
HAL Id: hal-01686713
https://hal.science/hal-01686713

Submitted on 17 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Logics of repeating values on data trees and branching
counter systems

Sergio Abriola, Diego Figueira, Santiago Figueira

To cite this version:
Sergio Abriola, Diego Figueira, Santiago Figueira. Logics of repeating values on data trees and branch-
ing counter systems. International Conference on Foundations of Software Science and Computation
Structures (FoSSaCS), Apr 2017, Uppsala, Sweden. �hal-01686713�

https://hal.science/hal-01686713
https://hal.archives-ouvertes.fr

Logics of repeating values on data trees and
branching counter systems?

Sergio Abriola1, Diego Figueira2, and Santiago Figueira1

1 University of Buenos Aires, Argentina and ICC-CONICET, Argentina
2 CNRS, LaBRI, France

Abstract. We study connections between the satisfiability problem for
logics on data trees and Branching Vector Addition Systems (BVAS). We
consider a natural temporal logic of “repeating values” (LRV) featuring
an operator which tests whether a data value in the current node is
repeated in some descendant node.

On the one hand, we show that the satisfiability of a restricted version of
LRV on ranked data trees can be reduced to the coverability problem for
Branching Vector Addition Systems. This immediately gives elementary
upper bounds for its satisfiability problem, showing that restricted LRV
behaves much better than downward-XPath, which has a non-primitive-
recursive satisfiability problem.

On the other hand, satisfiability for LRV is shown to be reducible to the
coverability for a novel branching model we introduce here, called Merging
VASS (MVASS). MVASS is an extension of Branching Vector Addition
Systems with States (BVASS) allowing richer merging operations of the
vectors. We show that the control-state reachability for MVASS, as well
as its bottom-up coverability, are in 3ExpTime.

This work can be seen as a natural continuation of the work initiated
by Demri, D’Souza and Gascon for the case of data words, this time
considering branching structures and counter systems, although, as we
show, in the case of data trees more powerful models are needed to encode
satisfiability.

1 Introduction

Logics for data trees. Finite data trees are ubiquitous structures that have
attracted much attention lately. A data tree is a finite tree whose every position
carries a label from a finite alphabet and a collection of data values from some
infinite domain.3 This structure has been considered in the realms of semistruc-
tured data as a simple abstraction of XML documents, timed automata, program
verification, and generally in systems manipulating data values. Finding decidable

? We thank STIC AmSud, ANPCyT-PICT-2013-2011, UBACyT 20020150100002BA,
and the Laboratoire International Associé “INFINIS”.

3 Other works have considered different simplifications of these structures, either having
only one data value per node (e.g., [2]) or ignoring the label (e.g., [7]).

2 Abriola, Figueira and Figueira

logics or automata models over data trees is a fundamental quest when reasoning
on data-driven systems.

A wealth of specification formalisms on these structures (either for data trees or
its ‘word’ version, data words) have been introduced, stemming from automata [25,
28], first-order logic [2, 19, 16, 4], XPath [20, 18, 15, 14, 13], or temporal logics [9,
24, 22, 11, 7, 21]. In full generality, most formalisms lead to undecidable reasoning
problems and a well-known research trend consists of finding a good trade-off
between expressiveness and decidability.

Interesting and surprising results have been exhibited about relationships
between logics for data trees and counter automata [19, 18, 20]. This is why logics
for data trees are not only interesting for their own sake but also for their deep
relationships with counter systems.

This work. The aim of this work is to study the basic mechanism of “data
repetition”, common to many logics studied on data trees. For this, we study
a basic logic that can navigate the structure of the tree through the use of
CTL-like modalities, and on the other hand can make “data tests”, by asking
whether a data value is repeated in the subtree. More concretely, the data tests
are formulas of the form u ≈ EFv, stating that the data value stored in attribute
(also called variable here) u of the current node is equal to the data value stored
in attribute v of some descendant. This logic of repeating values, or LRV, has
been the center of a line of investigation studied in [6, 7] on data words, evidencing
tight correspondences between reachability problems for Vector Addition Systems
and the satisfiability problem. The current work pursues this question further,
exhibiting connections between the satisfiability problem of LRV over data trees
and the bottom-up coverability problem for branching counter systems. In order
to obtain connections with branching Vector Addition Systems with States, or
branching VASS [29], we also introduce a restriction where tests of the form
u ≈ EFv are only allowed when u = v. We denote this restriction by LRVD.
This symbiotic relation between counter systems and logics leads us to consider
some natural extensions of both the logic and the branching counter systems. In
particular, we introduce a new model of branching counter system of independent
interest, with decidable coverability and control-state reachability problems, that
captures LRV.

The extension of the logic LRV from words to trees is a very natural one.
However, the techniques needed to encode the satisfiability of the logic into a
counter system are not simple extensions from the ones provided on data words.
The reason for this difficulty is manyfold: a) the fact that now the future is
non-linear in addition to the possibility of having a data value repeating at several
descendants in different variables, makes the techniques of [7] for propagating
values of configurations impractical; b) further, this seems to be impossible for the
case of data trees, and we could only show a reduction for the fragment LRVD;
c) in order to reduce the satisfiability problem for the full logic we will need to
augment the power of branching VASS with the possibility to ‘merge’ counters
in a more powerful way, somewhat akin to what has been done for encoding the
satisfiability for FO2 [19].

Logics of repeating values on data trees and branching counter systems 3

Contributions. The main contributions are the following:

– We show that the satisfiability for LRVD on k-ranked data trees is reducible,
in exponential space, to the control-state reachability problem for VASSk (i.e.,
Branching VASS of rank k) in Section 5. Since the control-state reachability
problem is decidable [29] in 2ExpTime [8], this reduction yields a decision
procedure.

– We consider the addition of an operator AG≈v(ϕ) expressing “every de-
scendant with the same v-attribute verifies ϕ”, and we show that the logic
resulting from adding positive instances of this operator is equivalent to the
control-state reachability for Branching VASS, that is, there are reductions
in both directions (Section 6).

– We introduce an extension of Branching VASS, called Merging VASS or
MVASS in Section 4.2. This model allows for merging counters in branching
rules in a form which is not necessarily component-wise, allowing for some
weak form of counter transfers. We show that the bottom-up coverability (and
control-state reachability) problem for MVASS is in 3ExpTime (Section 4.4).
This is arguably a model of independent interest.

– We show that the satisfiability for LRV on k-ranked data trees can be reduced
to the control-state reachability for MVASSk in Section 7. As in the case of
LRVD, this yields a decision procedure.

Due to space limitations, technical details of the proofs are contained in the
appendix.

Related work. The most closely related work is the one originated by Demri et
al. in [5, 6] and pursued in [7]. These works study the satisfiability problem for
temporal logics on data words, extended with the ability to test whether a data
value is repeated in the past/future. Indeed, our current work is motivated by the
deep correlations evidenced by these works, between counter systems and simple
temporal logics on data words. The present manuscript expands this analysis to
branching logics and counter systems.

There are several works showing links between reachability-like problems for
counter systems and the satisfiability problem of logics on data trees. The first
prominent example is that satisfiability for Existential MSO with two variables
on data words (EMSO2(+1, <,∼)) corresponds precisely to reachability of VASS
[3], in the sense that there are reductions in both directions. On the other hand,
EMSO2 over (unranked) data trees was shown to have tight connections with
the reachability problem for an extension of BVASS [19], called ‘EBVASS’. This
extension has features which are very close to the model we introduce here,
MVASS, but it does not capture, nor is captured by, MVASS. One can draw a
parallel between the situation of the satisfiablity for EMSO2 and for LRV: while
on data words both are inter-reducible to VASS, the extension to data-trees is
non-trivial, and they no longer correspond to BVASS, but to extensions thereof.

In the course of the last decade, several logics for data trees have been proposed.
Among those that feature navigation in terms of modalities such as temporal
operators, one noticeable logic is that of XPath. Although the satisfiability

4 Abriola, Figueira and Figueira

problem for XPath is undecidable, several fragments have been shown to be
decidable through reduction to the reachability or coverability problems for
counter systems [9, 18, 12]. In particular, the satisfiability problem for XPath
with strict descendant (usually written ↓+) on ranked data trees has already a
non-primitive-recursive lower bound in complexity, as can be seen by adapting
techniques shown for data words [17].

Modulo a simple coding, our logic LRV is captured by a fragment of regular-
XPath, here called reg-XPathLRV, on data trees where path expressions are
allowed to use Kleene star on any expression (this what we denote by ‘regular’
XPath), and data tests are of the form 〈ε? ↓∗ [ϕ]〉 or 〈↓n [ϕ]? ↓m [ψ]〉 for some
n,m ∈ N and ? ∈ {=, 6=}. There are, however, three provisos for this statement.
First, in the aforementioned works on XPath the data model consists of data
trees whose every position carries exactly one data value. In the present paper,
we study ‘multi-attributed’ data trees where, essentially, each node carries a
set of pairs ‘attribute:value’. However, by means of a simple coding, such as
putting every ‘attribute:value’ as a leaf of the corresponding node, one can easily
translate LRV formulas to XPath formulas. Second, our LRV formulas are of the
form u ≈ EFv stating that the current data value under attribute u is repeated
in a node x of the subtree under attribute v, but one cannot test that some
property ψ further holds at the repeating node x. However, it was shown in [7]
that one can extend the logic with this power, obtaining formulas of the form
x ≈ EFy[ψ], since this extended logic is PTime-reducible to the logic without
these tests. Third, the LRV formulas cannot test for regular properties on the
labeling of paths, and thus there is no precise characterization in terms of a
natural fragment of regular-XPath, but one could add regular path tests to LRV
to match the expressive power of reg-XPathLRV without changing any of our
results.

In fact, the fragment reg-XPathLRV extends also the fragment DataGL con-
sidered in [1] and [13] containing only data tests of the form 〈ε? ↓∗ [ϕ]〉, which is
known to be PSpace-complete on unranked data trees [13].

It is not hard to see that the satisfiability problem of LRV on unranked data
trees is PSpace-complete following the techniques from [13]. On the other hand,
on ranked data trees we know, by the discussion above, that if we would allow
intermediate tests in a way to be able to encode the expressive power of XPath(↓+)
we would have a non-primitive recursive lower bound. It is therefore natural to
limit the navigation disallowing intermediary tests. This natural fragment was
already studied on data words [7], and we now study it on data trees.

2 Preliminaries

Let N+ = {1, 2, . . . }, N = N+ ∪ {0}, and n = {1, . . . , n} for every n ∈ N. We
use the bar notation x̄ to denote a tuple of elements, where x̄[i], for i > 0, refers
to the i-th element of the tuple. For any pair of vectors x̄, ȳ ∈ Zk we write x̄ ≤ ȳ
if x̄[i] ≤ ȳ[i] for all 1 ≤ i ≤ k. The constant ∅̄ refers to the (unique) vector
of dimension 0, and the constant ēi refers to the vector (whose dimension will

Logics of repeating values on data trees and branching counter systems 5

always be clear from the context) so that ēi[i] = 1 and ēi[j] = 0 for all j 6= i. We
write 0̄ for the tuple of all 0’s (the dimension being implicit from the context).

A linear set of dimension k is a subset of Nk which is either empty or
described as {v̄0 + α1v̄1 + · · · + αnv̄n | α1, . . . , αn ∈ N} for some n ∈ N and
v̄0, . . . , v̄n ∈ Nk. Henceforward we assume that linear sets are represented by
the offset v̄0 and the generators v̄1, . . . , v̄n, where numbers are represented
in binary. For ease of writing we will denote a linear set like the one above by
“v̄0 + {v̄1, . . . , v̄n}∗”.

We fix once and for all an infinite domain of data values D. A data tree
of rank k over a finite set of labels A and a finite set of attributes V, is a finite
tree whose every node x contains a pair (a, µ) ∈ A×DV and has no more than k
children. In general, a will be called the label of x and µ(v) will be called the
data value of attribute v ∈ V at x. The i-ancestor of a node x of a data tree
T is the ancestor at distance i from x (i.e., the 1-ancestor is the parent); while
the i-descendants of x are all the descendants of x at distance i.

3 Logic of repeating values on data trees

We will work with a temporal logic using CTL∗ modalities [26, 10] to navigate
the tree —although this is not really essential to our results, in the sense that
any other MSO definable data-blind operators could also be added to the logic
obtaining similar results. The Logic of Repeating Values LRV contains the
typical modalities from CTL∗, such as EF, AF, EU, etc. as well as the possibility
to test for the label of the current node, and data tests. Data tests are restricted
to being very basic, as in [6], of the form “u ≈ EFv” stating “the data value of
attribute u appears again at the attribute v of some descendant”, or “u 6≈ EFv”
stating “there is a descendant node whose attribute v contains a different data
value from the data value of the attribute u of the current node”. Since LRV is
closed under Boolean connectives, this means we can also express, for instance,
that attribute u of all descendants have the same data value as the current node’s:
¬(u 6≈ EFu).

Formally, formulas of LRV are defined by

ϕ ::= a | ϕ ∧ ϕ | ¬ϕ | EU(ϕ,ψ) | u ≈ EFv | u 6≈ EFv | u ≈ EXiv | u 6≈ EXiv,

where a ranges over a finite set of labels A, u, v range over a finite set of attribute
variables V (also called just ‘variables’), and i ∈ N+. Given a data tree T and
a node x of T , the satisfaction relation |= is defined in the usual way: T, x |= a
if a is the label of x; T, x |= u ≈ EFv [resp. T, x |= u 6≈ EFv] if there is a strict
descendant y of x so that the u-attribute of x has the same [resp. different]
data value as the v-attribute of y; T, x |= u ≈ EXiv [resp. T, x |= u 6≈ EXiv] if
there exists an i-descendant of x whose v-attribute is equal [resp. distinct] to the
u-attribute of x; and T, x |= EU(ϕ,ψ) if there is some strict descendant y of x so
that T, y |= ϕ and every other node z strictly between x and y verifies T, z |= ψ.

6 Abriola, Figueira and Figueira

Note that the remaining CTL∗ modalities (EX, EG, EF, AX, AG, AF, AU) can
be expressed using EU4.

We call LRVD
n the logic using at most n attribute variables, whose only

admissible data tests are of the form u ≈ EFu, u 6≈ EFu, u ≈ EXiu or u 6≈ EXiu
(same variable in the left and right sides). Intuitively, this corresponds to the
restriction where each attribute variable ranges over a disjoint set of data values
(hence the letter ‘D’).

4 Models of branching counter systems

We present the models of counter systems we are going to work with. The first
one is a well-known model, usually known as Branching Vector Addition System
with States, or “BVASS”, while the second one is a useful extension of the first
one where the split/merge operation of the counters is controlled by the use of
linear sets.

4.1 Branching VASS

A VASS of rank k and dimension n, or nVASSk, is a tuple A = 〈Q,U,B〉, where Q
is a finite set of states, U ⊆ Q×Zn×Q is a set of unary rules, and B ⊆ Q×Q≤k
is a finite set of branching rules. We notate q

v̄−→ q′ for a unary rule (q, v̄, q′) ∈ U ,
and q −→ (q1, . . . , qi) for a branching rule (q, q1, . . . , qi) ∈ B. A configuration is
an element from Confs := Q ×Nn. For a configuration (q, n̄) we often use the
term “counter i” instead of “n[i]” (in the case n = 1 we speak of the counter).

A derivation tree [resp. incrementing derivation tree] is a finite tree D
whose every node x is either

– labeled with a pair (p
v̄−→ p′, (q, n̄)) ∈ U × Confs so that p

v̄−→ p′ is a unary
rule of U , p = q and it has exactly one child, which is labeled (r1, (p1, n̄1))
so that p′ = p1 and

n̄+ v̄ = n̄1 [resp. n̄+ v̄ ≤ n̄1]; (1)

– or labeled with a pair ((p, q̄), (q, n̄)) ∈ B×Confs so that p −→ q̄, with q̄ ∈ Qk′
for some k′ ≤ k, is a branching rule of B, p = q and it has exactly k′ children,
labeled (r1, (p1, n̄1)), . . . , (rk′ , (pk′ , n̄k′)) so that q̄ = (p1, . . . , pk′) and

n̄ =
∑
i≤k′

n̄i [resp. n̄ ≤
∑
i≤k′

n̄i]. (2)

Note that leaf nodes are necessarily labeled with rules of the form q −→ ∅̄ ∈ B.
Without loss of generality we will assume that the system contains rules q −→ ∅̄
for every state q.

