
HAL Id: hal-01686334
https://hal.science/hal-01686334v1

Submitted on 17 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bifurcations in families of polynomial skew products
Matthieu Astorg, Fabrizio Bianchi

To cite this version:
Matthieu Astorg, Fabrizio Bianchi. Bifurcations in families of polynomial skew products. American
Journal of Mathematics, In press. �hal-01686334�

https://hal.science/hal-01686334v1
https://hal.archives-ouvertes.fr


BIFURCATIONS IN FAMILIES OF POLYNOMIAL SKEW
PRODUCTS

MATTHIEU ASTORG AND FABRIZIO BIANCHI

We initiate a parametric study of families of polynomial skew products, i.e., polynomial
endomorphisms of C2 of the form F (z, w) = (p(z), q(z, w)) that extend to endomorphisms of
P2(C). Our aim is to study and give a precise characterization of the bifurcation current and
the bifurcation locus of such a family. As an application, we precisely describe the geometry
of the bifurcation current near infinity, and give a classification of the hyperbolic components.
This is the first study of a bifurcation locus and current for an explicit and somehow general
family in dimension larger than 1.
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1. Introduction

A polynomial skew product in two complex variables is a polynomial endomorphism of
C2 of the form F (z, w) = (p(z), q(z, w)) that extends to an endomorphism of P2 = P2(C).
The dynamics of these maps was studied in detail in [Jon99]. Despite (and actually
because of) their specific form, they have already provided examples of dynamical
phenomena not displayed by one-dimensional polynomials, such as wandering domains
[ABD+16], or Siegel disks in the Julia set [Bia16b]. They have also been used to
construct examples of non dynamical Green currents [Duj16b] or stable manifolds dense
in P2 [Taf17]. In this paper we address the question of understanding the dynamical
stability of such maps. In order to do this, let us first introduce the framework for our
work and previous known results.

A holomorphic family of endomorphisms of Pk is a holomorphic map f : M × Pk →
M × Pk of the form f(λ, z) = (λ, fλ(z)). The complex manifold M is the parameter
space and we require that all fλ have the same degree. In dimension k = 1, the study
of stability and bifurcation within such families was initiated by Mané-Sad-Sullivan
[MSS83] and Lyubich [Lyu83] in the 80s. They proved that many possible definitions of
stability are actually equivalent, allowing one to decompose the parameter space of any
family of rational maps into a stability locus and a bifurcation locus. In 2000, by means
of the Lyapunov function, DeMarco [DeM01, DeM03] constructed a natural bifurcation
current precisely supported on the bifurcation locus. This allowed for the start of a
pluripotential study of the bifurcations of rational maps.

The simplest and most fundamental example we can consider is the quadratic family.
We have a parameter space M = C and, for every λ ∈ M , we consider the quadratic
polynomial fλ(z) = z2 +λ. In this case, it is possible to prove that the bifurcation locus
is precisely the boundary of the Mandelbrot set (notice that, in this context, the equality
between the bifurcation measure and the harmonic measure for the Mandelbrot set is
due to N. Sibony, see [Sib81]). The study of this particular family is of fundamental
importance for all the theory, since, by a result of McMullen [McM00] (see also [Lei90]),
copies of the Mandelbrot set are dense in the bifurcation locus of any family of rational
maps. Understanding the geometry of the Mandelbrot set is still today a major research
area.

The theory by Mané-Sad-Sullivan, Lyubich and De Marco was recently extended
to any dimension by Berteloot, Dupont, and the second author [BBD15, Bia16a], see
Theorems 2.6 and 2.8 below (the second, for an adapted version of the main result in our
context). Despite the quite precise understanding of the relation between the various
phenomena related to stability and bifurcation (motion of the repelling cycles, Lyapunov
function, Misiurewicz parameters), apart from specific examples ([BT17]) or near special
parameters ([BB16, Duj16a, Taf17]), we still miss a concrete and somehow general
family whose bifurcations can be explicitly exhibited and studied. This paper aims at
providing a starting point for this study for any family of polynomial skew products.
More precisely, we will establish equidistribution properties towards the bifurcation
current (Section 3), study the possible hyperbolic components (Sections 7 and 8) and
give a precise description of the accumulation of the bifurcation locus at infinity (Section
6). This will be achieved by means of precise formulas for the Lyapunov exponents,
which will in turn allow for a precise decomposition of the bifurcation locus (Section 4).
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Les us now be more specific, and enter more into the details of our results and
techniques. While many of the results apply to more general families, we will mainly
focus on the family of quadratic skew products. It is not difficult to see (Lemma 5.1)
that the dynamical study of this family can be reduced to that of the family

(z, w) 7→ (z2 + d,w2 + az2 + bz + c).

It is also quite clear (see also Section 4) that the bifurcation of this family consists of
two parts: the bifurcation locus associated to the polynomial family z2 + d, and a part
corresponding to “vertical” bifurcation in the fibres. We thus fix the base polynomial
p(z) = z2 + d and consider the bifurcations associated with the other three parameters.
Our first result is the following basic decomposition of both the bifurcation locus
and current. This is essentially based on formulas for the Lyapunov exponents of a
polynomial skew product due to Jonsson [Jon99] (see Theorem 2.2). Our result is
actually more general than the situation described above, and holds in any family of
polynomial skew products, see Section 4.

Theorem A. Let Fλ(z, w) = (p(z), qλ(z, w)) be a family of polynomial skew products
of degree d. Then

(1) Tbif =

ˆ
z∈Jp

Tbif,zµp = lim
N→∞

1

dN

∑
z∈PerN (p)

Tbif(Q
N
z )

and

(2) Bif(F ) =
⋃
z∈Jp

Bifz =
⋃
N

⋃
z∈PerN (p)

Bif QNz .

Here, we denote by Bifz (respectively Tbif,z) the bifurcation locus (respectively current)
associated to the non autonomous iteration of the polynomials Qnλ,z := qλ,pn(z) ◦ · · · ◦
qλ,p(z) ◦ qλ,z. These are defined respectively as the non-normality locus for the iteration
of some critical point in the fibre at z, and the Laplacian of the corresponding sum of the
Green function evaluated at the critical points (see Section 4.1). In the case of a periodic
point z, we are actually considering iterations of the return maps to the fibre. The
result follows combining the above mentioned result by Jonsson, the equidistribution of
the periodic points with respect to the equilibrium measure, and the characterization
of the bifurcation locus as the closure of the Misiurewicz parameters ([BBD15], and
Theorem 2.8 below).

Another classical way to approximate the bifurcation current is by seeing this as
a limit of currents detecting dynamically interesting parameters. A first example of
this is a theorem by Levin [Lev82] (see also [Lev90]) stating that the centres of the
hyperbolic components of the Mandelbrot set equidistribute the bifurcation current,
which is supported on its boundary. This means that the bifurcation current detects
the asymptotic distribution in the parameter space of the parameters possessing a
periodic critical point of period n. This result was later generalized in order to cover
any family of polynomials [BB11, Oku14], the distribution of parameters with a cycle
of any given multiplier [BB11, BG15b, Gau16] and also the distribution of preperiodic
critical point [DF08, FG15]. See also [GOV17] for the most recent account and results
in this direction for families of rational maps.
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In our situation, we can prove the following equidistribution result, giving the
convergence for the parameters admitting a periodic point with vertical multiplier η
(the study of “horizontal” multipliers naturally gives the bifurcation current for the base
p). We also have a more general statement (see Theorem 3.4 and Corollary 3.5) valid for
any family of endomorphism of Pk. This gives also a first parametric equidistribution
result for holomorphic dynamical systems in several complex variables.

Theorem B. Let F be a holomorphic family of polynomial skew-products of degree
d ≥ 2 over a fixed base p, and parametrized by λ ∈M . For all η ∈ C outside of a polar
subset, we have

1

d2n
[Pervn(η)]→ Tbif ,

where

Pervn(η) := {λ ∈M : ∃(z, w) such that Fnλ (z, w) = (z, w) and
∂Fnλ
∂w

(z, w) = η}.

The equidistribution result stated above plays a crucial role in the next step of our
investigation: the description of the accumulation of the bifurcation locus at infinity.
Notice that the study of degenerating dynamical systems, and in particular of their
Lyapunov exponents, is an active current area of research, see for instance [Fav16].
In the following result not only we describe this accumulation locus, but we quantify
this accumulation by means of the equilibrium measure of the base polynomials. An
analogous result for quadratic rational map is proved in [BG15a].

Theorem C. Let Fabc(z, w) = (p(z), w2 + az2 + bz + c). Then the bifurcation current
extends to a current T̂bif on P3 and

T̂bif ∧ [P2
∞] =

ˆ
z∈Jp

[Ez]µp = π∗

(
1

2

ˆ
z

(
[{z} × P1] + [P1 × {z}]

)
µp(z)

)
where Ez := { [a, b, c] ∈ P2

∞ : az2 + bz + c = 0 } and π : P1 × P1 → P2
∞ is the map that

associates to (x, y) the point [a, b, c] such that x, y are the roots of aX2 + bX + c.

A similar result also applies for subfamilies of Fabc. In particular, for the subfamily
given by a = 0, we have the following description. Notice that this is not only a
by-product of the previous theorem, but actually a main step in the proof. Indeed, the
current in Theorem C will be constructed by slicing it with respect to lines corresponding
to special subfamilies. Tools from the theory of horizontal currents as developed by
Dinh and Sibony also play a crucial role in our proof.

Theorem C’. Let Fbc(z, w) = (p(z), w2 + bz+ c). Then the bifurcation current extends
to a current T̂bif on P2 and

T̂bif ∧ [P1
∞] = (π0)∗ µp

where π0 : C→ P1
∞ is given by π0(z) = [−1, z].

All the results presented until now are related to the description of the bifurcation locus.
Our last result concerns stable components, and in particular unbounded hyperbolic
components. It follows from the results above that the stability of a polynomial skew
product is determined by the behaviour of the critical points of the form (z, 0), with
z ∈ J(p). We prove that there exists a natural decomposition of the parameter space:
a (compact) region C, where all these critical points have bounded orbit, a region D
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where all the critical points (z, 0) escape under iteration, and a regionM where maps
admit critical points with either behaviour.

In particular, components in D can be thought of as the analogous in this situation
of the complement of the Mandelbrot set. By the description above, the accumulation
of the bifurcation locus at infinity is given by the image under π of the points in P1×P1

with at least one component in the Julia set of p. Thus, D in particular consists of
components accumulating on the image of F(p)× F(p) by the map π of Theorem C
(here F(p) denotes the Fatou set of p). Let D′ be the set of these components. Our
last result gives a complete classification of these components, essentially stating that
distinct couples of Fatou components are associated to distinct hyperbolic components.

Theorem D. Let Fabc(z, w) = (p(z), w2 + az2 + bz + c) such that the Julia set of p is
locally connected. Let D be the set of parameters (a, b, c) such that all critical points
(z, 0) escape to infinity, and D′ the set of the components in D accumulating on some
point of π(F(p)×F(p)). There is a natural bijection between D′ and the (non ordered)
pairs of connected components of the Fatou set F(p) of p.

As above, we state also the analogous result for the simpler case of the family a = 0.

Theorem D’. Let Fbc(z, w) = (p(z), w2 + bz + c) such that the Julia set of p is locally
connected. Let D be the set of parameters (b, c) such that all critical points (z, 0) escape
to infinity, and D′ the set of the components in D accumulating on some point of
π(F(p)). There is a natural bijection between D′ and the connected components of the
Fatou set F(p) of p.

Theorem D is proved by exhibiting distinct topologies for the Julia sets of maps in
components associated to distinct Fatou components (see Theorem 7.13). In Section 8
we also study the problem of the existence of unbounded hyperbolic components inM.
By adapting an example by Jonsson, we can prove that such a component can actually
exist (see Propositions 8.5 and 8.8).

The paper is organized as follows. After the presentation of the necessary preliminaries
on polynomial skew products and bifurcations in several variables, the exposition is
divided in two parts. In the first we prove Theorems A and B, giving the approximations
for the bifurcation current that we need in the sequel. In this part, we do not need to
restrict to quadratic skew products, and actually, as mentioned above, we can prove an
equidistribution formula for any family of endomorphisms of Pk. Then, in the second
part, we focus on quadratic skew products, and in particular on the study of their
parameter space near infinity (proving Theorems C and D).

2. Preliminaries: polynomial skew products and bifurcations

2.1. Polynomial skew products. In this section we collect notations, definitions, and
results concerning the dynamics of polynomial skew products that we will need through
all the paper. Unless otherwise stated, all the results are due to Jonsson [Jon99].

Definitions and notations. We consider here a polynomial skew product of the form

F (z, w) = (p(z), q(z, w))

of algebraic degree d ≥ 2. Recall that we require F to be extendible to P2. This means
that p has degree d, and that the coefficient of wd in the second coordinate is non zero.
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We will assume that this is 1. The second coordinate will be also written as qz(w), to
emphasize the variable w and see the map q as a family of polynomials depending on z.
We shall denote by z1, . . . , zn, . . . the orbit of a point z ∈ C under the base polynomial
p. In this way, we can write

Fn(z, w) = (zn, qzn−1 . . . qz1 ◦ qz(w)).

We shall denote by Qnz (w) the second coordinate of Fn.
We will be mainly interested in the recurrent part of the dynamics. In particular, we

restrict in the following to the points of the form (z, w), with z ∈ Kp (we denote by Jp
and Kp the Julia set and the filled Julia set of p, respectively). The family {Qnz }n gives
rise to a (non autonomous) iteration on the fibre {z} × C. Since z ∈ Kp, the orbit of
(z, w) is bounded if and only if the orbit of w under the non autonomous iteration of
Qnz is bounded. We then define Kz as the points in C (to be thought of as the fibre over
z) with bounded orbit under this iteration. The set Jz is the boundary of Kz. Notice
that Jz and Kz can be defined for any point z ∈ C, but only detect the boundedness of
the second coordinate of the orbit.

