
HAL Id: hal-01686540
https://hal.science/hal-01686540

Submitted on 17 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Constraint Linear Decompositions Using
Mathematical Variables

Thierry Petit

To cite this version:
Thierry Petit. On Constraint Linear Decompositions Using Mathematical Variables. ICTAI 2017 :
IEEE 29th International Conference on Tools with Artificial Intelligence, Nov 2017, Boston, United
States. pp.123-130, �10.1109/ICTAI.2017.00030�. �hal-01686540�

https://hal.science/hal-01686540
https://hal.archives-ouvertes.fr

On Constraint Linear Decompositions
Using Mathematical Variables

Thierry Petit
LS2N (TASC) / IMT Atlantique (DAPI), Nantes, France,

Thierry.Petit@imt-atlantique.fr

Abstract—A wide literature exists on constraint programming
model linearization, based on integer domain decomposition.
This paper considers the systematic study of classical global
constraints, but in the context of mathematical variables. We con-
sider constraints originally stated using integer domain variables,
for which we investigate new definitions and linear decomposi-
tions using bounded rational variables. We introduce a generic
scheme for reification and softening. Combined with state-of-the-
art decompositions on integer variables, this approach permits
solving discrete-continuous high level models using a single
modeler, connected to a MILP solver.

I. INTRODUCTION

In constraint programming (CP), the practical need of
considering both continuous and discrete variables motivated
building a bridge between continuous and discrete CP solvers
(see, e.g., [1]), or mathematical programming and CP hy-
bridization. In the latter case, linear decompositions of the
most commonly used global constraints on integer domain
variables have been introduced [2], [3], [4]. In this paper,
we investigate the linear decomposition of global constraints,
as well as their reification and softening, but considering
continuous variables. Four main motivations justify exploring
this topic independently from any specific application.

1) Some global constraints naturally involve continu-
ous quantities although most decision variables take
integer values. For instance, given a set X =
{x1, . . . , xn} of integer variables and an integer vari-
able s, Deviation [5] is defined as follows: nz =
(
∑n
i=1 xi) and s = (

∑n
i=1 |xi − z|). In its original

definition, z is an integer constant (a fixed argument of
the constraint), representing a mean. This is due to the
need of using integer domain variables and constants. In
practice, however, defining this argument as an integer
before solving the problem may be tricky [6]. One may
prefer using a rational variable.

2) Combined with state-of-the-art decompositions of con-
straints on integer variables, linear formulations of
global constraints on rational variables permit to solve
high-level discrete-continuous CP models using a mathe-
matical solver. Even though some continuous constraints
might not (reasonably) be decomposed into linear equa-
tions, this approach is more expressive than purely
discrete CP modelers. This opens new perspectives for
fast prototyping: a model consists in the statement of
variables and constraints (without search strategy). As

default solving parameters of mathematical solvers are
generally robust [7], simplicity of use bears no compar-
ison with hybrid techniques [8] or decomposition [9].

3) Interpreting the definition of classical CP global con-
straints in the continuous case may lead to modeling
blocks that capture new interesting concepts. We can
deduce from linear decompositions a new violation
measure, easy to aggregate in an objective function.

4) It seems reasonable to impose that, when used with
(bounded) integer variables, a linear decomposition ex-
actly matches the semantics of the original CP global
constraint. In this case, decompositions consistent with
continuous variables become alternatives to state-of-the-
art decompositions on integer variables. The new ones
can be used without stating a domain decomposition that
would likely require many extra binary variables [3], [4].

The contributions of this article are presented as follows. In
section II, we provide some useful background. We introduce
a new decomposition in the context of integer domain vari-
ables. In section III, we consider two families of CP global
constraints and we derivate definitions that are suitable to
continuous variables. Section IV introduces a generic scheme
for reification and softening and new linear decompositions
on continuous variables. In section V, we present a prototype
based on this work and some experimental results.

II. CONSTRAINT LINEARIZATION ON DOMAIN VARIABLES

Mixed integer linear programming (MILP) models support
integer and rational variables, linear constraints, objectives and
linearized logical constraints. CP models make no restriction
about the constraints. On the other hand, CP variables must
range over a finite domain of values. This domain constraint
can be encoded by linear constraints, which permits linearizing
many CP global constraints [2], [3], [4].

Definition 1 (from Refalo [3]): Let X be a set of n integer
domain variables and D = d1 ∪ . . . ∪ dn = {v1, . . . , vm} be
their domain union. All the domain constraints of the variables
in X can be stated using a set B of O(

∑
i∈{1,...,n} |di|) binary

variables and O(n) inequalities. ∀vj ∈ D, ∀xi ∈ X , if vj ∈ di
state a binary variable bij ∈ B, and ∀xi state:

(
∑
vj∈di

vjbij)− xi = 0 and
∑

bij :vj∈di

bij = 1.

Name New scope CP scope Definition
Deviation [5] vars: X: Qn vars: X: Zn nz = (

∑n
i=1 xi)

var: s: Q var: s: Z ∧ s = (
∑n

i=1 |xi − z|)
var: z: Q constant: z: Z

DistanceXYZ [10] vars:{x, y, z}: Q3 vars: {x, y, z}: Z3 |x− y| = z
Diverse_sum ([11], from [12]) vars: X: Qn vars: X: Zn

fixed vectors: V , fixed vectors: V ,
∑i=n,j=k

i=1,j=1 |xi − vj [i]| ≥ d
V = {v1, . . . , vk}, vj ∈ Qn V = {v1, . . . , vk}, vj ∈ Zn

constant: d: Q+ constant: d: Z+

InterDistance [13], [14] vars: X: Qn vars: X: Zn ∀xi, xj , i < j,
var: p: Q+ constant: p: Z+ |xi − xj | ≥ p

Smooth≥ [15] vars: X: Qn vars: X: Zn z =
var: z: N var: z: N |{xi : |xi − xi+1| ≥ cst}|

constant: cst : Q+ constant: cst : Z+

TABLE I
EXAMPLES OF DISTANCE CONSTRAINTS AND THEIR CONTINUOUS INTERPRETATIONS.

