

Relationship between the two-component system 1-Br-adamantane + 1-Cl-adamantane and the high-pressure properties of the pure components

María Barrio, Rafael Levit, Pol Lloveras, Araceli Aznar, Philippe Négrier, Denise Mondieig, Josep-Lluis Tamarit

▶ To cite this version:

María Barrio, Rafael Levit, Pol Lloveras, Araceli Aznar, Philippe Négrier, et al.. Relationship between the two-component system 1-Br-adamantane + 1-Cl-adamantane and the high-pressure properties of the pure components. Fluid Phase Equilibria, 2018, 459, pp.219-229. 10.1016/j.fluid.2017.07.020. hal-01686350

HAL Id: hal-01686350 https://hal.science/hal-01686350

Submitted on 17 Jan2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International License

Relationship between the two-component system 1-Br-adamantane + 1-Cl-adamantane and the high-pressure properties of the pure components

María Barrio ^a, Rafael Levit ^a, Pol Lloveras ^a, ^{*}, Araceli Aznar ^a, Philippe Negrier ^b, Denise Mondieig ^b, Josep-Lluís Tamarit ^a

^a Grup de Caracterizació de Materials, Departament de Física, EEBE and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany, 10-14, 08019 Barcelona, Catalonia, Spain
^b LOMA, UMR 5798, CNRS, Université de Bordeaux, F-33400 Talence, France

ARTICLE INFO

Keywords: High pressure Polymorphism Two-component system

ABSTRACT

The temperature composition phase diagram of the two component system 1 Br adamantane and 1 Cl adamantane has been determined by means of thermal analysis techniques and X ray powder diffraction from the low temperature phase to the liquid state.

The crossed isopolymorphism formalism has been applied to the two component system to infer the normal pressure properties of the orthorhombic metastable phase of 1 Cl adamantane at normal pressure. The experimental pressure temperature phase diagrams for the involved compounds are related to the two phase equilibria determined at normal pressure and inferences about the monotropic behavior of the aforementioned orthorhombic phase are discussed.

1. Introduction

One of the major challenges of the solid state field is not only the understanding of the structural and thermodynamic factors ruling the polymorphism but also the ability to predict the crys talline phases of molecular materials for both large technological systems as well as for fundamental thermodynamics. The classical understanding of polymorphism has been commonly restricted to the phase stability of a material as a function of temperature, but strictly speaking stability should be accounted within the pressure temperature space obtained from the classical Gibbs thermody namics. Many of the physical and chemical properties for simple or complex systems are known at or near atmospheric pressure while effects of the high pressures remain still unexplored. In particular, although high pressure studies have become of great interest for metal, semiconductor or, in general, mineral systems, molecular compounds with increasing complexity remain to be understood under pressure and in this particular field, polymorphism concept refers usually to the ability of a substance to adopt more than one

* Corresponding author.

E-mail address: pol.lloveras@upc.edu (P. Lloveras).

crystalline form in the solid state without any comment about the pressure variable.

Even more, the field of phase diagrams involving at least two chemical species, the temperature composition (T X) phase dia grams, is generally decoupled from the field of the polymorphic behavior at high pressure. Nevertheless, thermodynamics imposes a univocal relation between the controlled pressure and tempera ture conditions at which a polymorph should exist and the physical properties derived at normal pressure and, hence, the properties that can be extracted from a temperature composition phase dia gram [1-15]. The other way around also holds, properties derived for stable or metastable phases emerging in the temperature composition phase diagrams can provide information about the nature of high pressure phases even when they do not exist as stable phases at normal pressure.

This work concerns the experimental determination of the pressure temperature phase diagrams of 1 Br adamantane and 1 Cl adamantane and their two component system, as well as the connection between these rarely combined fields.

The adamantane molecule $(C_{10}H_{16})$ is formed by a 10 carbon cage made of four cyclohexane rings in chair conformation. The adamantane compound is known to display a wide temperature range of the plastic phase (from 208 to 543 K) [16] due to the

molecular spherical shape (T_d symmetry). The plastic phases are orientationally disordered (OD) phases in which the molecules perform reorientations more or less freely among a set of distin guishable number of equilibrium orientations displaying usually a high space group symmetry lattice (hexagonal or cubic). By the replacement of one or more hydrogen atoms in the adamantane molecule by a substituent X (X OH, F, Cl, I, etc.) the symmetry of the molecule, and thus intermolecular interactions and steric ef fects change. By a single substitution on a tertiary carbon, the series of 1 X adamanane, with C_{3v} point group symmetry, is derived.

The phase behavior of the 1 X adamantane compounds varies according to the substituent. Most of these derivatives show up an OD phase prior to melting, for example, 1 chloroadamantane (1 CIA. hereinafter), 1 bromoadamantane (1 BrA) and 1 cyanoadamantane [17–24]. These compounds may also have one or several solid solid transitions, as for 1 BrA, which exhibits three solid solid phase transitions, one of them being at very low tem perature (31.0 K), which will not be considered in this work. Table 1 shows the thermodynamic properties of 1 ClA and 1 BrA. As for 1 ClA, the low temperature monoclinic (space group $P2_1/c$) phase transforms to the OD phase (space group $Fm\overline{3}m$) at ca. 249 K which melts at 439 K [25]. As for 1 BrA, the lowest temperature phase, isostructural to the monoclinic P2₁/c phase of 1 ClA [26], trans forms to an intermediate orthorhombic (space group Pmcn) phase at ca. 311 K [27]. On further heating, such phase transforms to the high temperature OD ($Fm\overline{3}m$) phase [28] which melts at 392 K.

Concerning 2 X adamantane (with C_{2v} molecular symmetry) obtained from the substitution through at a secondary carbon, much less reactive, the rich polymorphic behavior has recently been revealed for X Cl, Br and O [17,18,29].

2. Experimental

2.1. Materials

1 BrA and 1 ClA were purchased from Aldrich with purity of 99% and 98% (as summarized in the Supplementary Material in Table S1), respectively, and used as received since the measured phase transition and melting points agreed well with those previously reported [30,31]. Two component mixtures were prepared from the melt of the materials in the selected proportions and fast cooling to room temperature.

2.2. Thermal analysis

Differential Thermal Analysis (DTA) at normal pressure. Thermal properties of the phase transitions (temperatures and enthalpy changes) were determined by means of a Q100 from TA In struments using heating and cooling scanning rates of 2 K min⁻¹. Sample masses about 10 mg were weighted using a microbalance sensitive to 0.01 mg and were hermetically sealed into aluminum crucibles under a controlled N₂ atmosphere.