Green functions and Julia set. A standard way to detect the boundedness of an orbit
(or its escape rate) is by means of a dynamical Green function. In our setting, given
(z, w) ∈ C2, we can consider three possible Green functions:

(1) the Green function of (z, w), defined as G(z, w) := limn→∞ d
−n log+ |Fn(z, w)|;

(2) the horizontal Green function Gp(z, w) = Gp(z), where Gp(z) = limn→∞ |pn(z)|
is the Green function of the base polynomial p, and

(3) for z ∈ C, the vertical Green function Gz(w) := G(z, w)−Gp(z, w).
The last function detects the escape rate of the sequence Qnz (w). The set Kz is then the
zero level of the function Gz. In the case of points z ∈ Kp, the Green function reduces to
the vertical Green function. By means of the Green functions, it is immediate to deduce
that the maps z 7→ Kz and z 7→ Jz are respectively upper and lower semicontinuous
with respect to the Hausdorff topology.

Another useful feature of the Green function is that it allows to construct the
equilibrium measure for the map F . The construction is now classical and proceeds
as follows (see for instance [FS95, DS10]). First of all, we consider the Green current
T := ddcG (on P2). This is positive, closed (1,1)-current. Its support is precisely
the non normality locus of the sequence of iterates of F . Since the potential of T is
continuous (actually Holder continuous) it is possible to consider the wedge product
µ := T ∧ T . This is a positive measure, which turns out to be invariant, of constant
Jacobian, ergodic, mixing. It detects the distribution of periodic points and preimages
of generic points. Its support is the Julia set J of the map F . In the case of polynomial
skew products, we have the following structure result for J .

Theorem 2.1. Let F be a polynomial skew product. Then

J(F ) =
⋃
z∈Jp

{z} × Jz.

Moreover, J(F ) coincides with the closure of the repelling points.

Notice that the last assertion in this result is known not to hold for general endomor-
phisms of P2 ([HP94, FS01]).
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Lyapunov exponents. Since the equilibrium µ is ergodic, by Oseledec Theorem we can
associate two Lyapunov exponents to it. The idea, again now classical, is the following.
There exists an invariant splitting E1 ⊕E2 of the tangent space at (µ-almost all) points
x ∈ J , depending measurably on x. The differential of F acts on these sub bundles
Ei, and there exists constants λ1, λ2 such that ‖DFn‖Ei ∼ enλi . More precisely, for
µ-almost every x and every v ∈ Ei(x) we have

lim
n→∞

1

n
log ‖DFnx (v)‖ = λi.

The constants λi are called the Lyapunov exponents of the ergodic system (J, F, µ). In
the case of polynomial skew products, we have the following explicit formulas for the
Lyapunov exponents (for more general formulas, valid for any regular polynomial, see
[BJ00]).

Theorem 2.2. Let F be a polynomial skew product. Then the equilibrium measure of
F admits the two Lyapunov exponents

Lp = log d+
∑
z∈Cp

Gp(z) and Lv = log d+

ˆ (∑
w∈Cz

G(z, w)

)
µp,

where Cp and µp are the critical set and the equilibrium measure of p and Cz is the
critical set of qz.

Notice, in particular, that the Lyapunov exponent Lp coincides with the Lyapunov
exponent of the system (Jp, p, µp). We use the notation Lp and Lv (vertical) because
we will not assume any ordering between these two quantities.

Hyperbolicity and vertical expansion. We conclude this section by introducing an adapted
notion of hyperbolicity, particularly useful in the study of polynomial skew products.
Recall that an endomorphism F of Pk is hyperbolic or uniformly expanding on the Julia
set if there exist constants c > 0,K > 0 such that, for every x ∈ J and v ∈ TxPk,
we have ‖DFnx (v)‖Pk ≥ cKn (with respect for instance to the standard norm on Pk).
In the case of polynomial skew products, this condition in particular forces the base
polynomial p to be hyperbolic. Since we will be mainly concerned with the vertical
dynamics over the Julia set of p, the following definition gives an analogous notion of
hyperbolicity, more suitable to our purposes.

Given an invariant set Z for p (we shall primarily use Z = Jp) we set
• CZ := ∪z∈Z{z} × Cz for the critical set over Z,
• DZ := ∪≥1fnCZ =: ∪z∈Z{z} ×DZ,z for the postcritical set over Z, and
• JZ := ∪z∈Z{z} × Jz =: ∪z∈Z{z} × J∗z for the Julia set over Z.

When dropping the index Z, we mean that we are considering Z = Jp. We then have
the following definition.

Definition 2.3. Let F (z, w) = (p(z), q(z, w)) be a polynomial skew product and Z ⊂ C
such that p(Z) ⊂ Z. We say that F is vertically expanding over Z if there exist constants
c > 0 and K > 1 such that (Qnz )′ (w) ≥ cKn for every z ∈ Z, w ∈ Jz and n ≥ 1.

For polynomials on C, hyperbolicity is equivalent to the fact that the closure of the
postcritical set is disjoint from the Julia set. In our situation, we have the following
analogous characterization.
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Theorem 2.4. Let F (z, w) = (p(z), q(z, w)) be a polynomial skew product. Then the
following are equivalent:

(1) F is vertically expanding on Z;
(2) DZ ∩ JZ = ∅.

The previous results allows one to give a similar characterization of hyperbolicity
for polynomial skew products. Notice that the same result is not known for general
endomorphisms of Pk.

Theorem 2.5. Let F (z, w) = (p(z), q(z, w)) be a polynomial skew product. Then the
following are equivalent:

(1) F is hyperbolic;
(2) D ∩ J = ∅;
(3) p is hyperbolic, and F is vertically expanding over Jp.

2.2. Stability, bifurcations, and hyperbolicity. In this paper we will be concerned
with stability and bifurcation of polynomial skew product of C2 (extendible to P2). The
definition and study of these for endomorphisms of projective spaces of any dimension
is given in [BBD15, Bia16a]. For a general presentation of this and related results, see
also [BB17].

Theorem 2.6 ([BBD15, Bia16a]). Let F be a holomorphic family of endomorphisms
of Pk of degree d ≥ 2. Then the following are equivalent:

(1) asymptotically, the repelling cycles move holomorphically;
(2) there exists an equilibrium lamination for the Julia sets;
(3) ddcL = 0;
(4) there are no Misiurewicz parameters.

The holomorphic motion of the repelling cycles is defined as in dimension 1 (see
e.g. [Ber13, Duj11], or [BBD15, Definition 1.2] in this context). The asymptotically
essentially means that we can follow dkn − o(dkn) out of the ∼ dkn repelling points,
see [Bia16a, Definition 1.3]. This condition can be improved to the motion of all
repelling cycles contained in the Julia set if k = 2, or if the family is an open set
in the family of all endomorphisms of a given degree. See also [Ber17] for another
description of the asymptotic bifurcations of the repelling cycles. L denotes the sum of
the Lyapunov exponents, which is a psh function on the parameter space. Thus, ddcL
is a positive closed (1,1) current on the parameter space. Finally, we just mention that
the equilibrium lamination is a weaker notion of holomorphic motion, that provides an
actual holomorphic motion for a full measure (for the equilibrium measure) subset of
the Julia set (see [BBD15, Definition 1.4]). Since it will be used in the sequel, we give
the precise definition of the last concept in the theorem above. This is a generalization
to any dimension of the notion of non-persistently preperiodic (to a repelling cycle)
critical point.

Definition 2.7. Let f be a holomorphic family of endomorphisms of Pk and let Cf be
the critical set of the map f(λ, z) = (λ, fλ(z)). A point λ0 of the parameter space M
is called a Misiurewicz parameter if there exist a neighbourhood Nλ0 ⊂M of λ0 and a
holomorphic map σ : Nλ0 → Ck such that:

(1) for every λ ∈ Nλ0, σ(λ) is a repelling periodic point;
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(2) σ(λ0) is in the Julia set Jλ0 of fλ0;
(3) there exists an n0 such that (λ0, σ(λ0)) belongs to some component of fn0(Cf );
(4) σ(Nλ0) is not contained in a component of fn0(Cf ) satisfying 3.

In view of Theorem 2.6, it makes sense to define the bifurcation locus as the support of
the bifurcation current Tbif := ddcL. If any (and thus all of the) conditions in Theorem
2.6 hold, we say that the family is stable.

Since we will be mainly concerned with families of polynomial skew products in
dimension 2, we cite an adapted version of the result above in our setting.

Theorem 2.8 ([BBD15]). Let F be a holomorphic family of polynomial skew products
of degree d ≥ 2. Then the following are equivalent:

(1) the repelling cycles move holomorphically;
(2) there exists an equilibrium lamination for the Julia sets:
(3) ddcL = ddc(Lp + Lv) = 0;
(4) there are no Misiurewicz parameters.

As mentioned above, since the dimension is k = 2, we can promote the first condition
in Theorem 2.6 to the motion of all the repelling cycles contained in the Julia set. By
the result of Jonsson (Theorem 2.1), we then know that polynomial skew products
cannot have repelling points outside the Julia set.

Let us now consider a hyperbolic parameter for a family of endomorphisms of P2. A
natural question is to ask whether all the corresponding stability component consists of
hyperbolic parameters. While this is not known in general, by Theorem 2.5 it follows
that this is true for polynomial skew products.

Lemma 2.9. Let F be a stable family of polynomial skew products. If there exists λ0

such that Fλ0 is hyperbolic, then Fλ is hyperbolic for every λ in the parameter space.

Proof. Let M 3 λ1 6= λ0 be any parameter. Assume that λ1 is not hyperbolic. By Theo-
rem 2.5, this implies that the postcritical hypersurfaces fn(Cfλ1

) have an accumulation
point z1 on the Julia set of fλ1 .

Since the family is stable, by Theorem 2.8 the repelling points move holomorphically.
Denote by R the collection of the holomorphic graphs in the product space M × Pk.
Since repelling points are dense in the Julia set, there exists a sequence of points rn
with rn ∈ R converging to z1. By compactness, there exist a graph γ over M which
is an accumulation point for the sequence of the holomorphic motions of the repelling
points rn. Since the family is stable there are no Misiurewicz parameters. Thus, all
these motions do not create transverse intersections with the postcritical set. This, by
Hurwitz theorem, implies that the graph γ is contained in the closure of the postcritical
set. This gives the desired contradiction, since this cannot be true at the hyperbolic
parameter in λ0. �

Remark 2.10. By the same argument (and using Theorem 2.4) we can prove that if
a parameter in a stable component is vertically expanding, the same is true for all the
parameter is the component. An improvement of this fact will be given in Lemma 7.3

For families of polynomial skew products, it thus makes sense to talk about hyperbolic
components (respectively vertically expanding components), i.e., stable components whose
elements are (all) hyperbolic (respectively, vertically expanding). We will characterize
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and study some components of this kind in Sections 7 and 8. We conclude this
section with a result relating the existence of non hyperbolic component for families
of polynomial skew products to the same question for the (possibly non autonomous)
iteration of polynomial maps in dimension 1.

Proposition 2.11. If a polynomial family of skew products has a non hyperbolic stable
component, then some one-dimensional (possibly non autonomous) polynomial family
has a non hyperbolic stable component.

The proof of this proposition exploits the characterization of the stability of a skew
product family with respect to the stability of the dynamics on the periodic fibres, and
will be given in Section 4.3.

Part 1. Approximations for the bifurcation current

3. Equidistribution results in the parameter space (Theorem B)

Our aim in this section is to prove Theorem 3.12. We will actually prove a more
general result (see Theorem 3.4 and Corollary 3.5), valid for any family of endomorphisms
of P2. We shall later specialise to our setting of polynomial skew products (see Section
3.2).

3.1. A general equidistribution result for endomorphisms of Pk. Let us begin
with a rather general equidistribution result that holds for families of endomorphisms
of Pk, k ≥ 1. Let M be a complex manifold, and let

M × Pk → Pk

(λ, z) 7→ fλ(z)

be a holomorphic map, defining a holomorphic family of endomorphisms of Pk. Assume
that for all n ∈ N∗ there exists at least one parameter λ ∈M such that for all periodic
points of exact period n for fλ,

det(Dfnλ (z)− Id) 6= 0.

Let

P̃erJn = {(λ, η) ∈M × C : ∃z ∈ Pk of exact period n for fλ, and Jacfnλ (z) = η}

where we denote by Jac the determinant of the Jacobian matrix, and let PerJn be the

closure of P̃erJn in M × C. As we will see below, PerJn is an analytic hypersurface in
M × C.

Proposition 3.1. There exists a sequence of holomorphic maps Pn : M × C→ C such
that:

(1) For all λ ∈M , Pn(λ, ·) is a monic polynomial of degree δn ∼ dnk

n

(2) Pn(λ, η) = 0 if and only (λ, η) ∈ PerJn.

Moreover, if (λ, η) ∈ PerJn\P̃erJn, there exists z ∈ Pk and m < n dividing n such that
fmλ (z) = z, Jac(fnλ )(z) = η, and 1 is an eigenvalue of Dfnλ (z).
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Proof. Set
Pn := {(λ, z) ∈M × Pk, fnλ (z) = z}.

It is an analytic hypersurface of M × Pk. Let ϕn : Pn → C be defined by

ϕn(λ, z) = det(Dfnλ (z)− Id).

It is a holomorphic map on the regular set of Pn. Now let Zn be the projection of
ϕ−1
n (0) on M . By Remmert’s mapping theorem, Zn is an analytic subset of M .
Since we assumed that M does not have persistent parabolic cycles, Zn cannot be all

of M , so it is a proper analytic subset of M . Now define

Ωn := M \
⋃
k≤n

Zk

and

pn : Ωn × C→ C

(λ, η) 7→
∏

z∈Pn(λ)

(w − Jac fnλ (z))

where Pn(λ) denotes the set of periodic points of exact period n for fλ.
Note that Ωn is an open and dense subset of M , since it is the complement of a closed

proper analytic subset of M . By the implicit function theorem and the definition of Ωn,
the periodic points move holomorphically in Ωn, i.e., for any λ0 ∈ Ωn and any z ∈ Pn(λ0),
there is a neighbourhood U of λ0 in Ω0 and a holomorphic map U 3 λ 7→ zλ ∈ Pn(λ).
This implies that pn is holomorphic on Ωn×C, as it is clearly holomorphic with respect
to w. Since it is locally bounded, Riemann’s extension theorem implies that it is in fact
holomorphic on all of M × C.

