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1. Introduction 1.1. Wavelet expansion. This paper deals with the local behaviour of the wavelet expansion of a given function. Recall that an orthogonal multiresolution analysis (MRA) with scaling function ϕ is a collection of subspaces (V j ) j∈Z of L 2 (R d ) such that (1) V j ⊂ V j+1 for all j ∈ Z;

(2) j∈Z V j = {0};

(3) j∈Z V j is dense in L 2 (R d ); (4) f (x) ∈ V j ⇐⇒ f (2x) ∈ V j+1 ;

(5) ϕ ∈ V 0 and its integer translates (ϕ(x -k)) k∈Z d form an orthonormal basis for V 0 .

The orthogonal projection P j on V j is called the partial reconstruction operator of order j. We can associate to the MRA a wavelet basis, namely a collection ψ (i) , i = 1, . . . , 2 d -1, of functions in L 2 (R d ) such that the functions 2 dj/2 ψ (i) (2 j • -k) for i ∈ {1, . . . , 2 d -1}, j ∈ Z, k ∈ Z d form an orthonormal basis of L 2 (R d ). The reconstruction operator P j , for j ≥ 0, can also be expressed by

P j f (x) = k∈Z d f, ϕ(• -k) ϕ(x -k) + l<j 2 d -1 i=1 k∈Z d 2 dl f, ψ (i) l,k ψ (i) l,k (x)
where

ψ (i) l,k = ψ (i) (2 l • -k).
Wavelet expansions have many remarkable properties. They provide unconditional basis of many function spaces, like L p -spaces (1 < p < +∞), Sobolev spaces and Besov spaces. In particular, (P j f ) converges to f with respect to the corresponding norm. In this paper, we are concerned with the pointwise convergence or divergence of (P j f (x)).
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Known results.

Convergence. This question was already investigated in many papers. In [START_REF] Kelly | Local convergence for wawelet expansions[END_REF], the authors show that (P j f (x)) converges almost everywhere for all f ∈ L p (p ≥ 1): the convergence holds at all Lebesgue points of f . When f is continuous, the convergence is locally uniform (see [START_REF] Walter | Pointwise convergence of wavelet expansions[END_REF]) and in smooth Sobolev spaces, one can even control f -P j f ∞ (see [START_REF] Kon | A characterization of wavelet convergence in Sobolev spaces[END_REF]).

Aubry results. In [START_REF] Aubry | On the rate of pointwise divergence of Fourier and wavelet series in L p[END_REF], Aubry is the first to study the set of points where (P j f (x)) diverges. In his paper, he answers several natural questions: can we say something on the speed of divergence of (P j f (x))? Can we say something on the size of the sets of x ∈ R d such that (P j f (x)) diverges at a given speed? To state Aubry's result, it is convenient to introduce the following sets, for β > 0 and f ∈ L p (R d ):

E -(β, f ) = x ∈ R d ; lim sup j log |P j f (x)| j log 2 ≥ β E -(β, f ) = x ∈ R d ; lim sup j log |P j f (x)| j log 2 = β E + (β, f ) = x ∈ R d ; lim inf j log |P j f (x)| j log 2 ≥ β E + (β, f ) = x ∈ R d ; lim inf j log |P j f (x)| j log 2 = β E(β, f ) = x ∈ R d ; lim j log |P j f (x)| j log 2 = β .
In what follows, dim H (E) will denote the Hausdorff dimension of E and dim P (E) its packing dimension. With this terminology, Aubry's theorem reads:

Theorem (Aubry). Let f ∈ L p (R d ), 1 < p < +∞ and β > 0. Then dim H E -(β, f ) ≤ d -βp. Conversely, if we are working with the Haar wavelet, given a set E ⊂ R such that dim H (E) < 1 -βp, there exists f ∈ L p (R) such that E ⊂ E -(β, f ).

Strictly speaking, Aubry's result was formulated for periodized wavelets, but his proof carries on to our context.

Bayart-Heurteaux results. In [START_REF] Bayart | Multifractal phenomena and packing dimension[END_REF], as an application of the general framework developed there, the authors improve the results of Aubry in two directions. First, they provide a bound for the dimension of E + (β, f ) involving the packing dimension. Second, in the spirit of [START_REF] Jaffard | On the Frisch-Parisi conjecture[END_REF] for the study of the local Hölder exponent and of [START_REF] Bayart | Multifractal analysis of the divergence of Fourier series[END_REF] for the divergence of Fourier series, they show that we can construct functions whose behaviour is multifractal with respect to the divergence of their wavelet expansion.

Theorem (Bayart-Heurteaux). Assume that we are working with the Haar wavelet.

(i) For all β ∈ (0, 1/2] and all f ∈ L 2 (R),

dim P E + (β, f ) ≤ 1 -2β;
(ii) For all functions f in a residual subset of L 2 (R), for all β ∈ (0, 1/2],

dim H E -(β, f ) = 1 -2β;

(iii) There exists a function f ∈ L 2 (R) such that, for all β ∈ (0, 1/2],

dim H E(β, f ) = dim P E(β, f ) = 1 -2β.

It should be pointed out that, to deduce this result from the general results proved in [START_REF] Bayart | Multifractal phenomena and packing dimension[END_REF], specific properties of the Haar basis were needed, in particular the positivity of the projections P j . These specific properties were also important for the proof of the second half of Aubry's theorem.

Esser-Jaffard results. Very recently, Esser and Jaffard undertake in [START_REF] Esser | Divergence of wavelet series: a multifractal analysis[END_REF] a multifractal analysis of the divergence of general wavelet series belonging to Besov spaces B s,q p (R d ). From now on, wavelets are assumed to be smooth enough, say, with at least derivatives up to order s + 1 having fast decay. To overcome the difficulty of working in a general context, Esser and Jaffard do not study the behaviour of |P j f (x)|, but that of the coefficients 2 dj f, ψ (i) j,k ψ (i) j,k (x). More precisely, let us define, for β ∈ R,

F -(β, f ) =    x ∈ R d ; lim sup j log sup i,k |2 dj f, ψ (i) j,k ψ (i) j,k (x)| j log 2 ≥ β    F -(β, f ) =    x ∈ R d ; lim sup j log sup i,k |2 dj f, ψ (i) j,k ψ (i) j,k (x)| j log 2 = β    .
It can be easily observed (see [START_REF] Esser | Divergence of wavelet series: a multifractal analysis[END_REF]Proposition 2.1]) that, for all 0 < γ < β, E -(β, f ) ⊂ F -(γ, f ) (heuristically speaking, if the sum is large, at least one of the coefficients should be large).

With this terminology, we can state their main theorem as follows.

Theorem (Esser-Jaffard). Let s ≥ 0, p, q ∈ (0, +∞).

(i) For all f ∈ B s,q p (R d ), for all β ∈ -s, d p -s , dim H F -(β, f ) ≤ d -sp -βp. (ii) For all f in a residual and prevalent subset of B s,q p (R d ), for all β ∈ -s, d p -s , dim H F -(β, f ) = d -sp -βp.
Prevalence is an extension of the notion of almost everywhere in infinite-dimensional vector spaces. We shall use only the following properties (which appear e.g. in [START_REF] Christensen | On sets of Haar measure zero in abelian Polish groups[END_REF] or in [START_REF] Hunt | Prevalence: a translation invariant "almost every" on infinitedimensional spaces[END_REF]) where X is any Banach space:

• the countable intersection of prevalent subsets of X remains a prevalent subset of X;

• if A ⊂ B ⊂ X and A is a prevalent subset of X, then B is a prevalent subset of X;
• in order to prove that Y ⊂ X is prevalent, it is enough to find a finite-dimensional subspace V of X such that, for all f ∈ X, for almost all v ∈ V (with respect to the Lebesgue measure on V ), f +v ∈ Y . In that case, we say that Y is dim V -prevalent.

Our results. In the present paper, we come back to the study of the divergence of (P j f (x)), which seems more delicate since compensations can come into play. We also investigate the lim inf and lim sets, namely E + (β, f ), E + (β, f ) and E(β, f ), which need very careful constructions since we want to control (P j ) for all j and not only for some j. Our first result is a full generalization of the results of Aubry and Bayart/Heurteaux to all wavelet basis with compact support and to Besov and Sobolev spaces admitting functions whose wavelet expansion diverges at some point (namely when d -sp > 0).

Theorem 1.1. Let s ≥ 0, p, q ∈ [1, +∞) and X = B s,q p (R d ) or X = W p,s (R d ).
Assume that the wavelets have compact support.

(i) For all f ∈ X, for all β ∈ 0, d p -s , dim H E -(β, f ) ≤ d -sp -βp dim P E(β, f ) ≤ d -sp -βp.
(ii) For all f in a residual and prevalent subset of X, for all β ∈ 0, d p -s ,

dim H E -(β, f ) = d -sp -βp.
(iii) There exists f ∈ X such that for all β ∈ 0, d p -s ,

dim H E(β, f ) = dim P E(β, f ) = d -sp -βp.
Theorem 1.1 does not cover all natural cases. Indeed, in Besov spaces, wavelet series are convergent at many points (and even at all points if d -sp < 0). For such a point, one is interested in the speed of decay to zero of the remainder

R j f (x) = l≥j 2 d -1 i=1 k∈Z d 2 dl f, ψ (i) l,k ψ (i) l,k (x). 
This motivates us to introduce, for β < 0, the following sets:

E -(β, f ) = x ∈ R d ; P j f (x) converges and lim sup j log |R j f (x)| j log 2 ≥ β E -(β, f ) = x ∈ R d ; P j f (x) converges and lim sup j log |R j f (x)| j log 2 = β E + (β, f ) = x ∈ R d ; P j f (x) converges and lim inf j log |R j f (x)| j log 2 ≥ β E + (β, f ) = x ∈ R d ; P j f (x) converges and lim inf j log |R j f (x)| j log 2 = β E(β, f ) = x ∈ R d ; P j f (x) converges and lim j log |R j f (x)| j log 2 = β .
We get the following version of Theorem 1.1 for these convergence sets.

Theorem 1.2. Let s ≥ 0, p, q ∈ [1, +∞) and X = B s,q p (R d ) or X = W p,s (R d ).
Assume that the wavelets have compact support.