Some inequalities in Definition 1 can be delayed during
the solving process [3], and refined domain definitions can be
considered [4]. From the domain decomposition, most usual
CP global constraints can be encoded. Rather than providing
a state-of-the art example of linearized global constraint, we
introduce a new convex hull decomposition of the Gcc con-
straint with fixed occurrence bounds. This is a direct extension
of an existing Alldifferent decomposition [2], [3].

Definition 2 (Gcc [16]): Let X = {x1, . . . , xn} be a set of
variables, t an array of values. Each t[k] ∈ t is associated with
two integers t[k] and t[k], 0 ≤ t[k] ≤ t[k]. Gcc holds if and
only if for all indexes k: t[k] ≤ |{i : xi = t[k]}| ≤ t[k].

Lemma 1 (Gcc linearization): We use the notations of def-
initions 1 and 2. For all t[k] ∈ t, Bt[k] = {bij ∈ B :
vj ∈ di, vj = t[k]}. Gcc can be represented by the domain
decomposition of X and O(|t|) inequalities. ∀t[k] ∈ t state:

(
∑

b∈Bt[k]

b) ≥ t[k] and (
∑

b∈Bt[k]

b) ≤ t[k].

Proof: From Definition 1, ∀bij∈B, bij=1⇔ xi = vj .

III. GLOBAL CONSTRAINT DEFINITIONS

This section investigates how “classical” constraints of
discrete CP solvers can be used in the context of continuous
variables. The main difference with the decomposition scheme
presented in Section II is that we do not consider domains,
but only a minimum and maximum bound for each variable.
The values of the two bounds should have, in our context, no
significant impact on the solving efficacy; one may consider,
for instance, the minimum and maximum integer represented
by the computer. We use the following notations for rational
intervals: [v, w) ranges from v included to w excluded. [v]
is the interval reduced to value v. A variable x ranges over
[x, x+ ε), where ε > 0 is an arbitrary small value. We focus
on constraint families that are not necessarily disjoint.

A. Conjunctions of Inequalities.

Some constraints can be decomposed into a conjunction of
linear inequalities, without any extra variable. Although not
related to the number of variables, this notion conceptually
relies to “network decomposable” constraints [17]. Consider-
ing linear constraints makes sense in the context of MILP
as such decompositions can be added to a model without
any transformation. If one wishes to extend this group by
introducing disjunctions of linear inequalities, binary variables
should be introduced in order to keep a linear model. We do
not detail more this family because the related decomposition
techniques and constraints are well-known.

B. Distance constraints.

Many constraints have semantics based on the Euclidian
distance abs = |x − y|, where x, y, and abs are variables of
any type, including constants. Identifying those constraints as
a specific family makes sense, because this group is far from
being restricted to distance constraints [18]. Moreover, calcu-
lations based on distances are often rational. We mentioned in
introduction that stating a mean of physical distances can be
useful in various contexts, and this mean is rarely an integer.
Even though rational numbers can be artificially multiplied in
order to use integer variables in some models, depending on
the solving technique and other constraints in the problem this
modification may not be straightforward. In the context of CP
models solved by a MILP engine, limiting domain sizes is a
key criterion for obtaining an efficient solving, as domains are
decomposed using extra variables. Table I provides examples
of global constraints that are commonly used in CP and their
definition. All these constraints are based on the primitive
constraint abs = |x − y|. The second and third columns in
the table show the type of variables and parameters of the
continuous interpretation of each constraint (“New scope”), in
comparison with its original statement (“CP scope”).

C. Occurrence constraints.

Occurrence constraints, such as Gcc, seem at first glance
to be specific to variables with enumerated domains, such as

integer domains. On the other hand, a natural generalization
of the notion of the “number of occurrences of value v within
the assignment of a variable set X” consists in counting the
“number of values in a range [v, w), within the assignment of
a variable set X”. If the range is reduced to a single value [v]
the two definitions are equivalent. This interpretation permits
adapting occurrence constraints to the continuous case, so that
the new definitions match exactly to the original ones when
all the variables in X are stated to be fixed with integer values
and the intervals are restricted to single (integer) values.

Definition 3 (RangeGcc): Let X = {x1, . . . , xn} be a set
of variables, t an array of disjoint intervals t = 〈t[1] =
[s1, e1), . . . , t[m] = [sm, em)〉, not necessarily consecutive.
Each t[k] ∈ t is associated with two integers t[k] and t[k],
0 ≤ t[k] ≤ t[k]. RangeGcc holds if and only if for all indexes
k: t[k] ≤ |{i : xi ∈ t[k]}| ≤ t[k].
Using the same principle, by replacing in their definition val-
ues by intervals, one may obtain interpretations on continuous
variables of the CP constraints AtLeast and AtMost [10],
Among [19], [20], and constraints that correspond to con-
junction of Among constraints, e.g., Sequence [19] or
OrderedDistribute [21]. The case of Among is notice-
able. Given an array of values t, a domain variable z and a
set of domain variables X , Among is satisfied if and only
if z is equal to the number of variables taking a value in t.
Our generalization of the notion of occurrence corresponds
implicitly to Among; a range replaces the array t. On the
other hand, the generalization of Among to rational variables
considers a series of ranges, one per value in t.

Practical applications may require to state constraints that
count quantities, based on intervals of integer or rational
values. They correspond to the modeling blocks obtained
through the above generalizations. For instance, cruise lines
organize trips where, generally, distances between ports vary;
some people like practicing gambling activities while the
vessel is underway, while other prefer to have time for visiting
new places. In such a routing problem, only a subset of ports
is selected. If a set of variables X represents the distances be-
tween pairs of successive ports in the tour, the RangeGcc on
X allows to control the number of steps in predefined intervals
of distances (e.g., small, medium and long).