4 EXϕ = EU(ϕ,⊥), EFϕ = EU(ϕ,>), EGϕ = EU(ϕ ∧ ¬EX>, ϕ), AU(ϕ,ψ) =
¬EU(¬ψ ∧ ¬ϕ,¬ψ) ∧ ¬EG(¬ϕ), etc.

Logics of repeating values on data trees and branching counter systems 7

4.2 Merging VASS

We present an extension of the model above where the branching rules, now
called merging rules, are more powerful: they allow us to reorganize the counters.
Whereas in an (incrementing) derivation tree for VASSk the component i of the
configuration of a node depends only on the component i of its children and the
rule applied, MVASSk allows to have transfers between components. However,
these transfers have some restrictions —otherwise the model would have non-
elementary or undecidable coverability/reachability problems [23]. First, transfers
between components are ‘weak’, in the sense that we cannot force a transfer of
the whole value of a coordinate i to a distinct coordinate j of a child, we can
only make sure that part of it will be transferred to component j and part of it
will remain in component i. Second, these weak transfers can only be performed
for any pair of coordinates i, j adhering to a partial order, where transfers occur
from a bigger component to a smaller one.

A Merging-VASS of rank k and dimension n, or nMVASSk, is a tuple
A = 〈Q,U,M,�〉, where � is partial order on n, Q and U are as before, and M
is a set of merging rules of the form (q, S, q̄) where q ∈ Q, q̄ ∈ Qk′ with k′ ≤ k,
and S ⊆ Nn·(k′+1) is a linear set of dimension n · (k′+1) of the form 0̄+(B∪S0)∗,
where

1. all the elements ofB are of the form (ēi, x̄1, . . . , x̄k′), where for each 1 ≤ ` ≤ k′,
x̄` ∈ Nn is either 0̄ or ēj for some j ≺ i; and

2. S0 consists of the following k′ · n vectors

S0 =
⋃

1≤i≤n

{(ēi, ēi, 0̄, 0̄, . . . , 0̄), (ēi, 0̄, ēi, 0̄, . . . , 0̄), . . . , (ēi, 0̄, . . . , 0̄, ēi)}. (3)

The idea is that in point 1 we allow to transfer contents from component
i to components of smaller order. For example, on dimension 3 and rank 2, a
vector v̄ = (1, 0, 0)(0, 1, 0)(0, 0, 1) in B would imply that during the merge one
can transfer a quantity m > 0 from component 1 of the father into component 2
of the first child and component 3 of the second child, assuming 2, 3 ≺ 1). On the
other hand, point 2 tells us that for every i we can always have some quantity
of component i that is not transfered to other components, i.e., that stays in
component i. Continuing our example, the children configurations (m,m′ + s, t)
and (m, s,m′+ t) can be merged into (m+m′, s, t) for every m,m′, s, t ≥ 0, using
the vector v̄ and S0.

A derivation tree [resp. incrementing derivation tree] is defined just as before,
with the sole difference being that condition (2) is replaced with

(n̄, n̄1, . . . , n̄k′) ∈ S
[resp. (n̄, n̄′1, . . . , n̄

′
k′) ∈ S for (n̄′1, . . . , n̄

′
k′) ≤ (n̄1, . . . , n̄k′)]. (4)

Notice that this is a generalization of VASSk. Indeed, VASSk corresponds to the
restriction where all the k′-ary merging rules have S = 0̄ + S∗0 for S0 as defined
in (3). Note that an (incrementing) derivation tree for nVASSk is, in particular,

8 Abriola, Figueira and Figueira

an (incrementing) derivation tree for nMVASSk. As before, we assume that there
are always rules (q, ∅, ∅̄) for every state q.

Jacquemard et al. [19] study an extension of BVASS, ‘EBVASS’, in relation to
the satisfiability of FO2(<,+1,∼) over unranked data trees. EBVASS has some
features for merging counters. While MVASS and EBVASS are incomparable
in computational power, it can be seen that without the restriction j ≺ i in
condition 1, MVASS would capture EBVASS. In fact, this condition is necessary
for the (elementary) decidability of the coverability problem for MVASS, while
the status of the coverability problem for EBVASS is unknown.

4.3 Decision problems

Given a counter system A, a set of states Q̂, and a configuration (q, n̄) of A,

we write (q, n̄) A Q̂ [resp. (q, n̄) +
A Q̂] if there exists a derivation tree [resp.

incrementing derivation tree] for A with root configuration (q, n̄), so that all

the leaves have configurations from Q̂× {0̄}. The reachability and incrementing
reachability problems are defined as follows.

Problem: VASSk reachability problem
[resp. VASSk incrementing reachability problem]

Input: an nVASSk A with states Q, a set of states Q̂ ⊆ Q, and
a configuration (q, n̄) of A.

Output: ‘Yes’ iff (q, n̄) A Q̂ [resp. (q, n̄) +
A Q̂].

Observe that when k = 1 this problem is equivalent to the reachability and
coverability problems for Vector Addition Systems with States.

The MVASSk reachability problem and MVASSk incrementing reach-
ability problem are defined just as before but considering A to be an nMVASSk
instead of a nVASSk. We will often refer to these problems as Reach() and
Reach+(). We also remark that the incrementing reachability problem is sim-
ply a restatement of the coverability problem. In particular, it is monotone:
if (q, n̄) +

A Q̂ and n̄′ ≥ n̄ then (q, n̄′) +
A Q̂. We define the control-state

reachability problem CSReach as the problem of, given A, q, Q̂, whether
(q, n̄) A Q̂ for some n̄. It is easy to see that this problem is equivalent to the

problem of whether (q, 0̄) +
A Q̂.

In [8] the coverability problem (or equivalently, the incrementing reachability
problem) for a single-state formulation, called BVAS, is studied. A BVAS consists
of a tuple 〈n,R1, R2〉, where R1 is a set of unary rules, R2 is a set of binary rules
(both rules included in Zn which add up a vector). The size of a given BVAS is
defined as n`, where ` represents the maximum binary size of an entry in R1∪R2.

Proposition 1. [8] Coverability for BVAS is 2ExpTime-complete. If the dimen-
sion n is fixed, the problem is in ExpTime.

Logics of repeating values on data trees and branching counter systems 9

4.4 Decidability of Reach+(MVASS)

The arguments used in [8] to prove the previous proposition can be adapted to
show a similar result for MVASS: the Reach+ and CSReach problems are in
3ExpTime.

Theorem 2. Reach+(MVASSk) and CSReach(MVASSk) are in 3ExpTime
for every k ≥ 1. If the dimension n is fixed, the problem is in 2ExpTime.

Proof (idea). Using Lemma 9, we show that if there is an incrementing derivation

D for (q, n̄) +
A Q̂, where A = (Q,U,M,�) is an nMVASSk counter system,

then there is a contraction D′ of D with height bounded doubly-exponentially in
the dimension. We show that if a nMVASSk A = (Q,U,M) has an incrementing

derivation D for (q, n̄′) +
A Q̂, n̄′ ≥ n̄, then there a contraction D′ of D which

is also an incrementing derivation for (q, n̄′′) +
A Q̂, n̄′′ ≥ n, whose height is

bounded by

(max(U+) + max n̄+ |Q|)2p(k)

(5)

for a polynomial function p : N→ N.
The next argument basically follows the schema (i)–(iii) of [8, p.7]. Let D

be an incrementing derivation for (q, n̄′) +
A Q̂, and let π be a root-to-leaf path

of D which is larger than the bound. Let A′ be a kMVASSn whose set of rules
consists of:

– The unary rules (q, v̄, q′) contained in the unary rules of π.
– Suppose we have a node x of π with configuration ((q, n̄), (q, S, q̄)) and with

children labeled ((q1, n̄1), r1), . . . , ((qs, n̄s), rs), so that the next element after
x in π is the j-th child of x. Further, suppose that this merging rule is preceded
by a unary rule; that is, the parent x′ of x is labeled with ((p, n̄′), (p, w̄, q))

—it is not hard to see that without any loss of generality we can always assume
that a merging rule is preceded by a unary rule. Let B = {b̄1, . . . , b̄m} be the
basis of S, that is, B∗ = S. Let B′ = {b̄i | b̄i[h] = 0 for all n · (1 + j) + 1 ≤
h ≤ n · (2 + j)}, and B′′ = B \B′. Note that B′ is the set of bases that do
not touch the j-th component. We then have

(n̄, n̄1, . . . , n̄s) = α1b̄
′
1 + · · ·+ αm′ b̄

′
m′ + β1b̄

′′
1 + · · ·+ βm′′ b̄

′′
m′′

for B′ = {b̄′1, . . . , b̄′m′} and B′′ = {b̄′′1 , . . . , b̄′′m′′}. Let v̄′ = −(α1b̄
′
1 + · · · +

αm′ b̄
′
m′) ∈ Zn·(s+1) and v̄ ∈ Zn the restriction of v̄′ to the first n components.

Note that v̄ contains non-positive entries only. Then, produce the unary rule
(p, w̄ + v̄, q) and a merging rule (q, S′, q′) so that S′ ⊆ N2n is the restriction
of S to the components corresponding to the j-th child.

Note that if we relabel accordingly π we obtain an incrementing derivation for
(q, n̄′) +

A′ Q̂. Then, by Lemma 9, there is a contraction of π which is still a

10 Abriola, Figueira and Figueira

correct incrementing derivation for (q, n̄′′) +
A′ Q̂ for some n̄′′ ≥ n̄ and so that

its length is at most

(max(U ′
+

) + max(n̄) + 1)2p(k)

where U ′ is the set of unary rules of A′. Note that max(U ′
+

) ≤ max(U+) because
we have only added unary rules with smaller positive entries.

We can then unfold back the subtrees hanging from nodes of π to obtain an
MVASS incrementing derivation for (q, n̄′′) +

A Q̂ whose number of leaves at
height greater than the bound (10) has decreased in at least 1. Repeating the
same argument a finite number of times we obtain an incrementing derivation
for (q, n̄) of height bounded by (10).

Thus, to decide the incrementing reachability problem, it suffices to search
for a derivation of doubly-exponential height, whose vectors may contain triply-
exponential entries in principle. As a consequence of this, the verification of the
existence of such a derivation can be performed in alternating double exponential
space, as it is shown in [8, Theorem 8], and thus the incrementing reachability
for MVASS is in 3ExpTime. See Appendix A for more details.

If n is fixed, the height of the witnessing derivation becomes singly exponential
and thus the problem is in 2ExpTime (as explained in [8, Theorem 8]). ut

5 Satisfiability of LRVD on data trees

We call SATk the satisfiability problem on finite k-ranked data-trees. The main
result of this section is the following.

Theorem 3. SATk-LRVD
n is ExpSpace-reducible to CSReach(nVASSk).

In the proof of the theorem, the number of attribute variables of the formula
will become the dimension of the VASSk. Since the CSReach problem for VASSk
is decidable in 2ExpTime, this yields a decidable procedure for SATk-LRVD for
every k. For the case k = 1, i.e., on data words, it has been shown [7] that there is
a reduction from SAT1-LRVn to CSReach(2n-VASS1), where the dimension of
the VASS1 is exponential in the number of variables. However, it is easy to see that
the proof of [7] also yields a reduction from SAT1-LRVD

n to CSReach(nVASS1).
Thus, this theorem has been shown for k = 1, and here we generalize it to k > 1.
However, there are a number of problems that appear if one tries to “extend”
the proof of [7] to the branching setup. In particular, the non-linearity of the
future in addition to the possibility of having a data value repeating at several
descendants in different variables, calls for a non-standard way of propagating
the values of configurations, which is not contemplated in VASSk. This is why we
are only able to show the reduction for the ‘disjoint’ fragment LRVD, and which
leads us to consider the extended model MVASSk in Section 7. This propagation
problem does not appear when one only considers that the classes of different
values are disjoint, that is, that all formulas of the type v ?EFw with ? ∈ {≈, 6≈}
have v = w, motivating the study of SATk-LRVD

n .

Logics of repeating values on data trees and branching counter systems 11

Proof idea. We start by analyzing a restricted case, which serves as building
block: the logic LRVD−

1 whose only formulas are conjuncts of terms of the form
v ? EXiv, v ? EFv, or their negation, where ? ∈ {≈, 6≈}. We show that for any
formula ϕ of LRVD−

1 , there is a 1VASSk Akϕ = 〈Q,U,B〉, a set of initial states

Q0 ⊆ Q, and a set of final states Q̂ ⊆ Q such that SATk(ϕ) iff there is a derivation

tree with a starting node in q0 ∈ Q0 that is a solution to CSReach(Akϕ, q0, Q̂)—it
is easy to see that this problem is equivalent to CSReach as stated in Section 4.3.
We then extend this construction to the automaton Bkϕ, enabling a reduction

from the full logic LRVD
1 , but still restricted to only one variable. Finally, because

of the disjointness of the variables, it is easy to extend these constructions to the
full logic LRVD

n . See Appendix B for the full proof.

Here we only give a brief explanation of the construction of Akϕ = 〈Q,U,B〉
for the logic LRVD−

1 . For the sake of simplicity, we assume our logic has no
labels; their addition to the construction is straightforward. Since LRV can only
deal with data (in)equality and since in this case we consider n = 1, we will
interchangeably speak of an equivalence relation between the nodes of the tree
or of the particular data values.

We define the EX-length of a formula ψ as the maximum i such that ψ
contains a subformula of the form v ?EXiv. Let d be the EX-length of ϕ. The set
Q consists of all valid (d, k)-frames, where a (d, k)-frame is a tree of depth d and
rank k, equipped with an equivalence relation, and with some extra attributes
(node-labeling functions) to include some special marks and semantic information
of future requirements of the form (¬)v ≈ EFv and (¬)v 6≈ EFv. The initial
states Q0 are those frames F satisfying the local part of ϕ (that is, subformulas
of ϕ the form v ? EXiv). Future requirements (that is, subformulas of ϕ of the

form v ? EFv) may not be satisfied locally in F . The set Q̂ is the singleton with
a frame consisting in a single node. The basic idea is that the counter of Akϕ
keeps track of how many future requirements are not yet satisfied. Some nodes
of the frames may have extra information in the form of labels ⊕ or 	. States F
whose root is labeled with ⊕ are points of increment: Ak will have unary rule
in U that increments the (sole) counter in 1. A point of increment denotes that
some subformula v ≈ EFv of ϕ should hold, but it is not satisfied locally, that
is, inside F . Leaves with 	 are those not related to ancestors in the frame with
the same data value, they can thus be “joined” into the same equivalence class
to a future requirement originated at some distant ancestor. States with leaves
	-labeled are points of decrement: Ak will have a unary rule in U to decrement
the counter depending on the number of equivalence classes of leaves labeled
with 	. The branching rules B of Ak are of the form F → (F1, . . . , Fi), where
Fj overlaps with an adequate part of F .

Example 4. The following figure illustrates a scheme of an incrementing derivation
S of the 1VASS2 A2

ϕ (a) and some steps (b, c and d) in the bottom up construction

of the data tree TS satisfying ϕ, for ϕ = ¬v ≈ EXv ∧ ¬v ≈ EX2v ∧ v ≈ EFv.
Triangles represent (2, 2)-frames. Shades of gray represent the equivalence classes,
which only make sense inside any frame. The counter is notated with c, and

12 Abriola, Figueira and Figueira

arrows represent the (unary/branching) transitions of the derivation. Notice that
the top branching is ‘incremental’, and that the local requirements of ϕ (namely,
¬v ≈ EXv and ¬v ≈ EX2v) are satisfied in the root of the top frame.