(i) For all f ∈ X, for all β ∈ -s, min 0, d p -s \{0}, dim H E -(β, f ) ≤ d -sp -βp dim P E(β, f ) ≤ d -sp -βp.
(ii) For all f in a residual and prevalent subset of X, for all β ∈ -s, min 0, d p -s \{0},

dim H E -(β, f ) = d -sp -βp.
(iii) There exists f ∈ X such that for all β ∈ -s, min 0, d p -s \{0},

dim H E(β, f ) = dim P E(β, f ) = d -sp -βp.
If we look carefully at Part (i) of Theorems 1.1 and 1.2 and if we compare it with Part (i) of Bayart/Heurteaux theorem, or with the standard inequality on the local dimension of measures, we observe that we only get an estimation of the packing dimension of E(β, f ) whereas it would be natural to expect the stronger inequality dim P E + (β, f ) ≤ dsp -βp. Surprizingly, when s > 0, this inequality is not satisfied by all functions when d -sp > 0 whereas it is satisfied by all functions if d -sp < 0.

Theorem 1.3. Assume that the wavelets have compact support.

(i) If s > 0, d = 1 and 1 -sp > 0, for all β ∈ -s, 1 p -s \{0}, there exists f ∈ B s,1 p (R) such that dim P E + (β, f ) > 1 -sp -βp. (ii) If d -sp < 0, for all β ∈ -s, d p -s \{0}, for all f ∈ B s,∞ p (R d ), dim P E + (β, f ) ≤ d -sp -βp.
The paper is organized as follows. In Section 2, we introduce definitions and notations used throughout the paper. Section 3 contains the proof of part (i) of Theorems 1.1 and 1.2 and even more: we do not need the assumption that the wavelets have compact support here. Section 4 is devoted to the proof of the remaining parts of these theorems. The main difficulty that we have to overcome is the nonpositivity of the projections P j . We tackle it by the construction of a Cantor set where we control the behaviour of the wavelets.

In Section 5, we turn to a detailed study of the packing dimension of the sets E + (β, f ).

Here too, we need to construct a Cantor set with special properties to be able to define a function f ∈ B s,1 p (R) such that dim P E + (β, f ) > 1 -sp -βp. The last section contains additional remarks. 1.3. Notations. We shall use the following notations. For p ∈ [1, +∞], p * denotes its conjugate exponent, 1/p + 1/p * = 1. The letter C will denote a constant (which usually depends on the parameters p, q, s, d and on the wavelets ψ (i) , but does not depend on the level j of the projection), whose value may change from line to line. To emphasize that C depends on A, we occasionaly write C A .

Preliminaries

2.1. Dyadic cubes. We shall index wavelets using dyadic cubes. For k = (k 1 , . . . , k d ) ∈ Z d and j ≥ 0, λ = (j, k) will denote the dyadic cube of the j-th generation

λ = (j, k) := k 1 2 j , k 1 + 1 2 j × • • • × k d 2 j , k d + 1 2 j .
We will index wavelets and wavelet coefficients by (i, j, k) or by (i, λ), writing indifferently ψ

(i)
λ or ψ (i) j,k . Furthermore, Λ j will denote the set of dyadic cubes of the j-th generation. Any element x ∈ R d belongs to a unique λ ∈ Λ j which we will denote by λ j (x). We take for norm on R d the supremum norm, so that the diameter of a dyadic cube of Λ j is exactly 2 -j . 2.2. Besov and Sobolev spaces. We shall use the following definition for Besov spaces. We start with a MRA with scaling function ϕ and wavelet basis (ψ

(i) λ ). Let f ∈ L p (R d ) and define, for k ∈ Z d , i ∈ {1, . . . , 2 d -1} and λ a dyadic cube, C k = R d ϕ(x -k)f (x)dx, c (i) λ = R d 2 dj ψ (i) λ (x)f (x)dx.
Then we say that f belongs to the Besov space B s,q p (R d ) (s ≥ 0, p ∈ (0, +∞], q ∈ (0, +∞]) if (C k ) belongs to p and if, setting for all j ≥ 1

ε j = 2 s-d p j   i λ∈Λ j |c (i) λ | p   1/p
then the sequence (ε j ) belongs to q (we shall use the L ∞ normalization for wavelets).

The norm of f in B s,q p (R d ) is then defined as the sum of the p -norm of (c k ) and the q -norm of (ε j ). When the wavelets are smooth enough, an assumption that we make throughout the paper, this definition matches the classical definition of Besov spaces (see [START_REF] Meyer | Ondelettes et opérateurs[END_REF]). We also observe that we immediately get that, for all f ∈ B s,∞ p (R d ) and all λ ∈ Λ j , |c

(i) λ | ≤ C2 d p -s j .
Besov and Sobolev spaces are very close. It is well known (see for instance [START_REF] Bergh | Interpolation spaces[END_REF]) that

B s,1 p (R d ) ⊂ W p,s (R d ) ⊂ B s,∞ p (R d ),
where W p,s (R d ) stands for the usual Sobolev space. We shall use these inclusions by producing saturating functions in B s,1 p (R d ) and by estimating the dimension of the level sets for functions in B s,∞ p (R d ).

2.3. Wavelets. Throughout this work, we shall assume that the wavelets have fast decay, namely that, for all N ≥ 0, there exists a constant C N > 0 such that, for all i = 1, . . . ,

2 d -1 and all x ∈ R d , (1) 
ψ (i) (x) ≤ C N (1 + x ) N .
We shall use several times the following lemmas, which are easy consequences of (1). Lemma 2.1. There exists C > 0 such that, for all j ∈ N and all x ∈ R d ,

i λ∈Λ j |ψ (i) λ (x)| ≤ C.
Lemma 2.2. Let ε > 0 and κ > 0. There exists C ε,κ such that, for all x ∈ R d , for all j ∈ N, i λ=(j,k);

2 j x-k ≥2 εj |ψ (i) λ (x)| ≤ C ε,κ 2 -κj .
Proof. Lemma 2.1 follows immediately from [START_REF] Aubry | On the rate of pointwise divergence of Fourier and wavelet series in L p[END_REF] with N ≥ d + 1 and standard calculus. To prove Lemma 2.2, we write for 2 j x -k ≥ 2 εj ,

|ψ (i) λ (x)| ≤ C N (1 + 2 j x -k ) N/2 2 -εN/2
and we choose N ≥ max(2d + 2, 2κ/ε). Lemma 2.1 in turn easily implies that, for all f ∈ B s,∞ p (R d ), for all x ∈ R d , for all j ∈ N,

|P j f (x)| ≤ C2 d p -s j if d -sp > 0 and |R j f (x)| ≤ 2 d p -s j if d -sp < 0, which justifies the restriction β ≤ d
p -s in Theorems 1.1 and 1.2. They are also useful to prove the following result vthat quantifies how close are P j f (x) and P j f (y) if x and y are close. We define, for l ≥ 1,

Q l f (x) = 2 d -1 i=1 k∈Z d 2 dl f, ψ (i) l,k ψ (i) l,k (x) = 2 d -1 i=1 λ∈Λ l c (i) λ ψ (i) λ (x). Lemma 2.3. Let s ≥ 0, p, q ∈ [1, +∞], β ∈ R. There exist C β > 0 and θ > 0 such that, for all f ∈ B s,q p (R d ), for all j ∈ N, for all x, y ∈ R d with x -y < 2 -θj , |Q j f (x) -Q j f (y)| ≤ C β 2 βj f B s,q p . Proof. Let f ∈ B s,q
p (R d ) and let x, y ∈ R d . By Hölder's inequality,

|Q j f (x) -Q j f (y)| ≤ f 2 -s-d p j   i λ∈Λ j |ψ (i) λ (x) -ψ (i) λ (y)| p *   1/p * ≤ f 2 -s-d p j i λ∈Λ j |ψ (i) λ (x) -ψ (i) λ (y)| ≤ f 2 -s-d p j i   λ∈Γ 1 |ψ (i) λ (x) -ψ (i) λ (y)| + λ∈Γ 2 |ψ (i) λ (x) -ψ (i) λ (y)|   where Γ 1 = {λ = (j, k) ∈ Λ j ; 2 j x -k ≥ 2 j and 2 j y -k ≥ 2 j } and Γ 2 = Λ j \Γ 1 . By Lemma 2.2, there exists some C β > 0 such that, for all x, y ∈ R d , 2 -s-d p j i λ∈Γ 1 |ψ (i) λ (x) -ψ (i) λ (y)| ≤ C β 2 βj .
On the other hand, since card

(Γ 2 ) ≤ C2 dj , 2 -s-d p j i λ∈Γ 2 |ψ (i) λ (x) -ψ (i) λ (y)| ≤ C2 -s-d p j 2 dj 2 j x -y ≤ C2 -s-d p -d-1+θ j provided x -y ≤ 2 -θj .
A choice of θ > 0 large enough allows us to conclude.

3.

Upper bounds for the dimension 3.1. Hausdorff dimension. Our aim in this subsection is to prove the following proposition, which does not require that the wavelets have compact support.

Proposition 3.1. Let β ∈ -s, d p -s \{0} and f ∈ B s,∞ p (R d ). Then dim H E -(β, f ) ≤ d -sp -βp.
Proof. We first observe that in the case β > 0, this is already known. This follows indeed from the inclusion E -(β, f ) ⊂ F -(γ, f ) for all γ < β and from the corresponding result of Esser and Jaffard. For β ∈ -s, min 0, d p -s (the result is trivial if β = -s), the inclusion is reversed and we need to provide a proof (inspired by that of [START_REF] Esser | Divergence of wavelet series: a multifractal analysis[END_REF]). Let γ ∈ (-s, β) and ε > 0. For j ∈ N, we define

Γ j,γ = λ ∈ Λ j ; ∃i, |c (i) λ | ≥ 2 γj E j,γ,ε = λ∈Γ j,γ λ + B 0, 2 -(1-ε)j E γ,ε = lim sup j→+∞ E j,γ,ε . Since f belongs to B s,∞ p (R d )
, the cardinal number of Γ j,γ is less than C2 (d-sp-γp)j . Thus, E j,γ,ε is composed of at most C2 (d-sp-γp)j cubes of width C2 -(1-ε)j . Using these cubes for j large as a covering of E γ,ε yields

dim H E γ,ε ≤ d -sp -γp 1 -ε .
Letting γ to β and ε to 0, we get the conclusion if we prove that E -(β, f ) ⊂ E γ,ε . Therefore, assume that x / ∈ E γ,ε . Let J ∈ N be such that, for all j ≥ J, x / ∈ E j,γ,ε . For j ≥ J one may write

|R j f (x)| ≤ l≥j   λ∈Λ l \Γ l,γ i |c (i) λ | • |ψ (i) λ (x)| + λ∈Γ l,γ i |c (i) λ | • |ψ (i) λ (x)|   . Now, let λ = (l, k) ∈ Γ l,γ . Since x / ∈ E l,γ,ε , 2 l x -k ≥ 2 εl . Moreover, |c (i) λ | ≤ C2 d p -s l . Using Lemma 2.2 with a sufficiently large κ, we get l≥j λ∈Γ l,γ i |c (i) λ | • |ψ (i) λ (x)| ≤ C2 γj . Furthermore, l≥j λ∈Λ l \Γ l,γ i |c (i) λ | • |ψ (i) λ (x)| ≤ l≥j λ∈Λ l i 2 γl |ψ (i) λ (x)| ≤ C2 γj by Lemma 2.1. Hence x / ∈ E -(β, f ).
A small variant of the above proof implies the following result, which will be needed later.

