

# Predicted device-degradation failure-rate

Ephraim Suhir, Alain Bensoussan, Johann Nicolics

# ▶ To cite this version:

Ephraim Suhir, Alain Bensoussan, Johann Nicolics. Predicted device-degradation failure-rate. SAE 2015 (SAE AeroTech Congress & Exhibition), Sep 2015, Seattle, United States. pp. 1-10. hal-01686385

# HAL Id: hal-01686385 https://hal.science/hal-01686385

Submitted on 17 Jan2018

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.



# Open Archive TOULOUSE Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in : <u>http://oatao.univ-toulouse.fr/</u> Eprints ID : 18139

> **To link to this article** : DOI: 10.4271/2015-01-2555. URL : <u>http://dx.doi.org/10.4271/2015-01-2555</u>.

**To cite this version** : Suhir, Ephraim and Bensoussan, Alain and Nicolics, Johann *Predicted device-degradation failure-rate*. (2015) In: SAE 2015 (SAE AeroTech Congress & Exhibition), 22 September 2015 - 24 September 2015 (Seattle, United States).

Any correspondence concerning this service should be sent to the repository administrator: staff-oatao@listes-diff.inp-toulouse.fr

# **Predicted Device-Degradation Failure-Rate**

**Ephraim Suhir** 

Portland State University

Alain Bensoussan Institut de Recherche SAINT EXUPERY

#### **Johann Nicolics**

Vienna University of Technology

### Abstract

There is a concern that the continuing trend on miniaturization (Moore's law) in IC design and fabrication might have a negative impact on the device reliability. To understand and to possibly quantify the physics underlying this concern and phenomenon, it is natural to proceed from the experimental bathtub curve (BTC) - reliability "passport" of the device. This curve reflects the combined effect of two major irreversible governing processes: statistics-related mass-production process that results in a decreasing failure rate with time, and reliability-physics-related degradation (aging) process that leads to an increasing failure rate. It is the latter process that is of major concern of a device designer and manufacturer.

The statistical process can be evaluated theoretically, using a rather simple predictive model. Owing to that and assuming that the two processes of interest are statistically independent one can assess the failure rates associated with the aging process from the BTC data by simply subtracting the predicted ordinates of the statistical failure rates (SFR) from the BTC ordinates. The objective of this analysis is to show how this could be done.

The suggested methodology proceeds from the concepts that the actual ("instantaneous") SFR is a random variable with a known (assumed, established) probability distribution, that the experimental BTC can be represented by its infant mortality and the wear-out portions only (the steady-state portion in this case is simply the boundary between the infant mortality and wear-out portions) and that the two BTC portions considered can be approximated analytically. The cases, when the "instantaneous" SFR is distributed normally and in accordance with the Rayleigh law are used as suitable illustrations of the general concept.

The developed methodology can be employed when there is a need to better understand the relative roles of the statistics-related and physics-of-failure-related processes in reliability evaluations of electronic products. The methodology can be used also beyond the field of IC engineering, when there is a need to understand and, hence, to separate the roles of the two irreversible processes in question.

One of the major challenges of the future work is to determine the probability distributions of the actual ("instantaneous") SFRs for particular products and applications.

#### Introduction

There is an indication [1] that the continuing trend on miniaturization (Moor's law) might have a negative impact on the device reliability. This trend is of particular concern when it comes to deep submicron (DSM) technologies characterized by etching thicknesses below 90nm and when device is operated at the wear out portion of the BTC, when the degradation (aging) process plays the major role.

To better understand and possibly quantify the reliability physics underlying DSM technologies, it is natural to proceed from the BTC - an experimental reliability "passport" of a population of mass produced devices. The BTC considers and reflects, however, the combined effect of two governing irreversible processes: the statistics-related mass-production process and the reliability-physicsrelated degradation (aging) process. The first process results in a decreasing effective failure rate with time, while the second process leads to an increased failure rate. It is the latter process that is of major concern of the device manufacturer, and therefore there is an obvious need for being able to "extract" the degradation related failure rate from the total (observed) failure rate reflected by the BTC. The statistical process can be assessed theoretically, using a simple predictive model [2]. Then, assuming that the two processes of interest are statistically independent, one can predict the failure rates associated with the degradation process by simply subtracting the SFR ordinates from the BTC data. The developed methodology shows how this could be done. It proceeds from an assumption that the actual ("instantaneous") SFR is a random variable with a known (assumed or established) probability distribution. Normal and Rayleigh distributions of the random SFR are considered in this analysis as suitable illustrations of the general concept.

The analytical representation of the BTC and the developed methodology can be employed in the design and analysis of the next generations of electron devices. It can be used also beyond the electron device field, when there is a need to assess, in various engineering and applied science problems, the roles of the two governing irreversible processes in question.