Now notice that for all λ ∈ M , n divides the multiplicity of every root w of the
polynomial pn(λ, ·). Indeed, if z ∈ Pn(λ) is such that w = Jac fnλ (z), then it is also the
case for the other points of the cycle, namely the fm(z), 0 ≤ m ≤ n− 1. So, for every
λ ∈M , there is a unique monic polynomial map Pn(λ, ·) such that Pn(λ, ·)n = pn(λ, ·).
Since pn is globally holomorphic, so is Pn, and for all λ, Pn(λ, ·) is a monic polynomial
of degree δn ∼ dnk

n .
Let us now analyse the zero set of Pn: it is the same as the zero set of pn. It is

clear from the definitions that if (λ, η) ∈ PerJn then pn(λ, η) = 0, and that conversely,
if pn(λ, η) = 0 and λ ∈ Ωn, then (λ, η) ∈ PerJn. Let us now assume that pn(λ, η) = 0
and that λ /∈ Ωn. Since Ωn is dense in M , there exists a sequence λi → λ with λi ∈ Ωn.
Since we have limi→∞ pn(λi, η) = 0, there exists a sequence (zi)i∈N of points in E(λi)
such that Jac(fnλi)(zi)− η converges to zero. This means that (λ, η) is in the closure of

P̃erJn, thus proving the second item.

Let us now prove the last claim: we assume that (λ, η) ∈ PerJn\P̃erJn. Let (zi)i∈N
and (λi)i∈N be as above. By compactness of Pk, up to extracting a subsequence we
may assume that zi converges to some z ∈ Pk, which must satisfy fnλ (z) = z and

Jac(fnλ )(z) = η. Since (λ, η) /∈ P̃erJn, the exact period of z is some integer m < n
dividing n. By the implicit function theorem, if 1 were not an eigenvalue of Dfnλ (z),
then for parameters close enough to λ there would be only one periodic point of period
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dividing n near z. But that would contradict the fact that zi, fmλi (zi), . . . , f
n/m−1
λi

(zi)
each are distinct points of period n for fλi that are all converging to z as i→∞. �

For η ∈ C, we denote by PerJn(η) the set defined by

PerJn(η) := {λ ∈ C : (λ, η) ∈ PerJn}.
The set PerJn(η) is an analytic hypersurface of M .

Define now

Ln : M × C→ C

(λ, η) 7→ 1

dnk
log |Pn(λ, η)|

By the Lelong-Poincaré equation, we have that ddcλ,ηLn = 1
dnk

[PerJn], where 1
dnk

[PerJn]

is the (normalized) current of integration on PerJn. Likewise, we have

ddcλLn(·, η) =
1

dnk
[PerJn(η)].

Let also L : M → R+ be the sum of the Lyapunov exponents of fλ with respect to its
equilibrium measure µλ. We recall here a useful result by Berteloot-Dupont-Molino (see
also [BD17]).

Lemma 3.2 ([BDM08], Lemma 4.5). Let f be an endomorphism of Pk of algebraic
degree d ≥ 2. Let ε > 0 and let Rεn(f) be the set of repelling periodic points z of exact
period n for f , such that

∣∣ 1
n log |Jacfn(z)| − L(f)

∣∣ ≤ 2ε. Then for n large enough,
cardRεn(f) ≥ dnk(1− ε)3.

Note that in particular, this implies that cardRεn(f) ∼n→∞ cardEn(f), where En(f)
is the set of periodic points of exact period n.

Theorem 3.3 ([BDM08]). Let f be an endomorphism of Pk of algebraic degree d ≥ 2
and let ε > 0. Then

1

cardRεn(f)

∑
z∈Rεn(λ)

log |Jacfλ(z)| → L(f).

Actually, the statement appearing in [BDM08] involves an average on the set Rn(f)
of all repelling cycles of period n instead of Rεn(f), but using Lemma 3.2, is is not
difficult to see that the two statements are equivalent.

Recall the definition of an Axiom A endomorphism f : Pk → Pk. Let Ωf denote the
non-wandering set, i.e.

Ωf := {z ∈ Pk : ∀U neighbourhood of z,∃n ∈ N∗ s.t. fn(U) ∩ U 6= ∅}.
We say that f is Axiom A if periodic points are dense in Ωf , and Ωf is hyperbolic.

We now state the main convergence result of this section.

Theorem 3.4. Assume that there is at least one parameter λ0 ∈ M such that fλ0 is
Axiom A and {Jac(fnλ0

)(z) : fnλ0
(z) = z and n ∈ N} is not dense in C. We have Ln → L,

the convergence taking place in L1
loc(M × C).

By taking ddc on both sides, we obtain the following equidistribution result as a
corollary.
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Corollary 3.5. Under the same assumptions as in Theorem 3.4, for any η ∈ C outside
of a polar set we have that

1

dnk
[PerJn(η)]→ Tbif ,

the convergence taking place in the sense of currents.

In order to prove the convergence in Theorem 3.4, in the spirit of [BB09] we first
study the convergence of suitable modifications of the potentials Ln.

Definition 3.6. We define the functions Ln, L+
n and Lrn as follows.

Ln(λ, η) =
1

dnk
log |Pn(λ, η)|

L+
n (λ, η) =

1

dnk

∑
z∈En(λ)

log+ |η − ηn(z, λ)|, where ηn(z, λ) := Jacfnλ (z)

Lrn(λ) =
1

2πdnk

ˆ 2π

0
log |Pn(λ, reit)|dt

Lemma 3.7. For any η ∈ C, the sequence of maps L+
n (·, η) converges pointwise and

L1
loc to L on M .

Proof. Fix η ∈ C, and let ε > 0. We have:

|L+
n (λ, η)| ≤ cardEn(λ)

dnk
sup
z∈Pk
‖Dfλ(z)‖

which is locally bounded from above. Moreover:

|L+
n (λ, η)| = 1

dnk

 ∑
z∈Rεn(λ)

log |η − ηn(z, λ)|+
∑

z∈En(λ)−Rεn(λ)

log+ |η − ηn(z, λ)|


=

1

dnk

∑
z∈Rεn(λ)

log |ηn(z, λ)|+O
(
(L(λ)− ε)−n

)
+

card (En(λ)−Rεn(λ))

dnk
log (|η|+ (L(λ) + ε)n)

=
1

dnk

∑
z∈Rεn(λ)

log |ηn(z, λ)|+ o(1)

=L(λ) + o(1).

In the last two equalities, we used Theorem 3.3 and Lemma 3.2. Therefore the sequence
of maps L+

n converges pointwise to (λ, η) 7→ L(λ) on M × C, and since the Ln’s are
plurisubharmonic functions that are locally uniformly bounded from above, by Hartogs
lemma, the convergence also happens in L1

loc. �

Lemma 3.8. For any r > 0, the sequence of maps Lrn converges pointwise and L1
loc to

L on M .

Proof. First notice that, for every a ∈ C, we have

log max(|a|, r) =
1

2π

ˆ 2π

0
log |a− reit|dt.
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Therefore,

Lrn(λ) =
1

2πdnk

ˆ 2π

0
log

∏
z∈En(λ)

|reit − ηn(z, λ)|dt

=
1

2πdnk

∑
z∈En(λ)

ˆ 2π

0
log |reit − ηn(z, λ)|dt

=
1

dnk

∑
z∈En(λ)

log max(r, |ηn(z, λ)|)

=
1

dnk

∑
ηn(z,λ)>r

log |ηn(z, λ)|+O

(
1

dnk
card {z ∈ En(λ) : |ηn(z, λ)| ≤ r}

)
= L(λ) + o(1),

which gives the pointwise convergence. Moreover, Lrn(λ) is uniformly locally bounded
from above, according to Lemma 3.7 and since Lrn ≤ L+

n . Therefore, by Lebesgue’s
dominated convergence theorem it converges L1

loc to L. �

Proof of Theorem 3.4. First, note that the sequence Ln does not converge to −∞.
Indeed, by assumption there is η0 ∈ C and r > 0 such that no cycle of fλ0 has a
Jacobian in D(η0, r). Moreover, since fλ0 is Axiom A, its cycles move holomorphically
for λ near λ0, which implies that (λ0, η0) /∈

⋃
n∈N∗ Pern. Therefore the sequence

Ln(λ0, η0) does not converge to −∞.
Let ϕ : M ×C→ R be a psh function such that a subsequence Lnj converges L1

loc to
ϕ. Let (λ0, η0) ∈M × C. We have to prove that ϕ(λ0, η0) = L(λ0).

First, let us prove that ϕ(λ0, η0) ≤ L(λ0). Let ε > 0 and Bε be the ball of radius ε
centered at (λ0, η0) in M × C. Using the submean inequality and the L1

loc convergence
of L+

n , we have

ϕ(λ0, η0) ≤ 1

|Bε|

ˆ
Bε

ϕ ≤ 1

|Bε|
lim
j

ˆ
Bε

Lnj ≤
1

|Bε|
lim
j

ˆ
Bε

L+
nj ≤

1

|Bε|

ˆ
Bε

L.

Then letting ε→ 0, we have that ϕ(λ0, η0) ≤ L(λ0), which gives the desired inequality.
Now let us prove the opposite inequality. Here we assume additionally that η0 6= 0.

Let r0 = |η0|, and let us first notice that

(3) for almost every θ ∈ S1, lim sup
j

Lnj (λ0, r0e
iθ) = L(λ0).

Indeed, for any t ∈ S1 we have

lim sup
j

Lnj (λ0, r0e
it) ≤ lim sup

j
L+
nj (λ0, r0e

it) = L(λ0)

and by Fatou’s lemma and the pointwise convergence of Lr0n we get

L(λ0) = limLr0n (λ0) = lim sup
j

1

2π

ˆ 2π

0
Lnj (λ0, r0e

it)dt

≤ 1

2π
lim sup

j

1

2π

ˆ 2π

0
Lnj (λ0, r0e

it)dt

which proves (3).
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Suppose now to obtain a contradiction that ϕ(λ0, η0) < L(λ0). Since L is continuous
and ϕ is upper semi-continuous, there is ε > 0 and a neighborhood V0 of (λ0, η0) such
that for all (λ, η) ∈ V0,

ϕ(λ, η)− L(λ) < −ε.
We may assume without loss of generality that V0 = B0 × D(η0, γ), where B0 is a ball
containing λ0. Hartogs’ Lemma then gives

lim sup
j

sup
V0

Lnj − L ≤ sup
V0

ϕ− L ≤ −ε.

But this contradicts (3).
Therefore, we have proved that any convergent subsequence of Ln in the L1

loc topology
of M × C must agree with L on M × C∗, and since M × {0} is negligible, this proves
that Ln converges L1

loc to L on M × C. �

3.2. Equidistribution for polynomial skew-products. We now adapt the general
equidistribution result above and its proof to get an equidistribution statement adapted
to the case of a family (fλ)λ∈M of polynomial skew-product endomorphisms of P2. Since
the construction is very similar to the one above, we will omit part of the proofs. The
main difference with the above, more general case is that in the setting of skew-products,
we can get a more precise description of the case of cycles with parabolic eigenvalues
that mirrors the classical one-dimensional case.

We assume that (fλ)λ∈M is a holomorphic family of endomorphisms of P2 of the form

fλ(z, w) = (p(z), qλ(z, w)),

where p : C→ C is a degree d polynomial and for all z ∈ C, for all λ ∈ M , qλ(z, ·) is
also a degree d polynomial. Recall that Qnz,λ is defined by

fnλ (z, w) = (pn(z), Qnz,λ(w)).

Proposition 3.9. There exists a sequence of holomorphic maps P vn : M ×C→ C such
that:

(1) For all λ ∈M , P vn (λ, ·) is a monic polynomial
(2) If η 6= 1, then P vn (λ, η) = 0 if and only if there exists (z, w) ∈ C2 that is periodic

of exact period n, and (Qnz )′(w) = η;
(3) If η = 1, then P vn (λ, η) = 0 if and only if there exists (z, w) ∈ C2 such that (z, w)

is periodic of exact period m dividing n for fλ, and (Qmz,λ)′(w) is a primitive
n
m -th root of unity.

Proposition 3.9 is slightly more precise than its counterpart Proposition 3.1. This
time, we are going to deduce it directly from the corresponding one-dimensional result,
see [BB11, Theorem 2.1] (see also [Ber13, Theorem 2.3.1]).

Theorem 3.10. Let (qλ)λ∈M be a holomorphic family of degree d rational maps, and
let k ∈ N. There is a holomorphic map Pk : M × C→ C such that:

(1) For all λ ∈M , Pk(λ, ·) is a monic polynomial
(2) If η 6= 1, then Pk(λ, η) = 0 if and only if there exists w ∈ C that is periodic of

exact period k, and (qkλ)′(w) = η.
(3) If η = 1, then Pk(λ, η) = 0 if and only if there exists w ∈ C such that w is

periodic of exact period m dividing k for fλ, and (qmλ )′(w) is a primitive k
m -th

root of unity.
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Proof of Proposition 3.9. By assumption, there exists a polynomial p of degree d such
that for any λ ∈ M , fλ is of the form fλ(z, w) = (p(z), qλ(z, w)). For any n ∈ N, let
Pn(p) denote the set of periodic points for p of exact period n. Let

P vn (λ, η) :=
∏
m|n

∏
z∈Em(p)

Pz, n
m

(λ, η)

where Pz, n
m

: M × C→ C is the map given by Theorem 3.10 for the family of degree
dm polynomials {Qmz,λ : λ ∈ M} with k := n

m . It is straightforward to check that Pn
satisfies the required properties. �

Definition 3.11. For any η ∈ C, we set:

Pervn(η) := {λ ∈M : P vn (λ, η) = 0}.

Theorem 3.12. Let M be a holomorphic family of polynomial skew-products of C2 of
degree d ≥ 2 over a fixed base p. For all η ∈ C outside of a polar subset, we have

1

d2n
[Pervn(η)]→ Tbif .

Proof. Let

Lvn(λ, η) :=
1

dnk
log |P vn (λ, η)| .

Similarly to the proof of Corollary 3.5, in order to prove Theorem 3.12, it is enough to
prove that Lvn → Lv in L1

loc(M × C). Indeed, in the family (fλ)λ∈M , the exponent Lp
is constant so Tbif = ddcLv (see Theorems 2.2 and 2.8). Set

(1) Lv,+n (λ, η) = 1
dnk

∑
(z,w)∈En(λ) log+ |η−ηn(z, w, λ)|, where ηn(z, w, λ) := (Qz,λ)′(w)

(2) Lv,rn (λ) = 1
2πdnk

´ 2π
0 log |P vn (λ, reit)|dt.