Proposition 3.2. Let f ∈ B s,∞ p (R d ). Then dim H x ∈ R d ; (P j f (x)) diverges ≤ d -sp.
Proof. Keeping the same notation, it suffices to observe that, for any γ < 0 and any ε > 0, (P j f (x)) converges provided x / ∈ E γ,ε .

Packing dimension.

We now prove the statement about the packing dimension (again, our proof does not require that the wavelets are compactly supported).

Proposition 3.3. Let β ∈ -s, d p -s \{0} and f ∈ B s,∞ p (R d ). Then dim P E(β, f ) ≤ d -sp -βp.
We need to introduce some notations. For λ 0 ∈ Λ, ε > 0 and l ∈ N, we denote

Λ l,λ 0 ,ε = λ ∈ Λ l ; λ + B(0, 2 -(1-ε)l ) ∩ λ 0 = ∅ .
It is not difficult to observe that, j, l, ε being kept fixed, any λ ∈ Λ l belongs to at most C d 2 d(j-l)+εdl different sets Λ l,λ 0 ,ε for λ 0 describing Λ j and that, for a fixed

λ 0 ∈ Λ j , card(Λ l,λ 0 ,ε ) ≤ C d 2 εdl + 2 d(l-j) .
The cubes which are not in Λ l,λ 0 ,ε are cubes with few interaction with λ 0 . In particular,

if x ∈ λ 0 and λ = (l, k) / ∈ Λ l,λ 0 ,ε , then (2) 2 l x -k ≥ 2 εl .
Let us also set

f l,λ 0 ,ε =   i λ∈Λ l,λ 0 ,ε |c (i) λ 2 s-d p l | p   1/p f l =   i λ∈Λ l |c (i) λ 2 s-d p l | p   1/p
It follows from the above discussion that, for all λ 0 ∈ Λ j and for all l ∈ N,

  λ 0 ∈Λ j f p l,λ 0 ,ε   1/p ≤ C d 2 d(j-l)+εdl f l .
Our starting point is to say that if we control the behaviour of all P j f (x) or all R j f (x), then we control the behaviour of at least one Q l f (x) for l close to j.

Lemma 3.4. Let β ∈ R\{0}, ε ∈ (0, 1) and f ∈ B s,∞ p (R d ). Then E(β, f ) ⊂ x ∈ R d ; lim inf j→+∞ sup l∈[(1-ε)j,(1+ε)j] log |Q l f (x)| j log 2 ≥ β .
Proof. We first assume β > 0. Let δ > 0 and pick x ∈ E(β, f ). Then, provided j is large enough, we have simultaneously

|P j(1+ε) f (x)| ≥ 2 (1+ε)(β-δ)j |P j(1-ε) f (x)| ≤ 2 (1-ε)(β+δ)j .
Hence, for j large enough,

P j(1+ε) f (x) -P j(1-ε) f (x) ≥ 1 2 2 (1+ε)(β-δ)j ≥ 2 βj provided (1 + ε)(β -δ) > (1 -ε)(β + δ) and (1 + ε)(β -δ) > β.
Both conditions are satisfied if δ is sufficiently close to 0. Since

sup l∈[(1-ε)j,(1+ε)j] |Q l f (x)| ≥ 1 2εj + 1 P j(1+ε) f (x) -P j(1-ε) f (x)
we get the conclusion. The proof for β < 0 is similar, but working now with R j instead of P j . Indeed, provided j is large enough, we have simultaneously

|R j(1+ε) f (x)| ≤ 2 (1+ε)(β+δ)j |R j(1-ε) f (x)| ≥ 2 (1-ε)(β-δ)j
and we choose δ > 0 such that

(1 + ε)(β + δ) < (1 -ε)(β -δ) and (1 -ε)(β -δ) > β.
The next lemma is crucial. It essentially says that if |Q l f (x)| is large, then the localized norm f l,λ j (x),ε is also large.

Lemma 3.5. Let f ∈ B s,∞ p (R d ), x ∈ R d , κ ∈ R, ε ∈ (0, 1) and j, l ∈ N with l ∈ [(1 -ε)j, (1 + ε)j]. Then |Q l f (x)| ≤ C2 d p -s+θ(ε) j f l,λ j (x),ε + C2 κj
where θ : (0, +∞) → (0, +∞) satisfies lim 0 + θ = 0.

Proof. We write

|Q l f (x)| ≤ i λ∈Λ l,λ j (x),ε |c (i) λ | • ψ (i) λ ∞ + i λ / ∈Λ l,λ j (x),ε |c (i) λ | • |ψ λ (x)|.
We deduce from Lemma 2.2, (2) and the inequality |c

(i) λ | ≤ C2 d p -s l
that the last term is majorized by C2 κj . Therefore, Hölder's inequality yields

|Q l f (x)| ≤    i λ∈Λ l,λ j (x),ε |c (i) λ | p    1/p    i λ∈Λ l,λ j (x),ε 1    1/p * + C2 κj ≤ C2 -s-d p l 2 εdl + 2 εdj 1/p * f l,λ j (x),ε + C2 κj .
Taking into account that |j -l| ≤ εj, we get the result.

Proof of Proposition 3.3. Let us fix β ∈ -s, d p -s \{0} (the statement is trivial for β = -s). Let γ ∈ (-s, β) and ε ∈ (0, 1). Then

E(β, f ) ⊂ G + (γ, ε, f ) := x ∈ R d ; ∃J ∈ N, ∀j ≥ J, sup l∈[(1-ε)j,(1+ε)j] |Q l f (x)| ≥ 2 γj . Set G + J (γ, ε, f ) := x ∈ R d ; ∀j ≥ J, sup l∈[(1-ε)j,(1+ε)j] |Q l f (x)| ≥ 2 γj . We intend to show that, for each J ≥ 1, dim B G + J (γ, ε, f ) ≤ d -sp -γp + ω(ε) where lim + 0 ω = 0. Since G + (γ, ε, f ) ⊂ J G + J (γ, ε, f ), it will follow from [10, Section 3.3 and 3.4]) that dim P (E(β, f )) ≤ d -sp -γp + ω(ε).
Letting γ to β and ε to 0 will then yield the result. Let j ≥ J be large and let Θ j be the dyadic cubes of the j-th generation intersecting G + J (γ, ε, f ). Let N j be the cardinal number of Θ j . Then, for any λ 0 ∈ Θ j , Lemma 3.5 applied with κ < γ to some x ∈ λ 0 ∩ G + J (γ, ε, f ) implies that there exists

l 0 ∈ [(1 -ε)j, (1 + ε)j] with 2 γpj ≤ |Q l 0 f (x)| p ≤ C2 (d-sp+θ(ε)p)j sup l∈[(1-ε)j,(1+ε)j] f p l,λ 0 ,ε + 1 2 2 γpj .
Summing this over all λ 0 ∈ Θ j we get

N j 2 γpj ≤ C2 (d-sp+θ(ε)p)j λ 0 ∈Θ j sup l∈[(1-ε)j,(1+ε)j] f p l,λ 0 ,ε ≤ C2 (d-sp+θ(ε)p)j l∈[(1-ε)j,(1+ε)j] λ 0 ∈Λ j f p l,λ 0 ,ε .
Now since any λ ∈ Λ l with |l -j| ≤ εj belongs to at most C d 2 εdj+ε(1+ε)dj different sets Λ l,λ 0 ,ε for λ 0 describing Λ j , we have that for any such l

λ 0 ∈Λ j f p l,λ 0 ,ε ≤ C2 εdpj+ε(1+ε)dpj f l .
This in turn implies

N j 2 γpj ≤ C2 (d-sp+θ(ε)p)j 2 εdpj+ε(1+ε)dpj l∈[(1-ε)j,(1+ε)j] f p l ≤ (2εj + 1)2 (d-sp+θ(ε)p)j 2 εdpj+ε(1+ε)dpj f p . Thus, lim sup j→+∞ log N j j log 2 ≤ d -sp -γp + θ(ε)p + εdp + ε(1 + ε)d,
which allows us to conclude.

Existence of multifractal functions

Throughout this section, we assume that the wavelets have compact support.

4.1.

A Cantor set with prescribed behaviour of the wavelets. The nonpositivity of the wavelets (more precisely, the nonpositivity of P j ) add substantial difficulties to the construction of a saturating function f such that P j f (x) is large for all j and all x in a big set. Our strategy is to force positivity by the construction of a big Cantor set where we control the behaviour of many ψ 

• dim H (K) = dim P (K) ≥ d .
• K is the decreasing intersection of compact sets K n , where each K n is the union of closed dyadic cubes of width 2 -(t+N n) . We denote by Θ n the set of closed dyadic cubes of width 2

-(t+N n) such that K n = λ∈Θn λ. • To each λ ∈ Θ n , we may associate a closed dyadic cube µ(λ) of width 2 -N n such that, if λ = λ ∈ Θ n , then µ(λ) = µ(λ ). • For all x ∈ K n and all λ ∈ Θ n , ψ (1) µ(λ) (x) ≥ 1 if x ∈ λ ψ (1) µ(λ) (x) = 0 otherwise.
Proof. To simplify the notations, we will only provide a proof for the one-dimensional case. Rescaling ψ = ψ (1) if necessary, we may assume that ψ ≥ 1 on some dyadic interval

k 2 t , k+1 2 t
and that ψ = 0 outside [0, 1]. Let N ≥ t be a very large integer and

Ω = 2 N -t k, 2 N -t k + 1, . . . , 2 N -t k + 2 N -t -1 .
For m ∈ Ω, let s m be the similarity s m (x) = 1 2

N x + m 2 N . We start from K 0 = k 2 t , k+1 2 t
and we observe that the choice of Ω is done in order to ensure that s m (K 0 ) ⊂ K 0 for all m ∈ Ω. Define inductively K n = m∈Ω s m (K n-1 ) and K = n≥0 K n . The compact set K satisfies the open set condition, namely there exists a nonempty bounded open set V such that V ⊃ m∈Ω s m (V ) where the union is disjoint. For instance, the set k 2 t , k+1

2 t
does the job since

s m k 2 t , k + 1 2 t = k + m2 t 2 N +t , k + m2 t + 1 2 N +t .
It follows from the standard theory of autosimilar sets (see e.g. [START_REF] Falconer | Fractal geometry: Mathematical foundations and applications[END_REF]) that dim

H (K) = dim P (K) = κ where κ is the solution of card(Ω) × 1 2 N κ = 1 ⇐⇒ 2 N -t 2 N κ = 1.
Letting N to infinity, we may be sure that κ is as close to 1 as we want. Each K n consists of closed dyadic intervals of width 2 -(t+N n) . We denote by Θ n the set of these intervals. We prove by induction on n that any λ ∈ Θ n can be written (uniquely) λ = k+l2 t 2 t+N n , k+l2 t +1 2 t+N n . This is true for n = 0. If we assume that this is true up to n, then any λ ∈ Θ n+1 is equal to

λ = s m k + l2 t 2 t+N n , k + l2 t + 1 2 t+N n = k + 2 t (l + 2 N n m) 2 t+N (n+1) , k + 2 t (l + 2 N n m) + 1 2 t+N (n+1)
for some l, m.