IV. DECOMPOSITIONS, REIFICATON AND SOFTENING

In this section we provide linear decompositions of the
constraints of Section III, mostly based on the “Big-M”
principle. Prior to this, we investigate a systematic scheme
for softening and reifying constraints. We introduce a new
violation measure. We consider strict inequalities of the form∑n

1 aixi < b. In the integer case, such an expression can be
represented by adding an offset of 1 to turn it into a non strict
inequality. In the rational case, we make the assumption that
an arbitrary small offset ε > 0 is used.

A. Generic Softening and Reification.

Instead of merely posting a constraint c it may be useful to
reflect its truth value into a binary variable r. This process is

called reification. It is used to express logical constraints. An
extension of the {0, 1} reification to integer violation measures
(also called violation costs) leaded to the notion of soft global
constraint [22]. We propose a generic scheme for softening
any constraint represented by a set of linear inequalities.

The principle is to soften each individual linear constraint
and aggregate the result for obtaining the decomposition of the
softened global constraint. In the case of decompositions based
on domain constraints, all linear constraints that represent
domains should remain hard, as softening constraints does
not mean allowing assignments that are not valid. In terms
of modeling, this principle allows to tackle, in a generic way,
important issues: over-constrained problems, reification and,
by fixing the truth variable, negation of global constraints.
Although it is new and generic, the following scheme relies
to previous studies on frequency assignment problems [23].

Proposition 1 (Linear constraint reification): Let c be a
linear constraint on variables X = {x1, . . . , xn} and rational
coefficients A = {a1, . . . , an},

∑n
1 aixi − b ≤ 0, such that

b ∈ Q. As all variables in X are bounded, we know the
maximal possible value for

∑n
1 aixi − b, denoted by M , and

the minimum value, denoted by m. Let r be a binary variable.
The following decomposition represents the reification of c.
If M <= 0: r = 1; if m > 0: r = 0; if m ≤ 0 < M :
n∑
1

aixi−b−M(1−r) ≤ 0 and
n∑
1

aixi−b−(m−1)r > 0.

Proof: If r = 0,
∑n

1 aixi − b −M ≤ 0 is always true,
we must have

∑n
1 aixi − b > 0. If r = 1, we must have∑n

1 aixi − b ≤ 0, given that
∑n

1 aixi − b − m + 1 > 0 is
always true.
Following an equivalent scheme, for rational and/or integer
variables the reification of

∑n
1 aixi − b < 0 is the following:∑n

1 aixi−b−(M+1)(1−r) < 0 and
∑n

1 aixi−b−mr ≥ 0.
From Proposition 1, we define a violation measure, equal

to the number of violated inequalities in the decomposition.
Definition 4 (Violation measure and soft constraint): Let

C be a global constraint defined by a conjunction of linear
constraints, i.e., C ⇔ c1∧ . . .∧ ck. Let crj be the reification of
each cj and rj the truth variable (Proposition 1). We define
a new violation measure expressed by an integer variable µ,
equal to the number of truth variables equal to 0, i.e., the soft
version softC of C is decomposed as follows:

∀j ∈ {1, . . . , k}, crj and µ = k −
k∑
j=1

rj .

Compared with existing violation measures (see, e.g., [24],
[25]), this measure has some links with the primal graph based
violation measure [22], as it refers to a decomposition of
the global constraint using more primitives ones. However,
a main difference is that in most cases extra-variables are
used in the linear decomposition, making the measure more
universal. It can actually be used for all the most commonly
used CP global constraints when we consider domain vari-
ables and their linear representation (see [4] for a survey of

existing decompositions). Furthermore, it is uniform, as all
decompositions consist of a set of linear inequalities. This
homogeneity should facilitate aggregation into an objective
function. Normalization over a set of constraints can be based
on the number of inequalities within each decomposition. This
point is important because normalization of violation measure
remains a main issue, notably in constraint based local search
(CBLS). Contrary to the variable based measure [22], it does
not suffer from pathological cases where it reduces to a {0, 1}
cost for global constraints. A perspective of our work is to
investigate the use of violation measures based on Definition 4
in the context of CBLS. We think that determining the criteria
for selecting the appropriate linear decomposition of each
constraint cannot be done independently from applications.

Reified decompositions of global constraints can be derived
from this measure.

Lemma 2 (Global constraint reification): We keep the no-
tations of Definition 4. Let r be a binary variable. The reifica-
tion of C is obtained by extending Definition 4 decomposition:

µ− k(1− r) ≤ 0 and µ+ r > 0.

Proof: If r = 0 then µ ≤ k is always true and we must
have µ > 0. If r = 1 then we must have µ = 0 (from
Definition 4, µ ≥ 0) and µ > −1 is always true.
It is possible to simplify, for a specific case, the set of linear
constraints obtained through this reification scheme, notably
by skipping the use of a µ variable or by considering particular
properties of the global constraint to be decomposed. For
instance, the Gcc (Definition 2) reification can be stated
with the following decomposition, that can be viewed as a
specialization of the general scheme.

Lemma 3 (Gcc reification): We use Definition 2 and
Lemma 1 notations. Let rc be the binary variable for the
truth value of the Gcc to be reified. We create O(|t|) binary
variables rk+c , mapped with values in t and O(|t|) binary
variables rk−c , also mapped. R is the set of all rk−c and all
rk+c variables, of size 2|t|. The reified Gcc is obtained by the
domain decomposition of X . In addition, ∀t[k] ∈ t state:

(
∑

b∈Bt[k]

b)− t[k]rk−c ≥ 0. (1)

(
∑

b∈Bt[k]

b)− rk−c (n+ 1) ≤ t[k]− 1. (2)

(
∑

b∈Bt[k]

b) + (t[k] + 1)rk+c ≥ t[k] + 1.

(
∑

b∈Bt[k]

b) + nrk+c ≤ t[k] + n.