The desired convergence of Lvn follows from the convergences of Lv,+n and Lv,rn to Lv.
The proof of these last two, as well as the deduction of the convergence of Lvn, is an
adaptation of the methods of the previous section, see the proofs of Lemmas 3.7, 3.8
and Theorem 3.4 respectively. �

4. Lyapunov exponents and fiber-wise bifurcations (Theorem A)

The goal of this section is to prove Theorem A. This will provide another kind of
approximation of the bifurcation current (and locus), as an average of one-dimensional
bifurcation phenomena. We will at first consider the non-autonomous dynamics as-
sociated to the fibre at any point of the Julia set of the base polynomial. We will
define bifurcations for such (non-autonomous) dynamical systems, and interpret them
with respect to the non normality of the critical orbit. Then, we will establish various
approximation formulas for the bifurcation current, which will be seen as average of the
bifurcation currents associate to the bifurcation of the various fibres. This will provide a
proof for (1) in Theorem A, and so also of an inclusion of (2). By exploiting the previous
parts and the characterization of the bifurcation locus as the closure of Misiurewicz
parameters, we will then establish the opposite inclusions, thus completing the proof of
Theorem A. As a consequence of our formulas, we will also prove Proposition 2.11. We
conclude this section with some explicit examples of families, where we can prove that
all the one-dimensional iterations bifurcate exactly on the same subset of the parameters
space (and with the same bifurcation current).
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4.1. Non autonomous bifurcations. In this section we consider a polynomial family

(p(z), qλ,z(w))

and in particular the non-autonomous iteration associated to a fibre z, for some
z ∈ Jp. Recall that the Green function (restricted to the fiber over z ∈ Jp) is given by
Gλ,z(w) = limn→∞

1
n log+

∥∥∥Qnλ,z(w)
∥∥∥. This is a psh function on the parameter space.

The following result gives the equivalence between critical stability and harmonicity of
the associated Green function.

Proposition 4.1. Let c(λ) be a (marked) critical point of qλ,z. The following are
equivalent:

(1) the family Qnλ,z(c(λ)) is normal;
(2) the current ddcλGλ(z, c(λ)) is zero.

Proof. The argument is now standard. We briefly review it for completeness. If the
sequence Qnλ,z(c) is normal, we have two cases: it may diverge to ∞, locally uniformly
in the parameter space, or, up to subsequence, converge to some holomorphic function.
In the first case, G is the local uniform limit of pluriharmonic function, and is thus
pluriharmonic. In the second case, G is equal to 0. In both cases, ddcGλ,c = 0.

Let us now assume that ddcGλ,c = 0. Again, we have two cases: G is identically zero,
or always positive. In the first case, the sequence Qnλ,z(c) is uniformly bounded. In the
second, it diverges (locally uniformly with the parameter). In both cases, the family is
normal. �

Definition 4.2. We denote by Bz,c, Tbif,z,c and Bifz,c the boundedness locus, the bifur-
cation current and the bifurcation current associated to a marked critical point c in the
fibre z. These are defined as follows:

Bz,c := {λ : G(λ, z, c) = 0 } ,
Tbif,z,c := ddcλG(λ, z, c(λ)),

Bifz,c := SuppTbif,z,c.

Analogously, Bz,Bifz and Tbif,z will be the unions (or the sum) of the sets (currents)
above, for c critical point for qz.

It is immediate to check that Bifz,c = ∂Bz,c. The following lemma gives some basic
semicontinuity properties of these sets that we shall need in the sequel. We will give
a more precise description of these sets, for the family of quadratic skew products, in
Theorem 5.5.

Lemma 4.3. Let M ′ bM be a compact subset of the parameter space. Then:
(1) the set M ′ ∩ Bz varies upper semicontinuously with z;
(2) the set M ′ ∩ Bifz varies lower semicontinuously with z.

Proof. We drop the restriction to M ′ to simplify the notation. We fix a critical point in
the fibre z. We will prove that the sets Bz,c = {G(λ, z, c) = 0 } and Bifz,c = ∂Bz,c are
upper and lower semicontinuous, respectively. The first assertion is immediate, since
the 0 locus of a continuous function is closed (this is the same reason for which the
filled Julia set of a polynomial depends upper semicontinuously with the polynomial).
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The continuity of G also implies the continuity of the family of currents Tbif,z,c. The
family Bifz,c = SuppTbif,z,c is thus lower semicontinuous. �

We conclude this section proving a first part of Theorem A. The reverse inclusion
will be proved in Section 4.3.

Proposition 4.4. Let Fλ(z, w) = (p(z), qλ(z, w)) be a family of polynomial skew prod-
ucts of degree d. Then

Tbif =

ˆ
z∈Jp

Tbif,zµp and Bif(F ) ⊆ ∪z∈Jp Bifz .

Proof. The first formula follows from the formula for the vertical Lyapunov exponent in
Theorem 2.2. The inclusion is an immediate consequence of the first formula and the
fact that z 7→ Bifz is lower semicontinuous. �

4.2. Approximations for the bifurcation current: periodic fibres. In this sec-
tion we characterize the Lyapunov exponents of a skew product map by means of the
Green functions of the return maps of the periodic vertical fibers. This allows us to
approximate the bifurcation current by means of the bifurcation currents of these return
maps.

We are given a family of skew-products of C2, extendible to P2, of the form

F (λ, z, w) = (λ, Fλ(z, w)) = (pλ(z), q(λ, z, w)) = (p(z), qλ,z(w)).

Notice that in this section we explicitly allow p(z) to depend on λ. By Theorem 2.2 we
know that the two Lyapunov exponents of Fλ are equal to

Lp(λ) = L(p) = log d+
∑
z∈Cpλ

Gpλ(z)

Lv(λ) = = log d+

ˆ  ∑
w∈Cλ,z

Gλ(z, w)

µpλ ,

where Cpλ and µpλ are the critical set and the equilibrium measure of pλ and Cλ,z is
the critical set of qλ,z.

By [Pha05, Theorem 2.2] (see also [DS10, Theorem 2.50]), the sum L(λ) = Lv(λ) +
Lp(λ) and the maximum max (Lp(λ), Lv(λ)) are psh function. It is in general not true
that the smallest Lyapunov exponent, namely min (Lp(λ), Lv(λ)) is psh.

In our situation, we are interested in the two functions Lp and Lv. The first one is
clearly psh, since it is the Lyapunov function of a polynomial family on C. The first
thing we are going to prove is an approximation formula for Lv, from which we shall
deduce that also this exponent is psh (this is obvious if p is constant, since the sum is
psh).

Remark 4.5. This will in particular prove that there is a way to parametrize both the
Lyapunov exponents in such a way that they depend psh on the parameter, something
which is not known for general families.

We shall denote by RN (λ) ⊂ PN (λ) the two sets
PN (λ) := { z ∈ C : pnλ(z) = z }
RN (λ) := { z ∈ C : pnλ(z) = z,

∣∣(pnλ)′(z)
∣∣ > 1 }
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By a well-known theorem of Fatou, for every λ there exists a N(λ) such that every cycle
of exact length at least N(λ) is repelling. This implies that #PN (λ)

#RN (λ) → 1 for N →∞.

Proposition 4.6. We have

Lv(λ) = lim
N→∞

1

dN

∑
z∈PN (λ)

∑
w∈Cλ,z

Gλ(z, w) = lim
N→∞

1

dN

∑
z∈RN (λ)

∑
w∈Cλ,z

Gλ(z, w)

where the convergence is pointwise and in L1
loc(M). In particular, Lv(λ) is psh.

Proof. From the theorem of Fatou mentioned above, the two limits are equal. So, we
compute only one of the two, namely the second one. Recall the basic approximation
formula for the equilibrium measure of the polynomial p:

1

dN

∑
z∈RN (λ)

δz → µp.

Moreover, notice that the function Gλ(z, w) is continuous in all its three variables. The
desired (pointwise) convergence thus follows.

Notice now that both sequences are locally uniformly bounded: this follows from
the fact that G is continuous and #PN (λ),#RN (λ) ≤ dN , for every N ∈ N. It thus
suffices to prove that the first sequence consists of psh functions to get that there exist
L1
loc limits for the sequence. By the previous part, the only possible limit will then be

Lv(λ) proving the statement. In order to do so, since G is psh, it suffices to notice that
the set CN given by

CN := { (λ, z, w) : z ∈ PN (λ), w ∈ Cλ,z }

is an analytic subset of M × C2. The assertion follows. �

The previous proposition shows in particular that ddcLv =: T vbif is a well-defined closed
positive (1,1)-current on M . In particular, we have ddcL = ddcLp + ddcLv = T pbif + T vbif .
Since Bif(p) ≡ Supp ddcLp, we can thus see the bifurcation locus Bif(F ) as a union
(non necessarily disjoint)

Bif(F ) = Bif(p) ∪ Bif(q)

where we denoted Bif(q) := SuppT vbif = Supp ddcLv. The next step consists in getting
a better understanding of the set Bif(q) \ Bif(p). We start with a Lemma that shows
how the Lyapunov exponent can be seen as an average of the exponents of the return
maps on the repelling fibers.

Lemma 4.7. We have

(4) Lv(λ) = lim
N→∞

1

NdN

∑
z∈RN (λ)

∑
w∈C(QNλ,z)

GQNλ,z
(w)

where the convergence is pointwise and in L1
loc(M).

Proof. By the previous proposition, we only have to prove that, for any λ and N ,

(5)
∑

z∈RN (λ)

∑
w∈Cλ,z

Gλ(z, w) =
1

N

∑
z∈RN (λ)

∑
w∈C(QNλ,z)

GQNλ,z
(w).
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First, notice that, for every λ ∈M, z ∈ RN (λ) (not necessarily of exact period N) and
w ∈ C we have that Gλ(z, w) = GQNλ,z

(w). Indeed,

(6)

Gλ(z, w) = lim
n→∞

1

dn
log+ ‖Fn(z, w)‖

= lim
n→∞

1

dn
log+

∥∥Qnλ,z(w)
∥∥

= lim
n→∞

1

(dN )n/N
log+

∥∥∥(QNλ,z)n/N (w)
∥∥∥

= GQNλ,z
(w)

where to get the second line we used the assumption that (pn(z))n is bounded (since
z ∈ RN (λ)) and in the last one that the degree of QNλ,z is dN . So, the left hand side of
(5) is equal to ∑

z∈RN (λ)

∑
w∈Cλ,z

GQNλ,z
(w).

We are thus left with checking that, for a given skew product f(z, w) = (p(z), qz(w)),
for every N -periodic point z of p, we have

N−1∑
j=0

∑
w∈C

pj(z)

GQN
pj(z)

(w) =
1

N

N−1∑
j=0

∑
w∈C

(
QN
pj(z)

)GQNpj(z)

(w).

Let us first describe the critical set of QN
pj(z)

, that we denote by Cj . Since QN
pj(z)

is by definition equal to qpj−1(z) ◦ · · · ◦ qz ◦ qpN−1(z) ◦ · · · ◦ qpj+1(z) ◦ qpj(z), we have

Cj = C
(
QN
pj(z)

)
=
⋃N−1
i=0 Cji , where

Cj0 = C(qpj(z))

Cj1 = q−1
pj(z)

C(qpj+1(z))

Cj2 = q−1
pj(z)

q−1
pj+1(z)

C(qpj+2(z)) =
[
Q2
pj(z)

]−1
C(qpj+2(z))

...

CjN−1 = q−1
pj(z)

q−1
pj+1(z)

. . . qpj−2(z)C(qpj−1(z)) =
[
QN−1
pj(z)

]−1
C
(
qpj−1(z)

)
(each term Ckl is to be thought of as a subset of the fiber over pk(z) which is the
preimage of the critical set of qpk+l( mod N)(z) by Ql

pk(z)
). So, it suffices to prove that,

for any 0 ≤ j, i ≤ N − 1, we have∑
w∈Cj0=C

(
q
pj(z)

)GQNpj(z)

(w) =
∑

w∈Cij−i=
[
Qj−i
pi(z)

]−1(
C
(
q
pj(z)

))GQNpi(z)(w),

where j − i has to be taken modulo N . But this follows from the fact that the Green
function G of f satisfies the property that G(f(·)) = dG(·). Indeed, for points (pl(z), w)
in the fiber { pl(z) } × C, we have Gf (pl(z), w) = GQN

pl(z)

(w) (by (6)), and moreover
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{ pi(z) } × Cij−1 contains exactly dj−i preimages by F j−i of any point in { pj(z) } × Cj0
(out of the total d2(j−i), since we do not consider preimages other than the ones
contained in the fiber over pj(z)). So, for each w ∈ Cj0 in the left sum, with value
GQN

pj(z)

(w) , there are dj−i preimages w1, . . . , wdj−i in the right sum, each one with

value GQN
pi(z)

(wl) = GQN
pj(z)

(w)/dj−i. The assertion follows. �

Since the convergence to Lv happens in L1
loc(M), it would be tempting to take the

ddc on both sides of (4) and thus see ddcLv as an average of bifurcation currents for
the families QNz,λ. The problem here is that z depends on λ (it will be the solution z(λ)

of some equation pNλ z(λ) = z(λ)), in general in a non-globally holomorphic way (and,
moreover, it may stop to be repelling on Bif(p)).

This interpretation is actually possible over a stable component for p (i.e., on a
component Ω ⊂M \ Bif(p)), where we can holomorphically follow the repelling cycles
for p, and thus in particular get well-defined families (λ,QNλ,z(λ)). We shall denote as
usual by Bif(QNλ,z(λ)) the bifurcation locus of one such family.

Corollary 4.8. Assume ddcLp ≡ 0. Denote by ρj,N (λ), 1 ≤ j ≤ n(N) ∼ dN the
holomorphic motions of the repelling cycles of p. Then

ddcλLv(λ) = lim
N→∞

1

NdN

∑
1≤j≤n(N)

∑
w∈C

(
QN
λ,ρj,N (λ)

) ddcλGQNλ,ρj,N (λ)
(w)

= lim
N→∞

1

NdN

∑
1≤j≤n(N)

Tbif(Q
N
λ,ρj,N (λ)).

The above results allow to get the following description of the bifurcation locus for a
family of skew-products. We shall prove the converse inclusion in the next section.

