
HAL Id: hal-01686366
https://hal.science/hal-01686366

Submitted on 17 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Relating timed and register automata
Diego Figueira, Piotr Hofman, Slawomir Lasota

To cite this version:
Diego Figueira, Piotr Hofman, Slawomir Lasota. Relating timed and register automata. Mathematical
Structures in Computer Science, 2016, 26 (06), pp.993-1021. �10.1017/S0960129514000322�. �hal-
01686366�

https://hal.science/hal-01686366
https://hal.archives-ouvertes.fr

Under consideration for publication in Math. Struct. in Comp. Science

Relating timed and register automata†

D I E G O F I G U E I R A1,2,3‡, P I O T R H O F M A N3 and S L A W O M I R L A S O T A3

1 University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, UK
2 INRIA, ENS Cachan, LSV, 61 avenue du Président Wilson 94235 Cachan, France
3 Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland

Received 23 March 2011; Revised 20 September 2012

Timed automata and register automata are well-known models of computation over

timed and data words respectively. The former has clocks that allow to test the lapse of

time between two events, whilst the latter includes registers that can store data values

for later comparison. Although these two models behave in appearance differently,

several decision problems have the same (un)decidability and complexity results for both

models. As a prominent example, emptiness is decidable for alternating automata with

one clock or register, both with non-primitive recursive complexity. This is not by chance.

This work confirms that there is indeed a tight relationship between the two models. We

show that a run of a timed automaton can be simulated by a register automaton over

ordered data domain, and conversely that a run of a register automaton can be

simulated by a timed automaton. These are exponential time reductions hold both in the

finite and infinite words settings. Our results allow to transfer decidability results back

and forth between these two kinds of models, as well complexity results modulo an

exponential time reduction. We justify the usefulness of these reductions by obtaining

new results on register automata.

1. Introduction

Timed automata (Alur and Dill, 1994) and register automata (known originally as finite-

memory automata) (Kaminski and Francez, 1994) are two widely studied models of

computation. Both models extend finite automata with a kind of storage: clocks in the

case of timed automata, capable of measuring the amount of time elapsed from the

moment they were reset; and registers in the case of register automata, capable of storing

a data value for future comparison. In this paper we are interested in decidability and

complexity of standard decision problems for both models of automata. In particular,

† Authors emails: dfigueir@inf.ed.ac.uk, sl@mimuw.edu.pl, ph209519@mimuw.edu.pl.
An extended abstract of this work appeared as (Figueira, Hofman, and Lasota, 2010).

The first author acknowledges the financial support of the Future and Emerging Technologies (FET)
programme within the Seventh Framework Programme for Research of the European Commission,
under the FET-Open grant agreement FOX, number FP7-ICT-233599. The second and third authors
acknowledge the financial support of the Polish Ministry of Science grant nr N N206 567840.

‡ Corresponding author.

dfigueir@inf.ed.ac.uk
sl@mimuw.edu.pl
ph209519@mimuw.edu.pl

D. Figueira, P. Hofman & S. Lasota 2

we focus on the problems of nonemptiness (Does an automaton A accept some word?),

universality (Does an automaton A accept all words?), and inclusion (Are all words

accepted by an automaton A also accepted by an automaton B?).

The emptiness problem for nondeterministic timed or register automata is PSpace-

complete (Alur and Dill, 1994; Demri and Lazić, 2009). It becomes undecidable for al-

ternating automata of both kinds (Lasota and Walukiewicz, 2005; Ouaknine and Wor-

rell, 2005; Demri and Lazić, 2009), as soon as they have at least two clocks or regis-

ters (Alur and Dill, 1994; Demri and Lazić, 2009). Even the universality problem was

shown undecidable for nondeterministic timed and register automata, respectively, with

two clocks or registers (Alur and Dill, 1994; Neven et al., 2004; Demri and Lazić, 2009). A

break-through result of (Ouaknine and Worrell, 2004) showed that universality becomes

decidable for one clock timed automata. Later, the emptiness problem for one clock al-

ternating timed automata was shown decidable. However, the computational complexity

of this problem has been found to be non-primitive recursive (Lasota and Walukiewicz,

2005; Ouaknine and Worrell, 2005). Analogous (independent) results appeared for the

other model: emptiness is decidable and non-primitive recursive for one register alter-

nating automata (Demri and Lazić, 2009). For infinite words, both one clock and one

register alternating automata are undecidable, as well as the universality problem of non-

deterministic one clock/register automata (Lasota and Walukiewicz, 2008; Abdulla et al.,

2005; Demri and Lazić, 2009). The analogies between the two models appear to some

extent also at the level of proof methods. The decidability proofs for one clock/register

alternating automata are based on similar well-structured transition systems; and both

non-primitive recursive lower bounds are obtained by simulation of a kind of lossy model

of computation. All these analogies between the two models rise a natural question about

the relationship between them. This paper is an attempt to answer this question.†

Register automata were traditionally investigated over an unordered data domain.

However, our model works on a data domain equipped with a total order. This is a

necessary extension, that allows to simulate runs of timed automata, and to have a tight

equivalence between the timed and the register models. Roughly speaking, the main

contribution of this paper is to show that timed automata and register automata over

an ordered data domain are equivalent models, as far as one concerns complexity and

decidability of decision problems.

On a more technical level, we show that a run of a timed/register automaton on

a timed/data word w may be simulated by a run of a register/timed automaton over a

specially instrumented transformation of w, that we call braid. The reductions we exhibit

are performed in exponential time, and keep the number of clocks equal to the number

of registers, and preserve the mode of computation (alternating, nondeterministic, de-

terministic). Additionally, we show that the complement of all braids is recognizable by

a nondeterministic one clock/register automaton. These results lead straightforwardly

† Another evidence of analogies between clock and register automata follows when one sees these au-
tomata classes from the perspective of sets with atoms, see Bojańczyk et al. (2011) and Bojańczyk

and Lasota (2012). Yet another approach that applies to both kinds of automata is the algebraic

characterization of Bouyer et al. (2003).

Relating timed and register automata 3

to reductions from decision problems for one class of automata to analogous problems

for the other class, thus allowing us to carry over (un)decidability results and derive

complexity bounds in both directions. These results are also extended to the case of

ω-words.

As an application, our simulations allow to obtain known results on timed (or register)

models as simple consequences of results on register (or timed) models. These include,

e.g., that over finite words the emptiness problem of alternating 1 register automata is

decidable (Demri and Lazić, 2009). In fact, our reductions yield decidability of the model

extended with a total order over the data domain. As further examples of application, we

show how the following complexity and decidability results for timed automata can be

transferred to the class of register automata (the first two problem are for finite words,

and the last two for ω-words):

— decidability of the inclusion problem between a nondeterministic (many clocks) au-

tomaton and an alternating 1-clock automaton (shown in (Lasota and Walukiewicz,

2008));

— decidability of the emptiness problem for an alternating (many clocks) automaton

over a bounded time domain (shown in (Jenkins et al., 2010));

— decidability/undecidability of the non-Zeno emptiness problem for alternating 1-clock

automata with weak acceptance conditions, shown in (Parys and Walukiewicz, 2009);

— non-elementary lower bound for the emptiness problem of safety 1-clock alternating

automata, shown in (Bouyer et al., 2008).

In Sections 2– 5 we limit our study to finite timed and data words, as the first step in

relating the timed and data settings. Then in Section 6 we show how to accommodate

ω-words. Section 7 is devoted to applications.

2. Preliminaries

We fix a finite alphabet A for the sequel. We recall the definitions of alternating timed

and register automata. To avoid inessential technical complications, we have deliberately

chosen to formulate both the definitions in an analogous way. Our definitions are inspired

by those in (Lasota and Walukiewicz, 2008; Ouaknine and Worrell, 2005; Demri and

Lazić, 2009).

2.1. Alternating register automata

Fix an infinite data domain D. Data words over A are finite sequences

w = (a1, d1)(a2, d2) . . . (an, dn) (1)

of pairs from A × D. Additionally, assume a total order � over D. The order may be

chosen arbitrarily, and our results apply to all total orders. In particular, we do not

assume that � is dense.

Ingredients of an alternating register automaton A over an alphabet A are: a finite set

Q of states, partitioned into states owned by two players Eve and Adam; a distinguished

D. Figueira, P. Hofman & S. Lasota 4

initial state; a finite set R of register names (or registers for short); and a finite set of

transitions. Each transition is a triple q
o−→ p, where q and p are states, and o is an

operation, as described below.