High Pressure (HP) Differential Thermal Analysis. Measurements were carried out at 2 K min⁻¹ heating rate by means of an in house built high pressure differential thermal analyzer similar to Würf linger's apparatus [33]. Temperature and pressure ranges were between 200 and 450 K and 0 and 300 MPa, respectively. Samples were mixed with inert perfluorinated liquid (Galden, Bioblock Scientifics, France) before the high pressure Sn pans were her metically closed to make sure that in pan volumes were free of air. DTA runs at normal pressure using the Q100 under ordinary

Table 1

Transition temperatures *T* and enthalpy (ΔH) and entropy changes (ΔS) derived from DSC calorimetric measurements, volume changes determined from X-ray powder diffraction measurements (Δv^{XR}), slope of the pressure-temperature two-phase equilibria derived from the experimental pressure-temperature phase diagram (dT/dP)^{exp} and from the application of the Clapeyron equation (dT/dP)^C. M refers to the low-temperature monoclinic (P2₁/c) phase, O to the intermediate orthorhombic phase (Pmcn) and FCC for the face-centered cubic (Fm $\overline{3}$ m) orientationally disordered (OD) phase. The superscript S and m refer to stable and metastable phases, respectively. Numbers in italic refer to metastable phases.

1-Br-adamantane					
Property	$M^S \to O^S$	$M^S {\rightarrow} \ FCC^m$	$O^S \to FCC^S$	$FCC^S \rightarrow L^S$	Ref.
Т /К	282.2 ± 0.1		309.9 ± 0.1	391.8 ± 0.2	[30]
	279		310.5	396.5	[32]
	282.6 ± 1.0	$308.2 \pm 1.5^{\rm a}$	310.8 ± 1.0	392.0 ± 1.5	This work
$\Delta H/kJ \text{ mol}^{-1}$	1.387 ± 0.012		7.51 ± 0.15	3.97 ± 0.80	[30]
	0.88		6.93	3.83	[32]
	1.26 ± 0.06	7.84 ± 0.55^{a}	6.69 ± 0.35	3.25 ± 0.20	This work
ΔS /J mol ⁻¹ K ⁻¹	4.92 ± 0.04		24.2 ± 0.5	10.1 ± 0.2	[30]
	4.46 ± 0.22	25.43 ± 2.0^{a}	21.54 ± 1.1	8.27 ± 0.51	This work
Δv^{XR} (P 0.1 MPa)/cm ³ mol ⁻¹	1.26 ± 0.10	9.70 ± 0.16	8.56 ± 0.03		This work
(dT/dP)^C/ K MPa ¹	0.281 ± 0.036	0.381 ± 0.040	0.397 ± 0.022		This work
(dT/dP)^{exp}/K MPa ¹	0.251 ± 0.015		0.336 ± 0.006	0.268 ± 0.019	This work
1-Cl-adamantane					
Property	$M^S \to O^m$	$M^S \rightarrow FCC^S$	$0^m \rightarrow FCC^s$	$FCC^S \rightarrow L^S$	Ref.
Т /К		248.6 ± 0.1		439.7 ± 0.1	[31]
		246		442.5	[32]
	269.6 ± 1.5^{a}	249.5 ± 1.0	246.8 ± 1.5^{a}	438.6 ± 1.5	This work
$\Delta H/kJ \text{ mol}^{-1}$		4.30 ± 0.02		5.53 ± 0.01	[31]
		6.01		4.87	[32]
	$0.76 \pm 0.08^{\rm a}$	5.96 ± 0.30	5.44 ± 0.56^{a}	4.22 ± 0.25	This work
ΔS /J mol ¹ K ¹		17.3 ± 0.01		17.3 ± 0.1	[31]
	$2.83 \pm 0.30^{\rm a}$	23.88 ± 1.20	22.06 ± 2.27^{a}	9.61 ± 0.57	This work
Δv^{XR} (P 0.1 MPa)/cm ³ mol ¹	2.12 ± 0.30^{b}	7.95 ± 0.51	$6.09 \pm 0.91^{\rm b}$		This work
(dT/dP)^C/ K MPa ¹	0.71 ± 0.21	0.33 ± 0.04	0.28 ± 0.08		This work
(dT/dP)^{exp}/ K MPa ¹	-	0.270 ± 0.005			This work

^a Extrapolated from the two-component system assessment.

^b From the X-ray diffraction measurements as a function of the composition.

conditions were performed prior to the high pressure differential thermal analyses in order to verify that perfluorinated liquid was chemically inactive when mixed with both compounds.

2.3. X ray powder diffraction

High resolution X ray powder diffraction measurements using the Debye–Scherrer geometry and transmission mode were per formed with a horizontally mounted INEL cylindrical position sensitive detector (CPS 120) made of 4096 channels ($0.029^{\circ} 2\theta$ angular step) [34]. Monochromatic Cu K α 1 (λ 1.54056 Å) radia tion was selected by means of an asymmetrically focusing incident beam curved germanium monochromator. The generator power was set to 40 kV and 25 mA. Measurements as a function of tem perature were performed using a liquid nitrogen 700 series Cryo stream Cooler from Oxford Cryosystems.

External calibration was performed by means of cubic phase $Na_2Ca_3Al_2F_4$. The peak positions were determined by pseudo Voigt fittings. Powder samples were introduced into 0.5 mm diameter Lindemann capillaries which were rotated around their axes during data collection to improve averaging of the crystallites. The acqui sition times were of at least 120 min for the low temperature or dered phases and 60 min for the high temperature OD FCC phases. Stabilization times of at least 10 min at each temperature before the data acquisition were preset.

Indexing of the X ray powder diffraction patterns, structure solutions, and Pawley and Rietveld refinements were performed using Materials Studio Program [35].

3. Results

3.1. Characterization of materials

3.1.1. 1 Br adamantane $(C_{10}H_{15}Br)$

The crystal structure of the low temperature phase determined by means of a single crystal study as monoclinic (M) space group P2₁/ c [26] with Z 4 was checked by X ray powder diffraction. At 282 K it transforms to an orthorhombic (O) phase, the details of this struc ture will be given in a later work. At 309.9 K such phase transforms to the orientationally disordered (OD) face centered cubic (FCC) phase, which remains up to the melting point at ca. 392 K.

X ray powder diffraction experiments as a function of temper ature were carried out from 90 K up to the liquid state. Lattice parameters of the low temperature M and O ordered phases were refined by applying Rietveld profile refinements by means of the Materials Studio Program [35] on the basis of the proposed struc ture for the M structure [26] and by using a rigid molecule approach for the O phase. The experimental and calculated profiles together with the difference between them for both phases are shown in the Supplementary Material in Fig. S1. The M lattice parameters agree quite well with those previously published [26]. At 210.0 K they have been determined to be *a* 10.1125(5) Å, *b* 6.8485(3) Å, *c* 13.2388(6) Å and β 90.246(3)°, rendering V/Z 229.21(2) Å³. As for the O phase the space group was determined as Pmcn and lattice parameters at 290 K were found to be a = 10.119(7) Å, b = 10.119(7)6.8936(5) Å and c 13.6043(8) Å, rendering V/Z 237.25 (2) Å³.

The refined lattice parameters were fitted as a function of the temperature using standard least squares methods for each parameter. The agreement between the calculated and experimental values has been accounted by the reliability factor, defined as $R \sum (y_o y_c)^2/y_c^2$, where y_o and y_c stand for the measured and calculated lattice parameters, respectively. Table 2 gathers the co efficients of the polynomial equations and Fig. 1 depicts both

experimental values and polynomials for the monoclinic phase.