S1 S2

S3

S�

TS1
TS2

c = 1

c = 0

c = 0

c = 0

c = 0

c = 0

c = 1

c = 0

c = 0

+1

�1 �1

c = 1
branch

branch

branch

branch

branch

TS3

TS

(a)

(b)

(c)

(d)

The construction of TS is bottom-up, and we show three steps: (a), (b) and (c).
Notice that in (b) each of TS1 and TS2 has its own partition (no intersection).
In (c) we process the root of S3 by tying together TS1 and TS2 with a common
parent, who lives in a single class of the partition. Notice that the partitions of
TS1

and TS2
are properly joined (grey area), according to the information in the

root of S3. Finally in (d) we construct TS . The root of S is a point of increment,
so we match ⊕ with some 	 in TS3

. In this case, we match it with the right-hand
	, and so we join them by putting them in the same partition (grey area). We
have satisfied the future requirement v ≈ EFv of ϕ.

On the one hand, any incrementing derivation S that is a solution to
CSReach(Akϕ, q0, Q̂) for some q0 ∈ Q0, can be translated into a data tree
TS whose root satisfies ϕ. In fact, any semantic information contained in the
labels of nodes in frames of S will be satisfied in the corresponding nodes of TS .
The difficult part is to show that 	-leaves will have the necessary conditions to
be joined with the equivalence class of an ⊕-ancestor, making true the formula
v ≈ EFv. This will be a consequence of the fact that the incrementing derivation
satisfies CSReach.

On the other hand, if ϕ is satisfiable in some k-ranked data tree T then we can
build an incrementing derivation tree ST that is a solution to CSReach(Akϕ, q0, Q̂)
for some q0 ∈ Q0. Following the ideas of the previous part, we proceed from
the root toward the leaves using the structure and equivalence classes of T to
determine in each step the corresponding states (including the semantic labels

Logics of repeating values on data trees and branching counter systems 13

and the labels 	, ⊕) and rules of ST . From the construction, and using the
incrementing nature of the derivation, it will follow that ST is a solution to the
control-state reachability problem.

For the construction of Bkϕ, the information given by the (d, k)-frames will be
supplemented by the addition of sets of formulas containing information about
the EU operator and the Boolean connectives. The way to do this is standard
(see e.g., [6]).

Complexity. Let LRVD
n,d be the fragment of LRVD

n where each formula has
EX-length at most d. By inspecting the above reduction, we can bound the

number of states of the constructed nVASSk by O(p(n)k
d+1 · (kd+1)k

d+1 · 2p(|ϕ|))
for some polynomial p, and we can bound the maximum value among the entries
in unary rules by kd. Furthermore, we can reduce our branching VASS to an
equivalent (single-state) BVAS with an addition of a constant number of new
dimensions. This transformation increases the binary size of the maximum entry
of the unary rules at most logarithmically over the number of states of our
original nVASSk (see Appendix B.4 for more details). Now, using Proposition 1,
Theorem 3, and the above complexity analysis, we obtain:

Proposition 5. SATk-LRVD
n,d is in ExpTime for fixed k, n, d; it is in 2ExpTime

for fixed k, n or fixed d, k; and it is in 3ExpTime for fixed k.

6 Obtaining equivalence with VASSk

In the previous section we have seen a reduction into the control-state reachability
problem for VASSk. A natural question is whether there exists a reduction in the
other direction: can CSReach(VASSk) be reduced into the k-satisfiability for
LRVD? For the case k = 1, this has been shown to be the case [7]: there exists a
polynomial-space reduction from CSReach(VASS1) to SAT1(LRV).

The existence of a reduction would show, intuitively, that one can express in
the logic that there is a tree that verifies all the conditions for being a derivation.
Without the use of data tests, one can easily encode trees that verify all the
conditions except perhaps (1) and (2) regarding the vectors. For this, let us
assume without loss of generality that all unary rules contain a vector ēi or −ēi.
The data values are used to ensure the next two conditions:

– Along any branch, every node containing a rule of the form q
ēi−→ q′ has

a unique data value. In other words, we cannot find two nodes encoding
an increment of component i with the same data value so that one is the
ancestor of the other.

– For every node with a unary rule q
ēi−→ q′ there exists a descendant with a

rule p
−ēi−−→ p′ and the same data value.

These two conditions imply that after incrementing component i there must be
at least one corresponding decrement of component i. Note that there could be
more decrements than increments, which is not a problem since we work under
the ‘incrementing’ semantics.

14 Abriola, Figueira and Figueira

Interestingly, these two conditions can be expressed in LRV, but we do not
know how to encode it in LRVD (we conjecture that they are not expressible).

Adding the operator AG≈v(ϕ). We add a new operator AG≈v(ϕ) to LRVD,
where T, x |= AG≈v(ϕ) if every descendant of x with the same v-attribute verifies
ϕ. The fragment of LRVD

n extended with positive occurrences of AG≈v(ϕ) (that
is, where AG≈ occurs always under an even number of negations) is called
LRVD

n (AG+
≈).

Now, in LRVD
n (AG+

≈) one can express: for every node x containing a rule

q
ēi−→ q′, we have that all descendants of x with the same vi attribute contain

a rule of the form p
−ēi−−→ p′. This, added to the property that every increment

for component i must verify vi ≈ EFvi, ensures that the tree indeed encodes a
derivation tree.

Theorem 6. CSReach(nVASSk) is PTime-reducible to SATk-LRVD
1 (AG+

≈).

Proof (idea). We show the idea for n = 1, as this case generalizes to any n
straightforwardly, and without changing the number of variables in the logic. For
every 1VASSk Ck = 〈Q,U,B〉, q0 ∈ Q and Q̂ ⊆ Q we define ϕ ∈ LRVD

1 (AG+
≈),

such that SATk(ϕ) iff CSReach(Ckϕ, q0, Q̂). We want this ϕ to force various
properties in all its models, so that every model corresponds to a derivation tree
of CSReach(Ckϕ, q0, Q̂). In particular, we want:

– Each node is labeled with either a rule of U ∪ B or an extra label ∗ for
dummy nodes that will be ignored (this is to force exact k-branching for all
non-leaves). We can assume without loss of generality that all unary rules in

U of the form q
c−→ q′ have either c = 1 or c = −1. In particular, formulas

ϕinc and ϕdec express that the label is an increment or a decrement rule,
respectively.

– If a node is labeled with an empty rule q → ∅̄, then it is a leaf.
– The root is labeled with a rule of the form (q0, . . .) ∈ U ∪B.
– Each node labeled with an increment rule has a descendant in the same

equivalence class (i.e. with same value for the only attribute v), and all its
descendants in the same equivalence class are labeled with a decrement rule:
this can be expressed by ϕinc →

(
v ≈ EFv ∧AG≈v(ϕdec)

)
.

All the above properties, except the last one, can be expressed in LRVD
1 ; for the

last one we use (positively) AG≈. The final formula ϕ consists of a conjunction
of all these properties, among others (so that the occurrence of AG≈ remains
positive). Then one verifies that a solution to the control-state reachability

problem of Ck, q0, Q̂ can be used to construct a model for ϕ; and that a data
tree satisfying ϕ can be used to construct an incrementing derivation tree for
CSReach(Ck, q0, Q̂). See Appendix C for more details. ut

The satisfiability for this extension still has a reduction to the control-state
reachability for VASSk:

Theorem 7. SATk-LRVD(AG+
≈) is ExpSpace-reducible to CSReach(VASSk).

Logics of repeating values on data trees and branching counter systems 15

7 From LRV to MVASSk

The reduction from LRVD to VASSk from Section 5 cannot be extended to
treat LRV. The main problem is that the branching nature of the counters in
a CSReach(VASSk) will be insufficient to represent some classes of data trees
(which can be needed to model some formulas). When we have tests of the form
u1 ≈ EFu2 with u1 6= u2 distinct variables, we can no longer reason in terms
of “one coordinate i for each variable ui”, where the i-th component in the
configuration of the VASSk codes, intuitively, how many distinct data values
must be seen on variable ui in the subtree as shown in Section 5. In fact, when
working with LRV, a data value may appear in several variables, as a result of
allowing formulas like u1 ≈ EFu2 ∧ u1 ≈ EFu3. This means that we need to
reason in terms of sets of variables, where each component i is associated with a
non-empty subset Ui of the variables appearing in the input formula ϕ; this time,
component i counts how many data values must appear in the subtree under all
the variables of Ui. This, in principle, poses no problem for the non-branching
case: in fact, this kind of coding (indexing one coordinate of the configuration for
each subset of variables) was used in [6] to show a reduction from LRV to VASS
on data words. However, on data trees, this coding breaks with the semantics of
the branching rules of VASSk.

As an example, suppose we work with two variables u, v and we thus have
dimension 3 —the first component is associated with {u}, the second with {v}
and the third with {u, v}. Suppose that there are n ancestor nodes that have to
satisfy both u ≈ EFu and u ≈ EFv, which at the current configuration of the
VASSk is witnessed by the vector (0, 0, n). Intuitively, this means that there are
n data values that must appear in the subtree under a variable u and also under
v (though not necessarily at the same node) in the data tree the automaton is
trying to find. Hence, as part of the “branching” instruction of this configurations
into the configuration of the left and right children, one must contemplate the
possibility of obtaining, for instance, (n, 0, 0) (0, n, 0), saying that the left subtree
contains n distinct data values for u, and the right child contains n data values
for v. But it could be (n− t, 0, t) (0, n− t, 0), or (0, 0, n− t) (0, 0, t), etc. In other
words, components need to be mixed in a more complex way that is not allowed in
VASSk branching rules. In particular, some sort of transfers between coordinates
must be necessary. This is precisely the behavior that we can encode into MVASS.

Theorem 8. SATk-LRVn is reducible to CSReach(2n-MVASSk).

Proof (idea).
Using the merging rules as described in Section 7, the reduction from LRVD

to VASSk of Section 5 and Appendix B can be modified to obtain a reduction
from LRV to MVASSk. Frames and its notion of validity are extended to treat set
of variables. In particular, now the points of increment and decrement are always
relative to a set of variables. This follows, very roughly, the idea of coding from
[7] in the setup built in Section 5, but now some special care must be considered
because of the non-linearity of a tree. One must decide in advance to which leaf

16 Abriola, Figueira and Figueira

of the frame the satisfaction of data demands will be delegated. The resulting
MVASSk now has dimension exponential in the number of variables of the input
formula. Concretely, in order to encode this logic we need to make the following
changes to the set of frames Fd,k we work with.

First of all, the labelling function `1 now labels pairs of sets of formulas.
These formulas labelled by `1 are of the form

– in the first component u ≈ EFv or ¬(u ≈ EFv)
– in the second component u 6≈ EFv or ¬(u 6≈ EFv)

for any pair of variables u, v used in the input formula. For simplicity, we write
ψ ∈ `1(x) (or, alternatively, that x is `1-labelled with ψ) to denote that ψ is
either in the first or second component of `1(x).

Further, instead of having one equivalence relation ≡ over the set of nodes,
we have an equivalence relation ≡ over pairs (x, u) where x is a node of hte frame
and u an attribute variable of the input formula ϕ. This is to account for the
possibility that different attributes can have the same data value.

In light of this, the formulas labeled by `1 must ‘respect’ ≡. That is, if u ≈
EFv ∈ `1(x) [resp. u 6≈ EFv ∈ `1(x)] and (x, u) ≡ (x, u′) then u′ ≈ EFv ∈ `1(x)
[resp. u′ 6≈ EFv ∈ `1(x)].

More importantly, the labelling `2 must be changed to reflect the fact that

(1) there may be several demands for the same attribute, as a result of formulas
like u ≈ EFv ∧ u′ ≈ EFv (as we will see next, this is the reason for the first
parameter of ⊕),

(2) there may be several attributes in a demand for equality, as a result of
formulas like u ≈ EFv ∧ u ≈ EFv′,

(3) a point of decrement needs to be a point that has some attributes U which
are not connected by equality to any ‘local’ ancestor and they are connected
possibly to some other attributes V in the descendants.

Formally, the mapping `2 now labels nodes with ⊕(U, V) and/or 	(U, V), where
U, V are sets of attribute variables. Each node x can receive more than one ⊕
or 	 label, that is, `2 is a function from nodes to subsets of {⊕(U, V) | U, V ⊆
V} ∪ {	(U, V) | U, V ⊆ V}, assuming V is the set of variables used in the input
formula.5 The idea is that ⊕(U, V) holding at x means that there must be a
data value appearing in the subtree at x under all the variables of V (possibly at
different nodes), which is equal to the u-attribute of the k-ancestor of x, for every
u ∈ U . On the other hand, 	(U, V) holding at x means that the data value of
the U -attributes of x (which are all the same) do no not appear in any i-ancestor
of x (i ≤ k), and they will appear in the future with attributes V .

We add the following conditions.

– For any two labels ⊕(U, V) and ⊕(U ′, V ′) at the same node, U and U ′ are
disjoint. For any two labels 	(U, V) and 	(U ′, V ′) at the same node, U and
U ′ are disjoint.

5 It is worth remarking that `2(x) is always a set of size linear in |V| due to the next
conditions.

Logics of repeating values on data trees and branching counter systems 17

– For every leaf x which is `2-labeled with ⊕(U, V) we have that U is an
equivalence class of {(u, v) | (r, u) ≡ (r, v)}, where r is the root node.

– For every leaf x which is `2-labeled with 	(U, V) we have that for some v ∈ V
we have

U = {u | (x, u) ≡ (x, v)},
V = {u | [v ≈ EFu] ∈ `1(x)},

and that there is no ancestor y of x so that (x, u) ≡ (y, v′) for some u ∈ U ,
v′ ∈ V.

– There exists an `1-labelling u ≈ EFv holding at the root r if, and only if,
there exists a node x at some depth i so that either

• (r, u) ≡ (x, v), or
• (r, u) ≡ (x, v′) for some v′ and v′ ≈ EFv in `1(x), or
• i = k and x is `2-labeled with ⊕(U, V) with U = {u′ | (r, u) ≡ (r, u′)}

and v ∈ V .

– There exists an `1-labelling u 6≈ EFv holding at the root r if, and only if,
there exists a node x at some depth i so that either

• (r, u) 6≡ (x, v), or
• (r, u) ≡ (x, v) and v 6≈ EFv in `1(x).

1-step consistency is preserved as before. Now a point of increment for V
is a frame whose root is labeled with ⊕(U, V) for some U ; whereas a point of
decrement for W is a frame whose root is labeled with 	(U, V) for U ∪ V = W .

Finally, the automaton Akϕ is built as for the other reduction, with the
exception that now its dimension is exponential. As in the previous reductions,
the frames are the states of the automaton, where the initial frames are those that
do not contain ⊕/	 tags at nodes at distance < k from the root, and whose root
labeling is consistent with the satisfaction of the formula. In the automaton, we
have one coordinate associated with every non-empty subset V ⊆ V of attribute
variables (remember that we use ēV to denote ēi for the coordinate i associated
with V and ē∅ to denote 0̄). Unary rules now follow a logic of first decrementing
all the 	 at the root, and then incrementing all the ⊕ at the root. (The ⊕/	
tags of other nodes are differed to the moment when they will be at the root of
a frame.) That is, unary rules (F1,−ēU∪V , F2) whenever F1 has 	(U, V) at the
root, F2 is just like F1 but without the 	(U, V) at the root. We have unary rules
(F1, ēV , F2) whenever F1 has no 	-labels at the root, it has a ⊕(U, V) label at the
root, and F2 is the result of removing ⊕(U, V) at the root. Merging rules are built
as it was explained before. That is, we have (F1, 0̄ +B∗, (F ′1, . . . , F

′
k′)) whenever

F1 is 1-consistent with (F ′1, . . . , F
′
k′), and B consists of all vectors (ēV ēU1

· · · ēUk
),

so that V 6= ∅ and V =
⋃
i Ui. The partial order � will then be the subset

ordering on the components: i � j if the set associated to i is contained in that
associated to j. It is not hard to check that if Akϕ has a solution for CSReach if
and only if ϕ is satisfiable on k-ranked data trees using precisely the same ideas
as in the proof of Proposition 13. (See Appendix E.) ut

18 Abriola, Figueira and Figueira

As a corollary, due to Theorem 2, we have that SATk-LRV is decidable. We
remark that, similarly as done in [7], one can add formulas of the form u?EF[ϕ]v
stating that there is a descendant witnessing u ? EFv and verifying ϕ, while
preserving this reduction.