We distinguish four kinds of operations: label tests ‘test if the current label is a’; data

tests ‘test if the current datum v r’ (we write ‘v r’ for short), for v ∈ {≺,�,�,�}
and r ∈ R; ‘load current datum to r’; and ‘go to next position’. E.g., ‘≺ r’ checks if the

current data value is strictly smaller than the value stored in register r. The equality

‘= r’ and inequality ‘6= r’ tests may be easily simulated, as well as boolean combinations

of data tests.

Register automata were typically defined till now over unordered data domain (with

the exceptions, e.g., of (Benedikt et al., 2010) and (Bojańczyk et al., 2011)). For the

purpose of relating the existing models, distinguish a subclass of register automata that

only use equality ‘= r’ and inequality ‘ 6= r’ data tests; we call them order-blind automata.

Order-blind automata correspond to the model defined in (Demri and Lazić, 2009).

For a given input word w as in (1), a configuration of an automaton A is a triple (q, v, i)

where q is a state, v : R → D is a valuation of registers and i ∈ {1 . . . n} is a position

in w. A transition q
o−→ p induces naturally a relation on configurations as defined in

Table 2.1.

operation o condition on (q, v, i)
o−→ (p, u, j)

test if the current label is a ai = a and (u, j) = (v, i)

test if the current datum v r di v v(r) and (u, j) = (v, i)
load current datum to r (u, j) = (v[r := di], i)

go to next position i < n and (u, j) = (v, i + 1)

Table 1. Transitions between configurations of an alternating register automaton.

It is easy to simulate a transition q −→ p with no operation that imposes no condition

on configuration.

The data word w is accepted or not by A depending on the winner in the acceptance

game played by Eve and Adam. The game begins in the initial configuration that consists

of the initial state, the first position in w, and the valuation that assigns d1 to every

register (in this way we avoid undefined values in registers). In a configuration (q, v, i)

the player that owns state q (we say that the configuration is owned by that player)

chooses the next configuration (p, u, j) such that (q, v, i)
o−→ (p, u, j) for some transition

q
o−→ p. Eve wins if a configuration owned by Adam is reached from which no move can

be done; otherwise Adam wins. The latter case includes infinite plays that may arise if

the players stay in a position of w forever. Note that we do not need accepting states, as

they may be simulated by a state owned by Adam with no outgoing transitions. Also,

note that we do not require to read the whole word, the game may end before reading

the last position.

The automaton A accepts w iff Eve has a winning strategy in the acceptance game.

By L(A) denote the language of all data words accepted by A.

Relating timed and register automata 5

2.2. Alternating timed automata

By a timed word over A we mean a finite sequence

w = (a1, t1) (a2, t2) . . . (an, tn) (2)

of pairs from A × R+, with t1 < t2 < . . . < tn, where R+ is the set of non-negative

reals. Each time stamp ti denotes the amount of time elapsed since the beginning of the

word. For simplicity, we prefer to work with strictly monotonic timed words, although

the analogous results would hold for weakly monotonic words as well.

In an intentional analogy to register automata, ingredients of an alternating timed

automaton A over an alphabet A are: a finite set Q of states, partitioned into states

owned by Eve and Adam; a distinguished initial state; a finite set C of clock names (or

clocks for short); and a finite set of transitions q
o−→ p, where q and p are states, and o

is an operation, as described below.

There are four kinds of operations: ‘test if the current label is a’; the so called clock

constraint ‘test if c v k’ (we write ‘c v k’ for short), for v ∈ { <,≤, >,≥}, c ∈ C and

k ∈ N; ‘reset clock c’; and ‘go to next position’. As before, boolean combinations of clock

constraints can be easily simulated.

For a given input word w as in (2), a configuration of an automaton A is a triple

(q, v, i) where q is a state, v : C → R+ is a valuation of clocks and i is a position in w. A

transition q
o−→ p induces naturally a relation on configurations:

operation o condition on (q, v, i)
o−→ (p, u, j)

test if the current label is a ai = a and (u, j) = (v, i)
test if c v k v(c) v k and (u, j) = (v, i)

reset clock c (u, j) = (v[c := 0], i)

go to next position i < n and (u, j) = (v+(ti+1 − ti), i + 1)

Table 2. Transitions between configurations of an alternating timed automaton.

A valuation v+t, for t ∈ R+, is obtained from v by increasing the values of all clocks

by t.

Slightly overloading the notation, by L(A) we denote the language of all timed words

accepted by A, i.e., those words w for which Eve has a winning strategy in the acceptance

game. The game begins in the initial configuration that consists of the initial state, the

first position in w, and the valuation that assigns 0 to every clock. In a configuration

(q, v, i) the player that owns state q chooses the next configuration (p, u, j) such that

(q, v, i)
o−→ (p, u, j) for some transition q

o−→ p. The winner is established similarly as

for register automata.

2.3. Modes of computation

For both timed and register automata, we distinguish a subclass of nondeterministic

automata. An automaton is nondeterministic if every configuration (q, v, i) owned by

Adam has at most one outgoing transition (q, v, i)
o−→ (p, u, j). (Note that we can not

D. Figueira, P. Hofman & S. Lasota 6

require that all states are owned by Eve as there are no accepting states.) Symmetrically,

one may define co-nondeterministic automata by exchanging the roles of Adam and

Eve. Deterministic automata are those that are simultaneously nondeterministic and co-

nondeterministic; thus there is at most one allowed transition from every configuration

and hence the ownership of states is relevant uniquely with respect to acceptance. The

term alternating automata refers then to the full, unrestricted class.

Our notion of automata is slightly unusual, as we do not distinguish explicitly accept-

ing states. As an illustration, consider a deterministic automaton and a state q with a

transition (q, o, p), where the operation o is ’go to next position’. If state q is owned by

Adam, it is Eve to win in state q if the current position in the word is the last position;

thus q may be thought as an accepting state. Symmetrically, if state q is owned by Eve,

it is Adam to win immediately if the current position in the word is the last one; thus

state q ma be thought of as non-accepting in that case.

Remark 2.1. Alternating register automata, as defined above, are expressively equiva-

lent to the automata known in literature, see e.g. (Demri and Lazić, 2009). On the other

hand, our definition of alternating timed automata is expressively equivalent to the defi-

nitions of (Lasota and Walukiewicz, 2005, 2008) and (Ouaknine and Worrell, 2005). The

equivalence boils down to subclasses of deterministic and nondeterministic automata.

2.4. Isomorphisms

By a time isomorphism we mean any order-preserving bijection f over the interval [0, 1)

(this implies f(0) = 0 in particular). The intuition is that an isomorphism will not be

applied to a time stamp t, but to its fractional part only (that we write t̂), keeping the

integer part btc unchanged.

Given a time isomorphism f , we apply it to a timed word w = (a1, t1) · · · (an, tn) as

follows:

f(w) = (a1, bt1c+ f(t̂1))(a2, bt2c+ f(t̂2)) · · · (an, btnc+ f(t̂n)).

Proposition 2.2. Languages recognized by alternating timed automata are closed under

time isomorphism: for any timed automaton A and a time isomorphism f , A accepts a

timed word w iff A accepts f(w).

Proof. For a given a timed word w accepted by A, the automaton can only make tests

for labels, or tests of whether for two positions i, j of w, tj − ti v k for some k ∈ N, for

v ∈ {<,≤, >,≥,=}. Note that tj − ti = (btjc+ t̂j)− (btic+ t̂i) = (btjc−btic) + (t̂j − t̂i),
where t̂j − t̂i ∈ [0, 1). Since f is bijective and order preserving, f(t̂j) − f(t̂i) ∈ [0, 1),

and t̂j − t̂i = 0 if, and only if, f(t̂j) − f(t̂i) = 0. Hence, tj − ti v k if, and only if,

(btjc+ f(t̂j))− (btic+ f(t̂i)) v k. This, added to the fact that f(w) preserves the labels

of w, implies that if w is accepted by A, f(w) is also accepted by A. The reciprocal also

holds, since w = f−1(f(w)).

We say that two data words (a1, d1)(a2, d2) . . . (an, dn) and (a1, e1)(a2, e2) . . . (an, en)

Relating timed and register automata 7

with the same string projection a1a2 . . . an are data isomorphic if for all i, j ∈ {1 . . . n},
di � dj iff ei � ej .

Proposition 2.3. Languages recognized by alternating register automata are closed

under data isomorphism: for any register automaton A and two data isomorphic words

w and v, A accepts w iff A accepts v.

3. Braids

An idea which is crucial to obtain reductions in both directions is an instrumentation

of timed and data words, to be defined in this section, that enforces a kind of ‘braid’

structure in a word.