Through HP DTA experiments the M O, O FCC and FCC L two phase equilibria as a function of pressure were determined. The so obtained pressure temperature phase diagram is displayed in Fig. 2(a) (for the numerical values see Table S2 in the Supplemen tary Material). Although the temperature range of the OD phase usually increases with pressure [36–38], the OD phase for 1 BrA has an opposite behavior.

3.1.2. 1 Cl adamantane (C₁₀H₁₅Cl)

The polymorphism of 1 ClA is simpler than that of 1 BrA. It reveals the existence of a monoclinic low temperature phase, with a space group P2₁/c, so isostructural to the low temperature monoclinic phase of 1 BrA as revealed by Foulon et al. [25]. The authors also concluded that the size of the molecule, i.e., of the halogen substituent, controls the lattice dimension and, as a consequence, the lattice parameters. At 249.5 K the monoclinic phase transforms to an OD FCC phase which melts at 438.6 K. The OD FCC phase was also found to be isostructural (Fm $\overline{3}$ m) to the high temperature OD phase of 1 BrA. The result of the Rietveld refinement of the monoclinic phase of 1 ClA is shown in the Sup plementary Material in Fig. S2. Lattice parameters were fitted as a function of the temperature and they are displayed in Fig. 3. Table 2 gathers the coefficients of the polynomial equations for the varia tion of the lattice parameters as a function of temperature.

The pressure temperature phase diagram for the M FCC equi librium [Fig. 2(b)] was determined by means of HP DTA. As for the melting of 1 ClA, the temperature domain was beyond the available temperature range of the experimental device.

3.2. Two component system

3.2.1. Thermal analysis

Solid solid transition and melting temperatures together with the associated enthalpy changes were determined by means of DTA at normal pressure. The resulting temperature composition phase diagram is represented by Fig. 4. The two component system dis plays a metatectoid three phase equilibrium at 274.5 \pm 1.0 K sharing M ($X_{\rm M}$ 0.585), O ($X_{\rm O}$ 0.60) and FCC ($X_{\rm FCC}$ 0.71) phases. It clearly appears that the M and the FCC phases for both components form continuous solid solutions (see crystallographic characterization).

The enthalpy changes involved in the solid solid transitions and the melting process derived from the thermal measurements are depicted in Fig. 5.

3.2.2. Crystallographic characterization

Monoclinic mixed crystals. The monoclinic phases for both 1 BrA and 1 ClA compounds have been found isostructural $(P2_1/c)$ and the continuous formation of mixed crystals, as revealed by the thermal analysis (Figs. 4 and 5), as a function of composition has been verified at 225 K. Fig. 6 shows the continuous variation of the monoclinic lattice parameters as a function of mole fraction.

Orthorhombic mixed crystals. The miscibility for the orthorhombic phase is truncated by the emergence of the [O + FCC] two phase equilibrium (see Fig. 4). Lattice parameters were determined at 290 K (see Fig. 7) for the composition range comprised between X = 0 and X = 0.4.

Face centered cubic mixed crystals. To account for the existence of complete miscibility of the FCC phases, X ray powder diffraction was conducted at 348 K. Lattice parameters for such a domain are depicted in Fig. 6 (top panel). The continuity of the variation of the lattice parameter together with the *T* X loop found through thermal

Table 2

Polynomial equations $p p_0 + p_1T + p_2T^2$ (*T in K and p in Å or in ° for β parameter*) to which the lattice parameters were fitted as a function of temperature. R is the reliability factor.

Phase	Temperature range (K)	Parameter	p_o	$p_1 10^3$	$p_2 10^5$	R 10 ⁵
1-Br-adamantane						
M (P2 ₁ /c)	90-280 K	а	9.991(8)	0.68(9)	-0.05(2)	8.2
		b	6.773(3)	2.01 (4)	0.07(9)	6.3
		С	13.238(3)	-1.79(6)	0.86(2)	4.0
		β	90.27(3)	1.36(3)	-0.71(2)	0.2
O (Pmcn)	285-310 K	а	10.914(18)	-5.97(1)	1.11(2)	0.9
		b	6.676(4)	0.75(1)		0.008
		С	10.314(5)	19.4(4)	-2.79(6)	0.5
FCC	315-370 K	а	9.255(11)	2.54(3)		0.01
1-Cl-adamantane						
$M(P2_1/c)$	90-240 K	а	9.888(9)	0.86(11)	-0.14(3)	0.03
		b	6.754(1)	0.17(2)	0.08(4)	0.001
		С	13.010(17)	-0.28(22)	0.49 (6)	0.02
		$\beta^{(a)}$	89.78(15)	8.18(31)	-6(2)	0.007
FCC	250-440 К	а	9.308(5)	2.52(3)	-0.12(4)	14

^a For the β angle of M phase of 1-ClA the polynomial is third-order, with third-order coefficient 1.4(4) 10⁻⁷.

analysis ensure the isomorphism relationship between the FCC phases of the pure components.

3.2.3. Thermodynamic assessment

The thermodynamic analysis has been based on the crossed isopolymorphism [3,6,7,11,13] and the Equal Gibbs Curve concepts [39]. We briefly describe both concepts for the sake of completeness.

The crossed isopolymorphism is sketched in Fig. 8 for this case. The form M is stable for component A and for component B, while the form O is only stable for component A (O is metastable for B), FCC being stable for both components. The "stable" phase diagram can be looked upon as the stable result of three, each other crossing, two phase loops. The three crossing loops imply a stable three phase equilibrium (M + O + FCC), which, in the case of Fig. 8, is a metatectoid, as for the phase diagram (see Fig. 4) of the present study.

Any phase ϕ we consider in which $\begin{pmatrix} 1 & X \end{pmatrix}$ mole of component A mixes with X mole of component B, is characterized by its own Gibbs function

$$G^{\phi}(T,X) = (1 - X)\mu_{A}^{*,\phi}(T) + X\mu_{B}^{*,\phi}(T) + RT[X\ln(X) + (1 - X)\ln(1 - X)] + G^{E,\phi}(T,X)$$
(1)

where *T* stands for the temperature, *R* the gas constant, $\mu_k^{*,\phi}(T)$, *k* A, B denote the molar Gibbs energies of the components, and $G^{E,\phi}(T,X)$ the excess Gibbs energy which accounts for the deviation of the mixture in the ϕ phase from ideal mixing behavior produced by interactions between molecular species A and B with regard to the interactions between molecules of the same species (A A and B B).

To determine the two phase equilibrium region between two phases (ϕ and γ), i.e., the concentration limits of the loop for the coexisting phases, the well known equilibrium rule minimizing the Gibbs energy of the mixed crystal A_{1-x}B_x at each temperature, which consists on the common tangent to both Gibbs energies characterizing the phases of the corresponding equilibrium, $G^{\phi}(T,X)$ and $G^{\gamma}(T,X)$, must be determined. For this task, the molar Gibbs energies of the pure compounds A and B as well as the excess properties for each phase are required. Because of the lack of data on $\mu_k^{*,\phi}$, k A, B, the simplified treatment of the equal Gibbs curve (EGC) method will be used [39].

To do so, the difference between the Gibbs energies of phases ϕ and γ is written as

Fig. 1. Lattice parameters of 1-BrA for the low-temperature monoclinic and orthorhombic (a and b) and for OD FCC (c) phases as a function of temperature.

