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Abstract

There is a concern that the continuing trend on miniaturization 

(Moore's law) in IC design and fabrication might have a negative 

impact on the device reliability. To understand and to possibly 

quantify the physics underlying this concern and phenomenon, it is 

natural to proceed from the experimental bathtub curve (BTC) - 
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effect of two major irreversible governing processes: statistics-related 

mass-production process that results in a decreasing failure rate with 

time, and reliability-physics-related degradation (aging) process that 

leads to an increasing failure rate. It is the latter process that is of 

major concern of a device designer and manufacturer.

The statistical process can be evaluated theoretically, using a rather 

simple predictive model. Owing to that and assuming that the two 

processes of interest are statistically independent one can assess the 

failure rates associated with the aging process from the BTC data by 

simply subtracting the predicted ordinates of the statistical failure 

rates (SFR) from the BTC ordinates. The objective of this analysis is 

to show how this could be done.

The suggested methodology proceeds from the concepts that the 

actual (“instantaneous”) SFR is a random variable with a known 

(assumed, established) probability distribution, that the experimental 

BTC can be represented by its infant mortality and the wear-out 

portions only (the steady-state portion in this case is simply the 

boundary between the infant mortality and wear-out portions) and 

that the two BTC portions considered can be approximated 

analytically. The cases, when the “instantaneous” SFR is distributed 

normally and in accordance with the Rayleigh law are used as 

suitable illustrations of the general concept.

The developed methodology can be employed when there is a need to 

better understand the relative roles of the statistics-related and 

physics-of-failure-related processes in reliability evaluations of 

electronic products. The methodology can be used also beyond the 
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hence, to separate the roles of the two irreversible processes in 

question.

One of the major challenges of the future work is to determine the 

probability distributions of the actual (“instantaneous”) SFRs for 

particular products and applications.

Introduction

There is an indication [1] that the continuing trend on miniaturization 

(Moor's law) might have a negative impact on the device reliability. 

This trend is of particular concern when it comes to deep submicron 

(DSM) technologies characterized by etching thicknesses below 

90nm and when device is operated at the wear out portion of the 

BTC, when the degradation (aging) process plays the major role.

To better understand and possibly quantify the reliability physics 

underlying DSM technologies, it is natural to proceed from the BTC 

- an experimental reliability “passport” of a population of mass 

+!-163"1)1"2$3",4)50")@5<)3-9,$1"!,)%91)!"7"3',>)0-?"2"!>)'0")

combined effect of two governing irreversible processes: the 

statistics-related mass-production process and the reliability-physics-
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decreasing effective failure rate with time, while the second process 

leads to an increased failure rate. It is the latter process that is of 

major concern of the device manufacturer, and therefore there is an 

obvious need for being able to “extract” the degradation related 
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The statistical process can be assessed theoretically, using a simple 

predictive model [2]. Then, assuming that the two processes of 

interest are statistically independent, one can predict the failure rates 

associated with the degradation process by simply subtracting the 

SFR ordinates from the BTC data. The developed methodology 

shows how this could be done. It proceeds from an assumption that 

the actual (“instantaneous”) SFR is a random variable with a known 

(assumed or established) probability distribution. Normal and 

Rayleigh distributions of the random SFR are considered in this 

analysis as suitable illustrations of the general concept.

The analytical representation of the BTC and the developed 

methodology can be employed in the design and analysis of the next 

generations of electron devices. It can be used also beyond the 
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engineering and applied science problems, the roles of the two 

governing irreversible processes in question.

Analysis

Analytical Bathtub Curve (BTC)

The experimental BTC (Fig.1) for the time dependent failure rate !(t) 

can be approximated as follows:

(1)

Here !
0
 is the minimum (“steady-state”) value of the BTC, !

1
 is the 

initial value of the failure rate (at the beginning of the infant mortality 

portion), t
1
 is the duration of this portion, !

2
)$,)'0"):9%#)2%#6")-/)'0")

failure rate (at the end of the wear-out portion), t
2
 is the duration of 

this portion, and the exponents n
1
 and n

2
 are expressed through the 

fullnesses "
1
 and "

2
 of the infant -mortality and the wear-out BTC 

portions as 4)50",")/6##9",,",)%!")1":9"1)%,)'0")

ratios of the areas above the BTC to the areas (!
1
 - !

0
)t

1
 and (!

2
 - !

0
)t

2
 

of the corresponding rectangulars. The exponents n
1
 and n

2
 change 

/!-8)C)'-)$9:9$'(>)?0"9)'0")/6##9",,",)"
1
 and "

2
 change from 0.5 

(triangle) to 1 (rectangular). The lowest !(t) values can be achieved in 

the case of the largest "
1
 and "

2
 (or n

1
 and n

2
) values.

50"):!,')/-!86#%)$9)(1) describes the infant mortality portion of the 

BTC. The second formula is related to its wear-out portion. Both 

portions change slowly in the vicinity of their boundary. These slow 

changing regions of the BTC could be perceived and interpreted as 

the steady-state segment of the BTC. It is noteworthy that the 

analytical BTC in Fig.1 could be used for different applications, and 

should not be necessarily viewed as an 100% experimental 

information.