Moreover, state once:

(
∑
r∈R

r)− rc ≤ 2|t| − 1. (3) (
∑
r∈R

r)− 2|t|rc ≥ 0. (4)

Proof: We first consider the case of one value t[k] ∈ t.
Without loss of generality we restrict to t[k] (the case of maxi-
mum occurence is symmetrical). If r−kc = 0 then (1) is always

satisfied and (2) is satisfied if and only if
∑
b∈Bt[k]

≤ t[k]−1,
i.e., the minimum required number of occurrences of t[k] is
not reached. If rk−c = 1 then (2) is always satisfied and (1) is
satisfied if and only if (

∑
b∈Bt[k]

b) ≥ t[k]. Then, consider all
values. If

∑
r∈R r = 2|t| then all lower and upper cardinalities

are in the request bounds, rc = 1 to satisfy constraint (3).
Otherwise, (3) is always satisfied. If

∑
r∈R r < 2|t| then

rc = 0 to satisfy constraint (4). Otherwise, (4) is always
satisfied. The Lemma holds.

B. Decomposing Distance Constraints.

All constraints in this family are based on the Euclidian
distance abs = |x − y|. We consider the general case where
{abs, x, y} are variables in Q3. We first need to decompose
this distance constraint into a set of linear equations.

Lemma 4 (abs = |x− y| linearization): We use the fol-
lowing notations: Given x, x, y, and y, a is the minimum
possible value of |x− y| and A the maximum possible value.
d is the minimum possible value of x−y and D the maximum
possible value. We then distinguish three cases.

1) D ≤ 0. Add abs − y + x = 0.
2) d ≥ 0. Add abs − x+ y = 0.
3) d < 0 < D. Add a ≤ abs and abs ≤ A, define

three variables dif , difp and difn , a binary variable b
and state:

dif−x+y = 0. (1) 0 ≤ difp and difp ≤ D. (2)

0 ≤ difn and difn ≤ |d|. (3) d ≤ dif and dif ≤ D. (4)

dif −difp+difn = 0. (5) difp−Db ≤ 0. (6)

difn+|d|b ≤ |d|. (7) abs−difp−difn = 0. (8)

Proof: Cases 1 and 2 are obvious. If d < 0 < D,
constraints (2) (3) and (4) state the bounds of difp, difn and
dif . From (1), dif = x−y. (5) states x−y = difp−difn . From
(2) and (3) difp ≥ 0 and difn ≥ 0. We have: either difp > 0,
then from (6) b = 1, and from (7) difn = 0: from (8),
abs = x− y; or difn > 0, from (7) b = 0, from (6) difp = 0:
from (8), abs = y − x; otherwise, abs = difp = difn = 0.

We denote by DistanceXYZ(x, y, abs) the linearization
of constraint abs = |x− y| of Lemma 4. We can decompose
the constraints in table I.

Proposition 2 (Deviation linearization): Let s and z be
two rational variables and A = {abs1, . . . , absn} be rational
variables. Deviation can be represented by the following
set of O(n) linear constraints:

∀xi ∈ X,DistanceXYZ(xi, z, absi).

In addition state once:

nz − (

n∑
i=1

xi) = 0 and s− (

n∑
i=1

absi) = 0.

Proposition 3 (InterDistance linearization): Let p be
a rational variable amd X = {x1, . . . , xn} be a set of ratio-
nal variables. The decomposition requires O(n2) inequalities.
∀xi, xj , i < j, state:

DistanceXYZ(xi, xj , absij) and absij ≥ p.

The case of Diverse_sum is similar to InterDistance.
Smooth requires reification, as it counts the number of times
constraint |xi − xi+1| ≥ c is satisfied.

Proposition 4 (Smooth linearization): Let cst be a posi-
tive integer, X = {x1, . . . , xn} be a set of rational variables
and z be an integer variable. ∀i ∈ {1, . . . , n}, let Mi be
the maximum possible value of cst − |xi − xi+1| and mi

the minimum possible value. In addition, we add n − 1
binary variables {r1, . . . , rn}. The decomposition requires
O(n) inequalities. ∀xi, i < n, state:

If mi > 0, ri = 0. If Mi ≤ 0, ri = 1.
Otherwise:

DistanceXYZ(xi, xi+1, absi).

and cst − absi −Mi(1− ri) <= 0.

and cst − absi − (mi − 1)ri > 0.

In addition state once: z =
∑n
i=1 ri.

C. Decomposing Occurrence Constraints.

Occurrence constraints generalized to rational variables
(section III-C) are basically based on the count of the number
of variables taking their value within an interval [v, w).

Definition 5 (Occurrence): Let X = {x1, . . . , xn} be a set
of variables of any type, z be an integer variable and [v, w)
an interval of rational values. Occ(X, z, [v, w)) holds if and
only if z = |{i : xi ∈ [v, w)}|.
We first need to decompose this constraint.

Lemma 5 (Occurrence linearization): We use the notations
of Definition 5. ∀xi ∈ X , X = {x1, . . . , xn}, state three
binary variables ri, r

<
i , and r≥i . Let mi be the minimum

possible value of xi and Mi the maximum possible value. Let
m<
i be the minimum possible value of xi − v and M<

i the
maximum possible value. Let m≥i be the minimum possible
value of w − xi and M≥i the maximum possible value.
Occ(X, z, [v, w)) can be decomposed by stating ∀xi ∈ X:

If Mi < v ∨mi ≥ w then ri = 0
If Mi < w ∧mi ≥ v then ri = 1.
Otherwise:

xi − v − (M<
i + 1)(1− r<i) < 0 and xi − v −m<

i r
<
i ≥ 0.

w − xi −M≥i (1− r≥i) ≤ 0 and w − xi − (m≥i − 1)r≥i > 0.

ri ≤ (1− r<i) and ri ≤ (1− r≥i) and ri + r<i + r≥i ≥ 1.

In addition, state once: z =
∑n
i=1 ri.