3.1. Data braids

The data projection of w = (a1, d1) . . . (an, dn) ∈ (A × D)∗ is d1 . . . dn ∈ D∗. We define

the ordered partition of a data word w as a factorization

w1 · . . . · wk = w (3)

into data words w1, . . . , wk such that each wi is a maximal subword strictly ordered with

respect to ≺. In other words: all the data values of any wi are strictly increasing, and for

all i < k, the first data value of wi+1 is less or equal to the last one of wi. It follows that

for every data word there is a unique ordered partition.

A data word w is a data braid iff

— The minimum data value of w appears at the first position.

— Its ordered partition is such that the data projection of each factor wi is a substring

of the data projection of wi+1. In this context, we say that v is a substring of v′ iff v

is the result of removing some (possibly none) positions from v′.

— We can partition the alphabet A = A1 ∪A2 so that a position i of w is labeled with a

symbol of A2 iff di = d1. We call a marked position to any A2-labeled position of the

word. Note that the marked positions are those starting some factor of the ordered

partition of w.

Example 3.1. The word w below is not an ordered data braid since its ordered partition

does not satisfy the substring requirement. Neither is v, since the minimum element does

not appear at the first position. In this example as well as in the following ones we use

natural number as exemplary data value.

w = (c, 1) · (d, 1)(a, 4)(b, 8) · (c, 1)(b, 2)(a, 4)(a, 8)(b, 9) · (c, 1),

v = (c, 3) · (d, 2)(a, 3)(b, 8) · (c, 2)(b, 3)(a, 5)(a, 8).

In the case of w, the substring requirement is fulfilled if, e.g., the last element (c, 1) is

removed, or when w is extended with (b, 2)(a, 4)(b, 5)(a, 8)(b, 9); in both cases A1 = {a, b}
and A2 = {c, d}.

D. Figueira, P. Hofman & S. Lasota 8

3.2. Timed braids

Intuitively, the braid condition for timed words is analogous to that of ordered data

braids if one considers the fractional part of a time stamp ti as datum. A timed word

w = (a1, t1)(a2, t2) . . . (an, tn)

is a timed braid iff

— The first time stamp equals zero, t1 = 0.

— For all i < n, if a time-stamp with integer part greater than btic appears in w, then

the time-stamp ti + 1 appears in w.

— The alphabet can be partitioned into A = A1 ∪A2 so that the marked positions (i.e.,

those labeled by A2) are precisely those carrying an integer time stamp.

Braids will play a central role in the following section. In fact both data braids and

timed braids represent essentially the same concept, disregarding some minor details, as

illustrated next.

Example 3.2. We show a data braid w and a ‘corresponding’ timed braid v. A1 = {a, b}
and A2 = {ā, b̄}.

w = (b̄, 2)(a, 4) · (ā, 2)(b, 4)(b, 8) · (b̄, 2)(b, 3)(a, 4)(a, 8)(b, 9)

v = (b̄, 0.0)(a, 0.5) · (ā, 1.0)(b, 1.5)(b, 1.6) · (b̄, 2.0)(b, 2.3)(a, 2.5)(a, 2.6)(b, 2.9).

The particular data values and time stamps are exemplary ones. A canonical way of

obtaining a timed braid from a data braid (and vice versa), to be explained below, will

be ambiguous up to time (data) isomorphism.

3.3. Transformations

We introduce two simple encodings: one maps a timed word into a timed braid, and the

other maps a data word into a data braid.

timed words // timed braidsOO

��
data words // data braids

A timed word w over an alphabet A induces a timed braid tb(w) over the extended

alphabet A ∪ {X} ∪ Ā ∪ {X̄}, where Ā = {ā | a ∈ A}, as follows. First, if t1 6= 0, add

the pair (X, 0) at the very first position. Then add pairs (X, t) at all time points t that

are missing according to the definition of timed braid. Finally change every symbol a at

each position carrying an integer time stamp by its ‘marked’ counterpart ā ∈ Ā ∪ {X̄}.
A data word w over A may be canonically extended to a data braid db(w) over the

alphabet A ∪ {X} ∪ Ā ∪ {X̄} as follows. Consider the ordered partition w = w1 · . . . · wn

and let dmin be the smallest datum appearing in w. Firstly, for every factor wi, add the

pair (X, dmin) at the very first position of wi, unless wi already contains the datum dmin.

Secondly, for each datum d appearing in any wi, add (X, d) to each of the following

Relating timed and register automata 9

factors wi+1 . . . wn that do not contain d. This insertion is done preserving the order of

the factor. Finally, change every symbol a at the first position of a factor by its ‘marked’

counterpart ā ∈ Ā ∪ {X̄}. Note that as a result we obtain a data braid.

Example 3.3. As an illustration, consider the effect of the above transformations on an

exemplary data word w and a timed word v.

w = (a, 4) · (b, 1)(a, 4)(b, 8) · (a, 1)(a, 5)(a, 8)

db(w) = (X̄, 1)(a, 4) · (b̄, 1)(a, 4)(b, 8) · (ā, 1)(X, 4)(a, 5)(a, 8)

v = (a, 0.0)(a, 0.7) · (b, 1.5) · (b, 2.0)

tb(v) = (ā, 0.0)(a, 0.7) · (X̄, 1.0)(b, 1.5)(X, 1.7) · (b̄, 2.0)(X, 2.5)(X, 2.7)

We have thus explained the horizontal arrows of the diagram, and now we move to the

vertical ones. Both vertical mappings preserve the length of the word.

A timed braid (a1, t1) . . . (an, tn) gives naturally rise to a data braid by replacing each

time stamp ti by its fractional part t̂i, and then mapping the set {t̂1, . . . , t̂n} into the

data domain D through an order-preserving injection. We only want to consider order-

preserving injections, thus this always yields a data braid. Note that the choice of a

particular order-preserving injection is irrelevant, as one always obtains the same data

word up to data isomorphism (cf. Proposition 2.3). We hope this ambiguity will not be

confusing.

A data braid w = (a1, d1) · · · (an, dn) may be turned into a timed braid through any

order-preserving injection f : {d1, . . . , dn} → [0, 1) such that f(d1) = 0. Each element

(ai, di) is mapped into a similar element (ai, k+ f(di)), where k is the number of factors

(in the ordered partition of w) that end strictly before position i. Consecutive factors

will get consecutive natural numbers as the integer part of time stamps. As before, we

consider the choice of a particular injection f irrelevant (cf. Proposition 2.2).

Notice that going from a timed braid to a data braid and back returns to the original

word up to time isomorphism; likewise, combining the transformations in the reverse

order we get back to the same word, up to data isomorphism.

Slightly overloading the notation, we write db(w) to denote the data braid obtained

from a timed word w by the appropriate composition of transformations just described.

Similarly, we write tb(w) to denote the timed braid obtained from a data word w.

4. From timed automata to register automata

We are going to show that, up to a suitable encoding, languages recognized by timed

automata are recognized by register automata as well. The transformation keeps the

number of registers equal to the number of clocks, and preserves the mode of computation

(nondeterministic, co-nondeterministic, alternating).

Theorem 4.1. Given an alternating timed automatonA one can compute in exponential

time an order-blind register automaton B such that for any timed word w, A accepts

w if an only if B accepts db(w). The number of registers of B equals the number of

D. Figueira, P. Hofman & S. Lasota 10

clocks of A. Moreover, B is deterministic (resp. nondeterministic, co-nondeterministic,

alternating) if A is so.

Proof. We describe the construction of a register automaton B that faithfully simulates

a given timed automaton A. The idea is that the behavior of each clock can be simulated

by a register. When the clock is reset on one automaton, the other loads the current

data value d into the register. Then, by the data braid structure, the register automaton

knows exactly how many units of time have elapsed for the clock by simply counting the

number of times that d has appeared.

Consider the maximum constant kmax that appears in the transitions of A. Let Q

and C denote the states and clocks of A, respectively. The states of B will be Q′ ×
{0, {0, 1}, 1, {1, 2}, . . . , kmax, {kmax,∞}}C . The first component Q′ will be a superset of

Q containing a number of additional auxiliary states. The second component of state

will be called clock component. Intuitively, for each clock c the automaton B stores the

information about the single-clock region of the current value of c, up to kmax. One may

distinguish point regions and interval regions of v(c). The initial state is (q0, v0) where

v0 assigns 0 to each c ∈ C. The owner of a state (q, v) in B will be the same as the owner

of q in A, if q ∈ Q, and irrelevant otherwise.