8 Discussion

We have shown connections between counter systems and data logics on ranked
data trees. In particular, this has yielded decision procedures for data logics and
a new model of branching computation of VASS.

While in the present work the focus has been put on ranked data trees, we
envisage working also on unranked trees in the future. In particular, we remark
that these logics can be naturally extended to the unranked case, but that
there are no well-known models of branching counter systems with unbounded
branching. This may lead to new natural models featuring some sort of unbounded
parallel computations with good computational properties.

We are also interested in considering other modalities in our logics, with
branching tests such as EXiv ?EFu and EFu ≈ EFv, or tests including past such
as u ≈ EF−1v and EF−1u ≈ EFv.

We were unable to show the precise complexity of CSReach(MVASSk), which
lies between 2ExpTime and 3ExpTime. We leave this for future work. We believe
that SATk-LRV(AG+

≈) is equivalent to the control-state reachability problem for
MVASSk, in the sense of existence of computable reductions from and to.

References

1. David Baelde, Simon Lunel, and Sylvain Schmitz. A sequent calculus for a modal
logic on finite data trees. In 25th EACSL Annual Conference on Computer Science
Logic, CSL 2016, August 29 - September 1, 2016, Marseille, France, pages 32:1–
32:16, 2016.

2. Mikoaj Bojańczyk, Anca Muscholl, Thomas Schwentick, and Luc Segoufin. Two-
variable logic on data trees and XML reasoning. JACM, 56(3):13, 2009.

3. Miko laj Bojańczyk, Claire David, Anca Muscholl, Thomas Schwentick, and Luc
Segoufin. Two-variable logic on data words. ACM Trans. Comput. Log., 2010.

4. Benedikt Bollig, Aiswarya Cyriac, Paul Gastin, and K Narayan Kumar. Model
checking languages of data words. In FoSSaCS, pages 391–405. Springer, 2012.

5. Stéphane Demri, Deepak D’Souza, and Régis Gascon. Decidable temporal logic
with repeating values. In LFCS, volume 4514 of LNCS, pages 180–194. Springer,
2007.

6. Stéphane Demri, Deepak D’Souza, and Régis Gascon. Temporal logics of repeating
values. J. Log. Comput., 22(5):1059–1096, 2012.

7. Stéphane Demri, Diego Figueira, and M. Praveen. Reasoning about data repetitions
with counter systems. In LICS, pages 33–42. IEEE Press, 2013.

8. Stéphane Demri, Marcin Jurdziński, Oded Lachish, and Ranko Lazić. The covering
and boundedness problems for Branching Vector Addition Systems. J. Comput.
Syst. Sci., 79(1):23–38, 2013.

Logics of repeating values on data trees and branching counter systems 19

9. Stéphane Demri and Ranko Lazić. LTL with the freeze quantifier and register
automata. ACM Trans. Comput. Log., 10(3), 2009.

10. E Allen Emerson and Joseph Y Halpern. sometimes and not never revisited: on
branching versus linear time temporal logic. JACM, 33(1):151–178, 1986.

11. Diego Figueira. Forward-XPath and extended register automata on data-trees. In
ICDT. ACM, 2010.

12. Diego Figueira. Alternating register automata on finite data words and trees. Log.
Methods Comput. Sci., 8(1), 2012.

13. Diego Figueira. Decidability of downward XPath. ACM Trans. Comput. Log.,
13(4), 2012.

14. Diego Figueira. On XPath with transitive axes and data tests. In PODS, pages
249–260. ACM, 2013.

15. Diego Figueira, Santiago Figueira, and Carlos Areces. Basic model theory of XPath
on data trees. In ICDT, pages 50–60. ACM, 2014.

16. Diego Figueira and Leonid Libkin. Pattern logics and auxiliary relations. In
CSL-LICS, pages 40:1–40:10, 2014.

17. Diego Figueira and Luc Segoufin. Future-looking logics on data words and trees.
In International Symposium on Mathematical Foundations of Computer Science,
pages 331–343. Springer, 2009.

18. Diego Figueira and Luc Segoufin. Bottom-up automata on data trees and vertical
XPath. In STACS, volume 9 of LIPIcs, pages 93–104. LZI, 2011.

19. Florent Jacquemard, Luc Segoufin, and Jerémie Dimino. FO2(<,+1,∼) on data
trees, data tree automata and branching vector addition systems. Logical Methods
in Computer Science, 12(2), 2016.

20. Marcin Jurdziński and Ranko Lazić. Alternating automata on data trees and XPath
satisfiability. ACM Trans. Comput. Log., 12(3):19, 2011.

21. Ahmet Kara, Thomas Schwentick, and Thomas Zeume. Temporal logics on words
with multiple data values. In FST&TCS, 2010.

22. O. Kupferman and M. Vardi. Memoryful Branching-Time Logic. In LICS, pages
265–274. IEEE Press, 2006.

23. Ranko Lazić and Sylvain Schmitz. Nonelementary complexities for branching VASS,
MELL, and extensions. ACM Trans. Comput. Log., 16(3):20, 2015.

24. A. Lisitsa and I. Potapov. Temporal logic with predicate λ-abstraction. In TIME,
pages 147–155. IEEE Press, 2005.

25. Frank Neven, Thomas Schwentick, and Victor Vianu. Finite state machines for
strings over infinite alphabets. ACM Trans. Comput. Log., 5(3):403–435, 2004.

26. Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–57. IEEE Press,
1977.

27. Charles Rackoff. The covering and boundedness problems for Vector Addition
Systems. Theoret. Comput. Sci., 6(2):223–231, 1978.

28. Luc Segoufin. Automata and logics for words and trees over an infinite alphabet.
In CSL, pages 41–57. Springer, 2006.

29. Kumar Neeraj Verma and Jean Goubault-Larrecq. Karp-Miller trees for a branching
extension of VASS. Discrete Math. Theor. Comput. Sci., 7(1):217–230, 2005.

20 Abriola, Figueira and Figueira

A Proof of Theorem 2

Preliminaries In this section we work with a slightly different version of the
incrementing reachability problem which can easily be shown to be equivalent.
This will simplify some of our arguments.

Problem: MVASSk incrementing reachability problem

Input: a nVASSk A with states Q, a set of states Q̂ ⊆ Q, and
a configuration (q, n̄) of A.

Output: ‘Yes’ iff (q, n̄′) +
A Q̂ for some n̄′ ≥ n̄.

The difference is that we look for an incrementing derivation of a ‘bigger’ config-
uration (q, n̄′) than the one (q, n̄) received as input. It is straightforward to see
that this is essentially the same problem.

We say that a tree D is an incrementing derivation tree for (q, n̄) +
A Q̂ if D

is an incrementing derivation that is a witness for (q, n̄) +
A Q̂. Throughout this

section we write ‘derivation’ as short for ‘incrementing derivation tree’. Given a
derivation D and a node x thereof, we write ρD(x) to denote the vector of the
configuration at x and σD(x) to denote its state. We will usually write ε to denote
the node at the root of D. We adapt the main concepts of the 2ExpTime proof
for Reach+(VASSk) of [8] to our setup. A contraction of a derivation D is the
result of applying a finite number of times the following operation. Let x be a
node of D with configuration (q, n̄) and x′ a descendant of x with configuration
(q′, n̄′) so that q = q′. Consider the result of

– replacing the subtree at x with the subtree at x′ (i.e., removing all descendants
of x which are not descendants of x′ and identifying x′ with x);

– for every ancestor y of x with configuration (p, m̄), replacing the configuration
with (p, m̄+ (n̄′ − n̄)).

We denote this substitution with D[x← x′]. We say that a configuration (q, n̄)
is bigger than a configuration (p, m̄) if p = q and n̄ ≥ m̄. Note that if D is

a derivation for (q, n̄) +
A Q̂ and the configuration at node x′ is bigger than

the configuration at an ancestor x of x′, then D[x ← x′] is a derivation for

(q, n̄′) +
A Q̂ for some n̄′ ≥ n̄. Thus, if D is a witness for the incrementing

reachability problem instance (A, Q̂, (a, n̄′)), so is D[x← x′]. (Indeed, this is true
both when A is a VASS or a MVASS.) For a set of unary rules U ⊆ Q×Zk ×Q,
let max(U+) ∈ N be the maximum positive value contained in unary rules; that
is,

max
(
U+)

def
= max({0} ∪ {v̄[i] | (q, v̄, q′) ∈ U, i ∈ k, v̄[i] > 0}

)
.

For a derivation of D of a kMVASSn A, and a set I ⊆ k, we define the
restriction to I of D, and we note it D|I , as the result of

– replacing each configuration (q, n̄) of a node with (q, n̄[I]), where n̄[I] ∈ N|I|
is the restriction of n̄ to the component indices of I;

– replacing every unary rule (q, v̄, q′) in a node with (q, v̄[I], q′); and

Logics of repeating values on data trees and branching counter systems 21

– replacing every merging rule (q, S, q̄) in a node with (q, S[I], q̄), where S[I] =
{s̄[I] | s̄ ∈ S}.

In a similar way, we consider the restriction A|I of the automaton A as the
|I|-MVASSn resulting from replacing the rules as described above. Note that if I
is �-downward closed (i.e., if i � j and j ∈ I, then i ∈ I) then D|I is actually a
derivation of A|I .

Lemma 9. Let A = 〈Q,U,M,≤〉 be a MVASS1 of dimension k, and let D be

a derivation for (q, n̄) +
A Q̂. Then, there is a contraction of D which is a

derivation for (q, n̄′) +
A Q̂ for some n̄′ ≥ n̄ and whose length is bounded by

(max(U+) + max(n̄))2p(k)

for a polynomial p().

Proof. This proof follows arguments similar to those from Rackoff [27, Section

3] as described in [8, Lemma 4]. Let m(D, n̄, Q̂,A) be the smallest height of

a contraction of D that is a derivation for (q, n̄′) +
A Q̂ for some n̄′ ≥ n̄. For

L, k ∈ N we let:

ML(k) = sup {m(D′, n̄, Q̂,A) : D′ is a derivation for (q, n̄′) +
A Q̂, n̄

′ ≥ n̄
and |Q| · (max(U+) + max(n̄) + 1) ≤ L}.

We show that the number ML(k) is well-defined in the next lemma.
In the context of the partially ordered set (k,�), let ↓i = {j ∈ k | j ≺ i} for

every i ∈ k.

Lemma 10. For all L ∈ N, the following inequalities hold:

ML(k) ≤
{
L if k = 0,

ML(k − 1) ·∏i∈k Bi if k ≥ 1,
(6)

for Bi = ML(|↓i|) ·
(∏

j�iBj
)2

+ L, and
∏ ∅ = 1 by convention.

Proof. We proceed by induction on k. The case k = 0 is trivial, as there are
no counters, and thus the height of minimal contractions is bounded by |Q| by
a pumping argument. For every k ≥ 1, it is sufficient to prove that for every
derivation D for (q, n̄′) +

A Q̂ where n̄′ ≥ n̄ and |Q|·(max(U+)+max(n̄)+1) ≤ L,
the following inequality holds:

m(D, n̄, Q̂,A) ≤ML(k − 1) ·
∏
i∈k

Bi. (7)

For a set of components I ⊆ k, we say that D is I-bounded if for every i ∈ I and
for every configuration (q, v̄) of D we have v̄[i] < Bi. We consider the following
two cases: (a) D is k-bounded, and (b) D is not k-bounded. Assume that D has
minimal height. We define ρD(x) [resp. σD(x)] for any node x of D as the vector
v̄ [resp. state p] contained in the configuration (p, v̄) of D at x.

22 Abriola, Figueira and Figueira

(a) Assume that D is k-bounded. Note that if ρD(x) = ρD(x′), σD(x) = σD(x′)
and x is an ancestor of x′ then the derivation D[x ← x′] obtained by the

contracting substitution is also a derivation for (q, n̄′) +
A Q̂. By performing

such substitutions repeatedly, we will eventually obtain a contraction of D that
is a k-bounded derivation for (q, n̄′) +

A Q̂ with height bounded by

|Q| ·
∏
i

Bi ≤ L ·
∏
i

Bi ≤ML(k). (8)

(b) Suppose now that D is not k-bounded and suppose that it is minimal
in the sense of contractions. Let i0 ∈ k be a �-minimal index so that D is
↑i0-bounded for ↑i0 = {j | j � i}. Note that

– for some node x of D we have ρD(x)[i0] > Bi0 ; and

– for all j � i0 and for every node y of D we have ρD(y)[j] ≤ Bj .

Let x0 be the lowest node (i.e., closest to the leaf) so that ρD(x0)[i0] > Bi0 .
We first bound the distance between x0 and the root, and then we bound the
distance between x0 and the leaf.

(I) Consider the subderivation D1 from the root to x0. We show that the
height of D1 is bounded by

contr = ML(|↓i0|) ·
∏
j�i0

Bj .

For the sake of contradiction, suppose that its height is larger than contr. Note
that at each step of D1 we can increase component i0 in at most

incstep =
∑
j�i0

Bj + max(U+). (9)

If we restrict D1 to the components ↓i0 we obtain a derivation for A|↓i0 with
smaller dimension. In fact it is a derivation thanks to the inequality of (4) —all
the increments coming from transfers from the components j � i0 can considered
in the inequality.

By inductive hypothesis on D|↓i0 ,A|↓i0 , there are two nodes y, y′ (y ancestor
of y′) at distance ≤ contr from the root that can be contracted (i.e., so that

D|↓i0 [y ← y′] is a derivation for (q, n̄′) +
A|↓i0

Q̂ for n̄′ ≥ n̄), and whose values

for all the components j � i0 coincide (i.e., ρD(y)[j] = ρD(y′)[j] for all j � i0).
The contraction of y, y′ on D1|↓i0 is a derivation of A|↓i0 by inductive hypothesis.
Further, since the values of components j � i0 coincide, the contraction of y, y′

on D1|{j|j 6=i0} is also a derivation. Finally, by (9), the increase from y to y′ on

Logics of repeating values on data trees and branching counter systems 23

component i0 cannot be greater than contr · incstep; and since

contr · incstep+ max(n̄) = ML(|↓i0|) ·
∏
j�i0

Bj ·
∑
j�i0

Bj + max(n̄)

≤ML(|↓i0|) ·
∏
j�i0

Bj ·
∑
j�i0

Bj + L

≤ML(|↓i0|) ·
(∏
j�i0

Bj
)2

+ L

= Bi0

we thus have that the contraction D′1 of y, y′ on D1 is a derivation as well, for
all the components. Further, the root of D′1 has a configuration greater than
(q, n̄) and the leaf remains unchanged, that is, it contains the configuration
(ρD1(x0), σD1(x0)). Therefore, by minimality of D we have that D1 must have
height bounded by contr.

(II) On the other hand, let D2 be the subderivation between x0 and the leaf
of D. Since D2 is (↑i0 ∪ {i0})-bounded (except for the root), we have that D2

cannot have height larger than

contr′ = ML(|↓i0|) ·
∏
j�i0

Bj

using similar arguments as before.
Thus, by (I) cum (II), we have that the height of D = D1D2 is bounded by

contr + contr′ = ML(|↓i0|) ·
∏
j�i0

Bj + ML(|↓i0|) ·
∏
j�i0

Bj

≤ML(k − 1) ·
∏
i

Bi = ML(k)

Note that by definition of Bi, for any �-minimal i, Bi = ML(0) + L = 2L.
For any other i, the number of recursive calls needed to compute Bi is bounded
by 2k ·k. This is because at each recursive call for Bi we produce two instances of
Bj for every j � i, and thus in the product each Bt with maximal t will have an
exponent 2|{j|i≺j�t}|; repeating this for each such t (not more than k times) we

obtain the bound. We then have, for every i, that Bi ≤ (ML(|↓i|))2k·k+2k+1 ·k ·L,
and thus

ML(k) ≤ML(k − 1)2k·k2 · (2L)2k·k2 + 22k · k2 · L.

Therefore, ML(k) is bounded by a function L2p(k)

for some polynomial p().

We have now all the necessary elements to prove Theorem 2.