Corollary 4.9. We have

(7) Bif(F ) ⊆ Bif(p) ∪
⋃

Ω cc of M\Bif(p)

⋃
N

⋃
1≤j≤nΩ(N)

Bif(QN
ρΩ
j,N

)

where the ρΩ
j,N are the holomorphic motions of the N -repelling cycles for p on the

connected component Ω ⊂ M \ Bif(p) and QN
ρΩ
j,N

denotes the 1-dimensional family

(λ,w) 7→ (λ,QN
λ,ρΩ

j,N
(w)), whose parameter space is Ω.

Remark 4.10. Notice in particular that, since the above inclusion comes from a limit,
it is still true if we substitute the union on N with a union over N ≥ N0, for any
N0 ∈ N. In particular, this gives

Bif(F ) ⊆ Bif(p) ∪
⋃

Ω cc of M\Bif(p)

⋂
N0∈N

⋃
N≥N0

⋃
1≤j≤nΩ(N)

Bif(QN
ρΩ
j,N

).

Remark 4.11. The formulas for the bifurcation current established in this and the
previous section may be used to study self intersections of this current, in the spirit
of [BB07]. These should be related with stronger bifurcations, and higher codimension
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equidistribution phenomena (see for instance [Duj11] for an account of this for rational
maps). We postpone this study to a later work.

4.3. A decomposition for the bifurcation locus. We now study better the relation
between the stability of a family of skew-products and the normality of critical orbits.
This gives us the converse inclusion in (7). We start with critical points in the repelling
periodic fibres.

Proposition 4.12. Assume ddcLp ≡ 0. Denote by ρj,N (λ), 1 ≤ j ≤ n(N) ∼ dN the
holomorphic motions of the repelling cycles of p. Then for every N, j, 1 ≤ j ≤ n(N)),
we have

(8) Bif(F ) ⊇ Bif(QNρj,N )

where QNρj,N denotes the 1-dimensional family (λ,w) 7→ (λ,QNλ,ρj,N (w)).

Proof. Given N and j as in the statement, let us consider a parameter λ0 ∈ Bif(QNρj,N ).
There thus exists a parameter λ1 nearby which is Misiurewicz for the family QNρj,N , i.e.,
there exist a critical point c for QNρj,N (λ1), a number N0 ≥ 1 and a N1-periodic repelling

point w for QNρj,N (λ1) such that QNN0

ρj,N (λ1)(c) = w, and the relation QNN0

ρj,N (λ)(c(λ)) = w(λ)

does not hold for every λ near λ1 (where c(λ) and w(λ) are the local holomorphic
motions of c and w as a critical point and as a N1-periodic repelling point). The point
(ρj,N (λ1), c) is in particular critical also for F , and the point (ρj,N (λ1), w) is NN1-
periodic and repelling for F . So, we only have to check that there does not exist any
holomorphic map λ→ (z(λ), c̃(λ)) ∈ C(Fλ) such that (z(λ1), c̃(λ1)) = (ρj,N (λ1), c) and
the relation FNN0

λ ((z(λ), c̃(λ))) = (ρj,N (λ), w(λ)) holds persistently in a neighbourhood
of λ1. First of all, by the finiteness of the pN0-preimages of ρj,N (λ1), up to restricting
ourselves to a small neighbourhood of this point, we can assume that every FN0-preimage
of (ρj,N (λ), w(λ)) belongs to the fiber of ρj,N (λ), too. In this way, any persistent critical
relation must happen in the fibers of ρj,N (λ). This in excluded, since the parameter is
Misiurewicz for the restricted family. �

By Proposition 4.12 and Corollary 4.9 we immediately get the following description
of Bif(F ).

Corollary 4.13. We have

(9) Bif(F ) = Bif(p) ∪
⋃

Ω cc of M\Bif(p)

⋃
N

⋃
1≤j≤nΩ(N)

Bif(QN
ρΩ
j,N

).

From Remark 4.10 we thus get the following: given any connected component Ω of
M \ Bif(p), any N and j, with 1 ≤ j ≤ nΩ(N), we have

Bif(QN
ρΩ
j,N

) =
⋂
N0∈N

⋃
N≥N0

⋃
1≤j≤nΩ(N)

Bif(QN
ρΩ
j,N

).

We can now complete the proof of Theorem A, and also prove Proposition 2.11

End of the proof of Theorem A. Equation (1) follows from Proposition 4.4 and Corol-
lary 4.8. The equality between Bif(F ) and the union of the bifurcation loci associated
to the periodic fibres is given by Corollary 4.13. Because of Proposition 4.4, the only
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thing left to do is to prove the inclusion Bifz ⊂ Bif(F ), for any z ∈ Jp. For z periodic
and repelling, as mentioned above, this follows from Corollary 4.13. For a generic z,
this then follows from the lower semicontinuity of z 7→ Bifz (when restricted to any
compact subset of M), see Lemma 4.3. �

Remark 4.14. In [Ber17] Berteloot observes that, in dimension 1, the bifurcation of
one repelling cycle in an open set forces almost all the repelling cycles to bifurcate (in
the sense that the cardinality of non-bifurcating n-cycles is negligible with respect to the
number of all the cycles, for n→∞). Our result gives the (weaker) conclusion that, for
families of polynomial skew products, the bifurcation of a periodic fibre forces a positive
quantity (∼ αdn) of other periodic fibre to bifurcate.

Proof of Proposition 2.11. Let F be a family of polynomial skew products. If the base
polynomial p is not stable and admits some non hyperbolic component, the assertion is
trivial. Let us thus assume for simplicity that the base polynomial is independent from
the parameter. By Theorem A, in a stable component for F all the fibres are stable.
Thus, if F admits a stable and non hyperbolic component, the same is true for the
family associated to some (possibly non periodic) fibre. �

Question 4.15. It would be interesting to know if the existence of a non hyperbolic
stable component for a family of polynomial skew products implies the existence of such
a component for a family of (autonomous) polynomials on C. This would be true if,
given a family of skew products, we knew that the hyperbolicity of all the return maps
on the periodic fibres implies the hyperbolicity of all the fibres.

4.4. Bifurcations and preimages of fibres. By arguments similar to the ones above,
by means of the equidistribution of preimages of generic points we can establish the
following further approximation approximation of the bifurcation current and locus. We
assume for simplicity that p is constant, otherwise the formula takes a form similar to
that in Equation (9).

Proposition 4.16. Let Fλ(z, w) = (p(z), qλ(z, w)) be a holomorphic family of polyno-
mial skew products of degree d ≥ 2. Let z ∈ Jp.

Tbif = lim
N→∞

1

dN

∑
y : pN (y)=z

Tbif,y and Bif(F ) =
⋃
N∈N

⋃
y : pN (y)=z

Bif y.

In case of p non constant, but only stable, we consider the preimages, for every λ, of
the motion z(λ) of some point in the Julia set of pλ.

4.5. An explicit example. In [DH08], DeMarco and Hruska study polynomial skew
products of the form (z2, w2 + λz). They also remark that every such map is semi-
conjugated to the map (z2, w2 + λ). It is then natural to expect that the bifurcation
locus – and current – of this family are the same as the quadratic family w2 + λ. Here
we prove that this is indeed the case.

Proposition 4.17. The bifurcation locus of the family (λ, z, w) 7→ (λ, z2, w2 + λz) is
the Mandelbrot setM2, i.e., the bifurcation locus of the 1-dimensional family (λ,w) 7→
(λ,w2 + λ).
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Proof. By the results (and with the same notations) of this section, we shall prove that
Bifz = M2, for every z ∈ S1. Recall that the Mandelbrot set is given by the λ ∈ C
such that the sequence

Λ0 = λ Λn+1 = Λ2
n + Λn

diverges. Given a point z ∈ S1, let us compute the set Bz. Denote as usual z0 := z and
zj := z2j . It is then immediate to prove by induction that

qzj ◦ · · · ◦ qz0(z, 0) = Λjzj .

This proves that the orbit of (z, 0) diverges if and only if the sequence Λj diverges, that
is, if λ ∈M2.

The induction above is trivial for j = 0 and we then have

qzj ◦ · · · ◦ qz0(z, 0) =
(
qzj−1 ◦ · · · ◦ qz0(z, 0)

)2
+ λzj = (Λj−1zj−1)2 + λzj

= (Λ2
j−1 + λ)zj = Λjzj ,

which completes the proof. �

It is not difficult to prove, using the same idea, that also the bifurcation current
associated to any z ∈ S1 is exactly the equilibrium measure on the Mandelbrot set.
Moreover, the same method as above applies to the family (z, w) 7→ (z2, w2 + λz2).

Part 2. Quadratic skew products: the bifurcations at infinity

5. Quadratic skew products

We now specialize to endomorphisms of P2 that are quadratic polynomial skew-
products, i.e. maps of the form

(p(z), Az2 +Bzw + Cw2 +Dz + Ew + F ),

where p is a quadratic polynomial.

Lemma 5.1. Every quadratic skew product with p(z) as first component is affinely
conjugated to a map of the form

(p(z), w2 + az2 + bz + c).

Proof. Notice that we necessarily have C 6= 0 in order to extend the endomorphism
to P2. The assertion follows by conjugating with a change of variables of the form
(z, w) 7→ (z, αz + βw + γ). �

Notice that, by a further change of variable in z, we can also assume that p(z) is of
the form z2 + d.

Remark 5.2. Many of the results in this second part actually hold for the families of
polynomial skew-product of the form

(z, w) 7→ (p(z), wd + adz
d + . . . a1z + a0)

for any degree d ≥ 2. However, while for d = 2 this family gives a parametrization of
the full family of degree 2 skew products, the same is not true for d > 2.
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From here on, we will therefore consider the space Sk(p, 2) of quadratic skew-products
over the base p as identified with C3. We will also work with the compactification of
Sk(p, 2) as P3, and denote by P2

∞ the hyperplane at infinity.
Notice that, for all maps in Sk(p, 2), the fiber at any z contains a unique critical

point, w = 0. By the results of the previous section, in order to understand the stability
of the family we then need to study the Green function at the points of the form (z, 0),
with z ∈ Jp. This leads to the following definition. Recall that the set Bz (Definition
4.2) in this situation denotes the parameters such that (z, 0) has bounded orbit, or,
equivalently, such that the Green function at (z, 0) is zero.

Definition 5.3. We partition the parameter space Sk(p, 2) into the following three
subsets:

(1) C := {λ ∈ C3 : ∀z ∈ Jp, G(z, 0) = 0} =
⋂
z∈Jp Bz

(2) D := {λ ∈ C3 : ∀z ∈ Jp, G(z, 0) > 0} =
⋂
z∈Jp B

c
z

(3) M := C3\(C ∪ D).

Note that in the case where Jp is connected, C is (in restriction to our family) what in
[Jon99] is called the connectedness locus, meaning the set of parameters such that Jp is
connected, and for all z ∈ Jp, Jz is connected. The set C is closed and the set D is open.
It follows from [Jon99] that D is in fact a union of vertically expanding components
(hyperbolic, if p is hyperbolic). As we will see below, C is bounded (Corollary 5.8) but
M and D are not (and actually contain unbounded hyperbolic components, see Sections
7 and 8).

It has been recently proved by Dujardin [Duj16a] and Taflin [Taf17] that some
polynomial skew-products are in the interior of the bifurcation locus, a phenomenon
that contrasts with the one-variable situation. We note here that such behaviour can
only occur inM: indeed, parameters in D are vertically expanding hence in the stability
locus. As for parameters in C, note that any connected component of C̊ is a stable
component. Concerning possible non-hyperbolic components in C orM, see Proposition
2.11 above.

Our main goal in the remaining part of this section is proving the following theorem,
describing the accumulation of the sets Bz,Bifz and Bif at infinity (in the parameter
space) from a topological point of view. In the next Section we will improve this theorem
in a quantitative way, leading to Theorem C.

Definition 5.4. Given z ∈ Jp, we denote by Ez the set {[a, b, c] ∈ P2
∞ : az2+bz+c = 0}.

We set E := ∪z∈JpEz.

Theorem 5.5. In the family Sk(p, 2), the following hold.
(1) For every z ∈ Jp, the cluster set at infinity of Bz and Bifz is exactly Ez.
(2) The cluster set at infinity of Bif is exactly E.

It will be useful to fix the following notations. For λ := (a, b, c) ∈ C3 and p(z) = z2+d,
let

fλ(z, w) = (p(z), w2 + az2 + bz + c).

For λ ∈ C3, let ρλ(z0) := az2
0 + bz0 + c and ‖ρλ‖∞ := supz∈Jp |az

2 + bz + c|. We then
have the following elementary lemma.
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Lemma 5.6. Assume that Gλ(z0, 0) = 0. Then |ρλ(z0)| ≤ 2
√
‖ρλ‖∞. In particular,

the cluster set of Bz0 in P2
∞ is included in Ez0.

Proof. For n ∈ N, let zn := pn(z0) and ρn := az2
n + bzn + c. Let wn := Qn+1

z0 (0): then
w0 = ρ0 and wn+1 = w2

n + ρn. Therefore we have |wn+1| ≥ |wn|2 − ‖ρλ‖∞, and since
by assumption (wn)n∈N is bounded, we must have for all n ∈ N that |wn| ≤ 2

√
‖ρλ‖∞.

The result follows by taking n = 0. �

Proof of Theorem 5.5. By Lemma 5.6, the cluster set of Bz is included in Ez. We thus
prove the opposite inclusion. We first consider z such that z = pn(z). Since Ez is an
irreducible curve (more precisely, a projective line), it is enough to note that there
is a component C of Pern(0) such that for all λ ∈ C, fnλ (z, 0) = (z, 0). Indeed, that
component C intersects the plane at infinity in some (1 dimensional) hypersurface that
is contained in Ez and is therefore equal to Ez. Moreover, it is clear that C ⊂ Bz.

Let us now pick any (non necessarily periodic) z ∈ Jp. Let D be any complex line in
P3 that intersects P2

∞ at the point [0 : 0 : 1]. Then the set

D ∩ {(a, b, c) ∈ C3 : aX2 + bX + c has a root in Jp}
is compact, and for any y ∈ Jp, By ∩D is compact. Lemma 4.3 implies that the map
Jp 3 y 7→ By ∩D is upper semicontinuous. Therefore, if we pick a sequence zn → z of
periodic points for p, we have that

lim sup
n→∞

(Bzn ∩D) ⊂ Bz ∩D.