There will be as many registers in B as clocks in A, R = {rc|c ∈ C}, and each register

rc will be used to update the information about the region of c. The integer part of the

value of a clock c in A will correspond to the number of times (up to kmax) the value

stored in register rc in B appeared in the word since it was loaded. Whenever the clock

c is reset in A, the corresponding action of B is to load the current value to rc and

to change state from (q, v) to (q, v[c := 0]). (Recall that it is assumed that as the very

first step the automaton B loads the first data value in the word into all registers.) The

automaton B will also be capable to detect that the integer part of a clock c increases,

using the equality test ‘= rc’ as outlined below.

The automaton B, to be described now in more detail, will not distinguish marked

symbols from unmarked ones. We consider an arbitrary transition q
o−→ p ofA, separately

for every kind of operation o, and outline the transitions, it gives rise to, in automaton

B from a state (q, v).

Operation o is ‘test if the current label is a’. The automaton B tests that the current

label is a or ā, and changes state to (p, v). This does not depend on v. This applies to

a 6= X. The labels X and X̄ are essentially ignored by B, i.e., if the current label is any

of the two, the automaton goes to next position without changing state.

Operation o is ‘go to next position’. When going to the next position, independently of

its (not yet read) label, the automaton B will update the clock component of its state

(q, v). First, for all clocks c with point region k the value of v is changed to (k, k + 1) or

(kmax,∞):

(q, v)
o−→ (q′, v→),

Relating timed and register automata 11

for an auxiliary state q′ ∈ Q′ \Q and for v→ defined by

v→(c) =


(k, k + 1) if v(c) = k < kmax

(kmax,∞) if v(c) = kmax

v(c) otherwise.

After this, all regions v(c) are intervals. Then, starting from state (q′, v→) the automaton

B performs a sequence of equality checks ‘= c’, one for every clock c, possibly updating

the value of v→ on c, according to the following transitions:

(q′, u)
=c // (q′′, uc) (q′, u)

6=c // (q′′, u),

where uc differs from u only on c, according to:

uc(c) =

{
k if u(c) = (k − 1, k)

u(c) otherwise.

This involves a sequence of auxiliary states q′, q′′ ∈ Q′ \Q, etc, whose owner is the same

as the owner of q, except for the very last one that we assume to be p.

So far we took into account the cases when the label is not X or X̄. The idea is that

the automaton ignores the X and X̄ labels, but its clock component must be updated as

for other labels. In this case we proceed just as before, but in the last transition, instead

of moving to p, it moves to a new state p′, and from there back to q′ by moving to the

next position as described above. In this way, all the X and X̄ will be skipped, but the

clock component of the state will be updated.

Operation o is ‘test if c v k’. According the value v(c) of the clock component v, either

the clock constraint c v k is satisfied and then we add a transition

(q, v) −→ (p, v)

to B; or the clock constraint is not satisfied, and then there is no transition from (q, v)

that corresponds to q
o−→ p.

Operation o is ‘reset clock c’. The corresponding action of B is to load the current value

to rc and to change state from (q, v) to (q, v[c := 0]).

Note that each transition q
o−→ p of A may give raise to a number of new states

q, q′, q′′, · · · ∈ Q′ \Q used in B. However, the total number of states added is exponential

in the alphabet A and the clocks C. Thus, the construction is exponential. No nondeter-

ministic or alternating transitions are explicitly added in this construction, and hence B
is deterministic (resp. nondeterministic, co-nondeterministic, alternating) whenever A is

so.

The automaton B is order-blind as required.

Remark 4.2. Observe that the algorithm is exponential only in the number of clocks of

the timed automaton. Thus, if the number of clocks is constant, the translation is done

in polynomial time.

D. Figueira, P. Hofman & S. Lasota 12

pstart q

reset{c}

go to
next

c = 1

go to
next

Fig. 1. An automaton checking that there are two time-stamp whose difference is

1. Gray states are owned by Adam and the others by Eve.

q,< 1

q,= 1

q,> 1

q,= 0 p′, < 1

p′, > 1

q′, < 1

q′, > 1

q′′, < 1

q′′,= 1

q′′, > 1

p,< 1

p,= 1

p,> 1

p,= 0

go to next

go to next

go to next

6= r a

= r

X

a

go to next

X

X

go to next

go to next

6= r or = r a

Fig. 2. The ‘go to next(q, p)’ black box. These transitions correspond to the

transformation of q
go to next−−−−−−→ p, assuming that regions are 0, (0, 1), 1, (1,∞). This

transformation will be used as black box.

Example 4.3. To illustrate the construction, consider the nondeterministic one clock

timed automaton that checks that there are two time stamps whose difference is 1, as

depicted in Figure 1.

The construction described in the proof of Theorem 4.1, applied to the automaton

shown in Figure 1, yields the order-blind register automaton depicted in Figure 3. For

convenience of presentation, we abstract the transitions corresponding to a transition

q
go to next−−−−−−→ p as a black box parametrized by q and p. This construction is depicted in

Figure 2.

For the successive results, we make use of the following lemma.

Lemma 4.4. The complement of the language of all data braids is recognized by a

nondeterministic one register automaton.

Proof. A data word w = (a1, d1) · · · (an, dn) fails to be a data braid iff either

(1) some datum strictly smaller than d1 appears in w,

(2) there is some marked (i.e., carrying an alphabet letter from Ā ∪ X̄) position i such

that di � d1,

(3) there is some unmarked position i such that di = di,

Relating timed and register automata 13

go to next(p, p)
black box

go to next(q, q)
black box

p,< 1

p,= 1

p,> 1

p,= 0start

q,< 1

q,= 1

q,> 1

q,= 0

go to next

go to next

go to next

go to next

reset r

reset r reset r

reset r

= r

go to next

go to next

go to next

go to next

Fig. 3. The automaton resulting from the proof of Theorem 4.1.

(4) for some position i, there are two marked positions j < k, both greater than i, such

that di does not appear among {dj . . . dk−1}, or

(5) for some position i there is a marked position j > i such that di does not reappear

at any position greater or equal j.

A nondeterministic automaton can easily guess which of these conditions holds and verify

it using one register.

As a consequence of Lemma 4.4, we get:

Corollary 4.5. The language of data braids is recognized by a co-nondeterministic one

register automaton.

Proof. It suffices to swap the ownership of states between Adam and Eve.

We want to use Theorem 4.1 together with Lemma 4.4 to show Theorem 4.8 below

that reduces decision problems for timed automata to the analogous decision problems for

register automata. However, there is a subtle point here: by Lemma 4.4 register automata

can recognize the complement of data braids, while we would need register automata to

recognize the complement of the image of db(). The latter is a different language, since

db() is not surjective (for example, consider appending (X, d) for a sufficiently big d at

the end of a data braid), and unfortunately, cannot be recognized by a nondeterministic

1-register automaton. In the proof below we deal with this problem by observing that

db() is essentially surjective onto data braids.

D. Figueira, P. Hofman & S. Lasota 14

Definition 4.6. A position i in a data braid is considered useless iff it is labeled by

(X, d), for some datum d, and moreover

(a) all appearances of the datum d before i are labeled with X; or

(b) all the positions in its factor and in all the following factors are labeled exclusively

with X or X̄.

A data braid with no useless positions we call non-redundant.

Note that from any data braid w one obtains a non-redundant one by simultaneously

removing all useless positions from w. Denote this non-redundant braid by w̃.

Lemma 4.7. The mapping db() is essentially surjective onto data braids in the following

sense:

(i) db() is a bijection between the isomorphism classes of timed words and non-redundant

data braids,

(ii) any automaton B constructed in Theorem 4.1 can not tell a difference between w and

w̃.

Proof. (i) We claim that every non-redundant data braid w equals to db(v), up to

isomorphism, for some timed word v. Indeed, consider any order preserving injection f

from data values appearing in w to [0, 1) that maps the least value to 0. Let v be the

result of the following steps: (1) replace every (ai, di) of w with (ai, k + f(di)), where k

is the number of factors in w that end before position i; (2) remove all X/X̄ positions;

and (3) project the alphabet into A.

(ii) We argue that B either accepts both a data braid w and w̃, or none of them. This

is true by construction, since when the input letter is X, the register automaton B only

updates the information about the integer part of those clocks c for which the equality

test =rc holds. When reading a useless position, if it is useless because of (a), then the

equality holds for no clock; whereas in case (b) the update will be inessential for the

acceptance.

A wide range of decision problems for timed automata reduce to the analogous prob-

lems for register automata. This is due to the very tight correspondence between timed

words and data braids as stated in Lemma 4.7. We mean here those decision problems

whose input is a number of timed automata A1 . . .Ak and the question is about the

languages L(A1) . . .L(Ak).

We believe that it is not instructive to formally state the reduction in full generality.

Instead, we prefer to consider one chosen problem, to illustrate the method of reasoning.