We then define

µ(λ) = l 2 N n , l+1 2 N n so that, for λ = λ ∈ Θ n , we indeed have µ(λ) = µ(λ ). Finally, if x belongs to λ = k+l2 t 2 t+N n , k+l2 t +1 2 t+N n , then ψ µ(λ) (x) = ψ(2 N n x -l) and it is easy to check that 2 N n x -l ∈ k 2 t , k+1 2 t so that ψ µ(λ) (x) ≥ 1.
On the other hand, if

x ∈ λ = k+l 2 t 2 t+N n , k+l 2 t +1 2 t+N n with λ = λ , then 2 N n x -l / ∈ [0, 1], so that ψ µ(λ) (x) = 0.
4.2. The saturating functions -case of divergence. To prove part (ii) and (iii) of Theorem 1.1, we begin with the construction of one function whose wavelet series diverges fast on a set with given upper box dimension and which is moreover nonnegative. We also assume that s > 0 so that the interval (d -sp, d) is not empty. 

(0, d -sp), for all G ⊂ K with dim B (G) < α, there exists f ∈ B s,1 p (R d ), f ≤ 1 such that • for all x ∈ K, for all j ∈ N, P j f (x) ≥ 0; • for all x ∈ G, lim inf j log |P j f (x)| j log 2 ≥ d-sp-α p . Proof. Let α ∈ (dim B (G), α). Let Γ n ⊂ Θ n be the dyadic balls of width 2 -(t+N n) inter- secting G. One knows that card(Γ n ) ≤ C G 2 (t+N n)α . Define f n = 2 (N n+t)× d-sp-α p λ∈Γn ψ (1) µ(λ)
so that, since for λ ∈ Γ n , µ(λ) is a cube of the N n-th generation,

f n ≤ 2 (N n+t)× d-sp-α p (card(Γ n )) 1/p 2 N n× sp-d p ≤ C G .
We then set f = n≥1 n -2 f n . For x ∈ K and j ∈ (N n, N (n + 1)],

P j f (x) = l≤n l -2 2 (N l+t)× d-sp-α p λ∈Γ l ψ (1) µ(λ) (x)
and this is always nonnegative. Moreover, if x belongs to G, then x belongs to some λ ∈ Γ n so that

P j f (x) ≥ n -2 2 N n+t × d-sp-α p .
This shows that lim inf

j log P j f (x) j log 2 ≥ d -sp -α p ≥ d -sp -α p .
For our proof of prevalence, we will need a variant of the previous result.

Theorem 4.3. Let d ∈ (d -sp, d) and let K, N, t be given by Proposition 4.1. Let also J ≥ 1. For all α ∈ (0, d -sp), for all G ⊂ K with dim B (G) < α, there exist f 0 , . . . , f J-1 ∈ B s,1 p (R d ), f k ≤ 1 such that • for all x ∈ K, for all j ∈ N, for all k ∈ {0, . . . , J -1}, P j f k (x) ≥ 0;

• for all x ∈ G, for all j ∈ N, for all k ∈ {0, . . . , J -1}, for all l ∈ {0, . . . , JN -1}

with kN = l, Q jJN +l f k (x) = 0; • for all k ∈ {0, . . . , J -1}, lim inf j inf x∈G log |Q jJN +kN f k (x)| jJN log 2 ≥ d-sp-α p .
Proof. The proof is identical to that of Theorem 4.2 except that we now set

f k = n≥1; n=k [J] n -2 f n .
4.3. Existence of one strongly multifractal functions -the divergence case. We now go from the existence of one function f with control of P j f (x) on a set of given upper box dimension to the existence of a function f with control of P j f (x) on a set of given packing dimension. We recall that X = B s,q p (R d ) or that X = W p,s (R d ) and we still assume that s > 0. 

(0, d -sp), for all F ⊂ K with dim P (F ) = α, there exists f ∈ X, f ≤ 1 such that • for all x ∈ K, for all j ∈ N, P j f (x) ≥ 0; • for all x ∈ F , lim inf j log |P j f (x)| j log 2 ≥ d-sp-α p .
Proof. Let (α l ) be a sequence decreasing to α. Then there exists a sequence (G l,u ) of subsets of (0, 1) d such that F ⊂ l u G l,u and dim B (G l,u ) < α l . We apply Theorem 4.2 with G = G l,u ∩ K and α = α l to get a function f l,u and we set f = l,u 2 -(l+u) f l,u . Then, for any x ∈ K,

P j f (x) ≥ l,u 2 -(l+u) P j f l,u (x) ≥ 0.
Moreover, let l ≥ 1 and x ∈ F . There exists u such that x ∈ G l,u . Then from P j f (x) ≥ 2 -(l+u) P j f l,u (x) we deduce that lim inf

j log |P j f (x)| j log 2 ≥ d -sp -α l p .
Since α l may be taken arbitrarily close to α, we get the result.

We are now ready for the proof of part (iii) of Theorem 1.1. (see [START_REF] Bayart | Multifractal spectra of typical and prevalent measures[END_REF]). Let (β k ) be a dense sequence in 0, d p -s . For any k ≥ 1, Lemma 4.4 yields the existence of a function

Proof of part (iii) of

f k ∈ X, f k ≤ 1, such that, for all x ∈ F β k , lim inf j log |P j f k (x)| j log 2 ≥ β k
and P j f k (y) ≥ 0 for all y ∈ K. We set f = k 2 -k f k and let β ∈ 0, d p -s . Taking (β φ(k) ) a subsequence of (β k ) increasing to β, we get for all k and all x ∈

F β ⊂ F β φ(k) , lim inf j log |P j f (x)| j log 2 ≥ β φ(k) .
Hence, lim inf

j log |P j f (x)| j log 2 ≥ β.
Now, we can decompose F β into

F β = F β ∩ E(β, f ) ∪ γ>β F β ∩ E -(γ, f ) . Because of Proposition 3.1, H d-sp-βp E -(γ, f ) = 0 for all γ > β so that dim H F β ∩ E(β, f ) = d -sp -βp. This yields the conclusion, since d -sp -βp ≤ dim H F β ∩ E(β, f ) ≤ dim H E(β, f ) ≤ dim P E(β, f ) ≤ d -sp -βp.
Observe also that, because of part (i), there is nothing to do for β = d p -s.

4.4.

Residuality of multifractal functions -the divergence case. We intend to prove the residual part of Theorem 1.1 (ii). Again we assume s > 0 and pick d ∈ (d-sp, d).

Let us fix K the compact set given by Proposition 4.1. Our first step is to exhibit, for all compact sets F ⊂ K with dim H (F ) = α, a residual set R F such that, for all f ∈ R F , for all x ∈ F , lim sup

j log |P j f (x)| j log 2 ≥ d -sp -α p .
Although this construction can be carried on for all such subsets F (and even without the restriction F ⊂ K), we will impose that dim P (F ) = α. In that case, the construction is simplified by the existence of one function satisfying the stronger property:

(3) ∀x ∈ F, lim inf

j log |P j f (x)| j log 2 ≥ d -sp -α p .
Lemma 4.5. Let d ∈ (d -sp, d) and let K be given by Proposition 4.1. For all α ∈ (0, d -sp), for all compact sets F ⊂ K with dim P (F ) = α, there exists a residual subset R F ⊂ X such that, for all f ∈ R F , for all x ∈ F , lim sup

j log |P j f (x)| j log 2 ≥ d -sp -α p .
Proof. Let f ∈ X satisfying (3). Let (f l ) be a dense sequence in X such that f l ∈ V l for all l (recall that we assume p, q = ∞). Let finally (α l ) be a sequence decreasing to α. We define g l = f l + 1 l f . Then, for all l ≥ 1 and all x ∈ F , there exists an integer J l,x such that, for all j ≥ J l,x ,

|P j g l (x)| > 2 d-sp-α l p j .
By compactness of F , J l := max {J l,x ; x ∈ F } does exist. Let now m ≥ 1 and set j l,m = max(J l , m). There exists δ l,m > 0 such that, for all g ∈ B X (g l , δ l,m ), for all x ∈ F ,

|P j l,m g(x)| ≥ 2 d-sp-α l p j l,m . Define R F = m≥1 l≥m B X (g l , δ l,m
) which is a residual subset of X. Pick g ∈ R F and m ≥ 1. There exists l ≥ m such that g ∈ B X (g l , δ l,m ). Then there exists j ≥ m such that, for all x ∈ F ,

|P j g(x)| ≥ 2 d-sp-α l p j ≥ 2 d-sp-αm p j .
Since (α m ) goes to α, we are done.

Remark 4.6. The functions in R F have a stronger property. Indeed, they satisfy lim sup

j inf x∈F log |P j f (x)| j log 2 ≥ d -sp -α p .
We are now ready to prove the residual part of Theorem 1.1 (ii).