Fig. 2. Pressure-temperature phase diagram of 1-BrA (a) and 1-ClA (b) obtained from high-pressure differential thermal analysis.

Fig. 3. Lattice parameters of 1-ClA for the low-temperature monoclinic (a and b) and for OD FCC (c) phases as a function of temperature.

$$\begin{aligned} \Delta^{\gamma}_{\phi} \mathbf{G}(\mathbf{T},\mathbf{X}) & \mathbf{G}^{\gamma}(T,X) & \mathbf{G}^{\phi}(T,X) \\ & (1 \quad X) \Delta^{\gamma}_{\phi} \mu^{*}_{A}(T) + X \Delta^{\gamma}_{\phi} \mu^{*}_{B}(T) + \Delta^{\gamma}_{\phi} \mathbf{G}^{E}(T,X) \end{aligned}$$

$$(2)$$

where $\mathcal{\Delta}_{\phi}^{\gamma}\mu_{k}^{*}(T)$ is $\mu_{k}^{*,\gamma} = \mu_{k}^{*,\phi}(k = A, B)$ and $\mathcal{\Delta}_{\phi}^{\gamma}G^{E}(T,X)$ is the excess

Gibbs energy difference between the considered phases, i.e., $G^{E,\gamma}(T,X) = G^{E,\phi}(T,X)$.

The existence of equilibrium at a given temperature implies necessarily that the Gibbs functions of the ϕ and γ phases intersect, and thus the locus of the points of intersection in the *TX* plane (the EGC) will be the result of equation:

$$\Delta^{\gamma}_{\phi} \mathsf{G}(T_{EGC}, X) = \mathbf{0} \tag{3}$$

 $\Delta \mu_k^*(T)$ can be approximately written as $\Delta_{\phi}^{\gamma} S_k^* (T_k^{\phi \to \gamma} T)$, neglecting the heat capacities differences between both phases, being $T_k^{\phi \to \gamma}$ the temperature of the $\phi \to \gamma$ transition for the component *k*, the EGC temperature can be deduced from eq. (3) as:

$$T_{\text{EGC}} = \frac{(1-X)\Delta_{\phi}^{\gamma}H_{A}^{*} + X\Delta_{\phi}^{\gamma}H_{B}^{*}}{(1-X)\Delta_{\phi}^{\gamma}S_{A}^{*} + X\Delta_{\phi}^{\gamma}S_{B}^{*}} + \frac{\Delta_{\phi}^{\gamma}G_{EGC}^{E}(X)}{(1-X)\Delta_{\phi}^{\gamma}S_{A}^{*} + X\Delta_{\phi}^{\gamma}S_{B}^{*}}$$
(4)

where $\Delta_{\phi}^{\gamma}H_k^*$ and $\Delta_{\phi}^{\gamma}S_k^*$ are the enthalpy and entropy changes of the $\phi \rightarrow \gamma$ transition for the component *k*. The first term of the right side of eq. (4) represents the EGC temperature for the $[\phi+\gamma]$ equi librium when $\Delta_{\phi}^{\gamma}G^E(T,X) = 0$ and is only pure component dependent and thus can be obtained from pure component data. Nevertheless, some of the metastable properties as heats of transition and transition points must be obtained in an indirect manner when a crossed isomorphism is considered.

A first estimation of the EGC curve can be done from the experimental data of the two phase equilibrium. By an iterative procedure performed by means of the LIQFIT program [40] based on Oonk's method enables one to obtain the values of the excess Gibbs energy differences at the EGC temperature by means of eq. (4). More details on the computational procedure can be found in Ref. [39]. Because of the lack of the thermodynamic excess properties of any phase, only excess Gibbs energy differences ($\Delta_{\phi}^{\gamma}G^{E}$) have been determined.

The description of the difference of the excess magnitudes has been done through a two temperature independent parameter Redlich–Kister polynomial function:

$$\Delta_{\phi}^{\gamma} F^{E}(X) \quad X(1 \quad X) \left[\Delta_{\phi}^{\gamma} F_{1} + \Delta_{\phi}^{\gamma} F_{2}(1 \quad 2X) \right]$$
(5)

which in the lack of strong local anomalies is fairly adequate and physically understandable: $\Delta_{\phi}^{\gamma}F_1$ expresses the magnitude of the excess property difference at the equimolar composition and $\Delta_{\phi}^{\gamma}F_2$, gives account for the asymmetry of such a function with respect to

Fig. 4. 1-BrA + 1-ClA phase diagram at normal pressure. Symbols correspond to experimental data. Empty squares (\Box) denote $T^{[M+0]}$. Empty triangles (Δ) denote $T^{[M+CC]}$. Filled squares (\blacksquare) denote T^{M} ($^{M+OC}$). Empty diamonds (\diamond) denote $T^{[0+FCC]}$. Filled diamonds (\diamond) denote T^{0} ($^{O+FCC}$). In panel (a), the metastable temperatures T^{M} (Carge \blacktriangle) for pure 1-BrA and T^{M} (large \blacksquare) and T^{0} (FCC) (large \blacklozenge) for pure 1-ClA are shown. Lines in (a) are fits to the data whereas lines in (b) correspond to the calculated phase diagram by means of the common tangent construction method as described in Sec. 3.2.3.

Fig. 5. Experimental (full symbols) enthalpies of solid-solid transitions and melting of the FCC phase as a function of the mole fraction. Empty symbols at X = 0 and X = 1 correspond to the extrapolated values for transitions involving at least one metastable phase, whereas empty triangles are calculated according to eq. (6) (see text).

X 0.5.

[FCC + L] two phase equilibria. As for the [FCC + L] equilibrium the evidence of the isomorphism relationship between the stable FCC phases of 1 BrA and 1 ClA as demonstrated by the continuity of the (*T*,*X*) loop as well as by the lattice cubic parameter (continuous formation of mixed crystals), thermodynamic assessment can be easily done [Fig. 4(b)] by applying eq. (2) for ϕ FCC and γ L. The experimental temperature and enthalpy and entropy changes of the pure compounds can be found in Table 1.

Crossed isopolymorphism: [M + FCC], [O + FCC] and [M + O] two phase equilibria. The crossed isopolymorphism concept entails for each phase of component A (or B) the existence of an isomorphous (stable or metastable) phase for compound B (or A). Thus, extension of the [M + O] and [O + FCC] loops at X = 1 and the [M + FCC] at X = 0 provide the metastable phase transitions M to O and O to FCC

Fig. 6. Monoclinic (lower panels) and FCC (top panel) lattice parameters at 225 and 348 K, respectively, as a function of mole fraction.

for 1 CIA and, similarly, from M to FCC for 1 BrA. These extrapo lations concerning temperatures are indicated in Fig. 4(a). Fortu nately, the stable two phase equilibria extend over the ca. 50% of the mole composition, so the extrapolation entails reasonable errors.

Assuming that heat capacity values for the different phases are close and owing to the closeness of the transition (stable or metastable) temperatures, the associated enthalpy changes (Fig. 5) can be combined by:

$$\Delta H_{M \to FCC} \quad \Delta H_{M \to O} + \Delta H_{O \to FCC} \tag{6}$$

which enables to expand experimental data and makes possible

Fig. 7. Orthorhombic lattice parameters and volume per molecule at 290 K as a function of mole fraction. The empty symbols correspond to the parameters values of the metastable orthorhombic phase of 1-CIA compound.