As an illustrative example we consider the inclusion problem that for given A and B asks

if L(A) ⊆ L(B). This particular problem, being undecidable in general, has interesting

decidable special cases, for example when when B is a 1-clock alternating automaton and

A is assumed to be nondeterministic (but allowed to have arbitrarily many clocks). Thus

it will be extremely important that the reduction preserves the number of clocks/registers

and the mode of computation, as it was the case in Theorem 4.1.

The discussion above motivates the following restricted version of the inclusion prob-

lem. Let A and B be two classes of timed automata. Each of these classes is determined

Relating timed and register automata 15

by a restriction on the mode of computation and/or on the number of clocks. Note that

the same kind of restrictions makes equally sense for register automata, but applies to the

number of registers instead of clocks. We write Ar and Br to the corresponding classes

of register automata. By A ⊆ B we mean a restricted inclusion problem, that asks if

L(A) ⊆ L(B) for given A ∈ A and B ∈ B.

We say that a class of automata is effectively closed under union/intersection if for two

given automata from that class, an automaton may be computed that belongs to the class

and recognizes the union/intersection of the languages of the two given automata. For in-

stance, k-clock/register nondeterministic automata are effectively closed under union and

k-clock/register co-nondeterministic automata are effectively closed under intersection.

Theorem 4.8. The restricted inclusion problem A ⊆ B for timed automata reduces, in

exponential time, to the analogous problem Ar ⊆ Br for register automata, whenever

any of the following conditions hold:

— class B contains nondeterministic 1-clock automata and is effectively closed under

union, or

— class A contains co-nondeterministic 1-clock automata and is effectively closed under

intersection.

Proof. For two given timed automata A ∈ A and B ∈ B, the problem asks if there is

a timed word w such that

w ∈ L(A) and w /∈ L(B).

By Theorem 4.1 we get two register automata A′ and B′ such that the question is

equivalent to:

db(w) ∈ L(A′) and db(w) /∈ L(B′).
By Lemma 4.7 it is equivalent to ask if there is a data braid w such that

w ∈ L(A′) and w /∈ L(B′).

If the assumption concerning B holds, we observe that it is equivalent to ask if there is

a data word w such that

w ∈ L(A′) and w /∈ L(B′) and w /∈ L(A¬db),

for a nondeterministic 1-register automaton A¬db given by Lemma 4.4, which rewrites

to

w ∈ L(A′) and w /∈ (L(B′) ∪ L(A¬db)). (4)

Otherwise, if the assumption concerning A holds, the question is equivalent to asking if

there is a data word such that

w ∈ L(A′) and w ∈ L(Adb) and w /∈ L(B′),

for a co-nondeterministic 1-register automaton Adb existing by Corollary 4.5, which

rewrites to

w ∈ (L(A′) ∩ L(Adb)) and w /∈ L(B′). (5)

D. Figueira, P. Hofman & S. Lasota 16

In both cases (4) and (5), we arrive at an instance of the corresponding inclusion problem

A ⊆ B for register automata. As these instances are obtained effectively, the reduction

if thus proved.

We claim that many other decision problems, e.g., non-emptiness, universality, or

equality, concerning languages, their intersections, unions, etc., may be treated in pre-

cisely the same way.

5. From register automata to timed automata

In this section we complete the relation between the models of automata. We show that,

up to a suitable encoding, languages of register automata may be recognized by timed

automata. Again, this transformation keeps the number of registers equal to the number

of clocks, and preserves the mode of computation (nondeterministic, co-nondeterministic,

alternating). Thus we obtain a tight relationship between the two classes of automata.

Theorem 5.1. Given an alternating register automaton A one can compute in expo-

nential time a timed automaton B such that for any data word w, A accepts w if and

only if B accepts tb(w). The number of clocks of B equals the number of registers of A.

Moreover, B is deterministic (resp. nondeterministic, co-nondeterministic, alternating) if

A is so.

Proof. We describe the construction of a timed automaton B that faithfully simulates

the behavior of a given register automaton A. Let R be the set of registers of A. The

number of clocks in B is the same as the number of registers in A, C = {cr|r ∈ R}. A

clock cr is reset whenever A loads the current data value into register r. Moreover, each

clock is also reset whenever the constraint cr = 1 is met. Thus, when B runs over a time

braid, no clock will ever have value greater than 1.

The state space of B is built on top of the states Q of A, extended with a number of

additional auxiliary states. Additionally, for each clock cr the automaton B stores in its

state one bit of information describing whether the last marked position was seen before

or after the last reset of cr. This will allow B to simulate tests comparing the current

data value with data values stored in registers.

Formally, states of B are pairs (q,X) ∈ Q′×P(R), for Q ⊆ Q′. Initially the initial state

of A is chosen and the set X, which we call the register component of a state, is chosen

as X = ∅. At each marked symbol ā or X̄, the automaton B sets X := ∅. Moreover, at

each reset of r (at marked or unmarked positions), r is added to X. As a consequence of

this behavior, it invariantly holds: r ∈ X if and only if the position of the last reset of cr
is greater or equal to the last marked position. Hence, the test � r (current data smaller

or equal to register r) is satisfied at a state (q,X) if and only if r /∈ X. The table below

summarizes all the data tests and the corresponding constraints on clock values and on

the register component of state:

Relating timed and register automata 17

test in A meaning constraint in B

� r current datum greater than r r ∈ X and cr > 0

� r current datum greater or equal to r r ∈ X
≺ r current datum smaller than r r /∈ X
� r current datum smaller or equal to r r /∈ X or cr = 0

We consider an arbitrary transition q
o−→ p of A, separately for every kind of operation

o, and outline transitions of B it gives rise to.

Operation o is ‘test if the current label is a’. In state (q,X) the automaton B tests if

the current label is a or ā, and changes state to (p,X). This does not depend on X and

applies to a 6= X only. Thus the labels X and X̄ are essentially ignored by B.

Operation o is ‘go to next position’. When going to the next position, the automaton B
will test if it contains a marked label or not, and if so it will empty X. That is, we first

add a transition from (q,X) to (q′, X) that moves to next position. And we also add

transitions from (q′, X) to (q′′, ∅) testing for every possible label ā ∈ Ā, and from (q′, X)

to (q′′, X) for every possible label a ∈ A. Finally, it tests sequentially, for every clock cr
whether cr = 1. If so, it updates X with X ∪ {r} and resets cr, otherwise it does not

modify X or cr. All this is implemented by adding, for each clock, two fresh states to

Q′ \Q, whose owner is the same as the owner of q. As a final step, B moves to state p.

For example, assuming we have only one clock r, we would add a transition from (q′′, X)

to (q′′′, X ∪ {r}) testing cr = 1, a transition from (q′′′, X) to (p,X) resetting cr, and one

transition from (q′′, X) to (p,X) testing cr 6= 1.

So far we took into account the cases when the label is not X or X̄. The idea is that the

automaton ignores the X and X̄ labels, but its register component X must be updated

accordingly. In this case we proceed just as before, but in the last transition, instead of

moving to p, it moves to a new state p′, and from there back to q′ by moving to the next

position. In this way, all the X and X̄ will be skipped, but the X component of the state

will be updated.

Operation o is ‘test v r’. If v is �, we add a transition from (p,X) to (q,X) testing

that ‘cr > 0’, for any X containing r. If v is ≺, � or � we proceed accordingly, using

the table seen before.

Operation o is ‘load current datum to r’. The corresponding action of B is to reset clock

cr and to change state from (q,X) to (p,X ∪ {r}).

Note that each transition q
o−→ p of A may give raise to a number of new states

q, q′, q′′, · · · ∈ Q′ \Q used in B. However, the total number of states added is exponential

in the alphabet A and the registers R. Thus, the construction is exponential. No nonde-

terministic or alternating transitions are explicitly added in this construction, and hence

D. Figueira, P. Hofman & S. Lasota 18

pstart q s end
load r

go to next

= r go to next

Fig. 4. An automaton checking that the first datum is equal to the last one.

B is deterministic (resp. nondeterministic, co-nondeterministic, alternating) whenever A
is so.

Example 5.2. Consider the simple nondeterministic one register automaton that checks

if the first datum in a word is equal to the last one depicted in Figure 4.

The construction in the proof of Theorem 5.1 yields the automaton depicted in Fig-

ures 5 and 6.

q, ∅

q, {r}

p′, ∅

p′, {r}

q′, ∅

q′, {r}

q′′, ∅

q′′, {r}

q′′′, ∅

q′′′, {r}

p, ∅

p, {r}

go to next

go to next

go to next

go to next

ā, X̄, a,X

ā, X̄

a,X

= 1

≤ 1

< 1

reset r

X, X̄

X, X̄

a, ā

a, ā

Fig. 5. The ‘go to next(q, p)’ black box. These transitions correspond to the

transformation of q
go to next−−−−−−→ p, assuming that there is only one register. This

transformation will be used as black box.