Proof (Complete proof of Theorem 2). Using Lemma 9, we show that if there

is an incrementing derivation D for (q, n̄) +
A Q̂, where A = (Q,U,M,�) is

24 Abriola, Figueira and Figueira

an nMVASSk counter system, then there is a contraction D′ of D with height
bounded doubly-exponentially in the dimension. We show that if a nMVASSk
A = (Q,U,M) has an incrementing derivation D for (q, n̄′) +

A Q̂, n̄′ ≥ n̄,
then there a contraction D′ of D which is also an incrementing derivation for
(q, n̄′′) +

A Q̂, n̄′′ ≥ n, whose height is bounded by

(max(U+) + max n̄+ |Q|)2p(k)

(10)

for a polynomial function p : N→ N.
The next argument basically follows the schema (i)–(iii) of [8, p.7]. Let D

be an incrementing derivation for (q, n̄′) +
A Q̂, and let π be a root-to-leaf path

of D which is larger than the bound. Let A′ be a kMVASSn whose set of rules
consists of:

– The unary rules (q, v̄, q′) contained in the unary rules of π.
– Suppose we have a node x of π with configuration ((q, n̄), (q, S, q̄)) and with

children labeled ((q1, n̄1), r1), . . . , ((qs, n̄s), rs), so that the next element after
x in π is the j-th child of x. Further, suppose that this merging rule is preceded
by a unary rule; that is, the parent x′ of x is labeled with ((p, n̄′), (p, w̄, q))

—it is not hard to see that without any loss of generality we can always assume
that a merging rule is preceded by a unary rule. Let B = {b̄1, . . . , b̄m} be the
basis of S, that is, B∗ = S. Let B′ = {b̄i | b̄i[h] = 0 for all n · (1 + j) + 1 ≤
h ≤ n · (2 + j)}, and B′′ = B \B′. Note that B′ is the set of bases that do
not touch the j-th component. We then have

(n̄, n̄1, . . . , n̄s) = α1b̄
′
1 + · · ·+ αm′ b̄

′
m′ + β1b̄

′′
1 + · · ·+ βm′′ b̄

′′
m′′

for B′ = {b̄′1, . . . , b̄′m′} and B′′ = {b̄′′1 , . . . , b̄′′m′′}. Let v̄′ = −(α1b̄
′
1 + · · · +

αm′ b̄
′
m′) ∈ Zn·(s+1) and v̄ ∈ Zn the restriction of v̄′ to the first n components.

Note that v̄ contains non-positive entries only. Then, produce the unary rule
(p, w̄ + v̄, q) and a merging rule (q, S′, q′) so that S′ ⊆ N2n is the restriction
of S to the components corresponding to the j-th child.

Note that if we relabel accordingly π we obtain an incrementing derivation for
(q, n̄′) +

A′ Q̂. Then, by Lemma 9, there is a contraction of π which is still a

correct incrementing derivation for (q, n̄′′) +
A′ Q̂ for some n̄′′ ≥ n̄ and so that

its length is at most

(max(U ′
+

) + max(n̄) + 1)2p(k)

where U ′ is the set of unary rules of A′. Note that max(U ′
+

) ≤ max(U+) because
we have only added unary rules with smaller positive entries.

We can then unfold back the subtrees hanging from nodes of π to obtain an
MVASS incrementing derivation for (q, n̄′′) +

A Q̂ whose number of leaves at
height greater than the bound (10) has decreased in at least 1. Repeating the
same argument a finite number of times we obtain an incrementing derivation
for (q, n̄) of height bounded by (10).

Logics of repeating values on data trees and branching counter systems 25

Thus, to decide the incrementing reachability problem, it suffices to search
for a derivation of doubly-exponential height, whose vectors may contain triply-
exponential entries in principle. As a consequence of this, the verification of the
existence of such a derivation can be performed in alternating double exponential
space, as it is shown in [8, Theorem 8], and thus the incrementing reachability
for MVASS is in 3ExpTime. See Appendix A for more details.

If n is fixed, the height of the witnessing derivation becomes singly exponential
and thus the problem is in 2ExpTime (as explained in [8, Theorem 8]). ut

B Proof of Theorem 3

In this section we show that the problem of satisfiability of LRVD
n over k-ranked

data trees can be reduced to the problem of control-state reachability for nVASSk.
We start with a simple logic and we gradually increase the complexity to

finally obtain the desired result. We begin with a simple logic, notated LRVD−
1 ,

which consists only of formulas ϕ ∈ LRVD
1 that are conjuncts of terms of the

form v ? EXiv, v ? EFv, or their negation, where ? ∈ {≈, 6≈}. We first show, in
§B.1, that the problem of satisfiability of LRVD−

1 over k-ranked data trees can
be reduced to the problem of control-state reachability for1VASSk. These initial
results are of no great interest by themselves, but the constructions we make
for their proofs will be useful for §B.2, when we extend the expressive power
of LRVD−

1 with the missing operators (negation, conjunction, disjunction and
‘until’) to obtain LRVD

1 , where we prove an analogous reduction. In §B.3 we easily
generalize to arbitrary n to obtain the proof of Theorem 3.

B.1 A simple logic: LRVD−
1

In this section we show the following:

Proposition 11. There is a computable reduction from SATk-LRVD−
1 to CSReach(1VASSk).

That is, we show that for any formula ϕ of LRVD−
1 , there is a 1VASSk Akϕ

such that ϕ is satisfiable in a k-ranked data tree iff Akϕ has a solution to the
control-state reachability problem.

We begin with some definitions used for the construction of Akϕ, and then
proceed to the proof of the reduction.

Valid (d, k)-frames A valid (d, k)-frame (or often just (d, k)-frame) is a tuple
F = 〈N,E, `1, `2,≡〉 such that

– 〈N,E〉 is a k-ranked ordered tree of height at most d, whose non-empty set
of nodes is N and whose set of edges is E.

– `1 : N → {([v ≈ EFv], [v 6≈ EFv]), ([v ≈ EFv], [¬v 6≈ EFv]), ([¬v ≈
EFv], [v 6≈ EFv]), ([¬v ≈ EFv], [¬v 6≈ EFv])} is a node-labeling function

– `2 : N → {ε,⊕,	} is another node-labeling function
– ≡ is an equivalence relation over N

26 Abriola, Figueira and Figueira

where `1 satisfies the following validity conditions:

1. If x ∈ N is such that `1(x) = ([¬v ≈ EFv], [¬v 6≈ EFv]) then x has no
children.

2. If x ∈ N is a leaf, and x is at distance < d from the root of F , then
`1(x) = ([¬v ≈ EFv], [¬v 6≈ EFv]).

3. Let y be a descendant of x, with x ≡ y, then π1(`1(x)) = [v ≈ EFv], and
if π2(`1(y)) = [v 6≈ EFv], then π2(`1(x)) = [v 6≈ EFv]. If x 6≡ y, then
π2(`1(x)) = [v 6≈ EFv].

4. If y is a descendant of x and π2(`1(x)) = [¬v 6≈ EFv] then x ≡ y and
π2(`1(y)) = [¬v 6≈ EFv].

5. If y is a descendant of x and π1(`1(x)) = [¬v ≈ EFv], then x 6≡ y.
6. If π2(`1(x)) = [v 6≈ EFv] and all children y of x satisfy x ≡ y, then there is

some child z of x such that π2(`1(z)) = [v 6≈ EFv]

and `2 satisfies the following conditions:

a. `2(r) = ⊕ iff r is the root of F , π1(`1(r)) = [v ≈ EFv], and there is no
descendant x of r with x ≡ r

b. If `2(x) = 	, then x is a leaf of F at maximum distance from the root (i.e. at
distance d), and there is no node y at distance < k from the root with x ≡ y.

c. If x, y are leaves with x ≡ y, and `2(x) = 	, then `2(y) = 	.

Let Fd,k be the set of all valid (d, k)-frames. We will work with many (d, k)-
frames so we need a notation to distinguish the component of each of them.
Unless otherwise stated, a (d, k)-frame F is a tuple F = 〈NF , EF , `F1 , `

F
2 ,≡F 〉.

We say that a (d, k)-frame F ′ is an extension of a (d, k)-frame F , or that
F is a (d, k)-subframe of F ′, if NF ⊆ NF ′ and EF , `F1 , `F2 , and ≡F are the
restrictions of EF

′
, `F

′

1 , `F
′

2 , and ≡F ′ , respectively, to NF .
If T is any tree-shaped structure (in particular, a data tree, but it could also

have, e.g. other node labeling functions), we notate T (x) as the subtree of T
generated by x and all its descendants (hence the root of T (x) is x). Let F ′

be a (d, k)-frame, and let x ∈ NF ′ . We name F (x) as the (d, k)-subframe of F ′

induced by x.
Let F be a (d, k)-frame with root r, such that `F2 (x) = ε for all x in NF ,

and let x1, . . . , xi be the children of r, ordered from left to right. Let Gi be
the (d, k)-frames of F induced by xi. We say that F is 1-consistent with the
(d, k)-frames F1, . . . Fi, and Gi is a (d, k)-subframe of Fi for all i. Further, we say
that F is a point of decrement if there is a leaf x ∈ NF such that `2(x) = 	.
More precisely, we say that it is a point of decrement of value p if it is a point of
decrement with a maximum of p ≡-equivalence classes of leaves y with `F2 (y) = 	.
We say that F is a point of increment if `F2 (r) = ⊕ and F is not a point of
decrement.

The automaton Akϕ We recall from Section 5 that the EX-length of ϕ is the

maximum i such that the a term of the form v ? EXiv is a subformula of ϕ. Let
d be the EX-length of ϕ. We define the 1VASSk Akϕ as follows:

Logics of repeating values on data trees and branching counter systems 27

– The set of states of Akϕ consists of Fd,k, the set of all valid (d, k)-frames.
– Unary rules. Let F1 and F2 be (d, k)-frames.

• F1
−n−−→ F2 if F1 is a point of decrement of value n, and F2 is equal to F1,

except that `F2
2 is defined as follows:

`F2
2 (x) =

{
ε x is a leaf of F1;

`F1
2 (x) otherwise.

• F1
+1−−→ F2 if F1 is a point of increment, and F2 is equal to F1, except

that `F2
2 is defined as follows:

`F2
2 (x) =

{
ε x is the root of F1;

`F1
2 (x) otherwise.

– Branching rules: F → (F1, . . . , Fi) (with i ≤ k), if F is 1-consistent with
F1, . . . , Fi.

We define the following sets of states of Q, to be used as inputs of the
control-state reachability problem.

– Q0 is the set of initial (d, k)-frames. We say that F , of root r, is initial iff
the following conditions hold:
• F, r satisfies all terms of ϕ of the form v ? EXiv or ¬v ? EXiv;
• if v ≈ EFv (resp. v 6≈ EFv) is a positive conjunct of ϕ, then the root
r ∈ NF satisfies π1(`F1 (r)) = [v ≈ EFv] (resp. π2(`F1 (r)) = [v 6≈ EFv]);

• if v ≈ EFv (resp. v 6≈ EFv) is a negative conjunct of ϕ, then for all
descendants y of the root r ∈ NF , it holds that π1(`F1 (y)) = [¬v ≈ EFv]
(resp. π2(`F1 (y)) = [¬v 6≈ EFv]).

– Q̂ is the singleton containing the (d, k)-frame in Fd,k that consists solely of
one node.

We define the control-state reachability problem for initial sets CSReach
as the problem of, given A, Q0, Q̂, whether (q, n̄) A Q̂ for some n̄ and some
q ∈ Q0. It is easy to see that this problem is equivalent to the problem of whether
(q, 0̄) +

A Q̂ for some q ∈ Q0.

Observation 12 The problem of control-state reachability problem for initial
sets is equivalent to the problem of control-state reachability, as defined in §4.3.

Consequently, it is enough to prove:

Proposition 13. CSReach(Akϕ, Q0, Q̂) implies SATk(ϕ).

Proof. Suppose S is a solution tree for the control-state reachability problem of
Akϕ. We first construct a (node-decorated) k-ranked data tree T = 〈N,E, `2,≡〉
(with the labeling function such that `2(x) ∈ {ε,	}) and then we define our
solution data tree by removing the node decoration: T ′ = 〈N,E,≡〉. This last

28 Abriola, Figueira and Figueira

tree will satisfy ϕ at its root. The tree T will be constructed by induction: for
every subtree R of S we construct a tree TR such that, as we will formally verify
in the second part of the proof, its structure of nodes and edges derives from the
structure of the (d, k)-frames (states of Akϕ) of R, and where the semantics of the
labels `1 in R are satisfied in TR. The tree T will finally be TS . We then verify
that ϕ is true at the root of TS .

Construction of the data tree Given a subderivation R, we construct a (labeled)
data tree TR = 〈NR, ER, `R2 ,≡R〉. We also identify each node x in a (d, k)-frame
of R with a corresponding node idR(x) in TR. This mapping idR will be surjective,
and, whenever F is a (d, k)-frame in R, idR � NF is injective.

We proceed by induction in the complexity of R.

Leaf. For the base case, let F be a leaf of S. Observe that by construction of
Akϕ, NF = {x}. Then the corresponding tree is TF = 〈NF , EF , `F2 ,≡F 〉 and we
define idF (x) to be the same node in TF , i.e. idF (x) = x.

Branching rule. Let S0 be an incrementing derivation subtree of S such that its
root, a (d, k)-frame F0, branches into (d, k)-frames F1, . . . , Fi. We define TS0

as
follows. Let r be the root of F0, and let a1, . . . , ai be the children of r, ordered
from left to right. Let Sj = S0(Fj).

By inductive hypothesis, all Sj correspond with trees TSj , with equivalence

relations ≡TSj and labeling function `
TSj

2 . Then we define TS0 as follows: the root
of TS0 is some node r̃, and the subtrees hanging from its i children are TSj , for
1 ≤ j ≤ i. See Figure 1 for an example in the case k = 2.

For each node x in some (d, k)-frame of S0, we define idS0
(x) as follows: if

x is in a (d, k)-frame of some Sj , we keep the identification x̃ it had in TSj
, i.e.

idS0
(x) = idSj

(x); if x is the root of F0, namely x = r, then idS0
(x) = r̃; and for

each node x 6= r of F0, let (by 1-consistency) x′ be the corresponding copy of x
in Fj and define idS0(x) = idSj (x′). It remains to define the labeling `2 and the
equivalence relation ≡ of TS0

. We define `2 as follows

`2(x) =

{
ε if x = r̃;

`
TSj

2 (x) if x is in a (d, k)-frame of Sj .

We define ≡ as the smallest equivalence relation such that:

– ≡�TSj
=≡TSj for each 1 ≤ j ≤ i

– if x ≡F0 y then idS0
(x) ≡ idS0

(y).

Unary rule. Let S0 be a incrementing derivation subtree of S, with root (d, k)-
frame F0 and an only child, the (d, k)-frame F1, as the outcome of a unary rule.
Let S1 = S0(F1). Let TS1 = 〈N,E, `2,≡〉 be the tree that is constructed from S1

by inductive hypothesis.
If the rule for the transition from F0 to F1 was a −n decrement, then n is the

maximal such that there are leaves x1, . . . , xn of F0 with xi 6≡1 xj (i 6= j), and

Logics of repeating values on data trees and branching counter systems 29

r

S0

.
a1 a2

.

.

S1

F1

a1

.

.

S2

F2

a2 ã2ã1

r̃

TS1
TS2

TS0

F0

Fig. 1. The incrementing derivation tree S0, starting with a branching rule, and the
constructed TS0 . The dotted lines represent some pairs of the mapping idS0 .

`F0
2 (xi) = 	. We define TS0

= 〈N,E, ˜̀
2,≡〉 (i.e. the same tree structure as TS1

,
and the same equivalence relation over it, but a different labeling function), where
˜̀
2 is defined below, and the identification mapping idS0 is defined as follows:

idS0 � S1 = idS1 , and for any x ∈ NF0 , if x′ is the corresponding copy of x in F1

(recall that the underlying trees of F0 and F1 are equal), we let idS0
(x) = idS1

(x′).
The labeling ˜̀

2 is defined as follows:

˜̀
2(x) =

{
	 if (∃y ∈ NF0) `F0

2 (y) = 	 and idS0(y) = x;

`2(x) otherwise.