#### Analysis

#### Analytical Bathtub Curve (BTC)

The experimental BTC (Fig.1) for the time dependent failure rate  $\lambda(t)$  can be approximated as follows:

$$\lambda(t) = \begin{cases} \lambda_{0} + (\lambda_{1} - \lambda_{0}) \left(1 - \frac{t}{t_{1}}\right)^{n_{1}} = \\ = \lambda_{0} \left[1 + \left(\frac{\lambda_{1}}{\lambda_{0}} - 1\right) \left(1 - \frac{t}{t_{1}}\right)^{n_{1}}\right], 0 \le t \le t_{1} \\ \lambda_{0} + (\lambda_{2} - \lambda_{0}) \left(\frac{t - t_{1}}{t_{2}}\right)^{n_{2}} = \\ = \lambda_{0} \left[1 + \left(\frac{\lambda_{2}}{\lambda_{0}} - 1\right) \left(\frac{t}{t_{2}} - \frac{t_{1}}{t_{2}}\right)^{n_{2}}\right], t_{1} \le t \le t_{1} + t_{2} \end{cases}$$

$$(1)$$

Here  $\lambda_0$  is the minimum ("steady-state") value of the BTC,  $\lambda_1$  is the initial value of the failure rate (at the beginning of the infant mortality portion),  $t_1$  is the duration of this portion,  $\lambda_2$  is the final value of the failure rate (at the end of the wear-out portion),  $t_2$  is the duration of this portion, and the exponents  $n_1$  and  $n_2$  are expressed through the fullnesses  $\beta_1$  and  $\beta_2$  of the infant -mortality and the wear-out BTC portions as  $n_{1,2} = \frac{\beta_{1,2}}{1 - \beta_{1,2}}$ . These fullnesses are defined as the

ratios of the areas above the BTC to the areas  $(\lambda_1 - \lambda_0)t_1$  and  $(\lambda_2 - \lambda_0)t_2$ of the corresponding rectangulars. The exponents  $n_1$  and  $n_2$  change from 1 to infinity, when the fullnesses  $\beta_1$  and  $\beta_2$  change from 0.5 (triangle) to 1 (rectangular). The lowest  $\lambda(t)$  values can be achieved in the case of the largest  $\beta_1$  and  $\beta_2$  (or  $n_1$  and  $n_2$ ) values. The first formula in (1) describes the infant mortality portion of the BTC. The second formula is related to its wear-out portion. Both portions change slowly in the vicinity of their boundary. These slow changing regions of the BTC could be perceived and interpreted as the steady-state segment of the BTC. It is noteworthy that the analytical BTC in Fig.1 could be used for different applications, and should not be necessarily viewed as an 100% experimental information.

An experimental BTC [3] obtained during failure oriented accelerated testing (FOAT) of flip-chip solder joint interconnections in Bell Labs Si-on-Si technology is shown in Fig.2, where the number of cycles is used instead of time. The data for the failure rates in the second line of Table 1 are obtained with the input information of  $\beta_1 = 0.8$  ( $n_1 = 4$ ),  $\beta_2 = 0.75$  ( $n_2 = 3$ ),  $t_1 = N_1 = 75$ ,  $t_2 = N_2 = 300$ ,  $\lambda_0 = 0.5x10^{-4}$ ,  $\lambda_1 = 7.5x10^{-4}$ ,  $\lambda_2 = 17.5x10^{-4}$ . The probabilities  $P_{NF}$  of non-failure are shown in the third line of Table 1 assuming that the exponential law  $P_{NF} = e^{-\lambda N}$  is applicable for the entire duration of testing. The calculated data indicate that the time-dependence of the failure rate has a strong effect on the probability of non-failure.





Table 1. Failure rate and the probability of non-failure vs. number of cycles (see Fig.2)

| N                | 0      | 25     | 50     | 75     | 100     |
|------------------|--------|--------|--------|--------|---------|
| $\lambda x 10^4$ | 7.5    | 1.8827 | 0.5864 | 0.5000 | 0.5098  |
| $P_{\rm NF}$     | 1.0    | 0.9953 | 0.9971 | 0.9963 | 0.9949  |
| N                | 150    | 200    | 250    | 300    | 350     |
| $\lambda x 10^4$ | 0.7656 | 1.7297 | 3.8744 | 7.6719 | 13.5943 |
| P <sub>NF</sub>  | 0.9886 | 0.9660 | 0.9077 | 0.7944 | 0.6214  |

#### Effective SFR of Mass-Produced Devices

A customer that receives products from n vendors can evaluate the probability of non-failure for the received products, assuming that the exponential law of reliability is applicable, as



(2)

400



Figure 2. Experimental BTC obtained for solder joint interconnections in Si-on-Si flip-chip multi-chip module Bell-Labs design

NUMBER OF CYCLES

Here  $p_k$  is the fraction of the products received from the k - th vendor,  $\lambda_k$  is the (random) failure rate of these products, and t is time. Assuming that the actual ("instantaneous") random failure rate can be, in effect, any number between zero and infinity, the sum in the formula (2) can be substituted, for a large n number, by the integral:

$$P(t) = \int_{0}^{\infty} \exp(-\lambda t) dF(\lambda) = \int_{0}^{\infty} \exp(-\lambda t) \frac{dF(\lambda)}{d\lambda} d\lambda =$$
  
=  $\int_{0}^{\infty} \exp(-\lambda t) f(\lambda) d\lambda.$  (3)

Here  $F(\lambda)$  is the probability distribution function and  $f(\lambda)$  is the probability density distribution function of the random failure rate  $\lambda$ . The rationale behind the <u>formulas (2)</u> and (3) is as follows. The probability of non-failure of a large population of devices is determined by the failure rate of each particular device. The failure rate

$$\lambda(t) = \frac{\frac{dN_f(t)}{dt}}{N_s(t)}$$

changes in a random fashion from one device to another and is defined as the ratio of the current rate  $\frac{dN_f(t)}{dt}$  of the number  $N_f(t)$ 

of devices that failed by the time t to the number  $N_s(t)$  of devices that remained sound by that time. Substituting, in accordance with the ergodic theorem, the number of the sound items with the probability P(t) of their non-failure and the number of the failed items - with the probability Q(t) = 1 - P(t) of failure one could write the <u>formula (4)</u> as

$$\lambda(t) = \frac{\frac{d[1-P(t)]}{dt}}{P(t)} = -\frac{1}{P(t)}\frac{dP(t)}{dt}.$$