For the next results, we make use of the following lemma.

Lemma 5.3. The complement of the language of all timed braids is recognized by a

nondeterministic one clock automaton.

Proof. A timed word fails to be a timed braid iff either

(1) the time-stamp in the first position is not equal 0,

(2) there is some marked position appearing at some non-integer position,

(3) there is some unmarked position appearing at some integer position, or

Relating timed and register automata 19

p, ∅start

p, {r} q, ∅q, {r}

go to next(q, q)
black box

s, ∅

s, {r}

go to next(s, end)
black box

end, ∅

end, {r}

reset r

reset r

= 0

go to next

go to next

a, ā

a, ā

go to nextgo to next

Fig. 6. The result of the construction of Theorem 5.1.

(4) a time-stamp t + 1.0, induced by the existence of an element (a, t) for some a, is

missing.

It is easy to check that (0), (1) and (2) can be verified by a deterministic one clock

automaton. (3) is verified as follows. The automaton guesses a position i, where it resets

the clock. Then it checks that after the next marked position, the clock is continuously

strictly smaller than 1 until it finally becomes strictly greater than 1, or the word ends.

As a consequence of Lemma 5.3, we get:

Corollary 5.4. The language of data braids is recognized by a co-nondeterministic one

clock automaton.

Proof. It suffices to swap the ownership of states between Adam and Eve.

Similarly as in Section 4, we want to use Theorem 5.1 together with Lemma 5.3 to

show Theorem 5.7 below. We find the same difficulty as before, since timed automata

cannot recognize that a timed word is in the image of tb(). We define a useless position

and a non-redundant timed braid in the same way as for data braids, and we show that

tb() is essentially surjective onto timed braids.

Definition 5.5. A position i in a timed braid is considered useless iff it is labeled by

(X, t), for some time stamp t, and moreover

(a) every label (a, t′) of a position preceding i such that t̂ = t̂′ satisfies a = X; or

(b) all the positions with timestamps in the interval (t− 1, t] are labeled exclusively with

X or X̄.

A timed braid with no useless positions is called non-redundant.

From any timed braid w one obtains a non-redundant one by applying the following

two-step operation:

D. Figueira, P. Hofman & S. Lasota 20

— simultaneously remove all useless position of type (a) from w; then

— as long as some useless position of type (b) exists, choose one such position, labeled

with (X, t) say, and remove all the positions with time stamp in the interval (t− 1, t];

then decrease all the following time stamps by 1.

We denote this non-redundant braid obtained from w by w̃.

Lemma 5.6. The mapping tb() is essentially surjective onto timed braids in the fol-

lowing sense:

(i) tb() is a bijection between the isomorphism classes of data words and non-redundant

timed braids,

(ii) any automaton B constructed in Theorem 5.1 can not tell a difference between w and

w̃.

Proof. (i) We claim that every non-redundant timed braid w equals to tb(v), up to

isomorphism, for some data word v. Indeed, let v be the result of the following steps: (1)

replace every (ai, ti) of w with (ai, t̂i); (2) remove all X/X̄ positions; and (3) project the

alphabet into A.

(ii) We argue that B either accepts both the timed braid w and w̃, or none of them.

This is true by construction. Note that when reading (X, t), the register automaton B
does not change the first component of its state, it only updates the information about

the register component X. Suppose the position is useless. If it is useless because of (a),

then there is no clock cr where cr = 1, because no clock was ever reset in any previous

position with the same fractional part t̂. Hence, the register component X of the state

does not change. In the case of (b), the update will be inessential for the acceptance.

The following theorem is proved analogously to Theorem 4.8, using Theorem 5.1,

Lemma 5.3, and Lemma 5.6:

Theorem 5.7. The restricted inclusion problem A ⊆ B for register automata reduces

to the analogous problem for timed automata, whenever any of the following conditions

hold:

— class B contains nondeterministic 1-register automata and is effectively closed under

union, or

— class A contains co-nondeterministic 1-register automata and is effectively closed un-

der intersection.

Proof. As expected, the proof is completely analogous to the proof of Theorem 4.8,

we include it for the sake of completeness. For two given register automata A ∈ A and

B ∈ B, the problem asks if there is a data word w such that

w ∈ L(A) and w /∈ L(B).

By Theorem 5.1 we get two register automata A′ and B′ such that the question is

equivalent to:

tb(w) ∈ L(A′) and tb(w) /∈ L(B′).

Relating timed and register automata 21

By Lemma 5.6 it is equivalent to ask if there is a timed braid w such that

w ∈ L(A′) and w /∈ L(B′).

If the assumption concerning B holds, we observe that it is equivalent to ask if there is

a data word w such that

w ∈ L(A′) and w /∈ L(B′) and w /∈ L(A¬tb),

for a nondeterministic 1-clock automaton A¬tb given by Lemma 5.3, which rewrites to

w ∈ L(A′) and w /∈ (L(B′) ∪ L(A¬tb)). (6)

Otherwise, if the assumption concerning A holds, the question is equivalent to asking if

there is a data word such that

w ∈ L(A′) and w ∈ L(Atb) and w /∈ L(B′),

for a co-nondeterministic 1-clock automaton Atb existing by Corollary 5.4, which rewrites

to

w ∈ (L(A′) ∩ L(Atb)) and w /∈ L(B′). (7)

In both cases (6) and (7), we arrive at an instance of the corresponding inclusion problem

A ⊆ B for timed automata. As these instances are obtained effectively, the reduction if

thus proved.

In the same way one may treat other decision problems, such as non-emptiness, uni-

versality or equality.

6. Infinite words

So far we have only considered automata over finite words. In this section we explain how

our results may be lifted to automata over ω-words with weak or strong parity acceptance

condition. To avoid a lengthy presentation, we restrict ourselves here to a brief discussion

of modifications necessary to accommodate ω-words.

For the purpose of this section it is necessary to assume that the data order � is dense.

6.1. Automata over infinite words

A data ω-word is an element of (A×D)ω, cf. (1). Similarly, a timed ω-word is an element

of (A× R+)ω whose time-stamps are strictly monotonic, see (2).

Timed and register automata are as in Sections 2.1 and 2.2, but with one additional

ingredient, a rank function Ω : Q→ N, that assigns a number to each state. The function

is used for acceptance of an ω-word in the following way. If a play of the acceptance game

is finite, the winner is the same as in the case of finite words. Otherwise, the winner is

Eve if the sequence q1, q2, . . . of states appearing in the play satisfies:

— (weak parity condition) the smallest number in {Ω(qi)|i = 1, 2, . . .} is even.

— (strong parity condition) the smallest number appearing infinitely often in the se-

quence Ω(q1),Ω(q2), . . . is even.

D. Figueira, P. Hofman & S. Lasota 22

We speak of weak/strong (k, l)-parity condition if the ranks are in the range k . . . l. Wlog.

one may assume k ∈ {0, 1}. Strong (0, 1)-parity is traditionally called Büchi condition.

Timed/register automata with weak (0, 0)-parity condition are called safety automata

(thus the only way to reject an input word is due to a finite ‘bad prefix’, which leads to

Eve being stuck in its position). Dually, co-safety automata are those with weak (1, 1)-

parity condition (thus the only way to accept is when there is some ‘good prefix’, that

leads to Adam being stuck in its position).

6.2. Infinite braids

We will distinguish two settings, both for timed and data words. In the first one, we

only consider non-Zeno words as a legitimate input to an automaton; in the second

one, we consider all ω-words. The two settings will be called non-Zeno and unrestricted,

respectively.

Recall that a timed ω-word is called non-Zeno when the time-stamps occurring in the

word are not bounded; otherwise we call it Zeno. We impose an analogous definition for

data words: we say that a data ω-word is non-Zeno if the data value decreases infinitely

often, i.e., di+1 � di for infinitely many positions i. Thus a data ω-word is Zeno if and

only if its ordered partition has only finitely many factors (the last one is infinite).

Recall the definitions of data and timed braids in Sections 3.1 and 3.2. We adapt the

definition in a straightforward way to ω-words, with one proviso: we intentionally allow

Zeno ω-braids in which the last factor does not contain all previously seen data values

(or fractional parts of time-stamps), as illustrated in the example below. Intuitively, this

naturally corresponds to the fact that in the case of finite words, we could equivalently

use prefixes of braids, i.e., we could allow the data projection of last factor to be a prefix

of a superstring of the previous one.