Fig. 8. Solid and dashed curves represent stable and metastable behavior, respectively. Filled and empty circles represent the stable and metastable transition points, respectively.

Table 3

 $\Delta_{\phi}^{\gamma}F_1 = F_1^{\gamma} - F_1^{\phi}$ and $\Delta_{\phi}^{\gamma}F_2 = F_2^{\gamma} - F_2^{\phi}$ parameters of the Redlich-Kister polynomial (see eq. (5)) for the excess Gibbs energy ($F \equiv G$) difference and for the excess Enthalpy ($F \equiv H$) difference between the involved phases in the 1-BrA+1-ClA two-component system together with the equimolar Equal-Gibbs temperature [T_{EGC} (X = 0.5)] for each of the assessed equilibria across the $\phi \rightarrow \gamma$ transition.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Equilibrium	φ	γ	$\Delta_{\phi}^{\gamma}G_{1}$ J mol ¹	$\Delta_{\phi}^{\gamma}G_2$ J mol ¹	<i>T</i> _{EGC} (<i>X</i> 0.5) K
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{l} [FCC+L]\\ [O+FCC]\\ [M+FCC]\\ [M+O] \end{array}$	FCC O M M	L FCC FCC O	-203.1 488.6 469.3 -19.3	76.1 -442.0 -442.0 0	411.4 284.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Equilibrium	ϕ		γ	${\Delta_\phi^\gamma} H_1$ J mol 1	$\Delta_{\phi}^{\gamma}H_2$ J mol ⁻¹
	$\begin{array}{l} [FCC + L] \\ [O + FCC] \\ [M + FCC] \end{array}$	FC O M	c	L FCC FCC	-1133.0 -2638.8 -1517.9	442.7 222.3 –1278.3

and physically coherent to extrapolate enthalpy changes for the metastable phase transitions. Table 1 gathers experimental and extrapolated (italic) values for the phase transitions of pure com pounds. Fig. 4 evidences the perfect agreement between experimental and calculated phase diagram (experimental temperature points may deviate from the mean trend to a maximum of about 1.5 K for the melting and [FCC + L] equilibrium while and no more

than about 2 K for the equilibria involving the low temperature phases), which in turns enhances the validity of the extrapolated phase transition properties of pure compounds.

The obtained excess Gibbs energy differences in the form of Redlich Kister polynomial coefficients are compiled in Table 3.

4. Discussion

The thermodynamic assessment enables us the knowledge of the excess (difference) properties of the involved phases. Excess thermodynamic functions for any phase of the mixtures 1 BrA+1 CIA are unknown. Thus, strictly only excess Gibbs energy and enthalpy differences between phases can be obtained.

For the 1 BrA+1 ClA system, whatever the ϕ and γ phases are involved, $\Delta_{\phi}^{\gamma}H_1$ are negative, which means that on going from the high temperature liquid phase to FCC, O and the lowest temperature phase M, the excess enthalpy always increases. This can be considered as the usual behavior, because the energy in teractions produced by substituting a molecule of B into the liquid phase of A would be lower than into the OD FCC phase and much lower than in the orientationally ordered O and M phases [41–43]. As can be seen in Fig. 9(a), the smallest excess enthalpy difference corresponds to the [FCC + L] equilibrium.

The excess energy $H^{E,\phi}$ reflects the energetic interaction be tween the molecules A and B of the two components. It will be zero if this interaction is neutral, i.e., the mean of the interaction be tween A and A and between B and B molecules. Instead, it will be negative if there is a net attraction between A and B molecules, and positive in the case of a net repulsion. If in our case we reasonably assume an ideal liquid mixture, i.e., $H^{E,L}$ 0, then the excess energy of the mixture will be positive for all solid phases, becoming larger as lower temperature phases are reached ($H^{E,M} > H^{E,O} > H^{E,FCC}$). Hence, it would mean that there exists a repulsion between A and B components.

On the other hand, it should be mentioned here that concerning the two factors ruling the miscibility in the solid state, namely, the steric factor and the molecular symmetry factor, only the first one must be considered here owing to the fact of the identical molec ular symmetry of the involved compounds, C_{3v} , as well as the same space group for the monoclinic and OD FCC phases and for the superimposed isostructural orthorhombic phase. Thus, the lattice

Fig. 9. Excess enthalpy differences, $\Delta_{\phi}^{\gamma} H^{E}(X) = H^{E,\gamma} - H^{E,\phi}$ (a) and excess Gibbs differences $\Delta_{\phi}^{\gamma} G^{E}(X) = G^{E,\gamma} - G^{E,\phi}$ (b), for the [M + FCC] (empty squares), [O + FCC] (empty circles) and [FCC + L] (full circles) equilibria at their Equal-Gibbs-Curve temperatures.

parameters for the ordered monoclinic and OD FCC phases as a function of composition slightly deviate from the Vegard's law (see Fig. 6) and consequently mixed crystals are purely governed by steric effects.

The relatively large excess enthalpy difference for the [FCC + L] equilibrium is contrasting with the excess Gibbs energy difference, which is quite small. In fact, as can be seen in the top panel of Fig. 4, the [FCC + L] two phase region bends only slightly downwards. It means that there is a small negative value of $\Delta^L_{FCC}G^E$ and subse quently, as $\Delta^L_{FCC}G^E = \Delta^L_{FCC}H^E = T \cdot \Delta^L_{FCC}S^E$, it follows that, according to the negative excess enthalpy difference $\Delta^L_{FCC}H^E$ depicted in Fig. 9(a), the entropy factor $\Delta^L_{FCC}S^E$ contributing to the excess Gibbs energy difference, is greatly negative. In other words, a kind of order is provided for the OD mixed crystals with respect to the liquid state.

As far as the [M + FCC] and [O + FCC] mixed crystals, the excess enthalpy differences [see Fig. 9(a)] are quite negative, whereas the [M + FCC] and [O + FCC] two phase regions (see Fig. 4) are slightly upward, as the positive excess Gibbs energy differences [Fig. 9(b)] clearly show. Consequently, the entropic term of the excess Gibbs energy difference, $\Delta_{\alpha}^{FCC}G^{E}$ $H^{E,FCC}$ $T \cdot S^{E,\alpha}$ for α M, O, for such equilibria must compensate by means of a large negative value, even larger than for the [FCC + L] equilibrium. This means that $T \cdot S^{E,FCC} < T \cdot S^{E,\alpha}$ for both α M and α O. Such an inequality should be attributed to the easiness of formation of mixed crystals into an orientationally disordered phase, as it was shown previ ously in many other two component systems involving such pha ses [1–7].