Considering (3), this formula can be written in the form:

$$\lambda(t) = \frac{\int_{0}^{\infty} \lambda \exp(-\lambda t) f(\lambda) d\lambda}{\int_{0}^{\infty} \exp(-\lambda t) f(\lambda) d\lambda}.$$

Computations based on this formula confirm that the effective SFR decreases with time. In an extreme case, when the failure rate  $\lambda(t)$  is

distributed uniformly, the formula (6) yields: 
$$\lambda_{ST}(t) = \frac{1}{t}$$
. This

result leads to a very sharp decrease in the effective SFR with time and is viewed as a non-realistic.

### Normally Distributed "Instantaneous" SFR

To assess the decrease in this rate with time for a more realistic distribution, let us assume that the SFR is normally distributed:

$$f(\lambda) = \frac{1}{\sqrt{2\pi D}} \exp\left(-\frac{(\lambda - \overline{\lambda})^2}{2D}\right).$$
(7)

Here  $\overline{\lambda}$  is the mean value of the random failure rate  $\lambda$  and *D* is its variance. The effective SFR  $\lambda_{ST}(t)$  can be found as a function of time from the formula (6) and the distribution (7):

$$\lambda_{ST}(t) = \frac{\int_{0}^{\infty} \lambda \exp\left(-\frac{(\lambda - \overline{\lambda})^{2}}{2D} - t\lambda\right) d\lambda}{\int_{0}^{\infty} \exp\left(-\frac{(\lambda - \overline{\lambda})^{2}}{2D} - t\lambda\right) d\lambda} = \sqrt{2D}\varphi_{N}(\xi).$$

Here

(4)

$$\varphi_N(\xi_N) = -\xi_N + \frac{1}{\overline{\Phi}(\xi_N)}$$

is a function of the dimensionless time

(9)

(8)

(5)

(6)

$$\xi_{\scriptscriptstyle N} = \frac{Dt - \bar{\lambda}}{\sqrt{2D}}$$

(10)

and so are the auxiliary function

$$\overline{\Phi}(\xi_{N}) = \sqrt{\pi} \exp(\xi_{N}^{2})[1 - \Phi(\xi_{N})] \approx$$

$$\approx \frac{1}{\xi_{N}} \left[ 1 + \sum_{k=1}^{\infty} (-1)^{k} \frac{1x_{3}x_{\dots}(2k-1)}{2^{k} \xi_{N}^{2k}} \right] \approx$$

$$\approx \frac{1}{\xi_{N}} \left( 1 - \frac{1}{2\xi_{N}^{2}} + \frac{3}{4\xi_{N}^{4}} - \frac{15}{8\xi_{N}^{6}} + \frac{105}{16\xi_{N}^{8}} \dots \right)$$
(11)

and the probability integral (Laplace function)

$$\Phi(\xi_N) = \frac{2}{\sqrt{\pi}} \int_0^{\xi_N} \exp(-\eta^2) d\eta .$$
<sup>(12)</sup>

The function  $Erfc(x) = 1-\Phi(x)$  is sometimes referred to as Weierstrass' zeta-function. The asymptotic expansion of the function  $\overline{\Phi}(\xi_N)$  can be used for large  $\xi_N$  values, exceeding, say, 2.5. This expansion has been used when calculating the <u>Table 2</u> data. The formula (10) indicates that the "physical" (effective) time depends not only on the actual time *t*, but also on the mean and variance of the accepted (established) distribution of the statistical failure rate. The function  $\varphi_N(\xi_N)$  is tabulated in <u>Table 2</u>. This function changes from infinity to zero, when the dimensionless time  $\xi_N$  changes from  $-\infty$  to  $\infty$ . For dimensionless times below -2.5 the function  $\overline{\Phi}(\xi_N)$  is significant, so that the second term in (9) becomes small compared with the first term, and the function  $\varphi_N(\xi_N)$  can be put equal to the dimensionless time  $\xi_N$  itself, with an opposite sign though.

At the initial moment of time (t = 0) the <u>formulas (10)</u>, <u>(11)</u> and <u>(8)</u> yield:

$$\begin{split} \boldsymbol{\xi}_{N} &= -\frac{\overline{\lambda}}{\sqrt{2D}}, \quad \overline{\Phi}(\boldsymbol{\xi}_{N}) = \sqrt{\pi} \exp\!\left(\frac{\overline{\lambda}^{2}}{2D}\right) \left[1 + \Phi\!\left(\frac{\overline{\lambda}}{\sqrt{2D}}\right)\right], \\ \boldsymbol{\lambda}_{ST} &= \overline{\lambda} + \sqrt{\frac{2D}{\pi}} \frac{\exp\!\left(-\frac{\overline{\lambda}^{2}}{2D}\right)}{1 + \Phi\!\left(\frac{\overline{\lambda}}{\sqrt{2D}}\right)} \end{split}$$
(13)

With the initial value  $\lambda_{ST} = \lambda_1$  (the degradation failure rate  $\lambda_{DG}$  is obviously zero at the initial moment of time), the third formula in (13) yields:

$$\frac{\lambda_1}{\sqrt{2D}} = \frac{\overline{\lambda}}{\sqrt{2D}} + \frac{1}{\sqrt{\pi}} \frac{\exp\left(-\frac{\overline{\lambda}^2}{2D}\right)}{1 + \Phi\left(\frac{\overline{\lambda}}{\sqrt{2D}}\right)}$$