Example 6.1. Consider an exemplary Zeno timed ω-word:

(ā, 0.0)(a, 0.7) · (X̄, 1.0)(b, 1.5)(X, 1.7) · (b̄, 2.0)(a, 2.1)(a, 2.15)(a, 2.175)(a, 2.1875) . . .

Even if the fractional parts of time-stamps 1.5 and 1.7 do not reappear in the last infinite

factor, it seems natural to include this word into timed ω-braids. Analogous situations

may appear in a Zeno data ω-braid, as illustrated by the following one:

(X̄, 1)(a, 4) · (b̄, 1)(a, 4)(b, 8) · (ā, 1)(X, 4)(a, 4.5)(a, 4.75)(a, 4.875) . . .

The transformation of a timed word into a timed braid is exactly as in the case of

finite words. Some additional care must be taken in the transformation of a data word

w: instead of the smallest data value dmin we use an arbitrary lower bound of all data

values appearing in w, and transform w via an isomorphism beforehand if there is no

such bound. When going from a timed braid to a data braid, an arbitrary injection of all

the fractional parts of time-stamps into D is used, existing by the density assumption.

For the opposite direction, any injection of {d ∈ D|d � dmin} into [0, 1) may be used,

that maps dmin to 0.

All the four transformations preserve non-Zeno and Zeno words.

Relating timed and register automata 23

6.3. Reductions

Theorems 4.1 and 5.1 may be easily lifted to the case of ω-words. In the constructions,

any auxiliary state in Q′ \ Q should be assigned a rank inessential for acceptance, for

instance the greatest one.

Theorem 6.2. Theorems 4.1 and 5.1 are still valid for ω-words. Both constructions

preserve the type of acceptance condition.

Now we sketch adaptations of Lemmas 4.4 and 5.3. It turns out that a data or timed

ω-word may fail to be a braid for precisely the same reasons as a finite one may fail,

independently whether the word is non-Zeno or Zeno. Thus to check that a word is not a

braid it is sufficient to inspect the finitary conditions listed in the proofs of Lemmas 4.4

and 5.3, which can be done using co-safety condition:

Lemma 6.3. In both non-Zeno and unrestricted setting, the complement of the lan-

guage of data/timed braids is recognized by a nondeterministic co-safety 1-register/clock

automaton.

As a consequence, the language of data/timed braids is recognized by a co-nondeterministic

safety 1-register/clock automaton.

The notions of time/data isomorphism and of useless positions in a braid extend nat-

urally to ω-words. Thus we conclude:

Lemma 6.4. In both non-Zeno and unrestricted setting, the analogues of Lemmas 4.7

and 5.6 hold for infinite words.

As all the four transformations mentioned in Section 6.2 preserve non-Zeno words, we

may apply Theorem 6.2, together with Lemmas 6.3 and 6.4, to deduce the reductions:

Theorem 6.5. In both non-Zeno and unrestricted setting, the inclusion problems A ⊆
B for timed and register automata are mutually inter-reducible, whenever any of the

following conditions hold:

— class B contains nondeterministic co-safety 1-clock/register automata and is effec-

tively closed under union, or

— class A contains co-nondeterministic safety 1-clock/register automata and is effec-

tively closed under intersection.

7. Applications

Here we provide some evidence that the tight relationship between register automata

and timed automata may be useful: we transfer a couple of results from timed do data

setting.

7.1. Finite words

First, from the fact that 1-clock alternating timed automata have decidable empti-

ness (Lasota and Walukiewicz, 2008), applying Theorem 5.7 we obtain:

D. Figueira, P. Hofman & S. Lasota 24

Theorem 7.1. The emptiness and inclusion problems for alternating 1-register au-

tomata are decidable.

Proof. Let A be the class of alternating 1-clock automata. By (Lasota and Walukiewicz,

2008, Corollary 3.2), the restricted inclusion problem A ⊆ A is decidable. Hence, by

Theorem 5.7, the restricted inclusion problem B ⊆ B is also decidable, where B is the

class of alternating 1-register automata. In particular, emptiness for B is decidable.

Note that register automata, as we define it here, work over ordered data domains and

are capable of comparing data values w.r.t. �. According to our terminology, decidabil-

ity was only known for the subclass of order-blind automata (Demri and Lazić, 2009).

Interestingly, the results holds for any total order over data.

A note on complexity. Note that alternating 1-register automata over an ordered

domain have the same complexity (modulo an exponential time reduction) as alternating

1-clock timed automata. However, we must remark that these automata have a much

higher complexity than order blind alternating 1-register automata, although both are

beyond the primitive recursive functions. While the latter can be roughly bounded by

the Ackermann function applied to the number of states, the complexity of the former

majorizes every multiply-recursive function (in particular, Ackermann’s).

More precisely, the emptiness problem for alternating timed automata with 1 clock sits

in the class Fωω in the Fast Growing Hierarchy (Löb and Wainer, 1970)—an extension

of the Grzegorczyk Hierarchy for non-primitive recursive functions—by a reduction to

Lossy Channel Machines (Abdulla et al., 2005), which are known to be ‘complete’ for

this class, i.e. in Fωω \F<ωω (Chambart and Schnoebelen, 2008). However, the emptiness

problem for order blind alternating 1 register automata belongs to Fω in the hierarchy,

by a reduction to Incrementing Counter Automata (Demri and Lazić, 2009), which are

complete for Fω (Schnoebelen, 2010; Figueira et al., 2011). We then obtain the following

result.

Corollary 7.2. The emptiness problem of alternating 1-register automata over a linearly

ordered domain is in Fωω \ F<ωω in the Fast Growing Hierarchy.

We show another example of a result that can be directly copied from the timed to

the data setting:

Theorem 7.3. The restricted inclusion problem A ⊆ B, for the class A of nondetermin-

istic register automata and the class B of alternating 1-register automata, is decidable

and of non-primitive recursive complexity.

Proof. The analogous problem for timed automata is shown to be decidable in (Lasota

and Walukiewicz, 2008), and it has a non-primitive recursive complexity since the the

universality problem for alternating one clock automata is non-primitive recursive (Lasota

and Walukiewicz, 2008, Corollary 4.2). We apply Theorem 5.7 since the second condition

holds, obtaining that the analogous problem for register automata is decidable. We obtain

Relating timed and register automata 25

the lower bound by reduction from the problem on timed automata using Theorem 4.8.

As the last example of application in the case of finite words, we consider the emptiness

problem over a restricted class of data words. We say that a data word (a1, d1) . . . (an, dn)

is m-decreasing iff there are at most m− 1 positions i with di � di+1.

Theorem 7.4. Let m be a fixed non-negative number. The non-emptiness problem

for alternating register automata over m-decreasing data words is decidable and non-

elementary.

Proof. Again, the result is an immediate consequence of the result of (Jenkins et al.,

2010, Theorems 15 and 19): emptiness of alternating timed automata over m-bounded

timed words is decidable and non-elementary, where m-bounded words are those with all

time stamps smaller than m.

Notice that a data word w is m-decreasing iff tb(w) is m-bounded. Hence, the con-

struction of Theorem 5.1 applied to a register automaton A returns a timed automaton

B such that A accepts an m-decreasing data word w iff B accepts an m-bounded timed

word tb(w). The same arguments of Theorem 5.7 can be applied to show that the empti-

ness problem on alternating register automata on m-decreasing data words reduces to

the emptiness problem of alternating register automata on m-bounded timed words.

Conversely, the lower bound follows from Theorems 4.1 and 4.8, and from the sym-

metric fact: a timed word is m-bounded iff db(w) is m-decreasing.

Finally, note that the upper (decidability) bounds of Theorems 7.3 and 7.4 also apply

to the class of order-blind register automata.

7.2. Infinite words

We will transfer results of (Parys and Walukiewicz, 2009; Ouaknine and Worrell, 2005) to

register automata that give a tight decidability border in the hierarchy of weak alternating

automata.

Theorem 7.5. In both non-Zeno and unrestricted setting, the emptiness problem for

alternating 1-register automata with weak (0, 1)-parity condition is decidable.

Proof. We proceed exactly as in the proof of Theorem 7.1. The class of automata

includes co-nondeterministic safety 1-register automata and is effectively closed under

intersection. Thus we can apply Theorem 6.5 to obtain a reduction to the analogous prob-

lem for timed automata. The latter has been shown decidable in (Parys and Walukiewicz,

2009, Theorem 1) in the non-Zeno setting. The proof may be adapted to the unrestricted

setting Parys and Walukiewicz (2011).

Following (Parys and Walukiewicz, 2009), we argue below that the above decidability

result is optimal for the weak hierarchy of alternating 1-register automata.