An experimental BTC [3] obtained during failure oriented accelerated 
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Si-on-Si technology is shown in Fig.2, where the number of cycles is 

used instead of time. The data for the failure rates in the second line 

of Table 1 are obtained with the input information of "
1
 = 0.8 (n

1
 = 4), 

"
2
 = 0.75 (n

2
 = 3), t

1
 = N

1
 = 75, t

2
 = N

2
 = 300, !

0
 = 0.5x10JK, !

1
 = 

7.5x10JK, !
2
 = 17.5x10JK. The probabilities P

NF
 of non-failure are 

shown in the third line of Table 1 assuming that the exponential law 

P
NF

 = e#!$ is applicable for the entire duration of testing. The 

calculated data indicate that the time-dependence of the failure rate 

has a strong effect on the probability of non-failure.

Figure 1. Bathtub curve

Table 1. Failure rate and the probability of non-failure vs. number of cycles 

(see Fig.2)



Effective SFR of Mass-Produced Devices

A customer that receives products from n vendors can evaluate the 

probability of non-failure for the received products, assuming that the 

exponential law of reliability is applicable, as

(2)

Figure 2. Experimental BTC obtained for solder joint interconnections in 
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Here p
k
 is the fraction of the products received from the k - th vendor, 

!
k
 is the (random) failure rate of these products, and t is time. 

Assuming that the actual (“instantaneous”) random failure rate can 
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formula (2) can be substituted, for a large n number, by the integral:

(3)

Here F(!) is the probability distribution function and f(!) is the 

probability density distribution function of the random failure rate !.

The rationale behind the formulas (2) and (3) is as follows. The 

probability of non-failure of a large population of devices is 

determined by the failure rate of each particular device. The failure 

rate

(4)

changes in a random fashion from one device to another and is 

1":9"1)%,)'0")!%'$-)-/)'0")36!!"9')!%'")  of the number N
f
 (t) 

of devices that failed by the time t to the number N
s
(t) of devices that 

remained sound by that time. Substituting, in accordance with the 

ergodic theorem, the number of the sound items with the probability 

P(t) of their non-failure and the number of the failed items - with the 

probability Q(t) = 1 - P(t) of failure one could write the formula (4) 

as

(5)

Considering (3), this formula can be written in the form:

(6)
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decreases with time. In an extreme case, when the failure rate !(t) is 

distributed uniformly, the formula (6) yields: . This 

result leads to a very sharp decrease in the effective SFR with time 

and is viewed as a non-realistic.

Normally Distributed “Instantaneous” SFR

To assess the decrease in this rate with time for a more realistic 

distribution, let us assume that the SFR is normally distributed:

(7)

Here  is the mean value of the random failure rate ! and D is its 

variance. The effective SFR !
ST

 (t) can be found as a function of time 

from the formula (6) and the distribution (7):

(8)

Here

(9)

is a function of the dimensionless time



(10)

and so are the auxiliary function

(11)
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(12)

The function Erfc(xB)O)CJPAx) is sometimes referred to as 

Weierstrass' zeta-function. The asymptotic expansion of the function 

 can be used for large %
N
 values, exceeding, say, 2.5. This 

expansion has been used when calculating the Table 2 data. The 

formula (10) indicates that the “physical” (effective) time depends 

not only on the actual time t, but also on the mean and variance of the 

accepted (established) distribution of the statistical failure rate. The 

function &
N
(%

N
) is tabulated in Table 2. This function changes from 

$9:9$'()'-)M"!->)?0"9)'0")1$8"9,$-9#",,)'$8")%
N
)30%9=",)/!-8)GQ)'-)

Q4)D-!)1$8"9,$-9#",,)'$8",)&"#-?)JR4S)'0")/693'$-9)  is 

,$=9$:3%9'>),-)'0%')'0"),"3-91)'"!8)$9)(9) becomes small compared 

?$'0)'0"):!,')'"!8>)%91)'0")/693'$-9)&
N
(%

N
) can be put equal to the 

dimensionless time %
N
 itself, with an opposite sign though.

At the initial moment of time (t = 0) the formulas (10), (11) and (8) 

yield:

(13)

With the initial value !
ST
'('!

1
 (the degradation failure rate !

DG
 is 

obviously zero at the initial moment of time), the third formula in 

(13) yields:

(14)

Table 2. The governing function &
N
(%

N
) of the effective dimensionless time %

N



When the ratio )30%9=",)/!-8)M"!-)'-)$9:9$'(>)'0")!%'$-)

 changes from )'-)$9:9$'(4)50")!"#%'$-9,0$+)

(14) is tabulated in Table 3.