Proof: The cases Mi < v∨mi ≥ w and Mi < w∧mi ≥ v
are straightforward. Otherwise, from proposition 1 r<i reifies
the constraint xi < v, and r≥i reifies the constraint xi ≥ w. If
either r<i = 1 or r≥i = 1 then ri ≤ 0 and ri + r≥i + r<i ≥ 1
is satisfied. If none of the two are equal to 1, then we have
xi ≥ v ∧ xi < w. r<i = r≥i = 0. ri ≤ (1 − r<i) is ri ≤ 1,
ri ≤ (1 − r≥i) is ri ≤ 1 and to satisfy ri + r<i + r≥i ≥ 1,
ri = 1. Each ri is the truth value of xi ∈ [v, w).

∑n
i=1 ri is

equal to the number of values in [v.w), equal to z.
We deduce from Lemma 5 a linear formulation of the con-
straint of Definition 3 of Section III-C.

Proposition 5 (RangeGcc linearization): We use the no-
tations of Deinifion 3. Let m be the size of array t. The
decomposition requires O(n × m) inequalities. ∀t[k] ∈ t,
state the linear decomposition of Occ(X, zk, t[k]), where zk
is the integer variable equal to the number of variables in
X taking a value in t[k]. In addition, ∀t[k] ∈ t, state:
t[k]− zk ≤ 0 and zk − t[k] ≤ 0.

When used with integer mathematical variables, thanks to
Proposition 5 a Gcc constraint can be added to a model by
stating t as an array of intervals reduced to one integer value
t[k] = v. Alldifferent can be derived from this scheme
by considering ∀k ∈ {1, . . . ,m}, t[k] = 0 and t[k] = 1. These
decompositions are alternatives to Lemma 1, but they do not
require a domain decomposition.

V. IMPLEMENTATION AND EXPERIMENTS

We used an Intel-I7 processor and 8GB of RAM and the
MILP commercial solver Gurobi 7.0 [26].

A. Modeler implementation.

We implemented a Java modeler, MICE, for solving CP
models using any MILP engine, providing that this engine can
be called from Java. We argue that using a standard language
makes sense, given our objective of simplicity of use. We
underline three aspects.

1) Modularity:
Our prototype provides its own API for stating linear con-
straints. Therefore, all predefined constraints as well as user
constraints are stated using MICE objects. To plug a new
MILP solver, the main class, called Solver, should be
augmented by a call to the method creating a new model
in the MILP solver. In addition, a unique new class must
be created. This class implements an interface that states
the methods used to create mathematical variables and linear
constraints within the MILP engine (this makes the link with
MICE linear expressions), to call specific methods for running
the MILP solver, limiting time, and some getters (value of a
mathematical variable, solver statistics, etc.).

2) Constraints on integer domain variables:
Our prototype provides an API for integer domain variables
and a wide range of state-of-the-art global constraint linear
formulations, such as Alldifferent, Gcc, Element, pos-
itive tables (i.e., defined by the set of allowed combinations
of values), sum and scalar product, arithmetic operators. In
addition, it provides modeling facilities such as negative tables,
constraints z = xk, z = |x − y|, z = x × y, represented by
tables, reified Gcc and reified tables. We do not detail all
these features, except the decompositions of negative tables
and table constraint reification based on Refalo’s domain
representation, which are, as far as we know, new.

Lemma 6 (Negative table linearization): We use the nota-
tions of Definiton 1. Let c be a constraint defined on var(c) ⊆
X by a set T = {τ1, . . . , τ|T |} of forbidden tuples. Value of
variable xi in tuple τk is denoted by τk[xi]. c can be repre-
sented by the domain decomposition of X and O(|T |) inequal-
ities. ∀τk ∈ T state: (

∑
i,vj∈di:vj=τk[xi]

bij) ≤ |var(c)| − 1.

Proof: For c to be satisfied, ∀τk ∈ T at least one
variable xi ∈ var(c) should take a value vj 6= τk[xi]. From
Definiton 1, if xi = vj then bij = 1, otherwise bij = 0.∑
i,vj∈di:vj=τk[xi]

bij must be < |var(c)|.
Lemma 7 (Table constraint reification): We use the nota-

tions of Definiton 1. We introduce a set of binary variables
BT , one-to-one mapped with tuples in T = {τ1, . . . , τ|T |}.
The set T can either represent allowed or forbidden tuples.
Value of variable xi in tuple τk is denoted by τk[xi]. The
reification of a table constraint c can be represented by the
domain decomposition of X , the binary variable rc used to
express the truth value of c and O(|T |) inequalities.
(1) ∀τk ∈ T and the corresponding variable bτk ∈ BT state:

|var(c)|bτk − (
∑

i,vj∈di:vj=τk[xi]

bij) ≤ 0,

and:

(
∑

i,vj∈di:vj=τk[xi]

bij)− |var(c)|bτk ≤ |var(c)| − 1.

(2) In addition, if tuples in T are allowed tuples state:

(
∑

k∈{1,...,|T |}

bτk)− rc = 0.

otherwise state:

(
∑

k∈{1,...,|T |}

bτk) + rc = 1.

Proof: ∀τk ∈ T , inequality (1) ensures that if bτk = 1
then all xi ∈ var(c) take the value τk[xi]. If bτk = 0 it is
always satisfied. The second one ensures that if bτk = 0 not
all the variables xi ∈ var(c) take the value τk[xi]. If bτk = 1
it is always satisfied. From Definiton 1,

∑
k∈{1,...,|T |} bτk ≤ 1.

From (2), rc = 1 ⇔ the variables in var(c) are fixed with a
tuple of T (positive table) or not in T (negative table).

The main advantage of Lemma 7 is that although all forbid-
den and allowed combinations of values should be considered,
they are not both stated explicitly: Only either allowed or
forbidden tuples are used. In many cases this obviously makes
a huge difference in terms of size.