Table 2. The governing function  $\varphi_N(\xi_N)$  of the effective dimensionless time  $\xi_N$ 

| $\xi_N$                      | -3.0   | -2.5   | -2.0   | -1.5   |
|------------------------------|--------|--------|--------|--------|
| $\varphi_{_N}(\xi)$          | 3.0000 | 2.5005 | 2.0052 | 1.5302 |
| $\xi_{\scriptscriptstyle N}$ | -1.0   | -0.5   | -0.25  | 0      |
| $\varphi_{_N}(\xi)$          | 1.1126 | 0.7890 | 0.6652 | 0.5642 |
| $\xi_{\scriptscriptstyle N}$ | 0.25   | 0.5    | 1.0    | 1.5    |
| $\varphi_{_N}(\xi)$          | 0.4824 | 0.4163 | 0.3194 | 0.2541 |
| $\xi_{\scriptscriptstyle N}$ | 2.0    | 2.5    | 3.0    | 3.5    |
| $\varphi_{_N}(\xi)$          | 0.2080 | 0.1618 | 0.1456 | 0.1300 |

| $\xi_{\scriptscriptstyle N}$ | 4.0    | 4.5    | 5.0    | 6.0    |
|------------------------------|--------|--------|--------|--------|
| $\varphi_{_N}(\xi)$          | 0.1166 | 0.1053 | 0.0958 | 0.0809 |

| $\xi_{\scriptscriptstyle N}$ | 7.0    | 8.0    | 9.0    | 10.0   |
|------------------------------|--------|--------|--------|--------|
| $\varphi_{_N}(\xi)$          | 0.0699 | 0.0615 | 0.0549 | 0.0495 |
| $\xi_N$                      | 11.0   | 12.0   | 13.0   | 15.0   |
| $\varphi_{_N}(\xi)$          | 0.0451 | 0.0414 | 0.0391 | 0.0332 |
| $\xi_N$                      | 20.0   | 30.0   | 50.0   | 100.0  |
| $\varphi_{_N}(\xi)$          | 0.0249 | 0.0166 | 0.0100 | 0.0050 |
| $\xi_N$                      | 200.0  | 500    |        |        |
| $\varphi_{_N}(\xi)$          | 0.0025 | 0.001  |        |        |

(14)

When the ratio  $\frac{\overline{\lambda}}{\sqrt{2D}}$  changes from zero to infinity, the ratio

$$\frac{\lambda_{\rm l}}{\sqrt{2D}}$$
 changes from  $\frac{1}{\sqrt{\pi}} = 0.5642$  to infinity. The relationship

(14) is tabulated in Table 3.

| Table 3. The initial | SFR vs. it | s mean va | lue |
|----------------------|------------|-----------|-----|
|----------------------|------------|-----------|-----|

| $\overline{\lambda}/\sqrt{2D}$ | 0      | 0.5000 | 1.0000 | 1.5000 |
|--------------------------------|--------|--------|--------|--------|
| $\lambda_1 / \sqrt{2D}$        | 0.5642 | 0.7890 | 1.1126 | 1.5302 |
| $\overline{\lambda}/\sqrt{2D}$ | 2.0000 | 2.5000 | 2.7500 | 2.8000 |
| $\lambda_1 / \sqrt{2D}$        | 2.0052 | 2.5005 | 2.7501 | 2.8001 |
| $\overline{\lambda}/\sqrt{2D}$ | 2.9000 | 3.0000 |        |        |
| $\lambda_1 / \sqrt{2D}$        | 2.9001 | 3.0000 |        |        |

As evident from the computed data, the initial failure rate can be put equal to its mean value, if the ratio  $\frac{\overline{\lambda}}{\sqrt{2D}}$  exceeds 2.5. This is

usually the case indeed, since the accepted normal distribution, when applied to a random variable that cannot be negative, should be characterized by a significant ratio of its mean value to the standard deviation, so that the negative values of the assumed distribution, although exist, are meaningless, i.e., do not contribute appreciably to the predicted information.

The statistics-related and physics-of-failure-related modes and mechanisms of failure take place concurrently. Assuming that the two irreversible processes in question are statistically independent, the total probability of non-failure at the given moment of time can be determined as a product of the statistics-related and reliabilityphysics-related probabilities of non-failure:

$$P(t) = P_{ST} P_{DG} = \exp\left(-\frac{t}{\tau_{ST}}\right) \frac{1 - \Phi\left(\frac{t - \tau_{DG}}{\sqrt{2D_{\sigma}}}\right)}{1 + \Phi\left(\frac{\tau_{DG}}{\sqrt{2D_{\sigma}}}\right)} \quad .$$
(15)