In other words, ˜̀
2 adds 	 labels to the nodes that correspond with 	 leaves in F0,

and for all other nodes keeps the labeling of `2. See Figure 2 for an illustration
of this process.

If the rule was an increment, as we will see in Lemma 14, we can assume that
there is a node y in some (d, k)-frame F of S1 such that `F2 (y) = 	 and also
`2(idS1

(y)) = 	. The idea now will be to join the equivalence classes of the root
of TS0 with that of idS0(y) = idS1(y), and to remove the 	 labels in the nodes of
these equivalence classes. Let r be the root of F0, and define TS0 = 〈N,E, ˜̀

2, ≡̃〉
(i.e. the same tree structure as TS1

, but different equivalence relation and labeling
function) where ˜̀

2 and ≡̃ are defined below, and the identification mapping idS0

is defined as in the case of a −n decrement.

30 Abriola, Figueira and Figueira

.

S0

F

S1

�2

F1

TS1
TS0

leaves of F1

F0

Fig. 2. The incrementing derivation tree S0, starting with a decrement −2 rule, and
the constructed TS0 . The colours represent the equivalence classes. The dotted lines
represent the mappings idS0 and idS1 .

The relation ≡̃ joins the equivalence classes of idS0(r) and idS0(y), i.e.

z≡̃w iff z ≡ w or (z ≡ idS0(r) and w ≡ idS0(y))

and ˜̀
2 is defined as follows:

˜̀
2(x) =

{
ε if x = idS1

(z) for some z ≡F y;

`2(x) otherwise.

See Figure 3 for an illustration of this process.
Observe that for the construction of we are ignoring the non-deterministic

increments in the derivation (which is a solution to the control-state reachability
problem), as well as the exact distribution of the counters.

Lemma 14. Let S0 be an incrementing derivation subtree of S (a solution to
the control-state reachability problem) with root (d, k)-frame F0, such that F0 has
an only child, the (d, k)-frame F1, which is the product of an increment rule. Let
S1 = S0(F1). Let TS1

= 〈N,E, `2,≡〉 and TS0
= 〈N,E, ˜̀

2, ≡̃〉 be given as in the
construction. Then there is a node p ∈ N such that `2(p) = 	. Furthermore, if
for any p with `2(p) = 	 we define P ⊆ N as

P = {x ∈ N | `2(x) = 	 ∧ x ≡ p}

Logics of repeating values on data trees and branching counter systems 31

.

.

S0

S1

F1

TS1
TS0

F0

+1

�
r

y

Fig. 3. The incrementing derivation tree S0, starting with an increment rule, and
the constructed TS0 . The colours represent the equivalence classes. The dotted lines
represent the mappings idS0 and idS1 .

then if both x, y ∈ P for some x, y ∈ N , and we have Fx, Fy ∈ S1 such that

x̃ ∈ Fx, ỹ ∈ Fy and idS1(x̃) = x, idS1(ỹ) = y (and thus with `Fx
2 (x̃) = 	 and

`
Fy

2 (ỹ) =), then we have that Fx = Fy and x̃ ≡Fx
ỹ.

That is, the 	-labeled nodes of TS1
that in TS0

are ε-labeled correspond to
the equivalence class of 	-labeled leaves of a single (d, k)-frame in S0. In other
words, when the join of classes is done in the construction of TS0

because of an

increment operation, the nodes y in TS0 with `
TS1
2 (y) = 	 that have `

TS0
2 (y) = ε

cannot correspond via id−1
S0

to 	-labeled leaves in more than one (d, k)-frame;
they correspond with exactly one decrement of the counter in the incrementing
derivation tree.

Proof (Proof of Lemma 14). We will prove the lemma by induction on S1.

Base case. If S1 is such that there is no increment operation in S1 then, as S1 is
an incrementing derivation subtree of a solution of the control-state reachability
problem, S1 must contain a point of decrement F with a node ỹ with `F2 (ỹ) = 	
and, since there is no increment operation in S1, we have that `2(idS1

)(ỹ) = 	
(that is, p = idS1

(ỹ)).
For the second claim, assume that p ∈ N is any node with `2(p) = 	, and P

is defined accordingly. Suppose by way of contradiction that x, y ∈ N are such
that x, y ∈ P , but there is no single F ∈ S1 such that there are x̃, ỹ ∈ F with
idS1

(x̃) = x, idS1
(ỹ) = y, `F2 (x̃) = 	, `F2 (ỹ) = 	, and x̃ ≡F ỹ. We will prove

32 Abriola, Figueira and Figueira

this leads to x 6≡ y, a contradiction with our assumption that x, y ∈ P , and
consequently we will conclude that there is such a (d, k)-frame F .

First, observe that there cannot be a (d, k)-frame Fx and x̃ ∈ Fx with
idS1(x̃) = x and `Fx

2 (x̃) = 	 such that x̃ has an ancestor ã ∈ Fx with ã ≡Fx x̃,
since leaves of (d, k)-frames are not labeled with 	 if they have an in-frame
ancestor. Now, since increments have not been used in the construction of TS1

,
the equivalence classes of (d, k)-frames of S1 coincide with their identification
via idS1

in TS1
, and therefore there cannot be an ancestor z of x at distance

d or less from x with z ≡ x. The analogous result holds for y. Now, x ≡ y,
and `2(x) = `2(y) = 	 implies that there are Fx, Fy ∈ S1, x̃ ∈ Fx, ỹ ∈ Fy with

idS1
(x̃) = x, idS1

(ỹ) = y and with `Fx
2 (x̃) = 	, `Fy

2 (ỹ) = 	. Observe from the
definition of the decrement rule in Akϕ and the conditions on 	, that there cannot
be w̃ ∈ Fw with idS1

(w̃) = x and Fw 6= Fx. Analogously for y. So, as we are
assuming Fx 6= Fy, from 1-consistency and the increment-free construction of
TS1 , x ≡ y implies that there is a least common ancestor z in N with x ≡ z ≡ y,
and a chain of nodes z = z0, . . . , zn = x in N such that zi+1 is a descendant of
zi at distance at most d, and zi ≡ zi+1 (and the same for a chain towards y).
But this contradicts the observation that there cannot be an ancestor z of x at
distance d or less with x ≡ z.
Induction. Observe that, since S is a solution to the control-state reachability
problem, for every increment in S0 there must be at least one decrement in S1.
Suppose there are m increments and n ≥ m decrements in S0. Then there are
m−1 increments and n > m−1 decrements in S1. From the inductive hypothesis,
there must remain at least one node p ∈ N with `2(p) = 	.

For the second claim, let p ∈ N with `2(z) = 	, P = {x ∈ N | `2(x) =
	 ∧ x ≡ p}, and x, y ∈ P . Let x, y ∈ P , and let Fx, Fy ∈ S1, x̃ ∈ Fx, ỹ ∈ Fy be
such that idS1(x̃) = x, idS1(ỹ) = y We want to prove that Fx = Fy and x̃ ≡Fx ỹ.

As `2(x) = `2(y) = 	, x and y cannot have been joined with the equivalence
class of an ancestor node of TS1

as a result of an increment operation. Therefore,
we are in a similar case as in the base step: there must a common ancestor z
of x, y, such that x ≡ z ≡ y and a chain of nodes z = z0, . . . , zn = x in N such
that zi+1 is a descendant of zi at distance at most d, and zi ≡ zi+1, but this is a
contradiction with the fact that `2(x) = 	.

Verification By ignoring the labeling function `2 of TS = 〈N,E,≡, `2〉 we obtain
the desired data tree. We show that the data tree T = 〈N,E,≡〉 satisfies ϕ at
the root. To ease the notation we write id for idS .

From the definition of Q0 and the construction of T , it is clear that any
conjunct of ϕ of the form v ? EXiv or ¬v ? EXiv, with ? ∈ {≈, 6≈}, is satisfied in
the root of T .

Next, we show that conjuncts of ϕ of the type v ? EFv or ¬v ? EFv are also
satisfied in the root of T . Recall from the construction of T that all nodes of
N correspond via id−1 to nodes x1, . . . , xn in (d, k)-frames F1, . . . , Fn of S such
that `Fi

1 (xi) = `F1
1 (x1) for all i = 1 . . . n. Therefore, it is enough to verify that

if x is a node in some (d, k)-frame F of S, then id(x) satisfies the semantics of

Logics of repeating values on data trees and branching counter systems 33

π1(`F1 (x)) and of π2(`F1 (x)). Furthermore, it is enough to verify the above when
x is the root of F . In what follows, we write `j instead of `Fj (j = 1, 2).

We will use the following facts:

Fact 15 In the construction of T , nodes that are at distance of at most d and
non-equivalent in some frame are never made equivalent in T .

Fact 16 In the construction of T , nodes that are equivalent for some tree TS′

with S′ ⊆ S are kept equivalent for TS.

Fact 17 If x 6≡F z for all x 6= z ∈ F , and `2(x) 6= ⊕ (recall that x is the root of
F), then in the construction of T the equivalence class of id(x) is never joined
with the equivalence class of a descendant.

We consider the four different cases, two for every projection π1 or π2 of
`1(x):

– In the case π1(`1(x)) = [v ≈ EFv], we show the formula v ≈ EFv is satisfied
in id(x):
• Local satisfaction. If there is some descendant y ∈ F of x such that
x ≡F y, then, from Fact 16, id(x) ≡T id(y) and thus T, id(x) |= v ≈ EFv.

• Non-local satisfaction. If there is no such frame as in the previous sub-item,
then (since π1(`1(x)) = [v ≈ EFv]) there is a frame F with `F2 (x) = ⊕.
Thus, from the construction of T and Fact 16, there is a descendant of
id(x) in its equivalence class.

– In the case π1(`1(x)) = [¬v ≈ EFv], we consider two subcases to consider. If
π2(`1(x)) = [¬v 6≈ EFv], from the validity condition 1 the nodes id−1(id(x))
have no descendants (and thus neither does id(x)), and therefore ¬v ≈ EFv
is trivially satisfied at id(x). Otherwise, if π2(`1(x)) = [v 6≈ EFv], we show
that for all descendants id(y) of id(x) at distance k of id(x) in T we have
id(x) 6≡ id(y):
• Local satisfaction. If 0 < k ≤ d then taking ỹ in the frame F such that

id(ỹ) = id(y), from condition 5, x 6≡ ỹ and then from Fact 15 we have
id(x) 6≡ id(y).

• Non-local satisfaction. If k > d, since π1(`1(x)) = [¬v ≈ EFv] and x
is the root of F , then `2(x) 6= ⊕. As we have seen that x 6≡F z for all
x 6= z ∈ F , Fact 17 indicates that for any ỹ descendant of id(x) we have
id(x) 6≡ ỹ.

– In the case π2(`1(x)) = [v 6≈ EFv], we distinguish two cases:
• Local satisfaction. If there is a descendant y ∈ F of x (and thus at

distance at most d from x) such that x 6≡F y, then, from construction
of T , there is also a descendant id(y) in N such that id(x) 6≡TSF id(y).
Thus, from Fact 15, id(x) satisfies v 6≈ EFv.
• Non-local satisfaction. If there is no descendant y ∈ F with x 6≡F y, then,

from condition 6 there is chain of descendants of x, y1 ∈ F1, . . . , yn ∈ Fn
such that ∀i < n yi ≡ yi+1, and ∀i π2(`1(yi)) = [v 6≈ EFv], and such that
yn has no child z with z ≡ yn. As π2(`1(yn)) = [v 6≈ EFv], condition 2

34 Abriola, Figueira and Figueira

implies that there must be a child z of yn, and then necessarily z 6≡ yn.
From Fact 15 and Fact 16, therefore id(x) 6≡ id(z) and then v 6≈ EFv is
satisfied in id(x).

– Finally, in the case π2(`1(x)) = [¬v 6≈ EFv], the formula ¬v 6≈ EFv is satisfied
in id(x) since, by validity condition 4 and construction of T , for all of the
descendants id(y) of id(x) we have that id(x) ≡ id(y) and `1(y) = [¬v 6≈ EFv].

This concludes the proof of Proposition 13.

Proposition 18. SATk(ϕ) implies CSReach(Akϕ, Q0, Q̂).

Proof. Let T be a k-ranked finite data tree whose root satisfies ϕ. We want to
see that there is an incrementing derivation tree S of Akϕ that starts at a node of

Q0 with the counter at 0 and ends with all leaves in Q̂ with the counter in 0.
We construct the incremental derivation tree from the root to the leaves.

The idea is simply to identify which states ((d, k)-frames) of the automaton Akϕ
correspond to portions of T , adding first the appropriate values of `1 and `2, and
then performing unary and binary operations in the expected way.

From a node in T to a (d, k)-frame For any node x of T we associate a (d, k)-frame
Fx, defined as follows:

– NFx is the maximal subtree of T height d that hangs from x
– ≡Fx = ≡�NFx

– `Fx
1 (y) is consistent with T (i.e. `Fx

1 (y) = ([v ≈ EFv], [v 6≈ EFv]) if y has a
descendant in Fx with the same data value and other with different data
value, etc.)

– `Fx
2 defined as follows (cf. items a and b of the conditions for the (d, k)-frames):

`2(y) =


⊕

if y = x, π1(`1(y)) = [v ≈ EFv], and
there is no descendant z of y with z ≡ y;

	
if y is a descendant of x at distance d from it, x 6≡ y, and
for all descendant z of x at distance < d we have y 6≡ z;

ε otherwise.

Let r be the root of T . We select as the initial state of S the (d, k)-frame Fr.

Construction of the incrementing derivation tree For this step, to make clearer
whether we are referring to a node in T or in some (d, k)-frame, we will use a
function id from the roots of the (d, k)-frames into T , as in Proposition 13. If x̃
is the root of F , and F = Fx, then we set id(x̃) = x.

We now decide which rules are invoked on each (d, k)-frame Fx we construct.
Let x̃ ∈ id−1(x) be the root of F .

If Fx is neither a point of decrement nor a point of increment, and if x has
descendants, then we use a binary rule to branch Fx into the two (d, k)-frames
Fa1 and Fa2 , where a1, a2 are the two children of x in T . The particular way in

Logics of repeating values on data trees and branching counter systems 35

which the counter of Akϕ has been divided between these two (d, k)-frames will
be explained afterwards (see Verification).

If Fx is a point of decrement of value n then from Fx we transition, via an
n-decrement, to the (d, k)-frame F− = 〈NFx , EFx , `Fx

1 , `−2 ,≡Fx〉 (i.e. F− is equal
to Fx except for the `2 labeling function), where

`−2 (ỹ) =

{
ε if `2(ỹ) = 	;

`Fx
2 (ỹ) otherwise.

If x̃− is the root of F−, we keep id(x̃−) = id(x̃).
If Fx is a point of increment, we transition to the (d, k)-frame

F+ = 〈NFx , EFx , `Fx
1 , `+2 ,≡Fx〉 (i.e. F− is equal to Fx except for the `2 labeling

function), where

`+2 (ỹ) =

{
ε if `2(ỹ) = ⊕;

`2(ỹ) otherwise.

If x̃+ is the root of F+, we keep id(x̃+) = id(x̃).

Verification We show that the constructed incrementing derivation tree S is a
solution to the control-state reachability problem. Observe that labels ⊕ of `2
are assigned to the roots of (d, k)-frames when the corresponding node of T has
a descendant at distance greater than d with the same equivalence class (but it
has none at distance d or less). Also, 	 labels are assigned to leaves when they
do not have an ancestor of the same class at distance less than d from the root
of the frame. Thus, for every frame in S whose root r has `2(r) = ⊕, there is at
least one descendant frame in S with a leaf y with `2(y) = 	.