As we have demonstrated, despite of the similarity of the 1 BrA and 1 CIA molecules, the polymorphic behavior at normal pressure, i.e., in equilibrium with its vapor, is found to be guite different. In particular, the orthorhombic phase for the 1 ClA does not appear at normal pressure, thus being metastable (monotropic) with respect to both FCC and M phases. The question that emerges is if this orthorhombic phase has an overall monotropic behavior, i.e., if the metastable character remains whatever the pressure or if it be haves enantiotropically at high pressure, at least at pressures higher than those experimentally studied [0-300 MPa, see Fig. 2(b)]. To find out such stability relationships between the solid phases, the topological temperature pressure (PT) phase diagram must be calculated [44–50]. A topological *PT* phase diagram ac counts for the phase relationships between all the polymorphs and the vapor and liquid phases and it is a consequence of the basis of thermodynamics established by Gibbs. For such a task, two phase equilibria in the PT phase diagram can be represented by straight

lines calculated through the Clapeyron equation:

$$\frac{dT}{dP} \quad \frac{\Delta v}{\Delta S} \quad \frac{T\Delta v}{\Delta H} \tag{7}$$

As for the case study here, due to the known stability domains of the monoclinic, at low temperature, and the FCC, at high temperature, phases, there are only two possibilities concerning the slopes of the solid solid equilibria involving the M, O and FCC solid phases:

$$\left(\frac{dT}{dP}\right)^{O \to FCC} < \left(\frac{dT}{dP}\right)^{M \to FCC} < \left(\frac{dT}{dP}\right)^{M \to 0}$$
(8a)

$$\left(\frac{dT}{dP}\right)^{M \to 0} < \left(\frac{dT}{dP}\right)^{M \to FCC} < \left(\frac{dT}{dP}\right)^{0 \to FCC}$$
(8b)

These two possible scenarios are represented in Fig. 10(a) and 10(b), respectively.

To elucidate the complete polymorphic behavior of 1 ClA com pound, we can make use of the thermodynamic properties derived from the two phase equilibria (as transition temperatures and enthalpy changes) as well as by the volumes derived from X ray diffraction by extrapolating as a function of the mole fraction to the pure compounds for which the involved transitions do not exist at normal pressure.

The transition temperatures and enthalpy changes have been derived from the thermodynamic assessment and they are gath ered in Table 1. As for the volume changes, Fig. 7 provides the volume of the metastable orthorhombic phase of 1 ClA from simple extrapolation. Assuming that the thermal expansion of this O phase would be similar to the O stable phase of 1 BrA, as it happens for the monoclinic phases of both compounds (see Fig. 11 where molar volumes are represented as a function of temperature for both compounds), values of the metastable O phase for 1 ClA can be obtained [see Fig. 11(b)]. It should be mentioned here that owing to the narrow temperature range of the O phase, the assumption of virtually the same thermal expansion is irrelevant as far as the obtained volume changes for the O to FCC and M to O metastable transitions for 1 ClA.

According to the obtained molar volume for the O phase of 1 ClA, the volume changes $\Delta v^{M \to O}$ and $\Delta v^{O \to FCC}$ can be determined. They are represented in Fig. 11(b) and gathered in Table 1.

Once the thermodynamic data have been obtained, the subse quent step is tracing the equilibrium lines using the Clapeyron eq. (7). At the intersections of the equilibrium lines, the positions of the triple points can be found, which make up the framework of a

Fig. 10. Possible topological pressure-temperature phase diagrams of 1-CIA concerning the solid phases M, O and FCC for the overall monotropy of the O phase (a) and for the monotropic behavior of O phase at normal pressure and enantiotropic behavior at high pressure (b).

Fig. 11. Molar volume of 1-BrA (a) and 1-ClA (b) as a function of temperature derived from X-ray diffraction experiments for the solid phases. Filled symbols correspond to values previously published for the M [26] and FCC [27] phases of 1-BrA and for the M [25] and FCC [25] phases of 1-ClA. Half filled circles in (b) represent the extrapolated values from X-ray diffraction as a function of the mole fraction for the orthorhombic metastable phase of 1-ClA.

topological PT phase diagram. As can be seen from the obtained calculated values Table for the slopes in 1: FCC [i.e., (0.28 ± 0.08) K <u>dT</u> dP $t^{-1} < (0.71 \pm 0.21) \text{ K MPa}^{-1}$]. The high $< (0.33 \pm 0.04)$ K MPa $M \rightarrow 0$, much beyond the error, makes clear value of the slope $\left(\frac{dT}{dP}\right)$ that the topological phase diagram for 1 ClA corresponds without any doubt to that depicted in Fig. 11(a), which indicates that the O phase of 1 CIA displays overall monotropy, i.e., it is metastable whatever the pressure, in agreement with the experimental phase diagram shown in Fig. 2(b). As a consequence, the triple point [M + O + FCC] between the three involved solid phases appears at negative pressures. That the O phase for 1 CIA appears as meta stable whatever the pressure is, as established by Bridgman, a consequence of the larger volume of the metastable phase with respect to the M phase, in such a way that application of pressure will only increase the relative metastability of the metastable form [51].

5. Conclusions

By combining different experimental techniques as well as basic thermodynamics, we have provided information not only about the stable experimentally available phases as a function of temperature and pressure but also on the non experimentally available properties and transitions of metastable phases. In particular, we have accounted for the polymorphic behavior of 1 Br adamantane and 1 Cl adamantane from the low temperature monoclinic phase through the liquid state and as a function of pressure. Whatever the pressure, the phase sequence on increasing temperature for 1 Br adamantane is found to be monoclinic, orthorhombic, face centered cubic and liquid. As for 1 Cl adamantane, the sequence is similar, with the exception of the orthorhombic phase, which does not appear. The two component system [1 Br ada mantane+1 Cl adamantanel here studied enables us. on the basis of the crossed isopolymorphism concept, a straightforward method to determine the metastable transition points and phase properties at normal pressure for non experimentally available phases. These properties are used to infer the topological pressure temperature phase diagram, which demonstrates that, for 1 Cl adamantane, the orthorhombic phase displays overall monotropy, i.e., it is metastable with respect to the monoclinic and to the face centered cubic phases whatever the pressure.

We have shown that the low temperature monoclinic and the high temperature orientationally disordered face centered cubic phases of these 1 X adamantane derivatives are isomorphous and form continuous series of mixed crystals, being both excess enthalpy differences $\Delta_{FCC}^{L}H^{E}$ and $\Delta_{M}^{FCC}H^{E}$ negative. The formation of orthorhombic mixed crystals for a noticeable domain of composition also indicates a negative excess enthalpy difference $\Delta_{O}^{FCC}H^{E}$. This negative sign for $\Delta_{\phi}^{\phi}H^{E}$ in all cases entails that the excess

enthalpy H^E always increases when going to a lower temperature phase. Assuming an ideal behavior for the liquid phase results in positive excess energy H^E for all kind of mixed crystals, which means that there is a net repulsion between the molecular entities A and B with respect to the ideal mixture.

Acknowledgements

This work was supported by the Spanish Ministry of Economy and Competitivity (MEC) under project FIS2014 54734P and by the Catalan government (AGAUR) by the grant 2014SGR 581.