To design a complete CP modeler, we need an API
for stating constraints based on logical operators. Logical
constraints are then themselves set through tables on reifi-
cation variables. Given any two reified constraints c1 and
c2, ReifOR is a table on the truth variables r1 and r2
and a new variable r: the allowed tuples on {r1, r2, r}
are {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 1)}. Stating OR is then
r = 1. The cases of AND, ¬ and → (implication) are similar.
There is no limitation about the number of logical operator
combinations on reified constraints.

3) Discrete-continuous use:
The decompositions on rational variables presented in this
paper can be included to a model using our prototype, and
mixed with other constraints on integer variables. Recall that
constraints on rational variables have been designed to be
suited to integer variables as well.

B. Comparative performance assessment.

Although we implicitly compare CP and MILP on the same
models, obviously our goal is not to design a winner. Using the
best existing models, some problems are best solved by CP and
some other are best solved by MILP solvers. In the context of
a “model and run” approach (i.e., models are exclusively stated
by variables and high level constraints), where linear models
are automatically derived from CP models, our objective is
rather to provide examples. For each example, if the price to
pay for this simplicity of use1 is not prohibitive concerning
solving efficacy, a proof of concept is made. This shows that
such an approach can be an interesting alternative for tackling
discrete-continuous problems, using both domain, mathemat-
ical, binary, integer and/or rational variables. Observe that
nothing prevents the user to further improve her model by
replacing part of the generic decompositions by an ad hoc
linear formulation. Similarly, most CP solvers offer an API to
design user’s own global constraints, search and propagators.

1) Comparison with hybrid models:
In a first experiment, we compared:
• MICE coupled with Gurobi.
• Hybridization of discrete and continuous CP solvers.

We experimented the Santa Claus discrete-continuous prob-
lem [1], where the goal is to minimize the average deviation
of gift prices, in order to fairly satisfy kids. This problem was
initially shown to justify the need of a bridge between two
solvers: a “classical” CP solver with a continuous CP solver.

nb. kids max. price nb. gifts MICE Choco-Ibex
3 25 5 0 sec. 0 sec.
6 50 10 0 sec. 0.8 sec.
9 75 15 0.3 sec. 371.6 sec.

12 100 20 32.3 sec. > 600 sec.
15 125 25 341.5 sec. > 600 sec.

TABLE II
MICE WITH GUROBI VS CHOCO-IBEX.

We used Choco 3.3.3 [10] and Ibex 2.3.1 [27], like in
the original experiments performed on this problem [1]. The
CP model also stems from this paper. We use the same
model with our prototype (except that no search strategy
is stated). Building time is negligible. This model embeds
Alldifferent and Element on integer variables and
Deviation with a continuous variable for the mean. Ta-
ble II shows time for proving the optimal solution, with a 10
minutes limit. We generated random instances with all-distinct
prices for available gifts, according to a maximum price
(minimum is $1), number of kids and total number of available
gifts. Table II shows some benefits, despite the simplicity of
modeling such a discrete-continuous model using a single
API. While this example shows the possible advantages of

1Benefiting from the default parameters of modern MILP solvers that make
the solving process quite robust, an advantage of this technique in comparison
with classical CP solvers is to skip the search strategy definition in models.
A similar comment can be made with respect to implicit constraints set in CP
models to improve propagation, or concerning symmetry breaking constraints.

our approach, recall that a limitation is that not all global
constraints can be (easily, reasonably) represented, contrary to
a system like Ibex.

2) Domain versus mathematical integer variables:
Concerning models stated on integer domain variables, recent
works have shown competitive results on optimization CP
benchmarks [4].

Series MICE MICE av. MICE av. CP CP av. CP av.
(10 in-
stances)

optimal
proofs

obj. value time
(sec.)

optimal
proofs

obj.
value

time
(sec.)

bqp50 100% 1926.8 60.1 60% 1903.9 447.3
g05 20 100% 64.9 1.9 100 % 64.9 3.6
g05 30 100% 138.8 40.1 0 % 137.1 600
g05 40 40% 244.9 (3.2%) 549.1 0 % 228.2 600

TABLE III
MICE WITH GUROBI VS CP: MAXIMIZATION PROBLEMS.

Table III reports complementary results about the CP-style
modeling features of MICE to solve the Max-Cut non-linear
(quadratic) optimization problem that occurs in statistical
physics applications [28], without any handcrafted model
transformation. Given an undirected graph with weighted
edges Gw = (V,Ew), Max-Cut is the problem of finding
a cut in G of maximum weight. i.e., split the vertex set in
two so that to have a maximum weighted set S of edges
that have an end point in each set. A variable xi is stated
for each vertex in V . xi = 1 if vertex vi is in S and
xi = −1 otherwise. We maximize 1

2

∑
i<j wij(1− xixj). We

encoded this problem in Choco 3.3.3 and MICE coupled with
Gurobi. Using our prototype the default product constraint
corresponds to a positive table. In CP, the best strategy we
found is DomOverWdeg [29], and first assign vertices. We
used Beasley instances from the OR-Libary and problems from
g05 60 Rudy instances2, with a 10 min. time-limit. Graphs
have respectively 50 nodes and weights in [−100, 100], and
30-50 nodes unweighted. Building time is not significant.

MICE can also provide competitive results for satisfaction
benchmarks on integer domain variables, providing that it is
connected to a modern MILP solver, such as Gurobi. For
instance, several benchmarks that use Alldifferent are as
easily solved (most in less than 1 second) by MICE, as they are
using the models in the sample directories of Choco 3.3.3 [10]
and OR-Tools [30] (e.g., Sudoku, prob03, prob07, prob19 from
CSPLib 3). Furthermore, if in the CP model we replace ad
hoc search strategies by the default search strategy, to make
the comparison exactly on the same model, the CP solvers are
not always able to solve the instances in a comparable time.
The CP best strategy for CSPLib prob19-7, for instance, is
impact-based search (IBS) with specific parameters that would
not be understandable by non-expert practicers. Using IBS, the
problem is solved in 6.4 seconds (MICE+Gurobi solves it in
3.5 sec). If we use the default strategy, no solution is found by
the CP solver is one minute (both using Choco and OR-Tools).