Therefore, in the incrementing derivation tree S the total number of increments
of the counter has been some number m and the total value of the decrements
some n ≥ m. If n > m, we modify S to add an spontaneous increase of the
counter in n−m at the first frame, which can be done since we are working on
the control-state reachability problem. So we can assume that m = n. It remains
to assign, for each instance of the branching rule, a way in which the counter has
been divided between the branches. We do that as follows: if at a node F of S
the counter is at c and the next operation of S is a branching F → F1 | · · · | Fi,
then for each i we assign ci to Fi, where ci is the number of decrements in the
derivation tree of S(Fi). In this way, all the operations of S are valid (there are
no n-decrements when the counter is less than n), and the counter in all leaves
ends up at 0. Therefore S is a solution for the control-state reachability problem.

This concludes the proof of Proposition 18.

From Propositions 13 and 18 we obtain Proposition 11

Observation 19 There exists a similar reduction when considering the logic that
allows node-labeling and formulas of the type ψ := a. In this case, the construction
of Akϕ can be easily extended so as to prove the analog of Proposition 13 in the
presence of these type of formulas.

36 Abriola, Figueira and Figueira

B.2 Adding Boolean and Until operators: LRVD
1

We extend LRVD−
1 with ∧, ∨, ¬ and EU. We will combine the idea of [5, Section

3.2] with our previous approach of §B.1 in order to deal with this more expressive
logic, to obtain the following generalization of Proposition 11:

Proposition 20. There is a computable reduction from SATk-LRVD
1 to CSReach(1VASSk).

Let ϕ be a formula. We define cl(ϕ) to be the standard closure of ϕ: the
smallest F set of formulas that contains ϕ, is closed under subformulas, and
satisfies the following conditions:

– If ψ ∈ F and ψ is not of the form ¬ψ1 for some ψ1, then ¬ψ ∈ F .
– If EU(ψ2, ψ1) ∈ F then EX(EU(ψ2, ψ1)) ∈ F .

An atom of ϕ is a subset A of cl(ϕ) which is maximally consistent in that it
satisfies the following conditions:

– For every ¬ψ ∈ cl(ϕ), we have ¬ψ ∈ A iff ψ 6∈ A.
– For every ψ1 ∧ ψ2 ∈ cl(ϕ), we have ψ1 ∧ ψ2 ∈ A iff ψ1 and ψ2 are in A.
– For every ψ1 ∨ ψ2 ∈ cl(ϕ), we have ψ1 ∨ ψ2 ∈ A iff ψ1 or ψ2 is in A.
– For every EU(ψ2, ψ1) ∈ cl(ϕ), we have EU(ψ2, ψ1) ∈ A iff either EX(ψ2) ∈ A

or both X(ψ1) ∈ A and EX(EU(ψ2, ψ1)) ∈ A.

We denote by Atom(ϕ) the set of atoms of ϕ. Let A,A1, . . . , Ai ∈ Atom(ϕ).
We say that A is 1-consistent with A1, . . . , Ai if for every EX(ψ) ∈ cl(ϕ), we
have EX(ψ) ∈ A iff ψ ∈ ⋃1≤j≤iAj .

We recall the definition of EX-length given in §5.
As in §B.1, we show that for any formula ϕ of LRVD

1 , there is a 1VASSk Bkϕ
and sets Q0, Q̂ such that SATk(ϕ) iff CSReach(Bkϕ, Q0, Q̂).

The idea behind the definition of Bkϕ is similar to the one of Akϕ defined in

§B.1. However, Bkϕ will encode more information. For the definition of Bkϕ, recall
the definition of (d, k)-frame given in §B.1. We say that an atom A is locally
consistent with a (d, k)-frame F if, for r the root of F , and for all γ ∈ A of the
form v ? EFv or ¬v ? EFv (for ? ∈ {≈, 6≈}), r is labeled appropriately in `1.

The automaton Bkϕ. We define the 1VASSk Bkϕ as follows:

– The set of states Q of Bϕ consists of the set

{(F,A) ∈ Fd,k ×Atom(ϕ) | A is locally consistent with F}.

– Unary rules. Let F1 and F2 be (d, k)-frames, and let A be an atom.

• (F1, A)
−n−−→ (F2, A) if F1 and F2 are as in the rule F1

−n−−→ F2 of Akϕ.

• (F1, A)
+1−−→ (F2, A) if F1 and F2 are as in the rule F1

+1−−→ F2 of Akϕ.

– Branching rules: (F,A) → ((F1, A1), . . . , (Fi, Ai)) (with i ≤ k), if F is 1-
consistent with F1, . . . , Fi, and A is 1-consistent with A1, . . . , Ai.

Logics of repeating values on data trees and branching counter systems 37

We now define the two sets Q0 and Q̂, to be used as inputs of the control-state
reachability problem.

– Q0 is the set of all (F,A) ∈ Fd,k × Atom(ϕ) which are initial. We say that
(F,A) is initial iff F satisfies the same conditions of an initial state of Akϕ
and ϕ ∈ A.

– Q̂ is the set of all the states of the form (F,A), where F is the only (d, k)-frame
that consists solely of one node, and where A is such that if EU(ρ, ψ) ∈ cl(ϕ)
then EU(ρ, ψ) 6∈ A.

B.3 The general case: LRVD
n

To prove Theorem 3 it is enough to introduce a small modification to the con-
struction of Fd,k as seen in Proposition 11, changing the dimension (polynomially
in n) of the codomains of `1 and of `2 in order to maintain information for all
the variables. For the case of n disjoint variables and ϕ ∈ LRVD

n we make the
following changes to the definition of the (d, k)-frames that will constitute the
states of the automaton Bkϕ:

– Let Vi = {([vi ≈ EFvi], [vi 6≈ EFvi]), ([¬vi ≈ EFvi], [vi 6≈ EFvi]), ([vi ≈
EFvi], [¬vi 6≈ EFvi]), ([¬vi ≈ EFvi], [¬vi 6≈ EFvi])}. Now we have `1 : N →∏

1≤i≤n Vi.
– `2 : N →∏

1≤i≤n{εvi ,⊕vi ,	vi}.
– ≡1, . . . ,≡n are equivalence relations over the nodes of the frames.

The notions of validity and 1-consistency between frames are then adjusted
accordingly. There are now n counters in the automaton, and n instances of our
previous unary rules for Bkϕ, one for every disjoint variable.

B.4 Complexity

We will make a short analysis on the complexity of the reduction corresponding
to Theorem 3. For this part, we will assume we are working without labels, but
their addition to the logic does not change the complexity classes in our results.

First, we rapidly note that the maximum size of an entry in a unary rule of
the n-counter automaton Bkϕ is bounded by kd, corresponding with a (d, k)-frame
of maximum depth where all leaves are labeled via `2 with 	 and all leaves belong
to different equivalence classes; such (d, k)-frame is a point of decrement of value
kd, and there cannot be points of decrement of higher value.

By making an analysis on the size of Fd,k (the set of valid (d, k)-frames) and of
Atom(ϕ) (which is used for the temporal portion), we can obtain an upper bound
on the size of the automaton Bkϕ of our reduction in Subsection B.2, generalized to

LRVD
n . Each state of Bkϕ is basically a k-ranked tree of depth at most d (equipped

with a node-labeling function and an equivalence class) and a set of (roughly)
subformulas of ϕ. There are O(2p1(|ϕ|)) such sets, for some polynomial p1, where
|ϕ| denotes the number of subformulas of ϕ. On the other hand, there are O(kd+1)

38 Abriola, Figueira and Figueira

many k-ranked tree of depth at most d, and so there are O((kd+1)k
d+1

) many
such trees with a binary relation defined on its nodes. Further, each leaf can be
labeled with p2(n)-many labels, where p2(n) is the product of the size of the
codomains of the functions `1 and `2 for (d, k)-frames in the n-dimensional case,

as in Subsection B.3. So there are O((kd+1)k
d+1 · p2(n)k

d+1

) many k-ranked trees
of depth at most d equipped with node-labeling functions and an equivalence
class.

Let LRVD
n,d be the fragment of LRVD

n where each formula has EX-length at
most d. We have obtained:

Proposition 21. Given ϕ ∈ LRVD
n,d, the number of states of Bkϕ is

O(p(n)k
d+1 · (kd+1)k

d+1 · 2p(|ϕ|))
for some polynomial p.

Observe also that the reduction of Theorem 3 can be done using only expo-
nential space, as we can codify in exponential space the lists of states and the
rules between states, while checking if each state represents a valid (d, k)-frame
and if each rule corresponds to one of our unary or branching rules.

Finally, in order to use the Prop. 1 from [8], we need to translate our nVASSk
Bkϕ into a BVAS B = 〈n + ñ, R1, R2〉 Where R1, R2 ⊆ Zn+ñ are unary and
binary rules, respectively, and we need to measure the maximum binary size of
entries in the rules R1, R2. We also need to specify a set of axioms, which adds
a linear size to the input. We will show how we can build a branching VASS
C = 〈C,UC , BC〉 with a constant number of states; a fixed increase ñ in the
dimension; and a new bound (that dominates the bound of log2(kd) for Bkϕ) to
the binary size of the maximum entry of the rules, a bound that is logarithmic
on |Bkϕ|. Afterwards, we can translate C to a BVAS in a standard way, which
does not increase our complexities, and only needs a single axiom.

Let q0, . . . , qN the states of Bkϕ. C will have three states: C = qa, qb, qc. For

each unary rule on Bkϕ of the form qi
v̄−→ qj , Uc contains the rules:

– qa
(v̄,w̄)−−−→ qb, where w̄ = (−i,−(N − i), j,N − j, 0, 0).

– qb
(v̄,w̄)−−−→ qa, where w̄ = (j,N − j,−i,−(N − i), 0, 0).

– qa
(v̄,w̄)−−−→ qc, where w̄ = (−i,−(N − i), 0, 0, j,N − j).

– ...And so on for all combinations qi → qj with i, j ∈ {a, b, c}.
For branching rules on Bkϕ of the form qk −→ (qi, qj), BC contains the rules6:

– qa, qb
w̄−→ qc, where w̄ = (−i,−(N − i), j,−(N − j), k,N − k).

– And so on for all combinations with the three states.

For branching rules of higher branching, the idea is similar, but we have
to introduce new counters in order to simulate k-branching with only binary
branching.

6 The branching rules BC of C will allow the addition of a vector, in order to facilitate
a later transition to a BVAS; this feature is unessential, but useful for the purpose of
clarity.

Logics of repeating values on data trees and branching counter systems 39

C Proof of Theorem 6

We will start by proving the result for n = 1, as the general case follows from
small modifications to the proofs for this restricted case. Let Ck = 〈Q,U,B〉 be a

1VASSk, let q0 ∈ Q, and let Q̂ ⊆ Q. We can assume without loss of generality
that all unary rules in U of the form q

c−→ q′ have either c = 1 or c = −1. We will

define7 a formula ϕC
k

of LRVD
1 (AG+

≈), over an adequate set of labels, such that

CSReach(Ck, q0, Q̂) iff SATk(ϕC
k

).
For the signature of the logic, we will consider a set of labels

L = (U ∪B ∪ {∗})× k,

where ∗ is a symbol to represent that the node is a ‘dummy node’ that will be
ignored in the translation to an incrementing derivation tree; also, dummy nodes
will always be to the right of nodes labeled with any (t, i), for t 6= ∗. We notate

ϕinc =
∨

1≤j≤k

∨
t=q

+1−−→q′

(t, j) and ϕdec =
∨

1≤j≤k

∨
t=q

−1−−→q′

(t, j).

For t = q
v−→ . . . a branching or unary rule, we notate πh(t) = q. We want to

construct a formula ϕC
k

whose satisfiability over k-ranked data trees is equivalent
to CSReach(Ck, q0, Q̂).

The truth of ϕC
k

in a data tree T, r (where r is the root of T) expresses:

– πh(π1(`(r))) = q0

– For each node x of T , we have:

i. If π1(`(x)) = q
c−→ q′ then T, x |= EX(a, 1) ∧ EX(∗, 2) ∧ · · · ∧ EX(∗, k),

where πh(a) = q′.
ii. If π1(`(x)) = q −→ (q1, . . . qj), with j > 0, then T, x |= EX(a1, 1) ∧ · · · ∧

EX(aj , j) ∧ EX(∗, j + 1) ∧ · · · ∧ EX(∗, k), where πh(ai) = qi.
iii. If π1(`(x)) = ∗ then T, x |= ¬EX(>).
iv. If π1(`(x)) = q −→ ∅̄, then T, x |= ¬EX(>).

v. If T, x |= ¬EX(>) and π1(`(x)) = q −→ ∅̄, then q ∈ Q̂.

vi. If π1(`(x)) = q
+1−−→ q′ then T, x |= v ≈ EFv ∧AG≈v(ϕdec).

In the framework of k-ranked data trees, item i and item ii give nodes tagged with
a non-empty rule, exactly k-children, where the first ones are associated with the
rule itself, and the rest are dummy nodes. Item iii ensures that dummy nodes
are leaves, and item iv ensures that nodes corresponding to the empty rule are
leaves. Item vi says that nodes tagged with an increment rule have a descendant
in its same class, and that all descendants in the same class are tagged with a
decrement rule. Item v assures that leaves of the tree that are tagged with an
empty rule correspond with states in Q̂. Observe that the conditions i, ii, iii, iv,

7 Abuse of notation: ϕCk

also depends on q0 and Q̂.

40 Abriola, Figueira and Figueira

and v taken together imply that T, x |= ¬EX> iff either π1(`(x)) = q −→ ∅̄ or
π1(`(x)) = ∗.

We now write the formulas of the logic that correspond to all these conditions.

ϕC
k

0 =
∨

1≤z≤k
t=q0−→···∈U∪B

(t, z)

ϕC
k

1 =
∧

1≤z≤k
t=q

c−→q′∈U

(t, z)→

 ∨
πh(a)=q′

EX(a, 1) ∧
∧

2≤j≤k

EX(∗, j)

 (i)

ϕC
k

2 =
∧

1≤z≤k
t=q−→(q1,...qj)∈B

(t, z)→
∨

a1,...,aj∈U∪B
s.t.(∀i)πh(ai)=qi

 ∧
1≤i≤j

EX(ai, i) ∧
∧

j<i≤k

EX(∗, i)


 (ii)

ϕC
k

3 =
∧

1≤z≤k

(∗, z)→ ¬EX> (iii)

ϕC
k

4 =
∧

1≤z≤k
t=q−→∅̄

(t, z)→ ¬EX> (iv)

ϕC
k

5 =

¬EX> ∧
∨

1≤z≤k
t=q−→∅̄

(t, z)

→ ∨
1≤z≤k

t=q−→∅̄,q∈Q̂

(t, z) (v)

ϕC
k

6 = ϕinc →
(
v ≈ EFv ∧AG≈v(ϕdec)

)
(vi)

For i = 1 . . . 6, let ψC
k

i = ϕC
k

i ∧AG(ϕC
k

i) and finally let

ϕC
k

= ϕC
k

0 ∧
∧

1≤i≤6

ψC
k

i .

Observe that the size of ϕ is polynomial on the size of Ck. Note also that AG≈
appears only positively in ϕC

k

, and hence ϕC
k ∈ LRVD

1 (AG+
≈)..

Proposition 22. If there is a solution to the problem of the CSReach(Ck, q0, Q̂)

then there is a solution to the SATk problem of ϕC
k

over the logic LRVD
1 (AG+

≈).

Proof (Sketch of the proof). Let S be an incrementing derivation tree that is a

solution of CSReach(Ck, q0, Q̂). We want to prove that there is a k-ranked tree

TS where the root r satisfies ϕC
k

. Nodes of TS will correspond to the nodes of
S, and their labels will be determined by the rule that is invoked on them in S
and by their position as children of some other node (and we choose to assign
π2(`(r)) = 1). When a node has at least one child but strictly less than k, we add
dummy nodes (with labels of the form (∗, i)) in the proper order so as to arrive to

Logics of repeating values on data trees and branching counter systems 41

exactly k children. With all this, ψC
k

1 ∧ ψC
k

2 ∧ ψC
k

3 ∧ ψC
k

4 is satisfied at r. Since S

is a solution for CSReach(Ck, q0, Q̂), ϕC
k

0 holds at the root of TS , and all leaves

z of TS with π1(`(z)) of the form q −→ ∅̄ have πh(π1(`(z))) ∈ Q̂, and thus ψC
k

5

is satisfied at r. For the equivalence relation, we first put all nodes in different
equivalence classes. Then, since S is a solution for the control-state reachability
problem, whenever there is a (+1) increment rule there is a (−1) decrement rule
further down, and we can make this assignation injectively, yielding corresponding

joining of the equivalence classes. This is enough to satisfy ψC
k

6 at r.