#### Table 4. Calculated probabilities of non-failure

| 1  | t, hr                                                                  | 0          | 48         | 100                |
|----|------------------------------------------------------------------------|------------|------------|--------------------|
|    |                                                                        |            |            |                    |
| 2  | $\xi_N = t\sqrt{D/2} - \overline{\lambda} / \sqrt{2D}$                 | -<br>3.000 | -<br>2.993 | -<br>2.986         |
| 3  | $\varphi_{N}(\xi_{N}) = -\xi_{N} + \frac{1}{\overline{\Phi}(\xi_{N})}$ | 3.000      | 2.993      | 2.986              |
| 4  | $\lambda_{sT}(t) = \sqrt{2D}\varphi_N(\xi_N) x 10^5 1/hr$              | 84.85      | 84.67      | <mark>84.45</mark> |
| 5  | $\lambda_{BTC} x 10^5, 1/hrs$                                          | 84.85      | 84.67      | 96.00              |
| 6  | $\lambda_{DG} x 10^5$ ,1/hrs                                           | 0          | 0          | 11.55              |
| 7  | $P_{ST} = \exp(-\lambda_{ST}t)$                                        | 1.000      | 0.960      | 0.919              |
| 8  | $P_{ST}^* = \exp(-\lambda_{ST}^* t)$                                   | 1.000      | 0.960      | 0.919              |
| 9  | $P_{DG}$                                                               | 1.000      | 0.999      | 0.999              |
| 10 | $P = P_{ST} P_{DG}$                                                    | 1.000      | 0.960      | 0.919              |
| 1  | t, hr                                                                  | 250        | 1000       | 5000               |
| 2  | $\xi_{N} = t\sqrt{D/2} - \overline{\lambda} / \sqrt{2D}$               | -2.965     | -2.859     | -2.293             |
| 3  | $\varphi_{N}(\xi_{N}) = -\xi_{N} + \frac{1}{\overline{\Phi}(\xi_{N})}$ | 2.965      | 2.859      | 2.347              |

|    | $\lambda_{ST}(t) = \sqrt{2D}\varphi_N(\xi_N)x10^5 1/hr$ | 83.86<br>2 | 80.86<br>4 | 64.937 |
|----|---------------------------------------------------------|------------|------------|--------|
| 4  |                                                         |            |            |        |
| 5  | $\lambda_{BTC} x 10^5, 1/hrs$                           | 96.00<br>0 | 96.00<br>0 | 96.193 |
| 6  | $\lambda_{DG} x 10^5$ ,1/hrs                            | 11.54<br>8 | 15.13<br>6 | 31.256 |
| 7  | $P_{ST} = \exp(-\lambda_{ST}t)$                         | 0.810<br>9 | 0.445<br>5 | 0.0389 |
| 8  | $P_{ST}^* = \exp(-\lambda_{ST}^* t)$                    | 0.808<br>9 | 0.428<br>0 | 0.0144 |
| 9  | $P_{DG}$                                                | 0.999<br>3 | 0.994<br>2 | 0.0767 |
| 10 | $P = P_{ST} P_{DG}$                                     | 0.810<br>3 | 0.442<br>9 | 0.0030 |

| 1 | t,hr                                                                   | 7500        | 10000   | 20000   |
|---|------------------------------------------------------------------------|-------------|---------|---------|
| 2 | $\xi_{N} = t\sqrt{D/2} - \overline{\lambda} / \sqrt{2D}$               | -1.9394     | -1.5858 | -0.1716 |
| 3 | $\varphi_{N}(\xi_{N}) = -\xi_{N} + \frac{1}{\overline{\Phi}(\xi_{N})}$ | 1.9460      | 1.6089  | 0.6319  |
| 4 | $\lambda_{ST}(t) = \sqrt{2D}\varphi_N(\xi_N)x10^{5}1/hr$               | 55.041      | 45.506  | 17.874  |
| 5 | $\lambda_{BTC} x 10^5, 1/hrs$                                          | 96.662      | 97.577  | 108.704 |
| 6 | $\lambda_{DG} x 10^5$ ,1/hrs                                           | 41.621      | 52.071  | 90.830  |
| 7 | $P_{ST} = \exp(-\lambda_{ST}t)$                                        | 0.0161      | 0.0106  | 0.0280  |
| 8 | $P_{ST}^* = \exp(-\lambda_{ST}^* t)$                                   | 1.72E-<br>3 | 2.10E-4 | 4.26E-8 |
| 9 | $P_{DG}$                                                               | 0           | 0       | 0       |

| 1 | t,hr                                                     | 25000  | 30000  | 40000  |
|---|----------------------------------------------------------|--------|--------|--------|
| 2 | $\xi_{N} = t\sqrt{D/2} - \overline{\lambda} / \sqrt{2D}$ | 0.5355 | 1.2426 | 2.6568 |

| 3  | $\varphi_{N}(\xi_{N}) = -\xi_{N} + \frac{1}{\overline{\Phi}(\xi_{N})}$ | 0.4073       | 0.2822       | 0.1567       |
|----|------------------------------------------------------------------------|--------------|--------------|--------------|
|    | $\lambda_{ST}(t) = \sqrt{2D}\varphi_N(\xi_N)x10^5 1/hr$                | 11.521       | 7.982        | 4.4327       |
| 4  |                                                                        | 400.040      | 429.090      | 409.000      |
| 5  | $\lambda_{BTC} x 10^{\circ}, 1/hrs$                                    | 120.848      | 138.980      | 198.000      |
| 6  | $\lambda_{DG} x 10^5, 1/hrs$                                           | 109.327      | 130.998      | 193.567      |
| 7  | $P_{ST} = \exp(-\lambda_{ST}t)$                                        | 0.0561       | 0.0912       | 0.1698       |
| 8  | $P_{ST}^* = \exp(-\lambda_{ST}^* t)$                                   | 6.13E-<br>10 | 8.80E-<br>12 | 1.82E-<br>15 |
| 9  | $P_{DG}$                                                               | 0            | 0            | 0            |
| 10 | $P = P_{ST} P_{DG}$                                                    | 0            | 0            | 0            |