2See http://biqmac.uni-klu.ac.at/biqmaclib.html
3http://www.csplib.org/

n
Model A Model B Model C

Build Solve (sec.) build Solve (sec.) Build Solve (sec.)
14 14.8 0.2 0.3 7.1 0.1 0.2
16 35.2 0.3 0.2 13.2 0.1 0.5
18 72.1 0.6 0.8 0.6 0.1 5
20 141.7 1 0.9 > 600 0.1 5.1

TABLE IV
BUILDING AND SOLVING TIME IN SECONDS.

There are, however, issues inherent to the use of a domain
representation. The main one is that new binary variables
are created for decomposing the domain constraint of each
variable (Definition 1). This observation was made in [4],
where authors suggest a refined domain representation. If
domains are too large or too many linear constraints are stated
on those binary variables, the MILP model can become huge
even for small instances. Then, in addition to the consequences
concerning solving time, even generating the linear equations
can take a while. To illustrate this issue, consider the All-
interval series problem. It is worth noticing that recent CP
solvers, such as Choco 3.3.3, easily solve this problem (in a
solving time close to 0 second).

Given n ∈ N, the problem is to find a vector s =
(s1, . . . , sn) such that s is a permutation of Zn = 0, 1, . . . , n−
1 and the interval vector v = (|s2 − s1|, |s3 − s2|, . . . , |sn −
sn−1| is a permutation of Zn \ {0} = 1, . . . , n − 1. The
model uses Alldifferent and DistanceXYZ constraints.
With integer domain variables, if all constraints are lin-
earized from the binary variables used to decompose do-
mains, DistanceXYZ can be encoded through a positive
ternary table (model A). Such a table may quickly be-
come big and slow to be generated. It is possible to state
a model exclusively on integer mathematical variables, us-
ing Proposition 5 for Alldifferent and Lemma 4 for
DistanceXYZ (model B). A drawback is that we do not
use the state-of-the-art concise and convex hull representa-
tion of Alldifferent [3]. The good compromise, with
Gurobi, is to state a model on integer domain variables and
to use Lemma 4 for DistanceXYZ (model C). Even if
this observation is simple, it underlines that in some cases
selecting the appropriate representation can be important,
which can be considered as an argument against simplicity of
use. However, the good news are that selection criteria should
be problem independent (mainly the number of variables and
linear constraints generated), making feasible the perspective
of dealing with this issue in a generic way. Table IV shows
the model building and solving times of the three models.

VI. CONCLUSION AND PERSPECTIVES

In this paper, we considered constraints originally stated
using integer domain variables, for which we derived new
definitions using rational variables and linear decompositions.
We introduced a generic scheme for reification and softening.
Throughout this study, we implemented a prototype that pro-
vides an API comparable to existing CP solvers concerning

integer variables, including global constraints and logical op-
erators, plus global constraints on rational variables. Benefiting
from the “model and run” features of Gurobi, plugged to our
modeler, we provided examples showing that our approach
can be an alternative that is noticeably simple to use. We are
arguing that simplicity of use is important for democratizing
the CP-style modeling. Stating only variables and constraints
is simpler than selecting propagators, designing hybrid models
and/or dedicated search strategies. The choice of a standard
language for the prototype is also motivated by this context
of use. Importing a library is probably simpler than learning
a new language; integration into broader projects is easier.
Most importantly, some practitioners or students may wish to
quickly learn about CP modeling before deciding whether to
adopt this technology or not at the final stage.

From a technical point of view, we introduced new
decompositions, both for domain and mathematical vari-
ables: the Gcc with fixed occurrence intervals, reified
Gcc, DistanceXYZ, Deviation, InterDistance,
Diverse_sum, Smooth, RangeGcc, Among, negative ta-
bles and reified tables. Future work includes proposing alter-
native models for these constraints as well as extending the
approach to other constraint families.

Concerning the new violation measure, we came up with
a definition that solves the issue of uniformity while it does
not have expressivity drawbacks of the variable based cost. A
perspective in CP and CBLS is to determine, from a series of
practical problems, which are the criteria for selecting the best
decomposition of a constraint, when several alternatives exist.
Using a CP solver, this may require to design propagators
dedicated to the subproblem stated by each decomposition.

REFERENCES

[1] J.-G. Fages, G. Chabert, and C. Prud’homme, “Combining finite
and continuous solvers,” CoRR, vol. abs/1402.1361, 2014. [Online].
Available: http://arxiv.org/abs/1402.1361

[2] R. Rodosek, M. Wallace, and M. Hajian, “A new approach to integrating
mixed integer programming and constraint logic programming,” Annals
of Operational Research. Recent Advances in Comb. Optimization, 1997.

[3] P. Refalo, “Linear formulation of constraint programming models and
hybrid solvers,” in Principles and Practice of Constraint Programming
- CP 2000, 6th International Conference, Singapore, September 18-21,
2000, Proc., 2000, pp. 369–383.

[4] G. Belov, P. J. Stuckey, G. Tack, and M. Wallace, “Improved lineariza-
tion of constraint programming models,” in Principles and Practice of
Constraint Programming - CP 2016, 22nd International Conference, CP
2016, Toulouse, France, September 5 - 9, 2016, Proc., vol. 9392, 2016.

[5] P. Schaus, Y. Deville, P. Dupont, and J.-C. Régin, “The deviation
constraint,” in Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, CPAIOR 2007,
Brussels, Belgium, May 23-26, 2007, Proc., 2007, pp. 260–274.

[6] P. Schaus, P. V. Hentenryck, and J.-C. Régin, “Scalable load balancing
in nurse to patient assignment problems,” in Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization
Problems, CPAIOR 2009, Pittsburgh, PA, USA, May 27-31, 2009, Proc.,
ser. Lecture Notes in Computer Science, W.-J. van Hoeve and J. N.
Hooker, Eds., vol. 5547. Springer, 2009, pp. 248–262.