D. Figueira, P. Hofman & S. Lasota 26

Theorem 7.6. In both non-Zeno and unrestricted setting, the universality of nondeter-

ministic 1-register automata with weak (0, 1)-parity condition is undecidable. As a con-

sequence, emptiness of co-nondeterministic 1-register automata with weak (1, 2)-parity

condition is undecidable.

Proof. The class of automata includes nondeterministic co-safety 1-clock automata

and is effectively closed under union. Thus we can apply Theorem 6.5 for a reduction

from the analogous universality problem for timed automata, whose undecidability in the

non-Zeno setting follows from undecidability of MTL shown in (Ouaknine and Worrell,

2005), see also (Parys and Walukiewicz, 2009, Theorem 2). The non-Zeno setting reduces

easily to the unrestricted one as nondeterministic 1-register/clock automata with weak

(0, 1)-condition can easily recognize Zeno words.

A special attention has been recently attracted (Ouaknine and Worrell, 2006; Lazić,

2008) by the class of automata that, in our terminology, corresponds to alternating safety

1-register/clock automata. From this works we obtain the following.

Theorem 7.7. In the non-Zeno setting, the emptiness problem for alternating safety

1-register automata is non-elementary.

Proof. Due to (Bouyer et al., 2008) satisfiability of safety MTL is non-elementary,

and by the reduction given in (Ouaknine and Worrell, 2006) the lower bound applies

to the emptiness of alternating safety 1-clock automata in the non-Zeno setting. By

Theorem 6.5, the latter problem reduces to the emptiness of safety 1-register automata

over non-Zeno words.

Remark 7.8. We can not derive the above result for the unrestricted setting as (Ouak-

nine and Worrell, 2006) restricts to the non-Zeno setting only. Theorem 7.7 is however

still interesting, when confronted with the result of (Lazić, 2008): the emptiness for order-

blind safety 1-register automata is ExpSpace-complete in the unrestricted setting. The

difference is due to the order on data values and the restriction to non-Zeno words.

Theorem 7.9. In the unrestricted setting, the emptiness problem for alternating safety

1-clock automata is ExpSpace-hard.

Proof. Directly by the result of (Lazić, 2008) and Theorem 6.5.

At last, we point out two inherent restrictions of Theorem 6.5. First, note that the

ExpSpace upper bound result of (Lazić, 2008) can not be transferred to timed automata

unless the result still holds for ordered data. As a second example, consider the emptiness

problem of order-blind alternating co-safety 1-register automata, shown non-primitive

recursive in (Lazić, 2008). One would be tempted to deduce the same lower bound for

the class of co-safety 1-clock automata‡. However, one could apply Theorem 6.5 only if

this class is sufficiently expressive to recognize the language of ω-braids, for instance if

it includes co-nondeterministic safety 1-clock automata. This is apparently not the case.

‡ This lower bound can be obtained by a direct reduction from the emptiness problem for alternating

1-clock automata over finite timed words.

Relating timed and register automata 27

8. Discussion

We have shown that timed and register automata on finite and infinite words are es-

sentially equivalent. In order to relate these two models we introduced the notion of a

‘braid’-like structure, that corresponds naturally to the way a clock works when running

over a timed word. As shown, most decision problems are actually equivalent for these two

models. This work can be useful to derive results on one model of automata as corollaries

of results on the other model, by exploiting the duality between timed and data automata

shown here. This is evidenced here by showing some new results (Section 7). One limita-

tion of our results is the both translations between timed and register automata suffer of

an exponential blow-up in the size of the automaton. As a consequence, one should not

expect applicability to low-complexity problems, like non-emptiness of nondeterministic

timed or register automata, in both cases a PSPACE-complete problem.

As possible next step could be to investigate extended models. For instance, it is quite

plausible that along the same lines one may relate timed automata with ε-moves on

one side, and register automata with guessing (load into a register a datum chosen in a

nondeterministic way) on the other.

Furthermore, a similar comparison of logical formalisms may be attempted, namely

of freeze LTL and MTL or TPTL, both over finite and ω-words. This should allow to

compare or transfer the complexity result for syntactic fragments of freeze LTL and MTL

that appeared recently in the literature, see e.g. (Parys and Walukiewicz, 2009; Ouaknine

and Worrell, 2006; Lazić, 2006; Figueira and Segoufin, 2009).

References

Parosh Aziz Abdulla, Johann Deneux, Joël Ouaknine, and James Worrell. Decidability

and complexity results for timed automata via channel machines. In ICALP, pages

1089–1101, 2005.

Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer

Science, 126:183–235, 1994.

Michael Benedikt, Clemens Ley, and Gabriele Puppis. What you must remember when

processing data words. In AMW, 2010.

Miko laj Bojańczyk and S lawomir Lasota. A machine-independent characterization of

timed languages. In Proc. ICALP’12, volume 7392 of LNCS, pages 92–103, 2012.

Miko laj Bojańczyk, Bartek Klin, and S lawomir Lasota. Automata with group actions.

In Proc. LICS’11, pages 355–364, 2011.

Patricia Bouyer, Antoine Petit, and Denis Thérien. An algebraic approach to data lan-

guages and timed languages. Inf. Comput., 182(2):137–162, 2003.

Patricia Bouyer, Nicolas Markey, Joël Ouaknine, Philippe Schnoebelen, and James Wor-

rell. On termination for faulty channel machines. In STACS, pages 121–132, 2008.

Pierre Chambart and Philippe Schnoebelen. The ordinal recursive complexity of lossy

channel systems. In LICS, pages 205–216. IEEE Computer Society Press, 2008. . URL

http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/CS-lics08.pdf.

Stéphane Demri and Ranko Lazić. LTL with the freeze quantifier and register automata.

ACM Trans. Comput. Log., 10(3), 2009.

http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/CS-lics08.pdf

D. Figueira, P. Hofman & S. Lasota 28

Diego Figueira and Luc Segoufin. Future-looking logics on data words and trees. In

MFCS, pages 331–343, 2009.

Diego Figueira, Piotr Hofman, and S lawomir Lasota. Relating timed and register au-

tomata. In EXPRESS, 2010.

Diego Figueira, Santiago Figueira, Sylvain Schmitz, and Philippe Schnoebelen. Ack-

ermannian and primitive-recursive bounds with Dickson’s lemma. In LICS. IEEE

Computer Society Press, 2011. To appear.

Mark Jenkins, Joël Ouaknine, Alexander Rabinovich, and James Worrell. Alternating

timed automata over bounded time. In LICS. IEEE Computer Society Press, 2010.

Michael Kaminski and Nissim Francez. Finite-memory automata. Theor. Comput. Sci.,

134(2):329–363, 1994.

S lawomir Lasota and Igor Walukiewicz. Alternating timed automata. In FoSSaCS, pages

250–265, 2005.

S lawomir Lasota and Igor Walukiewicz. Alternating timed automata. ACM Trans.

Comput. Log., 9(2), 2008.

Ranko Lazić. Safely freezing LTL. In FSTTCS, pages 381–392, 2006.

Ranko Lazić. Safety alternating automata on data words. CoRR, abs/0802.4237, 2008.

M.H. Löb and S.S. Wainer. Hierarchies of number theoretic functions, I. Archiv für

Mathematische Logik und Grundlagenforschung, 13:39–51, 1970.

Frank Neven, Thomas Schwentick, and Victor Vianu. Finite state machines for strings

over infinite alphabets. ACM Trans. Comput. Log., 5(3):403–435, 2004.

Joël Ouaknine and James Worrell. On the language inclusion problem for timed au-

tomata: Closing a decidability gap. In LICS, pages 54–63. IEEE Computer Society

Press, 2004.

Joël Ouaknine and James Worrell. On the decidability of metric temporal logic. In LICS,

pages 188–197. IEEE Computer Society Press, 2005.

Joël Ouaknine and James Worrell. Safety metric temporal logic is fully decidable. In

TACAS, pages 411–425, 2006.

Pawe l Parys and Igor Walukiewicz. Weak alternating timed automata. In ICALP, pages

273–284, 2009.

Pawe l Parys and Igor Walukiewicz. Personal communication, 2011.

Philippe Schnoebelen. Revisiting Ackermann-hardness for lossy counter systems and

reset Petri nets. In MFCS 2010, volume 6281 of LNCS. Springer, 2010.

	Introduction
	Preliminaries
	Alternating register automata
	Alternating timed automata
	Modes of computation
	Isomorphisms

	Braids
	Data braids
	Timed braids
	Transformations

	From timed automata to register automata
	From register automata to timed automata
	Infinite words
	Automata over infinite words
	Infinite braids
	Reductions

	Applications
	Finite words
	Infinite words

	Discussion