Proof of Theorem 1.1, part (ii), residuality. We start as in subsection 4. Let also (β k ) be a dense sequence in 0, d p -s . For any k ≥ 1, Lemma 4.5 yields the existence of a residual set Y k such that, for all f ∈ Y k , for all x ∈ F β k , lim sup

j log |P j f (x)| j log 2 ≥ β k . Set Y = k≥1 Y k (which remains residual) and let β ∈ 0, d p -s , f ∈ Y . Taking (β φ(k) ) a subsequence of (β k ) increasing to β, we get for all k and all x ∈ F β ⊂ F β φ(k) , lim sup j log |P j f (x)| j log 2 ≥ β φ(k) .
Hence, lim sup

j log |P j f (x)| j log 2 ≥ β.
Now, we can decompose F β into

F β = F β ∩ E -(β, f ) ∪ γ>β F β ∩ E -(γ, f ) .
Again an application of Proposition 3.1 yields dim H F β ∩ E(β, f ) = d -sp -βp. This in turn implies the conclusion, since

d -sp -βp ≤ dim H F β ∩ E -(β, f ) ≤ dim H E -(β, f ) ≤ d -sp -βp.
4.5. Prevalence of multifractal functions -the divergence case. We need a substitute to Lemma 4.5 where we replace residuality by prevalence. For all α ∈ (0, d -sp), for all F ⊂ K with dim P (F ) = α, there exists a prevalent set Y F ⊂ X such that, for all f ∈ Y F , for all x ∈ F , lim sup

j log |P j f (x)| j log 2 ≥ d -sp -α p .
Proof. Let us set, for 0 < β ≤ (d -sp -α)/p and L a subset of (0, 1) d ,

Y β,L = f ∈ X; ∀x ∈ L, lim sup j log |P j f (x)| j log 2 ≥ β .
Since Y (d-sp-α)/p,F = β<(d-sp-α)/p Y β,F , we just need to prove that each Y β,F is prevalent, for β < (d -sp -α)/p. We fix such a β. Lemma 2.3 tells us that there exists θ > 0 such that, for all j ∈ N, all x, y ∈ R d with x -y ≤ 2 -θj , all f ∈ X,

|Q j f (x) -Q j f (y)| ≤ C β 2 βj f X .
We also consider γ ∈ (β, (d -sp -α)/p). There exists a sequence (G u ) of subsets of K such that F ⊂ u G u and dim B (G u ) < (d -sp -γp)/p. Observing that Y β,F ⊃ u Y β,Gu , we just need to prove that each Y β,G is prevalent, where G ⊂ K is such that dim B (G) < (d -sp -γp)/p. We fix such a set G. For each j ≥ 1, G is the union of at most 2 κj cubes of width 2 -θj where the exact value of κ is unimportant for us. These cubes will be denoted by O j,l . Let J ≥ 1 be any integer satisfying (J -1)(γ -β) > κ. We apply Theorem 4.3 with these values of G and J to get functions f 0 , . . . , f J-1 . In particular, for all j large enough, for all x ∈ G, for all k ∈ {1, . . . , J -1},

|Q jJN +kN f k (x)| ≥ 2 γjJN
(recall that N is a fixed integer which is defined during the construction of K). We fix f ∈ X and set, for j ≥ 1,

U j,l = (c 1 , . . . , c J-1 ) ∈ [0, 1] J-1 ; ∃x ∈ O jJN,l , ∀m ∈ {0, . . . , JN -1}, |P jJN +m (f + c 1 f 1 + • • • + c J-1 f J-1 )(x)| ≤ 2 βjJN U j = l U j,l .
We claim that λ J-1 (lim inf j U j ) = 0 where λ J-1 is the Lebesgue measure on R J-1 . Accept this claim for a while. Then, for almost all (c 1 , . . . , c J-1 )

∈ [0, 1] J-1 , f + c 1 f 1 + • • • + c J-1 f J-1 belongs to lim sup j U c j .
In particular, for all j 0 ∈ N, there exists j ≥ j 0 such that, for all l and all x ∈ O jJN,l , there exists m ∈ {0, . . . , JN -1} with

|P jJN +m (f + c 1 f 1 + • • • + c J-1 f J-1 )(x)| ≥ 2 βjJN .
Since G ⊂ l O jJN,l , this implies that for infinitely many j, for all x ∈ G, there exists m ∈ {0, . . . , JN -1} with

|P jJN +m (f + c 1 f 1 + • • • + c J-1 f J-1 )(x)| ≥ 2 βjJN .
In other words, f

+ c 1 f 1 + • • • + f J-1 f J-1 belongs to Y β,G for almost all (c 1 , . . . , c J-1 ) ∈ [0, 1] J-1 , proving that Y β,G is prevalent.
Thus, it remains to prove the claim. We just need to prove that λ J-1 (U j ) ≤ C2 -ωj for some C, ω > 0. Since λ J-1 (U j ) ≤ 2 κjJN max l λ J-1 (U j,l ), it remains to show that λ J-1 (U j,l ) ≤ 2 -(κ+ω)jJN for all j and l. Let (c 0 , . . . , c J-1 ) and (d 0 , . . . , d J-1 ) belonging to U j,l . There exist x, y ∈ O jJN,l such that, for all m ∈ {0, . . . , JN -1},

|P jJN +m (f + c 1 f 1 + • • • + c J-1 f J-1 )(x)| ≤ 2 βjJN |P jJN +m (f + d 1 f 1 + • • • + d J-1 f J-1 )(y)| ≤ 2 βjJN .
We look at these two inequalities for m = kN and m = kN + 1, k = 1, . . . , J -1. Taking the difference and using the triangle inequality, we get

|Q jJN +kN f (x) + c k Q jJN +kN f k (x)| ≤ 2 • 2 βjJN |Q jJN +kN f (y) + d k Q jJN +kN f k (y)| ≤ 2 • 2 βjJN .

Using another time the triangle inequality and writing

c k Q jJN +kN f k (x) -d k Q jJN +kN f k (y) = (c k -d k )Q jJN +kN f k (x)+ d k Q jJN +kN f k (x) -Q jJN +kN f k (y) , we get |c k -d k | • |Q jJN +kN f k (x)| ≤ 4 • 2 βjJ + Q jJN +kN f (x) -Q jJN +kN f (y) + |d k | • Q jJN +kN f k (x) -Q jJN +kN f k (y) ≤ C2 βjJN since x -y ≤ 2 -θjJN . Hence, |c k -d k | ≤ C2 (β-γ)jJN . Therefore, the set of c = (c 1 , . . . , c J-1 ) ∈ [0, 1] J-1 belonging to U j,l is contained in a cube of width C2 (β-γ)jJN . Hence, λ J-1 (U j,l ) ≤ C2 (β-γ)(J-1)JN j . Because (γ -β)(J -1) > κ, we are done.
The proof of the prevalence part of Theorem 1.1, (ii), follows now from an argument similar to that of the residual part. We omit the details. Remark 4.8. In fact, our proof of Lemma 4.7 shows a stronger result: since λ J-1 (U j ) ≤ 2 -δj for some δ > 0, we in fact have λ J-1 (lim inf j U j ) = 0. In particular, we have shown that, for all G ⊂ K with dim B (G) < α, for all β < (d -sp -α)/p, there exists J ≥ 1 such that the set of functions f ∈ X satisfying lim inf j→+∞ sup k=0,...,JN -1

log |P jJN +k f (x)| jJN log 2 ≥ β
for all x ∈ G is prevalent. We are not so far from the proof that the set of functions satisfying (iii) in Theorem 1.1 is prevalent. See also Section 6.

4.6. The case of convergence. We now indicate briefly how to modify the previous work to obtain Theorem 1.2 for β = -s. We only consider the most difficult case (the existence of a prevalent set of multifractal functions) the other cases being left to the reader. The analogue of Theorem 4.2 reads:

Theorem 4.9. Let d ∈ (0, d) and let K be given by Proposition 4.1. For all α ∈ (max(0,

d -sp), d ), for all G ⊂ K with dim B (G) < α, there exists f ∈ B s,1 p (R d ), f ≤ 1 such that • for all x ∈ K, (P j f (x)) converges. • for all x ∈ K, for all j ∈ N, R j f (x) ≥ 0; • for all x ∈ G, lim inf j log |R j f (x)| j log 2 ≥ d-sp-α p .
Proof. Let α ∈ max(dim B (G), d-sp), α . Keeping the notations of the proof of Theorem 4.2, we still set

f n = 2 (N n+t)× d-sp-α p λ∈Γn ψ (1) µ(λ) 
and f = n≥1 n -2 f n . The convergence of (P j f (x)) for all x ∈ R d is ensured by the inequality α > d-sp (recall that the wavelets have compact support, so that ψ (1) µ(λ) (x) = 0 for a finite number of λ ∈ Γ n , this bound being uniform in n and x). Moreover, for x ∈ K and j ∈ (N n, N (n + 1)],

R j f (x) = l≥n l -2 2 (N l+t)× d-sp-α p λ∈Γ l ψ (1) µ(λ) (x)
and this is always nonegative. Finally, if x belongs to G, then x belongs to some λ ∈ Γ n so that

R j f (x) ≥ n -2 2 (N n+t)× d-sp-α p .
This shows that lim inf

j log R j f (x) j log 2 ≥ d -sp -α p ≥ d -sp -α p .
We then deduce the following lemma.

Lemma 4.10. Let d ∈ (0, d), let K be given by Proposition 4.1 and let α ∈ max(0, dsp), d \{0}. For all compact subsets F of K with dim P (F ) = α, there exists a prevalent set Y F ⊂ X such that, for all f ∈ Y F , for all x ∈ F , either (P j f (x)) diverges or (P j f (x)) converges and

lim sup j log |R j f (x)| j log 2 ≥ d -sp -α p .
The proof of this lemma is almost identical to that of Lemma 4.7. We now set Y β,L = f ∈ X; for all x ∈ L, either (P j f (x)) diverges or (P j f (x)) converges and lim sup

j log |R j f (x)| j log 2 ≥ β .
The proof that Y (d-sp-α)/p,F is prevalent follows the same lines except that, G and f being fixed, we define Ĝ = G ∩ {x; (P j f (x))converges} and we consider the intersection of the cubes O j,l with Ĝ. Then, mimicking the proof of Lemma 4.7 (but replacing P j by R j ), we get that, for almost all (c 1 , . . . , c J-1 ) ∈ [0, 1] J-1 , for all x ∈ Ĝ, lim sup

j log |R j (f + c 1 f 1 + • • • + c J-1 f J-1 )(x)| j log 2 ≥ β.
Since for all x ∈ G\ Ĝ and all c 1 , . . . , c

J-1 ∈ [0, 1] J-1 , P j (f + c 1 f 1 + • • • + c J-1 f J-1 )(x)
diverges, we are done.