[7] J.-F. Puget, “Constraint programming next challenge: Simplicity of use,”
in Principles and Practice of Constraint Programming - CP 2004, 10th
International Conference, CP 2004, Toronto, Canada, September 27 -
October 1, 2004, Proc., 2004, pp. 5–8.

[8] M. Milano and P. V. Hentenryck, Hybrid Optimization - The Ten Years
of CPAIOR, ser. Springer Optimization and its Applications. Springer,
2011, vol. 45.

[9] J. Benders, “Partitioning procedures for solving mixed-
variables programming problems,” Computational Management
Science, vol. 2, no. 1, pp. 3–19, 2005. [Online]. Available:
http://EconPapers.repec.org/RePEc:spr:comgts:v:2:y:2005:i:1:p:3-19

[10] C. Prud’homme, J.-G. Fages, and X. Lorca, Choco3 Documentation,
TASC, INRIA Rennes, LINA CNRS UMR 6241, COSLING S.A.S.,
2014. [Online]. Available: http://www.choco-solver.org

[11] T. Petit and A. C. Trapp, “Finding diverse solutions of high quality
to constraint optimization problems,” in Proc. of the Twenty-Fourth
International Joint Conference on Artificial Intelligence, IJCAI 2015,
Buenos Aires, Argentina, July 25-31, 2015, 2015, pp. 260–267.

[12] E. Hebrard, B. Hnich, B. O’Sullivan, and T. Walsh, “Finding diverse and
similar solutions in constraint programming,” in Proc., The Twentieth
National Conference on Artificial Intelligence and the Seventeenth
Innovative Applications of Artificial Intelligence Conference, July 9-13,
2005, Pittsburgh, Pennsylvania, USA, 2005, pp. 372–377.

[13] J.-C. Régin, “The global minimum distance constraint,” ILOG (IBM),
Tech. Rep., 01 1997.

[14] C.-G. Quimper, A. López-Ortiz, and G. Pesant, “A quadratic propagator
for the inter-distance constraint,” in Proc., The Twenty-First National
Conference on Artificial Intelligence and the Eighteenth Innovative
Applications of Artificial Intelligence Conference, July 16-20, 2006,
Boston, Massachusetts, USA, 2006, pp. 123–128.

[15] N. Beldiceanu, M. Carlsson, and J.-X. Rampon, “Global Constraint
Catalog, 2nd Ed.” SICS, Tech. Rep. T2010-07, 2010.

[16] J.-C. Régin, “Generalized arc consistency for global cardinality con-
straint,” in Proc. of the Thirteenth National Conference on Artificial
Intelligence and Eighth Innovative Applications of Artificial Intelligence
Conference, AAAI 96, IAAI 96, Portland, Oregon, August 4-8, 1996,
Volume 1., 1996, pp. 209–215.

[17] I. P. Gent, K. Stergiou, and T. Walsh, “Decomposable constraints,” Artif.
Intell., vol. 123, no. 1-2, pp. 133–156, 2000.

[18] E. Hebrard, B. O’Sullivan, and T. Walsh, “Distance constraints in
constraint satisfaction,” in IJCAI 2007, Proc. of the 20th International
Joint Conference on Artificial Intelligence, Hyderabad, India, January
6-12, 2007, 2007, pp. 106–111.

[19] N. Beldiceanu and E. Contejean, “Introducing global constraints in
CHIP,” Journal of Mathematical and Computer Modelling, vol. 20(12),
pp. 97–123, 1994.

[20] C. Bessière, E. Hebrard, B. Hnich, Z. Kiziltan, and T. Walsh, “Among,
common and disjoint constraints,” in Recent Advances in Constraints,
Joint ERCIM/CoLogNET Int. Workshop on Constraint Solving and
Constraint Logic Programming, CSCLP 2005, Uppsala, Sweden, June
20-22, 2005, Revised Selected and Invited Papers, 2005, pp. 29–43.

[21] T. Petit and J.-C. Régin, “The ordered distribute constraint,” Interna-
tional Journal on Art. Intelligence Tools, vol. 20, no. 4, pp. 617–637,
2011.

[22] T. Petit, J.-C. Régin, and C. Bessière, “Specific filtering algorithms for
over-constrained problems,” in Principles and Practice of Constraint
Programming - CP 2001, 7th International Conference, CP 2001,
Paphos, Cyprus, 2001, Proc., 2001, pp. 451–463.

[23] A. Koster, “Frequency assignment: models and algorithms,” Ph.D.
dissertation, Maastricht University, 1999.

[24] N. Beldiceanu and T. Petit, “Cost evaluation of soft global constraints,”
in Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems, CPAIOR 2004, Nice, France,
April 20-22, 2004, Proc., 2004, pp. 80–95.

[25] W.-J. van Hoeve, G. Pesant, and L.-M. Rousseau, “On global warming:
Flow-based soft global constraints,” J. Heuristics, vol. 12, no. 4-5, pp.
347–373, 2006.

[26] Gurobi, Gurobi 6.5 Manual (www.gurobi.com), 2016.
[27] G. Chabert, B. Neveu, J. Ninin, L. Jaulin, and G. Trombettoni, Ibex,

Mines Nantes, ENPC Paris, ENSTA Brest, Univ. Montpellier II, 2016.
[Online]. Available: http://www.ibex-lib.org

[28] F. Liers, “Contributions to determining exact ground-states of ising spin-
glasses and to their physics,” Ph.D. dissertation, Univ. zu Koln, 2004.

[29] F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais, “Boosting system-
atic search by weighting constraints,” in Proc. of the 16th Eureopean
Conference on Artificial Intelligence, ECAI’2004, Valencia, Spain, Au-
gust 22-27, 2004, 2004, pp. 146–150.

[30] N. van Omme, L. Perron, and V. Furnon, “OR-Tools users manual,”
Google, Tech. Rep., 2014.