Proposition 23. If there is a solution to the SATk problem of ϕC
k

over the
logic LRVD

1 (AG+
≈) then there is a solution to CSReach(Ck, q0, Q̂).

Proof (Sketch of the proof). Let T be a k-ranked tree whose root r satisfies ϕC
k

.
We want to construct ST , an incrementing derivation tree of Ck that is a solution

to the control-state reachability problem. The idea is that the conjuncts ψC
k

1 ,

ψC
k

2 , and ψC
k

4 provide a natural translation from the nodes and labels of each

node of T to the structure and invoked rules of ST . Because of ψC
k

3 , we can

ignore those nodes x ∈ T with πh(`(x)) = ∗. ϕCk0 ensures that the derivation tree

starts from q0, while ψC
k

5 implies that all leaves of ST are in Q̂. To check that all

leaves of ST have the counter set at 0, observe that ψC
k

6 ensures that whenever
an increment rule (+1 to the counter) is invoked, there is further down in the
derivation an application of a decrement rule (−1 to the counter), furthermore,

there is at least one decrement for each increment, since ψC
k

6 also ensures that
two nodes labeled with some increment rule cannot be in the same equivalence
class if one is ancestor of the another.

For the general case of arbitrary n, we can assume without loss of generality
that all unary rules in U of the form q

v−→ q′ have either v = ei or v = −ei for
some 1 ≤ i ≤ n. Now, adding for each counter in Ck adequate new versions of

ϕinc, ϕdec, and ϕC
k

6 , we can extend the previous arguments, yielding a proof of
Theorem 6. Observe that this does not necessitate an increase in the number of
variables of the logic.

D Proof of Theorem 7

To show SATk-LRVD
n (AG+

≈) to CSReach(nVASSk) we will proceed incremen-
tally, as it was done in Section B. We begin with a simple logic, notated
LRVD−

1 (AG+
≈), which consists only of formulas ϕ ∈ LRVD

1 (AG+
≈) that are con-

juncts of terms of the form v ?EXiv, v ?EFv, or their negation, where ? ∈ {≈, 6≈},
and, all occurrences of AG≈v(ϕ) are of form AG≈v(a), where a is a label, and
whose labels rage over a finite fixed set L.

Let ϕ be a formula ϕ ∈ LRVD−
1 (AG+

≈), let

H = {a ∈ L | AG≈v(a) is a subformula of ϕ}

42 Abriola, Figueira and Figueira

and let h = #H. We construct a (h+ 1)VASSk Ckϕ (via a procedure similar to
that of Section B, using Observation 19 to take labels into account), with two

distinguished set of states Q0 and Q̂ such that SATk(ϕ) iff CSReach(Ckϕ, Q0, Q̂)
(recall Observation 12).

Valid (d, k)-frames We adjust our notion of valid (d, k)-frames to this framework.
A (d, k)-frame is now a tuple F = 〈N,E, `, `1, `2,≡〉 that satisfies similar condi-
tions as those of Section B, and ` : N → L. We state next the differences with
the (d, k)-frames seen in Section B.1.

– For x ∈ N , `1(x) is a tuple ([?1v ≈ EFv], [?2v 6≈ EFv], S), where ?1, ?2 can
be either the empty string or ¬, and where S is a potentially empty set
containing elements of the form AG≈v(a) with a ∈ L.

– Validity: We extend the validity conditions of Section B with the following
rules:
• If x ∈ N satisfies π1(`1(x)) = [v ≈ EFv] and AG≈v(a) ∈ π3(`1(x)), and

if y ∈ N is a descendant of x with x ≡ y, then `(y) = a.
• If x ∈ N satisfies AG≈v(a),AG≈v(b) ∈ π3(`1(x)) for a 6= b, then
π1(`1(x)) = [¬v ≈ EFv].

– We change the labeling function `2, such that its codomain is

{ε,	a1 , . . . ,	an ,	,⊕,⊕a1 , . . . ,⊕an}.

– For a root r ∈ N , `2(r) = ⊕ai iff π1(`1(x)) = [v ≈ EFv] and AG≈v(a) ∈
π3(`1(r)) and there is no descendant in the same frame in the same equivalence
class.

– For a root r ∈ N , `2(r) = ⊕ iff π1(`1(x)) = [v ≈ EFv] and π3(`1(r)) = ∅ and
there is no descendant in the same frame in the same equivalence class.

– For leaves z ∈ N , `2(z) = 	ai implies that `(z) = ai, AG≈v(ai) ∈ π3(`1(z))
and there is no node in the frame at distance < d from the root with the
same equivalence class as z.

– For leaves z ∈ N , `2(z) = 	 implies that π3(`1(z)) = ∅ and that there is no
node in the frame at distance < d from the root with the same equivalence
class as z.

A (d, k)-frame is an a-point of decrement of value p iff it has a maximum
of p leaves z1, . . . , zp in different equivalence classes and with `2(zj) = 	a for all
j. It is a neutral point of decrement of value p iff it has a maximum of p
leaves z1, . . . , zp in different equivalence classes and with `2(zj) = 	 for all j. A
(d, k)-frame is an a-point of increment if its root r has `2(r) = ⊕a and it is
not an a-point of decrement. It is a neutral point of increment if `2(r) = ⊕
and it is not an a-point of decrement for any a ∈ L.

The automaton Ckϕ We define the (h+ 1)VASSk Ckϕ and the sets Q0, Q̂ similarly

as in the case of Akϕ in Section B, using Observation 19 to take labels into account
with the notion of 1-consistency between the (d, k)-frames just defined.

We define Ckϕ as follows:

Logics of repeating values on data trees and branching counter systems 43

– We fix the dimension to be h+ 1. Let H = {a1, . . . , ah}. For i ≤ h, the i-th
coordinate will correspond with the label ai. Intuitively, i-th coordinate will
we used to count instances of v ≈ EFv ∧AG≈v(a), yet unsatisfied.

– The set of states of Ckϕ is Fd,k, the set consisting of all valid (d, k)-frames as
defined above.

– Unary rules. Let F1 and F2 be (d, k)-frames. We have the following rules: 8

• F1
−nei−−−→ F2 if F1 is an ai point of decrement of value n, and F2 is equal

to F1, except that `F2
2 is defined as follows:

`F2
2 (x) =

{
ε x is a leaf of F1 with `F1

2 (x) = 	ai ;
`F1
2 (x) otherwise.

• F1
−meh+1−−−−−→ F2 if either:
∗ F1 is a neutral point of decrement of value m and F2 is equal to F1,

except that `F2
2 is defined as follows:

`F2
2 (x) =

{
ε x is a leaf of F1 with `F1

2 (x) = 	;

`F1
2 (x) otherwise.

or
∗ F1 is a ai-point of decrement of value n ≥ m for some ai, and F2

is an ai point of decrement of value n − m such that F2 has m
fewer instances of distinct equivalence classes of nodes with 	ai , that
is: F2 is equal to F1, except for `F2

2 : for any node x, `F1
2 (x) = 	ai

implies either `F2
2 (x) = 	ai or `F2

2 (x) = 	ai , and if `F1
2 (x) 6= 	ai

then `F1
2 (x) = `F2

2 (x) .

• F1
ei−→ F2 if F1 is an ai point of increment, and F2 is equal to F1, except

that `F2
2 is defined as follows:

`F2
2 (x) =

{
ε x is the root of F1;

`F1
2 (x) otherwise.

• F1
eh+1−−−→ F2 if F1 is a neutral point of increment, and F2 is equal to F1,

except that `F2
2 is defined as follows:

`F2
2 (x) =

{
ε x is the root of F1;

`F1
2 (x) otherwise.

– Branching rules: F → (F1, . . . , Fi), if F is 1-consistent with F1, . . . , Fi.

We define the sets Q0, Q̂:

– Q0 consists of initial frames. A (d, k)-frame F of root r is initial iff the
following conditions hold:

8 There will we a non-deterministic choice of the order of decrements if there are leaves
with different 	aj , but the order of these operations is not relevant.

44 Abriola, Figueira and Figueira

• F, r satisfies all terms of ϕ of the form v ? EXiv or ¬v ? EXiv;
• if v ≈ EFv (resp. v 6≈ EFv) is a positive conjunct of ϕ, then the root
r ∈ NF satisfies π1(`F1 (r)) = [v ≈ EFv] (resp. π2(`F1 (r)) = [v 6≈ EFv]);

• if v ≈ EFv (resp. v 6≈ EFv) is a negative conjunct of ϕ, then for all
descendants y of the root r ∈ NF , it holds that π1(`F1 (y)) = [¬v ≈ EFv]
(resp. π2(`F1 (y)) = [¬v 6≈ EFv]).
• If b ∈ L and b is a conjunct of ϕ, then `(r) = b, for r the root of F .
• If AG≈v(a) is a conjunct of ϕ, then AG≈v(a) ∈ π3(`1(r)), for r the root

of F .
– Q̂ is the set of (d, k)-frames in Fd,k that consists solely of one node.

The analogous results to Propositions 13 and 18 hold for ϕ ∈ LRVD−
1 (AG+

≈)

and the corresponding (h+ 1)VASSk Ckϕ and the states Q0, Q̂. Hence we arrive at

Proposition 24. SATk(ϕ) iff CSReach(Ckϕ, Q0, Q̂).

As in Proposition 20, we can extend these results to the full logic, and then
extend for the general case where we allow any formula AG≈v(η) to appear in ϕ.

E Proof of Theorem 8

Proof (Complete proof of Theorem 8).
Using the merging rules as described in Section 7, the reduction from LRVD

to VASSk of Section 5 and Appendix B can be modified to obtain a reduction
from LRV to MVASSk. Frames and its notion of validity are extended to treat set
of variables. In particular, now the points of increment and decrement are always
relative to a set of variables. This follows, very roughly, the idea of coding from
[7] in the setup built in Section 5, but now some special care must be considered
because of the non-linearity of a tree. One must decide in advance to which leaf
of the frame the satisfaction of data demands will be delegated. The resulting
MVASSk now has dimension exponential in the number of variables of the input
formula. Concretely, in order to encode this logic we need to make the following
changes to the set of frames Fd,k we work with.

First of all, the labelling function `1 now labels pairs of sets of formulas.
These formulas labelled by `1 are of the form

– in the first component u ≈ EFv or ¬(u ≈ EFv)
– in the second component u 6≈ EFv or ¬(u 6≈ EFv)

for any pair of variables u, v used in the input formula. For simplicity, we write
ψ ∈ `1(x) (or, alternatively, that x is `1-labelled with ψ) to denote that ψ is
either in the first or second component of `1(x).

Further, instead of having one equivalence relation ≡ over the set of nodes,
we have an equivalence relation ≡ over pairs (x, u) where x is a node of hte frame
and u an attribute variable of the input formula ϕ. This is to account for the
possibility that different attributes can have the same data value.

Logics of repeating values on data trees and branching counter systems 45

In light of this, the formulas labeled by `1 must ‘respect’ ≡. That is, if u ≈
EFv ∈ `1(x) [resp. u 6≈ EFv ∈ `1(x)] and (x, u) ≡ (x, u′) then u′ ≈ EFv ∈ `1(x)
[resp. u′ 6≈ EFv ∈ `1(x)].

More importantly, the labelling `2 must be changed to reflect the fact that

(1) there may be several demands for the same attribute, as a result of formulas
like u ≈ EFv ∧ u′ ≈ EFv (as we will see next, this is the reason for the first
parameter of ⊕),

(2) there may be several attributes in a demand for equality, as a result of
formulas like u ≈ EFv ∧ u ≈ EFv′,

(3) a point of decrement needs to be a point that has some attributes U which
are not connected by equality to any ‘local’ ancestor and they are connected
possibly to some other attributes V in the descendants.

Formally, the mapping `2 now labels nodes with ⊕(U, V) and/or 	(U, V), where
U, V are sets of attribute variables. Each node x can receive more than one ⊕
or 	 label, that is, `2 is a function from nodes to subsets of {⊕(U, V) | U, V ⊆
V} ∪ {	(U, V) | U, V ⊆ V}, assuming V is the set of variables used in the input
formula.9 The idea is that ⊕(U, V) holding at x means that there must be a
data value appearing in the subtree at x under all the variables of V (possibly at
different nodes), which is equal to the u-attribute of the k-ancestor of x, for every
u ∈ U . On the other hand, 	(U, V) holding at x means that the data value of
the U -attributes of x (which are all the same) do no not appear in any i-ancestor
of x (i ≤ k), and they will appear in the future with attributes V .

We add the following conditions.

– For any two labels ⊕(U, V) and ⊕(U ′, V ′) at the same node, U and U ′ are
disjoint. For any two labels 	(U, V) and 	(U ′, V ′) at the same node, U and
U ′ are disjoint.

– For every leaf x which is `2-labeled with ⊕(U, V) we have that U is an
equivalence class of {(u, v) | (r, u) ≡ (r, v)}, where r is the root node.

– For every leaf x which is `2-labeled with 	(U, V) we have that for some v ∈ V
we have

U = {u | (x, u) ≡ (x, v)},
V = {u | [v ≈ EFu] ∈ `1(x)},

and that there is no ancestor y of x so that (x, u) ≡ (y, v′) for some u ∈ U ,
v′ ∈ V.

– There exists an `1-labelling u ≈ EFv holding at the root r if, and only if,
there exists a node x at some depth i so that either
• (r, u) ≡ (x, v), or
• (r, u) ≡ (x, v′) for some v′ and v′ ≈ EFv in `1(x), or
• i = k and x is `2-labeled with ⊕(U, V) with U = {u′ | (r, u) ≡ (r, u′)}

and v ∈ V .

9 It is worth remarking that `2(x) is always a set of size linear in |V| due to the next
conditions.

46 Abriola, Figueira and Figueira

– There exists an `1-labelling u 6≈ EFv holding at the root r if, and only if,
there exists a node x at some depth i so that either
• (r, u) 6≡ (x, v), or
• (r, u) ≡ (x, v) and v 6≈ EFv in `1(x).

1-step consistency is preserved as before. Now a point of increment for V
is a frame whose root is labeled with ⊕(U, V) for some U ; whereas a point of
decrement for W is a frame whose root is labeled with 	(U, V) for U ∪ V = W .

Finally, the automaton Akϕ is built as for the other reduction, with the
exception that now its dimension is exponential. As in the previous reductions,
the frames are the states of the automaton, where the initial frames are those that
do not contain ⊕/	 tags at nodes at distance < k from the root, and whose root
labeling is consistent with the satisfaction of the formula. In the automaton, we
have one coordinate associated with every non-empty subset V ⊆ V of attribute
variables (remember that we use ēV to denote ēi for the coordinate i associated
with V and ē∅ to denote 0̄). Unary rules now follow a logic of first decrementing
all the 	 at the root, and then incrementing all the ⊕ at the root. (The ⊕/	
tags of other nodes are differed to the moment when they will be at the root of
a frame.) That is, unary rules (F1,−ēU∪V , F2) whenever F1 has 	(U, V) at the
root, F2 is just like F1 but without the 	(U, V) at the root. We have unary rules
(F1, ēV , F2) whenever F1 has no 	-labels at the root, it has a ⊕(U, V) label at the
root, and F2 is the result of removing ⊕(U, V) at the root. Merging rules are built
as it was explained before. That is, we have (F1, 0̄ +B∗, (F ′1, . . . , F

′
k′)) whenever

F1 is 1-consistent with (F ′1, . . . , F
′
k′), and B consists of all vectors (ēV ēU1

· · · ēUk
),

so that V 6= ∅ and V =
⋃
i Ui. The partial order � will then be the subset

ordering on the components: i � j if the set associated to i is contained in that
associated to j. It is not hard to check that if Akϕ has a solution for CSReach if
and only if ϕ is satisfiable on k-ranked data trees using precisely the same ideas
as in the proof of Proposition 13. (See Appendix E.) ut

