnlineGen(L) ; S := S ∪ {S }; 5 Ψ = ∅; 6 for ∈ {1, 2, . . . , |Q|} do 7 Ψ := |S | × |Q| integer matrix; 8 for S j ∈ S do 9 for m ∈ {1, 2, . . . , |Q|} do 10 Ψ [j][m] := Score of q m when evaluating Q m on solution S j ; 11 Ψ := Ψ ∪ {Ψ }; 12 Return (S, Ψ); Quality Enhanced Solution Generation.