The calculated probabilities P(t) are shown, for the carried out numerical example, in the tenth line of <u>Table 4</u>. At the wear-out portion of the BTC they are obviously dominated by the low non-failure probabilities of the degradation process. The numerical example is carried out for the following input data: mean value (initial value) factor of the random failure rate:

 $\frac{\overline{\lambda}}{\sqrt{2D}} = \frac{\lambda_1}{\sqrt{2D}} = 3.0; \text{ standard deviation of the failure rate:}$ 

 $\sqrt{D} = 2x10^{-4}1/hr$ ; the initial failure rate:  $\lambda_1 = 8.4853x10^{-4}1/hr$ ; the lowest failure rate:  $\lambda_0 = 9.6000x10^{-4}1/hr$ ; the highest (allowable) failure rate:  $\lambda_2 = 19.8x10^{-4}1/hr$ ; duration of the infant mortality portion:  $t_1 = 48hr$  (burn-in time); duration of the wear out portion  $t_2$ = 39,952*hr* (obtained as the difference between the total time of operation of 40,000*hrs* and the duration of the infant mortality portion); "fullnesses" of the infant mortality portion:  $\beta_1 = 0.8 (n_1 =$ 4); and the wear out portion:  $\beta_2 = 0.75 (n_2 = 3)$ . Calculations are performed in <u>Table 4</u> and the probabilities of non-failure associated with the degradation process are shown in <u>Table 5</u>. The degradation related failure rates are computed, for each particular moment of time, as the difference between the ordinates of the experimentally obtained BTC (line 5 in <u>Table 4</u>) and the calculated (predicted) SFR (line 4 in <u>Table 4</u>). It is assumed that the infant mortality portion is short, so that no degradation takes place during this time, regardless of whether a burn-in effort is applied or not.

Table 5. Calculated probabilities-of-non-failure caused by the degradation process

| 1 | $tx10^{-3}, hr$                  | 0     | 0.048   | 0.1     | 0.25    |
|---|----------------------------------|-------|---------|---------|---------|
| 2 | $\lambda_{DG} x 10^5$ ,1/hrs     | 0     | 11.345  | 11.548  | 11.548  |
|   | $	au_{DG} = 1/\lambda_{DG}, hrs$ | ∞     | 8814.46 | 8659.51 | 8659.51 |
| 3 |                                  |       |         |         |         |
| 4 | $\sqrt{2D_t} = \tau_{DG} / 2$    | ∞     | 4407.23 | 4329.75 | 4329.75 |
| 5 | $t/\sqrt{2D_t}$                  | 0     | 0.0109  | 0.0231  | 0.0577  |
| 6 | $P_{DG}$                         | 1.000 | 0.9999  | 0.9997  | 0.9993  |

| 1 | $tx10^{-3}$ , $hr$               | 1.0     | 2.5     | 5.0    |
|---|----------------------------------|---------|---------|--------|
| 2 | $\lambda_{DG} x 10^5, 1/hrs$     | 15.136  | 21.168  | 31.256 |
|   | $	au_{DG} = 1/\lambda_{DG}, hrs$ | 6606.77 | 4724.11 | 3199.4 |
| 3 |                                  |         |         |        |
| 4 | $\sqrt{2D_t} = \tau_{DG} / 2$    | 3303.38 | 2362.06 | 1599.7 |
| 5 | $t/\sqrt{2D_t}$                  | 0.3027  | 1.0584  | 3.1256 |
| 6 | $P_{DG}$                         | 0.9942  | 0.9121  | 0.0767 |

| 1 | $tx10^{-3}, hr$                  | 7.5     | 10.0   | 15.0    | 20.0    |
|---|----------------------------------|---------|--------|---------|---------|
| 2 | $\lambda_{DG} x 10^5$ ,1/hrs     | 41.621  | 52.071 | 72.395  | 90.830  |
| 3 | $	au_{DG} = 1/\lambda_{DG}, hrs$ | 2402.63 | 1892.6 | 1381.31 | 1100.96 |
| 4 | $\sqrt{2D_t} = \tau_{DG} / 2$    | 1201.32 | 946.29 | 690.65  | 550.48  |

| 5 | $t/\sqrt{2D_t}$ | 6.2432 | 10.5676 | 21.7185 | 36.3319 |
|---|-----------------|--------|---------|---------|---------|
| 6 | $P_{DG}$        | 0      | 0       | 0       | 0       |

| $tx10^{-3}$ , $hr$                        | 25.0                                                                                                                                     | 30.0                                                                                                                                                                   | 40.0                                                                                                                                                                                                                                            |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\lambda_{DG} x 10^5$ , 1/hrs             | 109.327                                                                                                                                  | 130.998                                                                                                                                                                | 193.567                                                                                                                                                                                                                                         |
| $\tau_{\rm DG} = 1/\lambda_{\rm DG}, hrs$ | 914.69                                                                                                                                   | 763.37                                                                                                                                                                 | 516.62                                                                                                                                                                                                                                          |
|                                           |                                                                                                                                          |                                                                                                                                                                        |                                                                                                                                                                                                                                                 |
| $\sqrt{2D_t} = \tau_{DG} / 2$             | 457.34                                                                                                                                   | 381.68                                                                                                                                                                 | 258.31                                                                                                                                                                                                                                          |
| $t/\sqrt{2D_t}$                           | 54.6635                                                                                                                                  | 78.5988                                                                                                                                                                | 154.8536                                                                                                                                                                                                                                        |
| P <sub>DG</sub>                           | 0                                                                                                                                        | 0                                                                                                                                                                      | 0                                                                                                                                                                                                                                               |
|                                           | $tx10^{-3}, hr$ $\lambda_{DG} x10^{5}, 1/hrs$ $\tau_{DG} = 1/\lambda_{DG}, hrs$ $\sqrt{2D_{t}} = \tau_{DG}/2$ $t/\sqrt{2D_{t}}$ $P_{DG}$ | $tx10^{-3}, hr$ 25.0 $\lambda_{DG}x10^5, 1/hrs$ 109.327 $\tau_{DG} = 1/\lambda_{DG}, hrs$ 914.69 $\sqrt{2D_t} = \tau_{DG}/2$ 457.34 $t/\sqrt{2D_t}$ 54.6635 $P_{DG}$ 0 | $tx10^{-3}, hr$ 25.0       30.0 $\lambda_{DG}x10^5, 1/hrs$ 109.327       130.998 $\tau_{DG} = 1/\lambda_{DG}, hrs$ 914.69       763.37 $\sqrt{2D_t} = \tau_{DG}/2$ 457.34       381.68 $t/\sqrt{2D_t}$ 54.6635       78.5988 $P_{DG}$ 0       0 |