From this lemma, mimicking the work done in Section 4.3, we deduce that for all d ∈ (0, d), there exists a prevalent subset of functions

Y d such that, for all f ∈ Y d , for all β ∈ -s + d-d p , min 0, d p -s \{0}, dim H E(β, f ) = dim P E(β, f ) = d -sp -βp.
The somehow strange value -s + d-d p comes from the change of variables β = (d -spα)/p which changes the inequality α < d to β > -s + (d -d )/p. The only important change to do is the decomposition of F β . Indeed, it could be possible that, for a given function f ∈ Y d and a given x ∈ F β , the sequence (P j f (x)) diverges. Setting G = {x ∈ R d ; (P j f (x)) diverges}, we now write

F β = F β ∩ E(β, f ) ∪ γ∈(β,0) F β ∩ E -(γ, f ) ∪ [F β ∩ G].
We then apply both Proposition 3.1 and 3.2 to show that dim d ∈ (d -sp, d). We may just apply it for any d ∈ (0, d). In the subsequent lemmas (4.4, 4.5, 4.7), α is now only allowed to go until d . Thus, our proofs just show that, for all d ∈ (0, d),

H F β ∩E(β, f ) ≥ d-sp-βp.
• there exists a residual and prevalent subset

Y d of X such that, for all f ∈ Y d , for all β ∈ (d -d )/p, d/p , dim H (E -(β, f )) = d -βp.
• there exists

f d ∈ X such that, for all β ∈ (d -d )/p, d/p , dim H (E(β, f )) = dim P (E(β, f )) = d -βp.
To prove (ii) even if s = 0, we fix a sequence (d n ) going to d and we just set Y = n Y d n .

To prove (iii), we observe that, for a fixed n ∈ N, the function f d n can be chosen with support in (n, n + 1). Then the function f = n≥1 n -2 f d n will do the job.

4.8. The case of convergence and β = -s. We also did not prove Theorem 1.2 (ii) and (iii) for β = -s. This was impossible with the method applied before because we constructed our sets E(β, f ) inside a set with packing dimension (strictly) smaller than d whereas we hope to obtain dim P E(-s, f ) = d. Therefore, we will need to enlarge our initial compact set. For simplicity, we again assume d = 1. We concentrate ourselve on the existence of a strongly multifractal function. The proof of (ii) will then follow by adapting arguments of the previous subsections.

Recall that a gauge function is a nondecreasing continuous function φ :

R + → R + satisfying φ(0) = 0. The φ-Hausdorff outer measure of a set E ⊂ R d is H φ (E) = lim ε→0 inf r∈Rε(E) B∈r φ(|B|),
R ε (E) being the set of countable coverings of E with balls B of diameter |B| ≤ ε. The work done until now points out that it is sufficient to find a single function

f ∈ B s,1 p (R d ) satisfying H φ E + (-s, f ) > 0 for some gauge function φ such that φ(s) = 0 o(s γ ) for all γ ∈ (0, 1): since H φ E -(γ, f ) = 0 for all γ > -s, this will imply that H φ E(-s, f ) > 0 hence dim H E(-s, f ) ≥ 1.
Let us proceed with the construction of the compact set following Section 4.1. We still assume that ψ ≥ 1 on the dyadic interval

K 0 := k 2 t , k+1 2 
t
and that ψ = 0 outside [0, 1]. Let (N n ) be a nondecreasing sequence of integers with N 1 > t. We define inductively a decreasing sequence (K n ) of compact subsets of K 0 such that K n consists of 2 N 1 +•••+Nn-nt closed dyadic intervals of width 2 -(N 1 +•••+Nn+t) and each of these intervals may be written

k+l2 t 2 N 1 +•••+Nn+t , k+l2 t +1 2 N 1 +•••+Nn+t for some l ∈ Z.
Let us assume that the construction has been done until K n and let us construct K n+1 . Let Θ n be the set of closed dyadic intervals of width 2

-(N 1 +•••+Nn+t) contained in K n and let λ ∈ K n , λ = a 2 N 1 +•••+Nn+t , a+1 2 N 1 +•••+Nn+t .
We define Θ n+1,λ as the set of the intervals

I m = k+m2 t 2 N 1 +•••+N n+1 +t , k+m2 t +1 2 N 1 +•••+N n+1 +t contained in λ, with m ∈ Z. Since I m ⊂ λ if and only if 2 N n+1 -t a -k2 -t ≤ m ≤ 2 N n+1 -t a -k2 -t + 2 N n+1 -t -2 -t
there are exactly 2 N n+1 -t such intervals. Thus we may define

K n+1 = λ∈Θn I∈Θ n+1,λ
I which satisfies our requirements. We then set K = n≥0 K n and we prove that if we choose conveniently the sequence (N n ), then H φ (K) > 0 where φ(s) = s exp log 3/4 1 s . Indeed, let µ be the mass distribution on K so that each interval of Θ n has mass 2 -(N 1 +•••+Nn-nt) . Let I be an interval with small length and n be the integer such that 1 2

N 1 +•••+N n+1 +t ≤ |I| ≤ 1 2 N 1 +•••+Nn+t .
Then I can intersect at most two of the intervals of Θ n so that

µ(I) ≤ 2 2 N 1 +•••+Nn-nt ≤ 2 2 N 1 +•••+N n+1 +t × 2 N n+1 +(n+1)t .
We fix the sequence (N n ) by setting N n = n + t. With this definition, it is easy to see that there exists C > 0 such that, for all n ≥ 1 large enough,

2 N n+1 +(n+1)t ≤ exp (N 1 + • • • + N n + t) 3/4 log 3/4 2 ≤ exp log 3/4 1 |I| .
Therefore, µ(I) ≤ φ(|I|) and by the mass transference principle (see e.g. [8, Lemma 3.18]),

H φ (K) > 0.
We turn to the construction of f . For each λ =

k+l2 t 2 N 1 +•••+Nn+t , k+l2 t +1 2 N 1 +•••+Nn+t ∈ Θ n , we set µ(λ) = l 2 N 1 +•••+Nn , l+1 2 N 1 +•••+Nn
and, as in the proof of Proposition 4.1, we observe that, for all x ∈ K, either ψ µ(λ) (x) ≥ 1 if x ∈ λ or ψ µ(λ) (x) = 0. We then set

f n = 2 -(N 1 +•••+Nn)s λ∈Θn ψ µ(λ)
which belongs to B s,1 p (R) since

f n ≤ 2 -(N 1 +•••+Nn)s 2 (N 1 +•••+Nn-nt)/p 2 (N 1 +•••+Nn)× s-1 p ≤ 1.
We

finally set f = n≥1 n -2 f n ∈ B s,1 p (R).
As in the proof of Theorem 4.9, it is easy to prove that (P j (x)) converges for all x ∈ R d . Moreover, for x ∈ K and j ∈ (N

1 + • • • + N n-1 , N 1 + • • • + N n ], one knows that R j f (x) ≥ n -2 2 -(N 1 +•••+Nn)s .

This gives lim inf

j log R j f (x) j log 2 ≥ lim inf n -s(N 1 + • • • + N n ) N 1 + • • • + N n+1 = -s
since we have taken a sequence (N n ) which does not increase too fast. Hence, for this function f , K ⊂ E + (-s, f ) and we are done.

5.

On the packing dimension of E + (β, f ) 5.1. The case d -sp > 0 and β > 0. We first prove the first half of Theorem 1.3 for β > 0. We will follow a variant of the construction done in Proposition 4.1; here we will construct a subset L of K with different Hausdorff and packing dimension. Since the Hausdorff dimension of L will be smaller than its packing dimension, we will be able to construct a saturating function f such that, at some level j, for all x ∈ L, P j f (x) is bigger than the expected value if we look only at the packing dimension of L. Thanks to a very careful construction, this property will still hold for all levels j, leading to a function f

satisfying dim P (E + (β, f )) > 1 -sp -βp.
As before, we assume that ψ = ψ (1) ≥ 1 on some k 0 2 t 0 , k 0 +1 2 t 0 and that ψ = 0 outside [0, 1]. Let u, v > 1 and let N ≥ t ≥ t 0 be two integers. We then consider k such that ψ ≥ 1 on

k 2 t , k+1 2 t
and we define the set Ω and the similarities s m as in the proof of Proposition 4.1. We define a sequence (N k ) by setting N 0 = 1, N 2k+1 = uN 2k and N 2k+2 = vN 2k+1 so that N 2k = (uv) k and N 2k+1 = u(uv) k . We also define a sequence of compact sets (L j ) by setting

L 0 = k 2 t , k+1 2 t and • if j ∈ [N 2k , N 2k+1 ), L j+1 = m∈Ω s m (L j ); • if j ∈ [N 2k+1 , N 2k+2 ), L j+1 = s 1 (L j ).
We finally define L = j L j . It is easy to check that each L j consists of closed dyadic intervals of width 2 -(t+N j) . Denote by Γ j the set of these intervals and by M j its cardinal number. By construction,

M 0 = 1, M N 2k+2 = M N 2k+1 whereas M j+1 = 2 N -t M j provided j belongs to [N 2k , N 2k+1
). An elementary computation shows that

M N 2k = 2 (N -t)(u-1) (uv) k -1 uv-1 M N 2k+1 = 2 (N -t)(u-1) (uv) k+1 -1 uv-1
.