Since this is true for any complex line D intersecting P2
∞ at [0 : 0 : 1], we also have

lim sup
n→∞

Bzn ⊂ Bz,

where Bz denotes the closure of Bz in P3. Therefore the cluster set of Bz contains Ez,
and the first assertion is proved. The assertion for the boundary easily follows.

Let us now prove the second assertion. Observe that Bif ⊂
⋃
z∈Jp Bz. Therefore, the

cluster set at infinity of Bif is contained in the cluster set of
⋃
z∈Jp Bz, which a priori

might be larger than the union of cluster sets of Bz; but the estimate from Lemma 5.6
implies that this is not the case. Indeed, let (an, bn, cn)n∈N be a sequence of points in⋃
z∈Jp Bz going to infinity, and converging to [a, b, c] ∈ P2

∞. For each n there is at least
one zn ∈ Jp such that (an, bn, cn) ∈ Bzn , and thus, by Lemma 5.6,

|anz2
n + bnzn + cn| ≤ 2

√
sup
z∈Jp
|anz2 + bnz + cn|.

Since (a, b, c) 7→ supz∈Jp |az
2 + bz + c| is a vector space norm on C3, there is some

constant Cp > 0 such that for all (a, b, c) ∈ C3,
1

Cp
‖(a, b, c)‖∞ ≤ sup

z∈Jp
|az2 + bz + c| ≤ Cp‖(a, b, c)‖∞

and therefore, setting Mn := ‖(an, bn, cn)‖∞, we have∣∣∣∣ anMn
z2
n +

bn
Mn

zn +
cn
Mn

∣∣∣∣ ≤ 2Cp

√
1

Mn
.

Passing to the limit, we conclude that z 7→ az2 + bz + c must vanish at least once on Jp.
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This takes care of one inclusion. Now let us prove that the cluster of the bifurcation
locus on the plane at infinity contains the set E. Take [a, b, c] ∈ E, assume it is a point
in P2

∞ such that az2 + bz+ c = 0, where z ∈ Jp By Theorem A, we know that ∂Bz ⊂ Bif
(here, the boundary is taken in C3). By the first item, we know that ∂Bz accumulates
on P2

∞ to the set {[a, b, c] : az2 + bz + c = 0}; this concludes the proof. �

We can also explicitly describe the cluster set for 2-dimensional algebraic subfamilies.
We state the description for the subfamily given by a = 0.

Corollary 5.7. In the 2-dimensional subfamily given by a = 0, the cluster of Bif on
the line P1

∞ at infinity is an affine copy of the Julia set Jp of p.

Proof. In the subfamily a = 0, if [b : c] is in the line at infinity, then [b : c] is accumulated
by the bifurcation locus if and only if bX + c has a root in Jp, that is if and only if
− c
b ∈ Jp. �

A similar description holds for the two-dimensional subfamilies given by prescribing a
solution to the polynomial az2 + bz + c. More specifically, given ω ∈ C, for the families
given by

{
(a, b, c) : aω2 + bω + c = 0

}
. We will come back to this point in Section 6,

when describing the cluster set from the quantitative point of view of currents.
We also have the following immediate consequence of Theorem 5.5.

Corollary 5.8. Let z1, z2, z3 ∈ Jp be three distinct points. Then Bz1 ∩ Bz2 ∩ Bz3 is
compact. In particular, C is compact.

Proof. If (a : b : c) ∈ P2
∞ were accumulated by Bz1 ∩ Bz2 ∩ Bz3 , then aX2 + bX + c

would have z1, z2, z3 as roots, and we would have a = b = c = 0, which is impossible. So
Bz1 ∩Bz2 ∩Bz3 is closed and bounded in C3. In particular, C =

⋂
z∈Jp Bz is compact. �

6. The bifurcation current at infinity (Theorem C)

The goal of this section is to prove Theorem C, that improves the results of the
previous section by describing the accumulation at infinity of the bifurcation current
from a quantitative point of view. Recall that we are considering the family(

p(z), w2 + az2 + bz + c
)

where p is a polynomial of degree 2, and a, b, c are three complex parameters. First of
all, we prove that we can extend the bifurcation current to the compactification P3 of
the parameter space (see also [BG15a] for an analogous result for quadratic rational
maps).

Lemma 6.1. There exists a positive closed (1, 1)−current T̂bif on P3 whose mass equals
1 and such that

(1) T̂bif |C2 = Tbif ;
(2) for a generic η ∈ C, the sequence 4−n[PerJn(η)] converges to T̂bif in the sense of

currents of P3;
(3) for a generic η ∈ C, the sequence 4−n[Pervn(η)] converges to T̂bif in the sense of

currents of P3.
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Proof. The existence of T̂bif follows by an application of Skoda-El Mir Theorem. Indeed,
by the equidistribution results in Section 3, the mass of Tbif on C2 is 1. We thus can
trivially extend Tbif to P3, and the mass of the extension still satisfies ‖T̂bif‖ = 1.

We now promote the equidistribution of [Pern(η)] to Tbif on C3 to an equidistribution
to T̂bif on P3 (we denote by Pern(η) both PerJn and Pervn, the proof is the same). First
recall (see Section 3) that the Pern(η) are actually algebraic surfaces on P3, of mass
∼ 4n. Thus, the sequence 4−n[Pern(η)] gives a sequence of uniformly bounded (in mass)
positive closed currents. We have to prove that any limit of this sequence coincides with
T̂bif . Let us denote by T a cluster of the sequence. By Siu’s decomposition Theorem,
we have T = S + α[P2

∞], where S has no mass on P2
∞. It follows from the description of

the accumulation of the bifurcation locus given in Section 5 that α = 0. Moreover, we
have S = Tbif on C3. This complete the proof. �

Remark 6.2. The result above also applies to any subfamily of the family Fabc whose
(extended) parameter space is a subvariety in P3.

A description of the accumulation of the support of T̂bif at infinity can be easily
deduced from Theorem 5.5.

Lemma 6.3. For any algebraic subfamily of Fabc, the cluster set at infinity of the
support of T̂bif is included in the set{

[a, b, c] : az2 + bz + c = 0 for some z ∈ Jp
}

= ∪z∈JpEz = E.

We actually have the equality in the Lemma above, unless the accumulation at infinity
of the family is precisely given by some Ez.

Our goal here is to prove the following strengthening of the statement above: for the
family Fabc, the intersection between T̂bif and the current of integration [P2

∞] on the
hyperplane at infinity is well defined, and that its support is precisely the set E. We
will also precisely characterize this intersection current, by means of the equilibrium
measure of p. We first specialize to the family given by a = 0. We will see later how to
move to the general setting.

6.1. The family (p(z), w2 + bz + c). As observed in Corollary 5.7, for a = 0 the set
given by Lemma 6.3 reduces to the set of [b, c] satisfying az+b = 0 for some z ∈ Jp. This
set is an affine copy of Jp. We denote it by Jp,∞. Let µp,∞ denote the corresponding
equilibrium measure on Jp,∞. We shall prove that the intersection of the current T̂bif

with [P1
∞] is well defined and given precisely by µp,∞. This will be achieved by means

of the following lemma.

Lemma 6.4. Let Fbc(z, w) = (p(z), w2 + bz + c). For a generic η ∈ D we have

4−n[Pervn(η)] ∧ [P1
∞]→ µp,∞.

Proof. By the equidistribution of the periodic points of p towards µp, it is enough to
prove that

[Pervn(η)] ∧ [P1
∞] ∼ 2n

∑
pn(y)=y

δy.

Here, by abuse of notation, we denote by y ∈ P1
∞ the point corresponding to [b, c] with

y = −c/b. Also, we think of the current on the left hand side as a measure on P1
∞.

Notice that, again by the equidistribution of periodic points, we know that it is the same
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to count the y’s in the right hand side sum with or without multiplicity as solutions of
p.

First, we prove that the support of [Pervn(η)] ∧ [P1
∞] is contained in the union of the

solution of pn(y) = y. Indeed, every Pervn(η) is contained in the boundedness locus Bz
of some fibre z of period (dividing) n (since a periodic cycle of vertical multiplier η ∈ D
attracts a critical point). By the description of the set Bz given in Section 5, this set
precisely clusters at the corresponding point in Jp,∞.

To conclude, we prove that at every point y ∈ Jp,∞ corresponding to a fibre z of
period n the Lelong number of [Pervn(η)] ∧ [P1

∞] at y is ∼ 2n. This means finding ∼ 2n

local components (with multiplicity) of Pervn(η) accumulating on y. Since the total
mass of [Pervn(η)] ∧ [P1

∞] is ∼ 4n and the cardinality of n-periodic points for p is ∼ 2n,
it is enough to find at least ∼ 2n components for every y (which necessarily cluster at
y ∈ Jp,∞). Since the return map of the fibre corresponding to y is of degree 2n, this
follows since the mass of Per1(η) in this one-dimensional family is 2n. �

We can now prove our main result concerning this family (giving Theorem C’).

Theorem 6.5. The measure T̂bif ∧ [P1
∞] exists and is equal to µp,∞.

Remark 6.6. With p(z) = z2 − 2, Theorem 6.5 implies that µp,∞ is the equilibrium
measure on the interval [−2, 2]. In [BG15a], the authors prove that the corresponding
object for the two-dimensional family of rational maps of degree 2 is also a measure
supported on the interval [−2, 2]. However, in that case the measure has positive Lelong
numbers at some points of its support (it is actually totally atomic), while in our case it
is absolutely continuous with respect to the Lebesgue measure of the interval.

Proof of Theorem 6.5. We first prove that the intersection in the statement exists, and
then we prove that it coincides with µp,∞.

The good definition of the intersection follows the same argument as in [BG15a,
Lemma 4.3]. We give it for completeness, also to highlight that a different approach
will be needed when considering the complete family. We take any complex line L
intersecting P1

∞ in a point disjoint from Jp,∞. The complement of this line is a copy
of C2. Since the set Jp,∞ is compact in this copy of C2, we can define the intersection
here by means of [Dem97, Proposition 4.1]. We then trivially extend this intersection
as zero on the line L.

Remark 6.7. When considering the full family, with the three-dimensional parameter
space, we cannot find a line in P2

∞ disjoint from E (and thus decompose P3 as the union
of C3 and a hyperplane disjoint from E) and apply the argument above.

We now prove that T̂bif ∧ [P1
∞] = µp,∞ By Lemma 6.4, it is enough to prove that

4−n[Pervn(η)] ∧ [P1
∞]→ T̂bif ∧ [P1

∞].

The idea is the following: the main obstacle in getting the convergence above would
be that some components of Pervn(η) become more and more tangent to P1

∞ as n→∞
(possibly with some multiple of the plane at infinity in their cluster set). But this cannot
happen, because of Lemma 5.6.

A way to make the above precise is to use the theory of horizontal currents developed
by Dinh-Sibony and Pham (see also [Duj07, Definition 2.1 and Definition-Proposition
2.2]). We recall that a closed positive (1, 1)-current in the product D×D is horizontal if
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its support is contained in a set of the form D×K, for some K compact in D. We will
make use of the following result (see [DS06, Theorem 2.1], and also [Pha05, Theorem
A.2] for the case where ϕ is not necessarily smooth).

Theorem 6.8 (Dinh-Sibony). Let R be a closed positive horizontal (1, 1)-current on
D × D, with support contained in D ×K. Then the slice Rz of R is well defined for
every z ∈ D. The slices are measures on D, supported in K, of constant mass. If ϕ is a
smooth psh function on D× D then the function z 7→ 〈Rz, ϕ(z, ·)〉 is psh.

By the description of the cluster set of the Bz’s given in Section 5, we can find a
biholomorphic image of a polydisc ∆ ⊂ P2 such that the following hold (by abuse of
notation, we think of the polydisc directly in P2):

(1) { 0 } × D ⊂ P1
∞;

(2) there exists K b D such that suppT̂bif ∩∆ ⊂ D×K and supp[Pervn(0)] ∩∆ ⊂
D×K for every n.

Indeed, suppose this is not true. We then find points in Pervn(0) accumulating some
point in P1

∞ \ Jp,∞. Since all the Pervn(0) cluster on Jp,∞, this contradicts Lemma 5.6
With this setting, we see that all the [Pervn(η)] and T̂bif are (uniformly) horizontal

currents on ∆. The convergence above can thus be rephrased as a convergence for the
slices at 0:

4−n[Pervn(η)]0 →
(
T̂bif

)
0
.

By standard arguments, the convergence can be tested against smooth psh tests. By
Theorem 6.8 above we know that, for every ϕ smooth and psh in ∆, the functions
un(z) := 4−n[Pervn(η)]z(ϕ(z, ·)) and u(z) :=

(
T̂bif

)
z

(ϕ(z, ·)) are psh. We claim that

un → u in L1
loc. This is true because the convergence of 4−n[Pervn(0)] to T̂bif implies

that of ϕ4−n[Pervn(η)] to ϕT̂bif in the product space ∆. Since the projection on the
first coordinate of ∆ is continuous, we have un → u as distributions. Thus, by [Hör07,
Theorem 3.2.12], we have un → u in L1

loc. This also implies that un → u almost
everywhere.

Now, by Hartogs’ Lemma the L1
loc limit of a sequence of psh function is greater than

or equal to the pointwise limit. In our case, the pointwise limit of the un is given by
u′(z) = 〈limn→∞[Pervn(η)]z, ϕ〉. Since u′(0) = 〈µp,∞, ϕ〉, we just need to prove that
u′(0) ≥ u(0). Since u is psh and u = u′ almost everywhere, we have a sequence of
zm ∈ D converging to 0 and such that u(zm) = u′(zm) → u(0). It is then enough to
prove that the limit of the u′(zm) is equal to u′(0), i.e., that

〈
(
T̂bif

)
zm
, ϕ〉 → 〈µp,∞, ϕ〉.

Since u(zm) = u′(zm), every limit of the slice measures on the left hand side is an
invariant measure supported on the Julia set on the slice at 0 (corresponding to Jp,∞).
Let ν be any such limit. It is enough to prove that ν = µp,∞. Suppose this is not the
case. Lemma 6.9 below gives a contradiction with the fact that 〈µ, ψ〉 ≤ 〈ν, ψ〉 for every
psh function ψ, as proved in the previous part. This completes the proof. �

Lemma 6.9. Let p be any polynomial on C, µ its equilibrium measure and ν any
invariant measure supported on the Julia set of p. If µ 6= ν there exists a subharmonic
function ψ on C such that 〈µ, ψ〉 > 〈ν, ψ〉.