References

- [1] L.C. Pardo, M. Barrio, J.-Ll. Tamarit, D.O. López, J. Salud, H.A.J. Oonk, Orientationally disordered mixed crystals sharing methylchloromethanes [(CH₃)₄ _nCCl_n, n 0,..., 4], Chem. Mater. 17 (2005) 6146 6153.
- [2] L.C. Pardo, B. Parat, M. Barrio, J.-Ll. Tamarit, D.O. López, J. Salud, Ph. Negrier, D. Mondieig, Non-experimentally available thermodynamic properties: the two-component system (CH₃)CCl₃+CBrCl₃, Chem. Phys. Lett. 402 (2005) 408 413.
- [3] M. Barrio, L.C. Pardo, J.-Ll. Tamarit, Ph. Negrier, D.O. López, J. Salud, D. Mondieig, The two-component system CCl₄+CBrCl₃- inference of the lattice symmetry of phase II of CBrCl₃, J. Phys. Chem. B 108 (2004) 11089 11096.
- [4] L.C. Pardo, M. Barrio, J.-Ll. Tamarit, J. Salud, D.O. López, Ph. Negrier, D. Mondieig, Multiple melting orientationally disordered mixed crystals of the two-component system (CH₃)₂CCl₂-(CH₃)CCl₃, Phys. Chem. Chem. Phys. 6 (2004) 417 423.
- [5] L.C. Pardo, M. Barrio, J.-Ll. Tamarit, D.O. López, J. Salud, Ph. Negrier, D. Mondieig, Stable and metastable mixed crystals in the disordered state of the (CH₃)CCl-(CH₃)₂CCl₂ system, Chem. Phys. Lett. 355 (2002) 339 346.
- [6] L.C. Pardo, M. Barrio, J.-Ll. Tamarit, D.O. López, J. Salud, Ph. Negrier, D. Mondieig, First experimental demonstration of the crossed isodimorphism: (CH3)3CCI+CCl4, Phys. Chem. Chem. Phys. 3 (2001) 2644 2649.
- [7] L.C. Pardo, M. Barrio, J.-Ll. Tamarit, D.O. López, J. Salud, Ph. Negrier, D. Mondieig, Stable and metastable phase diagram of the two-component system (CH₃)₃CCl-(CH₃)CCl₃: an example of crossed isodimorphism, J. Phys. Chem. B 105 (2001) 10326 10334.
- [8] L.C. Pardo, M. Barrio, J.-Ll. Tamarit, D.O. López, J. Salud, Ph. Negrier, D. Mondieig, Miscibility study in stable and metastable orientational disordered phases in a two-component system (CH₃)CCl₃+CCl₄, Chem. Phys. Lett. 308 (1999) 204 210.
- [9] D.O. López, J. Salud, M. Barrio, J.-Ll. Tamarit, H.A.J. Oonk, Uniform thermodynamic description of the orientationally disordered mixed crystals of a group of neopentane derivatives, Chem. Mater. 12 (2000) 1108 1114.
- [10] M. Barrio, L.C. Pardo, J.-Ll. Tamarit, Ph. Negrier, D.O. López, J. Salud, D. Mondieig, Two-component system CCl₄ + (CH₃)₃CBr: extrema in equilibria involving orientationally disordered phases, J. Phys. Chem. B 110 (2006) 12096 12103.
- [11] M. Barrio, Ph. Negrier, L.C. Pardo, J.-Ll. Tamarit, D. Mondieig, Multiple crossed isopolymorphism: two-component systems CCI4+CBr2Cl2 and CBrCI3+CBr2Cl2. Inference of metastable rhombohedral phase of CBr2Cl2, J. Phys. Chem. B 111 (2007) 8899 8909.
- [12] J.-Ll. Tamarit, M. Barrio, L.C. Pardo, Ph. Negrier, D. Mondieig, High-pressure properties inferred from normal-pressure properties, J. Phys. Cond. Matter 20 (2008) 244110.
- [13] R. Levit, M. Barrio, N. Veglio, J.-Ll. Tamarit, Ph. Negrier, L.C. Pardo, J. Sanchez-Marcos, D. Mondieig, From the two-component system CBrCl₃ + CBr₄ to the high-pressure properties of CBr₄, J. Phys. Chem. B 112 (2008) 13916 13922.
- [14] M. Barrio, J.-Ll. Tamarit, R. Céolin, L.C. Pardo, Ph. Negrier, D. Mondieig, Connecting the normal pressure equilibria of the two-component system CCl(CH₃)₃ +CBrCl₃ to the pressure-temperature phase diagrams of pure components, Chem. Phys. 358 (2009) 156–160.
- [15] M. Barrio, Ph. Negrier, J.-Ll. Tamarit, D. Mondieig, From high-temperature orientationally disordered mixed crystals to low-temperature complexes formation in the two-component system (CH₃)₃CBr+ Cl₃CBr, J. Phys. Chem. B 115 (2011) 1679 1688.
- [16] P. Espeau, R. Céolin, Thermodynamic studies of solids with non-negligible vapor pressure: *T-v* and *p-T* diagrams of the dimorphism of adamantane, Thermochim. Acta 376 (2001) 147 154 and references therein.
- [17] M. Romanini, Ph. Negrier, J.-Ll. Tamarit, S. Capaccioli, M. Barrio, L.C. Pardo, D. Mondieig, Emergence of glassy-like dynamics in an orientationally ordered phase, Phys. Rev. B 85 (2012) 134201.
- [18] Ph. Negrier, M. Barrio, M. Romanini, J.-Ll. Tamarit, D. Mondieig, A.I. Krivchikov, L. Kepinski, A. Jezowski, D. Szewczyk, Polymorphism of 2-adamantanone, Cryst. Growth Des. 14 (2014) 2626 2632.
- [19] B. Ben Hassine, Ph. Negrier, M. Barrio, D. Mondieig, S. Massip, J.-Ll. Tamarit, Phase transition in hydrogen-bonded 1-adamantane-methanol, Cryst. Growth Des. 15 (2015) 4149 4155.