By the results of [START_REF] Baek | Packing dimension and measure of homogeneous Cantor sets[END_REF] on the dimension of homogeneous Cantor sets, dim P (L) = lim sup

j log M j N j log 2 = lim sup k log M N 2k+1 N N 2k+1 log 2 = N -t N × (u -1)v uv -1 .
Observe also, even if this will not be required for the sequel, that dim H (L) = lim inf

j log M j N j log 2 = lim sup k log M N 2k N N 2k log 2 = N -t N × (u -1) uv -1 = dim P (L) v .
We are now ready to construct the function f . For l ≥ 1, define c N l = 2

N l p (1-sp) M -1/p l
and f l = c N l λ∈Γ l ψ µ(λ) so that f l ≤ 1. Recall that the construction of the sets µ(λ) together with that of the similarities s m ensure that, for any x ∈ L, f l (x) ≥ c N l . As usual, f ∈ B s,1 p (R) is defined by f = l≥1 l -2 f l . We shall control log P j f (x)/j log 2 for all x ∈ L and all j ≥ 1. We fix η > 0 and assume first that j belongs to some (N

N 2k+1 (1 + η), N N 2k+2 ]. In that case, j ∈ N l, N (l + 1) with l = N 2k+1 (1 + κ) and κ ∈ [η, v -1]. Since in that case M l = M N 2k+1 = 2 (N -t)(u-1) (uv) k+1 -1 uv-1 ,
we get for all x ∈ L,

log P j f (x) j log 2 ≥ log(c N l /l 2 ) j log 2 ≥ N N 2k+1 (1 + κ)(1 -sp) -(N -t)(u -1) (uv) k+1 -1 uv-1 pN N 2k+1 (1 + κ) + o(1).
Remembering that N 2k+1 = u(uv) k , we deduce lim inf

j→+∞ j∈ k [N N 2k+1 (1+η),N N 2k+2 ) log P j f (x) j log 2 ≥ 1 p × 1 -sp - N -t N × (u -1)v (uv -1)(1 + η)
Assume now that j belongs to some (N N 2k , N N 2k+1 (1 + η)]. In that case, we use that

P j f (x) ≥ c N N 2k /N 2 2k to get log P j f (x) j log 2 ≥ N N 2k (1 -sp) -(N -t)(u -1) (uv) k -1 uv-1 pN N 2k+1 (1 + η) + o(1)
so that lim inf

j→+∞ j∈ k [N N 2k ,N N 2k+1 (1+η)) log P j f (x) j log 2 ≥ 1 p(1 + η)u × 1 -sp - N -t N × u -1 (uv -1)
It is time now to choose N , t, u, v and η so that dim P (L) > 1 -sp -βp and, for all x ∈ L, lim inf j log P j f (x)/j log 2 ≥ β. The real number β ∈ 0, 1 p -s being fixed, and using the change of variables α = 1 -sp -βp, we are done if we may choose the parameters so that

N -t N × (u -1)v uv -1 > α (4) 1 -sp - N -t N × (u -1)v (uv -1)(1 + η) ≥ 1 -sp -α (5) 1 (1 + η)u 1 -sp - N -t N × u -1 uv -1 ≥ 1 -sp -α. (6) 
Let ε > 0 and set u = 1+ε and v = 1+ 1 α -1 ε. It is easy to check that (u-1)v/(uv-1) > α. Since N -t N ; N ≥ t ≥ t 0 is dense in (0, 1), we may find two integers N ≥ t ≥ t 0 such that

α 1 + ε 2 ≥ N -t N × (u -1)v uv -1 > α.
The right part of this inequality is (4). We finally choose η > 0 such that

N -t N × (u -1)v (uv -1)(1 + η) = α.
This implies that ( 5) is true and that η = o(ε). It remains to justify that ( 6) is verified provided ε > 0 is small enough. Now

1 (1 + η)u 1 -sp - N -t N × u -1 uv -1 ≥ 1 1 + ε + o(ε) 1 -sp - α(1 + ε 2 ) 1 + 1 α -1 ε ≥ 1 -sp -α + spε + o(ε) ≥ 1 -sp -α
for small values of ε. Observe the role of the assumption s > 0 in the last line (Theorem 1.3 is false when s = 0 if we are working with the Haar basis). 5.2. The case d -sp > 0 and β < 0. The proof of the case β < 0 and still 1 -sp > 0 of Theorem 1.3 follows the same line. We do exactly the same construction for the compact set L and for the function f . There is an additional difficulty now: we have to verify that the wavelet series is convergent at each point of L. This will be true provided there exists δ > 0 such that, for all l ∈ N, c N l ≤ 2 -δN l . The worst case (corresponding to the biggest values of c N l ) corresponds to the case l = N 2k . In that case

c N N 2k = 2 1 p (1-sp)N (uv) k -(N -t)(u-1) (uv) k -1 uv-1 = 2 N N 2k p 1-sp- (N -t)(u-1)
N (uv-1) +o (1) .

Therefore, we will need the condition

(7) 1 -sp - N -t N × u -1 uv -1 < 0.
Another difference with the previous case is that we are looking at the remainders instead of the partial sums. When evaluating R j f (x), we can now use c l for l ≥ j instead of l < j. Hence we have to cut the intervals [N N 2k , N N 2k+2 ) in a different way. We still consider η > 0 and assume first that j belongs to some [N N 2k , N (1 -η)N 2k+1 ). In that case, j ∈ [N l, N (l + 1)) with l = κN 2k and κ ≤ (1 -η)u. Moreover, we know that for these values of l,

M l = 2 (N -t)(κ-1)(uv) k +(N -t)(u-1) (uv) k -1 uv-1 .
This yields that for all x ∈ L,

log R j f (x) j log 2 ≥ log c N (l+1) j log 2 + o(1) ≥ N κ(uv) k (1 -sp) -(N -t)(κ -1)(uv) k + (N -t)(u -1) (uv) k -1 uv-1 pN κ(uv) k + o(1) ≥ 1 p 1 -sp - N -t N 1 - u(v -1) κ(uv -1) + o(1).
The lower bound of the right handside of this inequality is attained for the largest possible value of κ, namely for κ = (1 -η)u so that lim inf

j→+∞ j∈ k [N N 2k ,N (1-η)N 2k+1 ) log R j f (x) j log 2 ≥ 1 p 1 -sp - N -t N 1 - v -1 (1 -η)(uv -1)
.

On the other hand, for j belonging to [N (1 -η)N 2k+1 , N N 2k+2 ), we look at a term later in the series by writing

R j f (x) ≥ c N N 2k+2 so that log R j f (x) j log 2 ≥ N (uv) k+1 (1 -sp) -(N -t)(u -1) (uv) k+1 -1 uv-1 p(1 -η)u(uv) k N + o(1) ≥ 1 p × v 1 -η × 1 -sp - N -t N × u -1 uv -1 + o(1).
Hence, we are done provided we may choose the parameters so that (7) and the three following inequalities are satisfied:

N -t N × (u -1)v uv -1 > α (8) 1 -sp - N -t N 1 - v -1 (1 -η)(uv -1) ≥ 1 -sp -α (9) v 1 -η × 1 -sp - N -t N × u -1 uv -1 ≥ 1 -sp -α. (10) 
As before, we consider ε > 0 very small and set u

= 1 + ε, v = 1 + 1 α -1 ε, N ≥ t ≥ t 0 so that (11) α(1 + ε 2 ) ≥ N -t N × (u -1)v uv -1 > α.
This ensures that ( 8) is true and also that ( 7) is satisfied provided ε > 0 is small enough: remember that β = (1 -sp -α)/p < 0 and that N -t N × u-1 uv-1 can be taken arbitrarily close to α. We now set η = ε 3/2 and we claim that ( 9) and ( 10) are also satisfied. Indeed, we write

1 - v -1 (1 -η)(uv -1) = 1 - v -1 uv -1 - v -1 uv -1 ε 3/2 + o(ε 3/2 ) = (u -1)v uv -1 - (u -1)v uv -1 × v -1 v(u -1) ε 3/2 + o(ε 3/2 )
so that, using also [START_REF] Hunt | Prevalence: a translation invariant "almost every" on infinitedimensional spaces[END_REF],

N -t N 1 - v -1 (1 -η)(uv -1) ≤ α -α 1 α -1 ε 3/2 + o(ε 3/2 ) ≤ α provided ε is small enough. Moreover, v 1 -η 1 -sp - N -t N × u -1 uv -1 = v 1 -η (1 -sp) - N -t N × (u -1)v uv -1 × 1 1 -η ≥ (1 -sp) 1 + 1 α -1 ε + o(ε) -α + o(ε) ≥ (1 -sp -α) + (1 -sp) 1 α -1 ε + o(ε) ≥ 1 -sp -α
provided again that ε > 0 is small enough. Observe the role played here by the assumption 1 -sp > 0.

5.3. The case d -sp < 0. In that case, which implies that (P j f (x)) converges for all x ∈ R d , we are able to prove that for all f ∈ B s,∞ p (R d ), dim P E + (β, f ) ≤ d -sp -βp for all β ∈ -s, d p -s . Let A > 0 be such that all mother wavelets have support in [-A, A] d . For j ≥ 1 and x ∈ R d , we denote

Γ j (x) = λ ∈ Λ j ; ∃i, ψ (i) λ (x) = 0 .
The cardinal number of Γ j (x) is uniformly bounded in j and x (by (2A + 1) d ). We will need another combinatorial result.

Lemma 5.1. Let l ≥ 1, λ ∈ Λ l and (x u ) a sequence in R d . Then card ({u ∈ N; λ ∈ Γ l (x u )}) ≤ sup u card v ∈ N; x u -x v ≤ 2A2 -l .
Proof. Assume that u and v are such that λ ∈ Γ l (x u ) and λ ∈ Γ l (x v ). Then we have simultaneously

2 l x u -k ∈ [-A, A] d and 2 l x v -k ∈ [-A, A] d so that x u -x v ≤ 2A2 -l .
The forthcoming lemma is a substitute to Lemma 3.5.

Lemma 5.2. Let ε > 0 and f ∈ B s,∞ p (R d ). There exists C = C ε so that, for all x ∈ R d , for all j ≥ 1,

|R j f (x)| ≤ C   l≥j 2 εpl i λ∈Γ l (x) |c (i) λ | p   1/p .
Proof. We use Hölder's inequality and the fact that the cardinal number of Γ l (x) is uniformly bounded in x and l to get successively

|R j f (x)| ≤ C l≥j i λ∈Γ l (x) |c (i) λ | ≤ C l≥j i λ∈Γ l (x) 2 εl |c (i) λ |2 -εl ≤ C   l≥j 2 εpl i λ∈Γ l (x) |c (i) λ | p   1/p   l≥j 2 -εp * l i card(Γ l (x))   1/p * ≤ C   l≥j 2 εpl i λ∈Γ l (x) |c (i) λ | p   1/p . The proof that, for β ∈ -s, d p -s \{0} and f ∈ B s,∞ p (R d ), dim P (E + (β, f )) ≤ d -sp -βp follows 
the same line as the proof of Proposition 3.3 with some technical changes. As before, letting

G + J (γ, f ) = x ∈ R d ; ∀j ≥ J, |R j f (x)| ≥ 2 γj
for γ ∈ β, d p -s , one only need to prove that, for all J ∈ N, dim B G + J (γ, f ) ≤ d-sp-γp. Let j ≥ J and let Θ j be the dyadic cubes of the j-th generation intersecting G + J (γ, f ). Let N j be the cardinal number of Θ j = λ 1 , . . . , λ N j . Pick x u ∈ λ u ∩ G + J (γ, f ) for u = 1, . . . , N j . Then by Lemma 5.2,

2 γpj N j ≤ C l≥j 2 εpl i N j u=1 λ∈Γ l (xu) |c (i) λ | p .
Now, the x u belonging to different dyadic cubes of the j-th generation, for all l ≥ j,

sup u card v; x u -x v ≤ 2A2 -l ≤ C A,d .
Therefore, an application of Lemma 5.1 yields

2 γpj N j ≤ C l≥j 2 εpl i λ∈Λ l |c (i) λ | p ≤ C l≥j 2 εpl   i λ∈Λ l |c (i) λ | p 2 (sp-d)l   2 -(sp-d)l ≤ C l≥j 2 (d-sp+εp)l f p B s,∞ p .
Since d -sp < 0, we may choose ε > 0 sufficiently small so that d -sp + εp < 0. We deduce that

2 γpj N j ≤ C2 (d-sp+εp)j l≥j 2 (d-sp+εp)(l-j) f p B s,∞ p which in turn implies that N j ≤ C2 (d-sp-γp+εp)j f p B s,∞ p yielding dim B G + J (γ, f ) ≤ d -sp -γp + εp.
Letting ε to 0 implies the result.