Table 3. The initial SFR vs. its mean value

As evident from the computed data, the initial failure rate can be put 

equal to its mean value, if the ratio  exceeds 2.5. This is 

usually the case indeed, since the accepted normal distribution, when 

applied to a random variable that cannot be negative, should be 

30%!%3'"!$M"1)&()%),$=9$:3%9')!%'$-)-/)$',)8"%9)2%#6")'-)'0"),'%91%!1)

deviation, so that the negative values of the assumed distribution, 

although exist, are meaningless, i.e., do not contribute appreciably to 

the predicted information.

The statistics-related and physics-of-failure-related modes and 

mechanisms of failure take place concurrently. Assuming that the two 

irreversible processes in question are statistically independent, the 

total probability of non-failure at the given moment of time can be 

determined as a product of the statistics-related and reliability-

physics-related probabilities of non-failure:

(15)

Table 4. Calculated probabilities of non-failure



The calculated probabilities P(t) are shown, for the carried out 

numerical example, in the tenth line of Table 4. At the wear-out 

portion of the BTC they are obviously dominated by the low 

non-failure probabilities of the degradation process. The numerical 

example is carried out for the following input data: mean value 

(initial value) factor of the random failure rate: 

; standard deviation of the failure rate: 

; the initial failure rate: !
1
 = 8.4853x10JK1/hr; 

the lowest failure rate: !
0
 = 9.6000x10JK1/hr; the highest (allowable) 

failure rate: !
2
 = 19.8x10JK1/hr; duration of the infant mortality 

portion: t
1
 = 48hr (burn-in time); duration of the wear out portion t

2
 

= 39,952hr (obtained as the difference between the total time of 

operation of 40,000hrs and the duration of the infant mortality 

portion); “fullnesses” of the infant mortality portion: "
1
 = 0.8 (n

1
 = 

4); and the wear out portion:. "
2
 = 0.75 (n

2
 = 3). Calculations are 

performed in Table 4 and the probabilities of non-failure associated 

with the degradation process are shown in Table 5. The degradation 

related failure rates are computed, for each particular moment of 

time, as the difference between the ordinates of the experimentally 

obtained BTC (line 5 in Table 4) and the calculated (predicted) SFR 

(line 4 in Table 4). It is assumed that the infant mortality portion is 

short, so that no degradation takes place during this time, regardless 

of whether a burn-in effort is applied or not.



Table 5. Calculated probabilities-of-non-failure caused by the degradation 

process

For short times at the beginning of the infant mortality (burn-in) 

process, the function )$,),$=9$:3%9'>)%91)'0"),"3-91)'"!8)$9)'0")

formula (9))$,),8%##)3-8+%!"1)'-)'0"):!,')'"!8>)%91)'0")#$9"%!)/-!86#%)

!
ST

 = !
1
 - Dt)3%9)&")6,"1)'-)"2%#6%'")'0")LDN4);91""1>)'0$,),$8+#$:"1)

formula predicts the SFR at the end of the infant mortality time as !
ST

 

= 84.834x10JShrJC. The exact number !
ST

 = 84.668x10JShrJC is only 

0.2% lower.

The obtained data indicate that the statistical probability of non-
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despite the decrease in the SFR. At some moment of time (beginning 

with about 10,000 hours in the Table 4 example), the effect of the 

decreasing SFR starts to prevail, and the statistical probability of 

non-failure begins to increase with time. This circumstance does not 

play, however, an important role, because the degradation failure 

!%'",)&"3-8"),$=9$:3%9')%91),6++!",,)'0"),#$=0')$93!"%,")$9)'0")

probability of non-failure associated with the SFR. In the line 8 of 

Table 4 the decrease in the probabilities of non-failure are shown 

assuming that the SFR remained at the initial level. The difference is 

large, especially for long times of operation, so that the change in the 

SFR with time should always be accounted for.

SFR Distributed According to Rayleigh Law

Assume now that the “instantaneous” failure rate is distributed in 

accordance with Rayleigh law, so that its probability distribution 

density function is

(16)



The standard deviation in this distribution is also its maximum value 

(mode). The formula (6) yields:

(17)

Here

(18)

is a function of the dimensionless time

(19)

and so are the auxiliary function

(20)
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(21)

Calculations are carried out in Table 6. The input data for the 

calculated probabilities of non-failure for the degradation process are 

the same as in Table 5 for the case of the normal distribution of the 

“instantaneous” SFR, namely, the ratio  

was assumed to be equal to 2.

Table 6. Calculated probabilities-of-non-failure caused by the degradation 

process



As one could see, the predicted data is rather different in the cases of 

the normal and Rayleigh distributions, and therefore the future work 

should include the analyses of the most suitable actual 

(“instantaneous”) SFR distributions.

Summary/Conclusions 

• Easy-to-use and physically meaningful predictive model 

that can be used in application to both die and packaging 

technologies has been developed for the assessment of the level 

of the time-dependent material degradation (aging) process from 

the available experimental BTC. 

• Normal distribution of the actual (“instantaneous”) SFR results 

in substantially lower resulting probabilities of non-failure than 

Rayleigh law. 

• Future work should include the assessment of the actual 

distributions of the “instantaneous” random failure rates of 

the statistical process for various electronic products and 

applications.
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