BIFURCATIONS IN FAMILIES OF POLYNOMIAL SKEW PRODUCTS 31

Proof. Let pν and pµ be the respective logarithmic potentials of ν and µ, that is,
pµ(z) =

´
C log |z − w|dµ(w) and similarly for ν. Recall that the energy of a compactly

supported Radon probability measurem is defined by I(m) =
´
C pm(z)dm(z). Since µ is

the equilibrium measure of the Julia set of p, it is known (see for instance [Ran95]) that
I(µ) > I(ν) for every ν 6= µ. Therefore there must exist z0 such that pµ(z0) > pν(z0)
(recall that the potential of µ is constant on its support). Now we set ψ(z) = log |z− z0|.
By definition of pµ and pν , we then have 〈µ, ψ〉 > 〈ν, ψ〉. Thus, ψ has the required
property. �

6.2. The general case. We now describe the intersection of the bifurcation current
T̂bif with the hyperplane at infinity P2

∞ in the full family. The idea and steps will be as
follows:

(1) we can define the intersection when restricted to (almost) every line in the
hyperplane at infinity (this is done essentially by the same argument as above);

(2) we can use the previous partial intersections to prove the existence of the
intersection of T̂bif with the integration current on the hyperplane at infinity
[P2
∞];

(3) we will lift the defined current to the space P1×P1, where the coordinates stand
for the solutions of the polynomial az2 + bz + c associated with [a, b, c] ∈ P2

∞;
(4) in these coordinates, we can give a precise description and an explicit formula

for the current.
First of all, we consider any two-dimensional subfamily given by an hyperplane

αa+ βb+ γc = 0 in the parameter space (a, b, c), satisfying the condition

(10) [α, β, γ] 6= [z2, z, 1] for any z ∈ Jp.
This means that the hyperplane at infinity of the family is different from any line

Ez (see Section 5) corresponding to any z ∈ Jp. The following Lemma is proved in
essentially the same way as for the family a = 0. In particular, this measure can still be
identified with the equilibrium measure of the polynomial p.

Lemma 6.10. For any family satisfying (10), the intersection of the current T̂bif with
the hyperplane at infinity is a well defined positive measure, whose support coincides
with the intersection between E and the line αa+ βb+ γc = 0.

We can now consider the full family. First of all, we prove that the intersection of
T̂bif ∧ [P2

∞] is well defined.

Lemma 6.11. For the family Fabc the intersection T̂bif ∧ [P2
∞] is well defined.

Proof. Since the support of Tbif only clusters on E = ∪z∈JpEz, we need only prove the
statement in a neighbourhood of E. Take a point [a0, b0, c0] ∈ E. There exist z0 and z1

(not necessarily distinct) such that [a0, b0, c0] ∈ Ez0 , Ez1 but [a0, b0, c0] /∈ Ez for every
z 6= z0, z1. To prove that the intersection is well defined, we prove that T̂bif ∧ [P2

∞] has
locally bounded mass near [a0, b0, c0]. We fix local coordinates x, y such that

(1) [a0, b0, c0] becomes the origin;
(2) the coordinate axis are transversal to both Ez0 and Ez1 at the origin.

Lemma 6.10 above implies that the intersection T̂bif ∧ [P2
∞]∧ [L] is well defined for lines

L parallel (or almost parallel) to the x and y axis. Since all these intersections are
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measures with uniformly bounded mass, the intersection between T̂bif ∧ [P2
∞] and the

currents
´
x∈I [Lx] and

´
y∈I [Ly] are well defined, where I is a small open neighbourhood

of 0, Lx the line {x = constant}, Ly the line {y = constant} and the integrations are
against the standard Lebesgue measure. This implies that the intersections between
T̂bif ∧ [P2

∞] and respectively dx ∧ idx and dy ∧ idy are of locally bounded mass, and
thus well defined. This implies the statement. �

In order to describe the intersection given by Lemma 6.11, it is useful to consider a
change of coordinates on the hyperplane at infinity. More specifically, consider the map
given by

π : P1 × P1 → P2

(x, y) 7→ [a, b, c]

with a, b, c such that x and y are the two solutions of aX2 + bX + c. The map
π is clearly well defined on the quotient P1 × P1/ ∼ given by (x, y) ∼ (y, x). By
abuse of notation, notice that a = 0 corresponds to x or y being ∞. Consider now
z ∈ J(p) and the corresponding set Ez ⊂ P2

∞. Recall that this is given by the [a, b, c]
satisfying az2 + bz + c = 0. Thus, its lift to P1 × P1 by the map π is given by(
[P1]× {z}

)
∪
(
{z} × [P1]

)
. We can now conclude the proof of Theorem C.

Theorem 6.12. For the family Fabc we have

T̂bif ∧ [P2
∞] =

ˆ
z
[Ez]µp(z).

Proof. Since T̂bif ∧ [P2
∞] is well defined, we can lift it to a positive closed current on

P1 × P1. In order to prove the statement, we will prove that

π∗
(
T̂bif ∧ [P2

∞]
)

=

(
1

2

ˆ
z

(
[{z} × P1] + [P1 × {z}]

)
µp(z).

)
For every η, the lift to P1 × P1 of the intersection at infinity of the current [Pervn(η)]

is given by an average of currents of the form

[{z} × P1] + [P1 × {z}]
with z such that pn(z) = z. This implies that

π∗
(
T̂bif ∧ [P2

∞]
)

=

(ˆ
z

(
[{z} × P1] + [P1 × {z}]

)
ν(z)

)
for some measure ν on Jp. We can thus find ν by considering a slice of the current
above by a complex line. In particular, we can consider the line corresponding to a = 0,
and the assertion follows from Theorem 6.5. �

7. Unbounded hyperbolic components in D (Theorem D)

In this section we study unbounded components in D. It follows from the above
characterization of the accumulation set of the bifurcation locus at infinity (see Theorems
5.5 and 6.12) that we can associate to every (unordered) pair of components of the
Fatou set of p a vertically expanding component in D (hyperbolic, if p is hyperbolic).
Here we prove that all these components are distinct, i.e., we cannot have a component
in D accumulating points in two distinct components of the Fatou set at infinity. This
is done by studying the topology of the Julia sets for parameters near infinity. Indeed,
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since these components are vertically expanding, the Julia sets of maps in the same
components must share the same topology (see Lemma 7.3). It thus suffices to exhibit
distinct topologies for different cluster points at infinity. For the sake of exposition, we
shall first treat the case of the family (z2, w2 + bz + c) (thus corresponding to fixing the
polynomial p(z) = z2 and considering the slice a = 0 in the parameter space), and then
see how to handle the general case.

7.1. The family (z2, w2 + bz + c). When p(z) = z2, we have two possible components
∆0 and ∆∞ near infinity (the first one corresponding to the unit disk, and the second
one to {z ∈ C : |z| > 1}). Recall that z here corresponds to −c/b. The component
∆∞ thus contains trivial products (z, w) 7→ (z2, w2 + c) for c large enough, while ∆0

contains skew-products of the form (z, w) 7→ (z2, w2 + bz) for b large enough. Hence
all we have to do is to prove that a map of the form (z2, w2 + bz) cannot be in the
same stability component as (z2, w2 + c), for b and c large enough. Let us first set some
notations.

Definition 7.1. Let Σ denote a copy of the standard Cantor set that is invariant
under w 7→ −w, and let S be the suspension given by S := ([0, 1] × Σ)/ ∼, where
(0, w) ∼ (1,−w).

Here, it is immediate to see that the Julia set of a product (z, w) 7→ (z2, w2 + c) is
homeomorphic to S1 ×Σ. The desired result thus follows from the following topological
description of the Julia set of skew-products in ∆0.

Proposition 7.2. For b ∈ C sufficiently large, the Julia set of the map (z, w) 7→
(z2, w2 +bz) is homeomorphic to the suspension S. In particular, it is not homeomorphic
to S1 × Σ.

For the proof, see [DH08, Lemma 5.5]. In this particular case, for any w ∈ C the
curve Sw := {(eit, e2itw) : t ∈ [0, 2π]} is mapped to Sg(w), from which Proposition 7.2
follows without difficulty. In the next section, we treat a more general family in which
the situation is not so explicit, using a similar but more technical type of argument.

7.2. The general case. We now consider the complete family (z, w) 7→ (p(z), w2 +
az2 + bz+ c). The distinction of the unbounded components in D will be done by means
of the following lemma.

Lemma 7.3. Let Fλ(z, w) = (p(z), qλ(z, w)) be a family of polynomial skew products
defined on some parameter space Λ. Let Z be a compact invariant set for p. Assume that
Fλ0 is uniformly vertically expanding on JZ = ∪z∈Z {z} × Jz. Then Fλ0 is structurally
stable on JZ .

Proof. We follow the classical one dimensional construction of the conjugation valid for
hyperbolic polynomial maps, see e.g., [BH]. For ease of notation, we write F0 for Fλ0

and assume that λ ∈ D.
By uniform expansiveness and continuity, there exist ε and C > 1 such that, for

every λ sufficiently small and every (z, w) ∈ JZ(F0) we have
∣∣∣q′λ,z(w′)∣∣∣ > C > 1 for

every w′ ∈ B(w, ε). This implies that, denoting by (zn, wn) the orbit of (z, w) under
F0, we have qλ,z(B(wn, ε)) ⊃ B(wn+1, C

′ε) for some 1 < C ′ < C. It follows that the
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diameter of B(wn+1, ε) inside qλ,z(B(wn, ε)) is uniformly bounded from above and that,
if x, y ∈ B(wn, ε) and qλ,z(x), qλ,z(y) ∈ B(wn+1, ε), then

dB(wn+1,ε)(qλ,z(x), qλ,z(y)) > C ′′dB(wn,ε)(x, y).

for some uniform constant C ′′ > 1. Thus, the intersection

B(w, ε) ∩ q−1
λ,z(B(w1, ε)) ∩ · · · ∩ q−1

λ,zn−1
◦ · · · ◦ q−1

λ,z(B(wn, ε))

consists of a single point. Denote it by h(z, w). Then, qz,λ ◦ h(z, w) = h(z1, qz,0(w)).
The map h constructed above is continuous. Since it is the identity for z, we check

the continuity in w. A basis of open neighbourhoods of (z, w) in the vertical fibre at z
is given by the intersections ∩ni=0

(
Qnz,0

)−1
(B(wn, ε)). These open sets are sent to the

corresponding open sets ∩ni=0

(
Qnz,λ

)−1
(B(wn, ε)). This proves continuity. Since we

can start the construction at a different λ near 0, the map h is invertible and thus a
homeomorphism. �

Remark 7.4. Notice that Z in the previous statement may contain critical points. This
does not interfere with the construction, which is done fibre by fibre.

Recall that, by Remark 2.10, it makes sense to speak about vertically expanding
components of the stability locus. This notion coincides with hyperbolicity in case of
an hyperbolic base p.

Recall from the previous section that the rational map π : P1 × P1 → P2 is defined
by π(x, y) = [1,−x− y, xy], so that if π([x, y]) = [a, b, c] then x and y are the roots of
the polynomial aX2 + bX + c. By the description of the accumulation at infinity of the
bifurcation locus, it follows that every point [a, b, c] ∈ P2

∞ such that the two roots of
aX2 + bX + c belong to the Fatou set of p is accumulated by a (unique) component of
D. Moreover, the component is the same if we move the two roots in the respective
components of the Fatou set of p. If we denote by Sp the set of unordered pairs of Fatou
components of p, this immediately gives the following result (where π0(D) denotes the
set of the connected components of D).

Proposition 7.5. The map π : P1×P1 → P2
∞ descends to a well-defined map ω : Sp →

π0(D).

Let us now restrict our attention to the image D′ of the map ω above (thus corre-
sponding to unordered pairs of Fatou components of p). Our result below completes
the classification of these components, for p with locally connected Julia set.

Theorem 7.6. Assume that Jp is locally connected. Then ω : Sp → D′ is bijective.

Since ω is surjective on D′, all it remains is to prove that it is injective. The rest of
the section is devoted to that task.

Definition 7.7. Let C ⊂ C be a topological circle, and C̃ ⊂ C ×C a second topological
circle. We will say that C̃ winds n times above C if the projection π1 : C̃ → C is an
unbranched covering of degree n.

The next proposition (see [DH84]) is the reason why we assume Jp to be locally
connected:
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Proposition 7.8. Let K ⊂ C be a full, compact, locally connected set. Then for every
connected component Ui of K̊, its closure Ui is homeomorphic to a closed disk.

Since Jp is locally connected, this implies in particular the boundary of every bounded
Fatou component of p is a Jordan curve, which we will need in the proof below.

Let F (z, w) = (p(z), w2 + az2 + bz + c). Let U, V be Fatou components of p with
p(U) = V , and let s be the number of roots of aX2 + bX + c lying in U , counted with
multiplicity. Let C be a simple closed curve in ∂V × C. Let Ĉ := F−1(C) ∩ (∂U × C).

Definition 7.9. Let F (z, w) = (p(z), w2+az2+bz+c) ∈ D and let r(F ) := infz∈Jp |az2+

bz + c|. Let γ : [0, 1]→ C2 be a simple closed curve, given by γ(t) = (γz(t), γw(t)). We
say that γ is admissible if for all t ∈ [0, 1], |γw(t)| < r(F ).

Note that in particular, if C ⊂ K(F ) and F ∈ D, then C is admissible.

Lemma 7.10. Let [a, b, c] ∈ P2
∞ be such that the roots of aX2+bX+c are in the Fatou set

of p. For T ∈ C with |T | large enough, the map FT := (z, w) 7→ (p(z), w2+T (az2+bz+c))
satisfies the following properties:

(1) If C is an admissible curve, then so is every component of F−1
T (C);

(2) There exists 0 < R < r(FT ) such that for all z ∈ Jp, Kz ⊂ D(0, R).