For short times at the beginning of the infant mortality (burn-in)

process, the function  $\overline{\Phi}(\boldsymbol{\xi})$  is significant, and the second term in the formula (9) is small compared to the first term, and the linear formula  $\lambda_{ST} = \lambda_1 - Dt$  can be used to evaluate the SFR. Indeed, this simplified formula predicts the SFR at the end of the infant mortality time as  $\lambda_{ST} = 84.834x10^{-5}hr^{-1}$ . The exact number  $\lambda_{ST} = 84.668x10^{-5}hr^{-1}$  is only 0.2% lower.

The obtained data indicate that the statistical probability of nonfailure decreases with time at the rather significant portion of time despite the decrease in the SFR. At some moment of time (beginning with about 10,000 hours in the <u>Table 4</u> example), the effect of the decreasing SFR starts to prevail, and the statistical probability of non-failure begins to increase with time. This circumstance does not play, however, an important role, because the degradation failure rates become significant and suppress the slight increase in the probability of non-failure associated with the SFR. In the line 8 of <u>Table 4</u> the decrease in the probabilities of non-failure are shown assuming that the SFR remained at the initial level. The difference is large, especially for long times of operation, so that the change in the SFR with time should always be accounted for.

### SFR Distributed According to Rayleigh Law

Assume now that the "instantaneous" failure rate is distributed in accordance with Rayleigh law, so that its probability distribution density function is

$$f(\lambda) = \frac{\lambda}{D} \exp\left(-\frac{\lambda^2}{2D}\right).$$

(16)

The standard deviation in this distribution is also its maximum value (mode). The <u>formula (6)</u> yields:

$$\lambda_{ST}(t) = \frac{\int_{0}^{\infty} \lambda^{2} \exp\left(-\frac{\lambda^{2}}{2D} - t\lambda\right) d\lambda}{\int_{0}^{\infty} \lambda \exp\left(-\frac{\lambda^{2}}{2D} - t\lambda\right) d\lambda} = \sqrt{\frac{\pi D}{2}} \varphi_{R}(\xi_{R}).$$
(17)

Here

$$\varphi_{R}(\xi_{R}) = \frac{2}{\sqrt{\pi}} \frac{\left(\frac{1}{2} + \xi_{R}^{2}\right)\overline{\Phi}(\xi_{R}) - \xi_{R}}{1 - \xi_{R}\overline{\Phi}(\xi_{R})}$$
<sup>(18)</sup>

is a function of the dimensionless time

$$\xi_R = \sqrt{\frac{D}{2}}t,$$
(19)

and so are the auxiliary function

$$\overline{\Phi}(\xi_{R}) = \sqrt{\pi} \exp(\xi_{R}^{2})[1 - \Phi(\xi_{R})] \approx$$

$$\approx \frac{1}{\xi_{R}} \left[ 1 + \sum_{k=1}^{\infty} (-1)^{k} \frac{1x3x...(2k-1)}{2^{k} \xi_{R}^{2k}} \right] \approx$$

$$\approx \frac{1}{\xi_{R}} \left( 1 - \frac{1}{2\xi_{R}^{2}} + \frac{3}{4\xi_{R}^{4}} - \frac{15}{8\xi_{R}^{6}} + \frac{105}{16\xi_{R}^{8}} ... \right)$$
(20)

and the probability integral (Laplace function)

$$\Phi(\xi_R) = \frac{2}{\sqrt{\pi}} \int_0^{\xi_R} \exp(-\eta^2) d\eta$$
<sup>(21)</sup>

Calculations are carried out in <u>Table 6</u>. The input data for the calculated probabilities of non-failure for the degradation process are the same as in <u>Table 5</u> for the case of the normal distribution of the

"instantaneous" SFR, namely, the ratio  $\frac{\tau_{DG}}{\sqrt{2D_{\sigma}}} = \frac{1}{\lambda_{DG}\sqrt{2D_{\sigma}}}$ 