- [20] D. Szewczyk, A. Jezowski, G.A. Vdovichenko, A.I. Krivchikov, F.J. Bermejo, J.-Ll. Tamarit, L.C. Pardo, J.W. Taylor, Glassy dynamics versus thermodynamics: the case of 2-adamantanone, J. Phys. Chem. B 119 (2015) 8468 8474.
- [21] A.I. Krivchikov, G.A. Vdovichenko, O.A. Korolyuk, F.J. Bermejo, L.C. Pardo, J.-Ll. Tamarit, A. Jezowski, D. Szewczyk, Effects of site-occupation disorder on the low-temperature thermal conductivity of molecular crystals, J. Non-Cryst. Solids 407 (2015) 141 148.
- [22] B. Ben Hassine, Ph. Negrier, M. Romanini, M. Barrio, R. Macovez, A. Kallel, D. Mondieig, J.-Ll. Tamarit, Structure and reorientational dynamics of 1-Fadamantane, Phys. Chem. Chem. Phys. 18 (2016) 10924 10930.
- [23] M. Romanini, J.-Ll. Tamarit, L.C. Pardo, F.J. Bermejo, R. Fernandez-Perea, F.L. Pratt, Implanted muon spin spectroscopy on 2-O-adamantane: a model system that mimics the liquid → glass like transitions, J. Phys. Cond. Matter 29 (2017) 085405.
- [24] L. Yuan, S. Clevers, A. Burel, Ph. Negrier, M. Barrio, B. Ben Hassine, D. Mondieig, V. Dupray, J.-Ll. Tamarit, G. Coquerel, New intermediate polymorph of 1-fluoro-adamantane and its second-order-like transition toward the low temperature phase, Cryst. Growth Des. 17 (2017) 3395 3401.
- [25] M. Foulon, T. Belgrand, C. Gors, M. More, Structural phase transition in 1chloroadamantane (C₁₀H₁₅Cl), Acta Cryst. B45 (1989) 404 411.
- [26] R. Betz, P. Klüfers, P. Mayer, 1-Bromoadamantane, Acta Cryst. E65 (2009) o101.
- [27] P. Zielinski, M. Foulon, in: J. Lascombe (Ed.), Dynamics of Molecular Crystals, Elsevier Science Publisher, Amsterdam, 1987, pp. 201 202.
- [28] J.P. Amoureux, M. Bée, J.L. Sauvajol, Crystal structure of 1-chloroadamantane, C₁₀H₁₅Cl, in its plastic phase, Molec. Phys. 45 (1982) 709 719.
- [29] Ph. Negrier, M. Barrio, J.-Ll. Tamarit, D. Mondieig, Polymorphism in 2-x-adamantane derivatives (X Cl, Br), J. Phys. Chem. B 118 (2014) 9595 9603.
- [30] A.B. Bazyleva, A.V. Blokhin, G.J. Kabo, A.G. Kabo, Y.U. Paulechka, Thermodynamic properties of 1-bromoadamantane in the condensed state and molecular disorder in its crystals, J. Chem. Thermodyn. 37 (2005) 643 657.
- [31] K. Kobashi, T. Kyomen, M. Oguni, Construction of an adiabatic calorimeter in the temperature range between 13 and 505 K, and thermodynamic study of 1chloroadamantane, Phys. Chem. Solids 59 (1998) 667 677.
- [32] T. Clark, T.McO. Knox, H. Mackle, M.A. McKervey, Order-disorder transitions in substituted adamantanes, J. Chem. Soc. Faraday Trans. 1 (73) (1977) 1224 1231.
- [33] A. Würflinger, Differential thermal-analysis under high-pressure IV. Lowtemperature DTA of solid-solid and solid-liquid transitions of several hydrocarbons up to 3 kbar, Ber. Bunsen-Ges Phys. Chem. 79 (1975) 1195 1201.
- [34] J. Ballon, V. Comparat, J. Pouxe, The blade chamber: a solution for curved gaseous detectors, Nucl. Instrum. Methods 217 (1983) 213 216.
- [35] M.S. Modeling, Materials Studio, version 5.5, http://www.accelrys.com.
- [36] J.-Ll. Tamarit, I.B. Rietveld, M. Barrio, R. Céolin, The relationship between orientational disorder and pressure: the case study of succinonitrile, J. Mol. Struct. 1078 (2014) 3 9.
- [37] J. Reuter, D. Büsing, J.-Ll. Tamarit, A. Würflinger, High-pressure differential thermal analysis study of the phase behaviour in sometert-butyl compounds: pivalic acid, 2-methylpropane-2-thiol and tert-butylamine, J. Mater. Chem. 7 (1997) 41 46.
- [38] A. Aznar, P. Lloveras, M. Barrio, J.-Ll. Tamarit, Melting of orientational degrees of freedom, Eur. Phys. J. Spec. Top. 226 (2017) 1017 1029.
- [39] H.A.J. Oonk, J.-Ll. Tamarit, Measurement of thermodynamic properties of multiple phases, Ch.9, in: R.D. Weir, T.W. de Loos (Eds.), Experimental Thermodynamics Vol. II, (IUPAC) Elsevier, Amsterdam, 2005.
- [40] M.H.G. Jacobs, H.A.J. Oonk, LIQFIT. A Computer Program for the Thermodynamic Assessment of T-X Liquidus or Solidus Data, Utrecht University, 1990.
- [41] M. Barrio, D.O. López, J.-Ll. Tamarit, Ph. Negrier, Y. Haget, Molecular interactions and packing in molecular alloys between nonisomorphous plastic phases, J. Solid State Chem. 124 (1996) 29 38.
- [42] J. Salud, D.O. López, M. Barrio, J.-Ll. Tamarit, Two-component systems of isomorphous orientationally disordered crystals. Part 1 Packing of the mixed crystals, J. Mater. Chem. 9 (1999) 909 916.
- [43] J. Salud, D.O. López, M. Barrio, J.-Ll. Tamarit, H.A.J. Oonk, Two-component systems of isomorphous orientationally disordered crystals. Part 2 Thermodynamic analysis, J. Mater. Chem. 9 (1999) 917 922.
- [44] M. Barrio, P. Espeau, J.-Ll. Tamarit, N. Veglio, R. Céolin, Polymorphism of progesterone: relative stabilities of the orthorhombic phases I and II inferred from topological and experimental pressure-temperature phase diagrams, J. Pharm. Sci. 98 (2009) 1657–1670.
- [45] M. Barrio, P. de Oliveira, R. Céolin, D.O. López, J.-Ll. Tamarit, Polymorphism of 2-Methyl-2-chloropropane and 2,2-Dimethylpropane (Neopentane): thermodynamic evidence for a high-pressure orientationally disordered rhombohedral phase through topological *p-T* diagrams, Chem. Mater. 14 (2002) 851 857.
- [46] P.H. Espeau, R. Céolin, J.-Ll. Tamarit, M.A. Perrin, J.-P. Gauchi, F. Leveiller, Polymorphism of paracetamol: relative stabilities of the monoclinic and orthorhombic phases inferred from topological pressure-temperature and temperature volume diagrams, J. Pharm. Sci. 94 (2005) 524 539.
- [47] R. Céolin, J.-Ll. Tamarit, M. Barrio, D.O. López, B. Nicolaï, N. Veglio, M.-A. Perrin, Overall monotropic behavior of a metastable phase of Biclotymol, 2,2'-Methylenebis(4-Chloro-3-Methyl-Isopropylphenol), inferred from experimental and topological construction of the related *p*-*T* state diagram, J. Pharm. Sci. 97 (2008) 3927 3941.

- [48] I.B. Rietveld, M. Barrio, P.H. Espeau, J.-Ll. Tamarit, R. Céolin, Topological and experimental approach to the pressure-temperature-composition phase dia-gram of the binary enantiomer system *d*- and *l*-Camphor, J. Phys. Chem. B 115 (2011) 1672 1678.
- [49] I. Gana, M. Barrio, B. Do, J.-Ll. Tamarit, R. Céolin, I.B. Rietveld, Benzocaine polumorphism: pressure-temperature phase diagram involving forms II and

- III, Int. J. Pharm. 456 (2013) 480 488.
 [50] M.-A. Perrin, M. Bauer, M. Barrio, J.-Ll. Tamarit, R. Céolin, I.B. Rietveld, Rimonabant dimorphism and its pressure-temperature phase diagram: a delicate case of overall monotropic behavior, J. Pharm. Sci. 102 (2013) 2311 2321.
 [51] P.W. Bridgman, The Physics of High Pressure, Dover, New York, 1970.