Question 5.3. Does this remain true if we do not assume that the wavelets have compact support?

6. Final remarks 6.1. Residuality and prevalence. In Theorem 1.1, we cannot expect to get that the set of functions satisfying (iii) is residual. In fact, we are very far from this, as the following proposition indicates. Proposition 6.1. Let X = B s,q p (R d ) or X = W p,s (R d ) with p, q ∈ [1, +∞). Then for all functions f in a residual subset of X, for all x ∈ R d , [START_REF] Jaffard | On the Frisch-Parisi conjecture[END_REF] lim inf

j→+∞ log + |P j f (x)| j log 2 = 0.
Proof. For K a compact subset of R d , ε > 0 and J ∈ N, we denote by

U(K, ε, J) = f ∈ X; ∀x ∈ K, ∃j ≥ J, |P j f (x)| < 2 εj .
Then all U(K, ε, J) are dense (because they contain all functions with a finite wavelet series) and open. Indeed, pick f ∈ U(K, ε, J). For any x ∈ K, there exists j ≥ J such that |P j f (x)| < 2 εj . By continuity of (g, y) → P j g(y), there exists an open neighbourhood

O x of x in K and a neighbourhood V x of f in X such that ∀g ∈ V x , ∀y ∈ O x , |P j g(y)| < 2 εj . By compactness, K is covered by a finite number of open sets O x , says O x 1 , . . . , O xp . Then V x 1 ∩ • • • ∩ V xp is a neighbourhood of f contained in U(K, ε, J). We conclude by observing that, if (K m ) is a sequence of compacts subsets of R d such that m K m = R d , any function f in the residual set m,k,J U(K m , 2 -k , J) satisfies (12) for all x ∈ R d .
On the contrary, we do not know whether we can get the existence of a prevalent set of strongly multifractal functions. This can be done if we modify the definition of our sets by taking absolute values. More precisely, let us define Theorem 6.2. Let s ≥ 0, p, q ∈ [1, +∞) and X = B s,q p (R d ) or X = W p,s (R d ). Assume that the wavelets have compact support. Proof. The proof of Section 3 works mutatis mutandis for the sets E * (β, f ), thus there is nothing to do to prove (i). To prove (ii), we need the following lemma.

P * j f (x) = l<j |Q l f (x)| R * j f (x) =
Lemma 6.3. Let x ∈ R d , f ∈ B s,1 p (R d ), M > 0. Assume that there exists j 0 ∈ N such that, for all j ≥ j 0 , there exists m ∈ {0, . . . , M -1} such that P * jM +m f (x) ≥ 2 βjM . Then lim inf j log P * j f (x) j log 2 ≥ β.

We postpone the proof of this lemma to finish that of Theorem 6.2. We need an analogue of Lemma 4.7 where we replace P j par P * j and lim sup j by lim inf j . We keep the notations of this lemma . In particular its proof (see more particularly Remark 4.8) shows that, for all G ⊂ K with dim B (G) < α, for all β < (d -sp -α)/p, there exists J ≥ 1 such that, for all f in a prevalent subset of X, for all x ∈ G, We now conclude with a proof that imitates strongly that done before.

Proof of Lemma 6.3. Let l ≥ (j 0 + 1)M . There exists j ≥ j 0 such that l ∈ [(j + 1)M, (j + 2)M ). For this value of j, we know the existence of m ∈ {0, . . . , M -1} satisfying P * jM +m f (x) ≥ 2 βjM . Since the sequence (P * n (x)) is nondecreasing,

P * l f (x) ≥ 2 βjM ≥ 1 2 2βM • 2 βl .
These considerations suggest that prevalence is a more suitable notion of genericity than residuality in the context of multifractal analysis. 6.2. Extreme values for p and/or q. When p ∈ (0, 1) or q ∈ (0, 1), the Besov spaces B s,q p (R d ) are no more Banach spaces but nonetheless are separable complete metric vector spaces. Our method of proof carries on without difficulties to this context. The only important change is that we can no longer apply Hölder's inequality during the proof of Lemma 3.5 when p < 1. But the proof is even simpler. We just write i λ∈Λ l,λ j (x),ε

|c (i) λ | ≤    i λ∈Λ l,λ j (x),ε |c (i) λ | p    1/p .
When p = +∞ or q = +∞, the Besov spaces are no longer separable. Part (i) and (iii) of Theorems 1.1 and 1.2, which do not use separability, remain valid. However, we do not know if this the case for part (ii). The construction of the saturating function may also be done for this set and an easy modification of the proof of Proposition 3.1 shows that dim H E -(0, f ) ≤ d-sp. However, using ideas from Section 5, this breaks down for the packing dimension.

Proposition 6.4. Assume that the wavelets have compact support and 1 -sp > 0. Then, for all ε ∈ (0, 1), there exists f ∈ B s,1 p (R) such that dim P E(0, f ) ≥ 1 -ε.

Proof. Let L be the compact set built in Section 5 with v = 1/(1 -sp) > 1 and u, N, T such that

(1 -ε)(1 -sp) < u -1 uv -1 × N -t N < 1 -sp
(this is always possible by taking u, N, t large enough). Hence, N (uv-1) +o (1) .

dim P (L) = v × u -1 uv -1 × N -t N > 1 -ε.
This ensures that f k ≤ C so that f = k≥0 f k /(k + 1) 2 defines an element of B s,1 p (R). For all x ∈ L and all j ∈ (N N 2k , N N 2k+1 ], P j f (x) ≥ P N N 2k f (x) ≥ c N N 2k /(k + 1) 2 . Hence the sequence (P j f (x)) tends to infinity and in particular, lim inf j log |P j f (x)|/j log 2 ≥ 0. Moreover, since the wavelets have compact support, there exists A > 0 such that, for all x ∈ L and all k ≥ 1, |f k (x)| ≤ Ac N N 2k = A2 N (uv) k /(k+1) . Let j ≥ 1 and k ≥ 0 be such that j ∈ (N N 2k , N N 2k+1 ]. Then

|P j f (x)| ≤ k l=0 |f l (x)| ≤ A 2 N (uv) 0 + • • • + 2 N (uv) k /(k+1) ≤ Ck2 N (uv) k /k .
This implies clearly that lim sup j log |P j f (x)|/j log 2 ≤ 0, hence that L ⊂ E(0, f ). 

Proposition 4 . 1 .

 41 Let d ∈ (0, d). There exist an autosimilar and compact set K ⊂ R d satisfying the open set condition and two integers t, N such that

Theorem 4 . 2 .

 42 Let d ∈ (d -sp, d) and let K be given by Proposition 4.1. For all α ∈

Lemma 4 . 4 .

 44 Let d ∈ (d -sp, d) and let K be given by Proposition 4.1. For all α ∈

Theorem 1 . 1 .

 11 Let d ∈ (d -sp, d) and let K be the compact set given by Proposition 4.1. Since K is an autosimilar and compact set satisfying the open set condition with dim H (K) = d > d -sp, there exists (F β ) β∈ 0, d p -s , a decreasing family of compact subsets of K, such that, for all β ∈ 0, d p -s , dim H (F β ) = dim P (F β ) = d -sp -βp and H d-sp-βp (F β ) > 0

  3 by fixing d ∈ (d -sp, d), K the compact set given by Proposition 4.1 and (F β ) β∈ 0, d p -s a decreasing family of compact subsets of K, such that, for all β ∈ 0, d p -s , dim H (F β ) = dim P (F β ) = d -sp -βp and H d-sp-βp (F β ) > 0.

Lemma 4 . 7 .

 47 Let d ∈ (d -sp, d) and let K be the compact set given by Proposition 4.1.

Finally, we 4 . 7 .

 47 get Part (iii) of Theorem 1.2 for β ∈ -s, min 0, d p -s \{0} by setting Y = n Y dn , where (d n ) is a sequence increasing to d. The case of divergence and s = 0. So far, we did not prove Theorem 1.1 (ii) and (iii) for s = 0. Now, we cannot apply Proposition 4.1 with any

l≥j

  |Q l f (x)| and, for β > 0,E * (β, f ) = x ∈ R d ; lim j log P * j f (x) j log 2 = β , for β < 0, E * (β, f ) = x ∈ R d ; lim j log R * j f (x) j log 2 = β .

( i )

 i For all f ∈ X, for all β ∈ -s, d p -s \{0},dim P E * (β, f ) ≤ d -sp -βp.(ii) For all f in a prevalent subset of X, for all β ∈ -s, d p -s \{0},dim H E * (β, f ) = dim P E * (β, f ) = d -sp -βp.

6. 3 .

 3 The sets E(0, f ). Our work does not consider the case β = 0. It seems natural to define the corresponding sets as, for instanceE(0, f ) = x ∈ R d ; P j f (x)diverges and lim j log |P j f (x)| j log 2 = 0 or P j f (x) converges and lim j log |R j f (x)| j log 2 = 0 .

2 N

 2 Let, for k ≥ 0, c N N 2k = 2 N N 2k /(k+1) and f k = c N N 2k λ∈Γ N 2k ψ µ(λ) . Then f k ≤ 2 N N 2k /(k+1) card(Γ N 2k ) 1/p 2 -(1-sp)N N 2k /p ≤ 2 N N 2k /(k+1) 2 N 2k -(1-sp)+ (N -t)(u-1)

Remark 6 . 5 .

 65 The proof shows that there exists f ∈ B s,1 p (R) such that dim P x ∈ R d ; P j f (x) diverges and limj log |P j f (x)| j log 2 = 0 ≥ 1 -ε.If we change the definition of c N N 2k into c N N 2k = 2 -N N 2k /(k+1) , we can also prove the existence of f ∈ B s,1 p (R) such that dim P x ∈ R d ; P j f (x) converges and lim j log |R j f (x)| j log 2 = 0 ≥ 1 -ε.

We can also compare these statements with Proposition 3.2.