Table 6. Calculated probabilities-of-non-failure caused by the degradation process

| 1  | $\xi_R x 10^3$                          | 0     | 0.6788 | 1.4142 |
|----|-----------------------------------------|-------|--------|--------|
| 2  | $\varphi_{_{R}}(\xi_{_{R}})$            | 1.000 | 0.9998 | 0.9995 |
| 3  | t, hr                                   | 0     | 48     | 100    |
| 4  | $\lambda_{BC} x 10^5 hr^{-1}$           | 84.85 | 84.67  | 84.45  |
| 5  | $\lambda_{ST} x 10^5 hr^{-1}$           | 25.07 | 25.06  | 25.05  |
| 6  | $\lambda_{DG} x 10^5 hr^{-1}$           | 59.78 | 59.61  | 59.40  |
| 7  | $\lambda_{_{DG}}$ / $\lambda_{_{BC}}$ % | 70.45 | 70.40  | 70.34  |
| 8  | P <sub>ST</sub>                         | 1.000 | 0.9880 | 0.9753 |
| 9  | $P_{DG}$                                | 1.000 | 0.9993 | 0.9984 |
| 10 | $P = P_{ST} P_{DG}$                     | 1.000 | 0.9873 | 0.9737 |

| 1 | $\xi_R x 10^3$                          | 3.53   | 14.1   | 70.7   |
|---|-----------------------------------------|--------|--------|--------|
| 2 | $\varphi_{_R}(\xi_{_R})$                | 0.9988 | 0.9951 | 0.9780 |
| 3 | t, hr                                   | 250    | 1000   | 5000   |
| 4 | $\lambda_{BC} x 10^5 hr^{-1}$           | 96.00  | 96.00  | 96.193 |
| 5 | $\lambda_{ST} x 10^5 hr^{-1}$           | 25.036 | 24.943 | 24.514 |
| 6 | $\lambda_{DG} x 10^5 hr^{-1}$           | 70.96  | 71.06  | 71.68  |
| 7 | $\lambda_{_{DG}}$ / $\lambda_{_{BC}}$ % | 73.92  | 74.02  | 74.52  |
| 8 | P <sub>ST</sub>                         | 0.9393 | 0.7792 | 0.2936 |

| 9  | $P_{DG}$            | 0.9923 | 0.9878 | 0 |
|----|---------------------|--------|--------|---|
| 10 | $P = P_{ST} P_{DG}$ | 0.9321 | 0.7597 | 0 |

| 1  | $\xi_R x 10^3$                                               | 106.1  | 141.4  | 282.8   |
|----|--------------------------------------------------------------|--------|--------|---------|
| 2  | $\varphi_{\scriptscriptstyle R}(\xi_{\scriptscriptstyle R})$ | 0.9695 | 0.9369 | 0.8763  |
| 3  | t, hr                                                        | 7500   | 10000  | 20000   |
| 4  | $\lambda_{BC} x 10^5 hr^{-1}$                                | 96.662 | 97.577 | 108.704 |
| 5  | $\lambda_{ST} x 10^5 hr^{-1}$                                | 24.301 | 23.484 | 21.965  |
| 6  | $\lambda_{DG} x 10^5 hr^{-1}$                                | 72.36  | 74.09  | 86.74   |
| 7  | $\lambda_{_{DG}}$ / $\lambda_{_{BC}}$ %                      | 74.86  | 75.93  | 79.79   |
| 8  | P <sub>ST</sub>                                              | 0.1616 | 0.0955 | 0.0124  |
| 9  | $P_{DG}$                                                     | 0      | 0      | 0       |
| 10 | $P = P_{ST} P_{DG}$                                          | 0      | 0      | 0       |

| 1 | $\xi_R x 10^3$                          | 353.6   | 424.3   | 567.7    |
|---|-----------------------------------------|---------|---------|----------|
| 2 | $\varphi_{R}(\xi_{R})$                  | 0.8563  | 0.8258  | 0.7784   |
| 3 | t,hr                                    | 25000   | 30000   | 40000    |
| 4 | $\lambda_{BC} x 10^5 hr^{-1}$           | 120.848 | 138.980 | 198.00   |
| 5 | $\lambda_{sT} x 10^5 hr^{-1}$           | 21.464  | 20.699  | 19.511   |
| 6 | $\lambda_{DG} x 10^5 hr^{-1}$           | 99.384  | 118.28  | 178.49   |
| 7 | $\lambda_{_{DG}}$ / $\lambda_{_{BC}}$ % | 82.24   | 85.11   | 90.15    |
| 8 | $P_{ST}$                                | 0.00467 | 0.00201 | 0.000408 |

As one could see, the predicted data is rather different in the cases of the normal and Rayleigh distributions, and therefore the future work should include the analyses of the most suitable actual ("instantaneous") SFR distributions.

## **Summary/Conclusions**

- Easy-to-use and physically meaningful predictive model that can be used in application to both die and packaging technologies has been developed for the assessment of the level of the time-dependent material degradation (aging) process from the available experimental BTC.
- Normal distribution of the actual ("instantaneous") SFR results in substantially lower resulting probabilities of non-failure than Rayleigh law.
- Future work should include the assessment of the actual distributions of the "instantaneous" random failure rates of the statistical process for various electronic products and applications.

## References

- Regis, D., Berthon, J., and Gatti, M., "DSM Reliability Concerns - Impact on Safety Assessment," SAE Technical Paper 2014-01-2197, 2014, doi:10.4271/2014-01-2197.
- Suhir E., "Statistics- and Reliability-Physics-Related Failure Processes", Modern Physics Letters B (MPLB), Vol. 28, No. 13, 2014
- Suhir E., "Mechanical Reliability of Flip-Chip Interconnections in Silicon-on-Silicon Multichip Modules", IEEE Conference on Multichip Modules, IEEE, Santa Cruz, Calif., March 1993.

# **Contact Information**

Ephraim Suhir is at

suhire@aol.com and at 650-969-1530