Proof. Let R(FT ) := supz∈Jp |Taz
2+Tz+Tc|. Then there exists a positive constant α =

α(a, b, c, p) such that for all T ∈ C, we have 1
α |T | ≤ r(FT ) ≤ R(FT ) ≤ α|T |. Moreover,

for |T | large enough FT lies in D, and for all z ∈ Jp, we have Kz ⊂ D(0, 2
√
R(FT )) by

Lemma 5.6. Therefore we may take R := 2
√
R(FT ) for item (2). For item (1), observe

that if (z, w) ∈ F−1(C) and C is admissible, then |w| = O(
√
|T |) and therefore any

component of F−1(C) is also admissible. �

Lemma 7.11. Assume that F ∈ D, the roots of aX2 + bX + c are in the Fatou set of
p and that ‖(a, b, c)‖∞ is large enough so that Lemma 7.10 holds. Assume that C winds
once above ∂V and is admissible. Then

(1) if s = 0 or s = 2, Ĉ has two connected components C1 and C2, and their linking
number is equal to s

2 . Both components wind once above ∂U ;
(2) if s = 1, then Ĉ is connected and winds twice above ∂U .

Notice the assumptions imply, in particular, that the boundary of V is a Jordan
curve.

Proof. Let δ ∈ {1, 2} be the degree of p : U → V (δ = 1 if U contains no critical point
of p, and δ = 2 otherwise). Let γ : R/Z → C defined by γ(t) := (γV (t), γw(t)) be a
parametrization of C. Let γ1 : R → C2 be a lift by F of t 7→ γ(δt). We can define a
parametrization of ∂V by p ◦ γU (t) = γV (δt) for all t ∈ R/Z. So, the map γ1 is of the
form

γ1(t) = (γU (t), wt)

and wt satisfies the equation

w2
t = γw(t)− (aγU (t)2 + bγU (t) + c).

Observe that the curve t 7→ γw(t)− (aγU (t)2 + bγU (t) + c) turns s times around w = 0.
We now distinguish between the cases s ∈ {0, 2} or s = 1.
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(1) If s ∈ {0, 2}, since the curve t 7→ γw(t)− (aγU (t)2 + bγU (t) + c) turns an even
number of times around w = 0 as t goes from 0 to 1, we have w1 = w0 by
monodromy. Therefore γ1(1) = γ1(0), and γ1(R) is a closed loop winding once
above ∂U . Since F : Ĉ → C has degree 2δ, and F : γ1(R) → C has degree δ,
there is a second lift γ2 : R→ C2 parametrizing a second connected component
of Ĉ. Moreover, γ2 has the form

γ2(t) = (γU (t),−wt)

and therefore the linking number of C1 and C2 is given by the number of turns
around w = 0 of t 7→ wt as t varies from 0 to 1, namely s

2 .
(2) If s = 1: now the curve t 7→ γw(t) − (aγU (t)2 + bγU (t) + c) turns exactly

once around w = 0 as t goes from 0 to 1. Therefore, by monodromy we have
w1 = −w0 and w2 = w0. This means that the support of γ1(R) is a curve that
winds twice above ∂U . Moreover, as γ1(R) ∩ {z = γU (0)} = {(γU (0),±w0)},
the degree of F : γ1(R)→ C is 2δ and therefore Ĉ = γ1(R).

�

Lemma 7.12. Assume that F ∈ D, the roots of aX2 + bX + c are in the Fatou set of
p and that ‖(a, b, c)‖∞ is large enough so that Lemma 7.10 holds. Assume that C winds
twice above ∂V . Then Ĉ has two connected components C1 and C2. Both are curves
that wind twice above ∂U and their linking number is s.

Proof. The proof is similar to that of the previous Lemma. Let δ ∈ {1, 2} be the degree
of p : U → V . Since C winds twice above ∂V , it has a parametrization γ : R/Z→ C of
the form γ(t) = (γV (2t), γw(t)), where for all t ∈ R, γw(t+ 1

2) 6= γw(t). As before, let
γ1 : R→ Ĉ be a lift by F of t 7→ γ(δt). Then γ1 has the form

γ1(t) = (γU (2t), wt),

and t 7→ wt satisfies the equation

w2
t = γw(t)− (aγU (2t)2 + bγU (2t) + c).

Note that aγU (1)2+bγU (1)+c = aγU (0)2+bγU (0)+c but γw(1
2) 6= γw(0), hence w 1

2
6= w0.

Also note that as t varies from 0 to 1, the loop t 7→ γw(t) − (aγU (2t)2 + bγU (2t) + c)
turns 2s times around w = 0. Therefore by monodromy, we have w1 = w0, so that
γ1(1) = γ1(0) and γ1(R) is a closed loop that winds twice above ∂U .

Again, the degree of F : Ĉ → C is 2δ, and the degree of F : γ1(R) → C is only
δ. Moreover, w 1

2
6= −w0 (since w2

1
2

6= w2
0), and therefore γ2 : R → C defined by

γ2(t) = (γU (2t),−wt) parametrizes a second and different component of Ĉ. For degree
reasons, Ĉ is exactly equal to C1 ∪ C2, where Ci is the support of γi(R). Each Ci is a
loop winding twice above ∂U , and C1 ∩ C2 = ∅ since for all t ∈ R, wt 6= 0. Therefore
the Ci are the connected components of Ĉ. Moreover, since γ1(t) = (γU (2t), wt) and
γ2(t) = (γU (2t),−wt), the linking number of C1 and C2 is given by the number of times
that t 7→ wt turns around w = 0 as t varies from 0 to 1, namely s. �

On our way to prove Theorem 7.6, we will need the following topological description
of the Julia sets of maps in D, which has independant interest.
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Theorem 7.13. Assume that Jp is locally connected. Let Σ be the standard Cantor set
and S be its suspension, as in Definition 7.1.

(1) If there is a (bounded) periodic Fatou component of p containing exactly one
root of aX2 + bX + c (counted with multiplicity), then for any bounded Fatou
component U of p, J∂U is homeomorphic to S.

(2) If there is a Fatou component of p containing 2 roots of aX2 + bX + c (counted
with multiplicity), then J2(F ) is homeomorphic to Jp × Σ.

(3) If both roots of aX2 + bX + c lie in the basin of infinity of p, then J2(F ) is
homeomorphic to Jp × Σ.

(4) If the only root of aX2 +bX+c not in the basin of infinity of p is in a component
V that is not periodic, then for all components W in the prehistory of V we
have that J∂W is homeomorphic to S, and for all other components U we have
that J∂U is homeomorphic to S1 × Σ.

Proof. If p has no periodic bounded Fatou component, then by Sullivan’s theorem
p only has the basin of infinity as a Fatou component. In that case, there can be
only one component in D′, which is that containing product maps; therefore J2(F ) is
homeomorphic to Jp × Σ. From now on, we assume that p has a cycle of bounded
Fatou components. Let R > 0 be as in lemma 7.10, let U0 be a bounded periodic Fatou
component for p of period m ∈ N∗, and let W0 := ∂U × D(0, R). By the maximum
modulus principle, U is simply connected and since Jp is locally connected, ∂U is a
Jordan curve (see [DH84]). Let Ui := pm−i(U0) be a cyclic numbering of the cycle of
components containing U0, with i = 0, . . .m− 1, so that p(Ui+1) = Ui.

(1) Assume first that each component in the forward orbit of U contains either
zero or two roots of aX2 + bX + c. Since W0 is homotopic to a curve winding
once above ∂U0, by Lemma 7.11, W1 := F−1(W0) ∩ (∂U1 × C) is homotopic
to two disjoint curves, each winding once above ∂Um−1. Therefore, W1 is a
disjoint union of the interior of two solid tori, each winding once above ∂Um−1.
Letting Wn := F−1(W0) ∩ (∂Un × C), we therefore get by induction that Wn is
a disjoint union of the interior of 2n solid tori, each winding once above ∂Un.
Since Wm bW0, we get that

⋂
n∈mNWn is homeomorphic to S1 × Σ.

(2) Assume now that there exists a component in the cycle containing U0 (we may
assume without loss of generality that it is U0 itself) that contains exactly one
root of aX2 + bX + c. We proceed as before, letting W0 := ∂U0 × D(0, R)
and Wn := F−n(W0) ∩ (∂Un × C). This time, Lemma 7.12 implies that W1 is
homotopic to a double winding curve above ∂U1. Therefore W1 is the interior
of a double winding solid torus, and for all n ≥ 1, Wn is the disjoint union
of the interior of 2n−1 solid tori, each winding twice above ∂Un. Therefore,
J∂U0 =

⋂
n∈mNWn is homeomorphic to the suspension S.

To conclude the proof of Theorem 7.13, notice that if U, V are two Fatou components
of p such that p(U) = V , and J∂V is homeomorphic to either S1 × Σ or S, then
Lemmas 7.11 and 7.12 allow us to determine the topology of J∂U . More precisely, letting
s ∈ {0, 1, 2} be the number of roots of aX2 + bX + c contained in U , we have the
following

(1) If s = 0 or s = 2: then J∂U is homeomorphic to J∂V
(2) If s = 1: then J∂U is homeomorphic to S.
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Since every Fatou component of p is preperiodic to U0 by Sullivan’s theorem, the rest
of the proof follows. �

We are now ready to prove the injectivity of ω.

Proof of Theorem 7.6. Recall that by Lemma 7.3, if (Ft)t∈[0,1] is an arc in D, there is
an isotopy ht : J2(F0)→ J2(Ft) such that

(11) ht ◦ F0 = Ft ◦ ht.
In particular, if F0, F1 are two skew-products in the same connected component of
D, then they can be joined by an arc and therefore their Julia sets are isotopic. Let
F0, F1 ∈ D, with Fi(z, w) = (p(z), w2 + aiz

2 + bzi + c), i ∈ {0, 1}. For any Fatou
component U of p, let si(U) be the number of roots of aiX2 + biX + ci counted with
multiplicity contained in U . It is enough to prove that if J2(F0) is isotopic to J2(F1)
then for any bounded Fatou component U of p, we have s0(U) = s1(U).

Let U be a bounded Fatou component of p and let z ∈ ∂U , w ∈ Jz(F0). Assume
that there exists an isotopy (ht)∈[0,1] as in (11). By Theorem 7.13, there exists a unique
closed simple curve C0 passing through F0(z, w) and contained in J2(F0) ∩ (∂V × C),
where V := p(U). That curve winds either once or twice above ∂V . Let C1 := h1(C0)

and Ĉi := F−1
i (Ci) ∩ (∂U × C), where i ∈ {0, 1}. Since the number of connected

components of Ĉi and their linking number are invariant under isotopy, Lemmas 7.11
and 7.12 imply that s0(U) = s1(U). Since this is true for any bounded Fatou component
U of p, the map ω is injective and the proof is finished. �

8. Unbounded hyperbolic components in M

We have provided in the previous section a complete classification of unbounded
components of D accumulating on P2

∞ \ E. In this section we adapt an interesting
example ([Jon99, Example 9.6]) to construct unbounded hyperbolic components inM.
For the sake of notation, we start setting the following definition, motivated by Corollary
5.8.

Definition 8.1. Let p be a quadratic polynomial. Let z1, z2 ∈ Jp (possibly with z1 = z2).
We say that a hyperbolic component U ⊂ Sk(p, 2) is of type {z1, z2} if for all z ∈ Jp,
G(z, 0) = 0 if and only if z = z1 or z = z2. We may write {z1} instead of {z1, z1}.

The following theorem provides a basic classification of unbounded hyperbolic com-
ponents inM. While for D we looked for a correspondence with (couples of) points in
the Fatou set of p, forM we see that a natural correspondence exists with (couples of)
points in the Julia set of p.

Theorem 8.2. Let p be a quadratic polynomial and U ⊂ Sk(p, 2) be an unbounded
hyperbolic component in M. Then there are z1, z2 ∈ Jp such that U is either of type
{z1} or of type {z1, z2}. Moreover, if U is of type {z1} then z1 must be periodic for p,
and if it is of type {z1, z2} then either both z1 and z2 are periodic or one is preperiodic
to the other.

Proof. By Theorem A for any f1, f2 ∈ U and z ∈ Jp, we have that (z, 0) has a bounded
orbit for f1 if and only if it has a bounded orbit for f2. Since U is unbounded, Corollary
5.8 implies that there are at most two points z1, z2 ∈ Jp such that (zi, 0) has bounded
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orbit, and since U is a component inM there is at least a z ∈ Jp such that (z, 0) has
bounded orbit. Therefore there are z1, z2 ∈ Jp (possibly with z1 = z2) such that U is of
type {z1, z2}. In order to prove the remaining claims of the theorem, we will use the
following lemma.

Lemma 8.3. Let f be a polynomial skew-product that is vertically expanding above Jp.
Let z ∈ Jp and V be a connected component of K̊z. There exists n ∈ N∗ such that fn(V )
contains a critical point for f .

We refer to [DH08, Proposition 3.8] for a proof of this fact. It is stated there in the
case of an Axiom A polynomial skew-product but the proof only uses vertical expansion
over Jp.

Assume first that U is of type {z}, and let V be the connected component of K̊z

containing (z, 0). By Lemma 8.3, there is n ∈ N∗ such that fn(V ) contains a critical
point. But since all critical points (y, 0), y ∈ Jp escape if y 6= z, this means that
fn(V ) = V and (z, 0) ∈ V . In particular, we must have pn(z) = z. Similarly, if U is
of type {z1, z2}, let Vi denote the component of K̊zi containing (zi, 0) (1 ≤ i ≤ 2). By
Lemma 8.3, there are n1, n2 ∈ N∗ such that fni(Vi) is either V1 or V2, from which the
result follows. �

We are now ready to give examples of all three possibilities of unbounded hyperbolic
components inM. We will need the following elementary lemma, following from Section
5.

Lemma 8.4. Let z1, z2 ∈ Jp with z1 6= z2 and assume that U is a hyperbolic unbounded
component of type {z1, z2}. Then the cluster of U on P2

∞ is exactly {(1 : −z1−z2 : z1z2)}.

The following is an adaptation of [Jon99, Example 9.6].

Proposition 8.5. Let p(z) := z2 − 2, and let gt(z, w) := (p(z), w2 + t(z + 1)(2− z)).
Then for all t > 0 large enough,

(1) gt is hyperbolic;
(2) for all z ∈ Jp\{−1, 2}, the critical point (z, 0) escapes to infinity;
(3) the critical points (−1, 0) and (2, 0) are fixed.

Proof. Observe that for all z ∈ Jp, R := 3
√
t is an escape radius (i.e., Kz ⊂ D(0, 3

√
t)

and |w| ≥ 3
√
t implies that |Qz(w)| > 3

√
t). Set

At := {z ∈ [−2, 2] : |t(z + 1)(z − 2)| ≥ 3
√
t}.

Claim 8.6. For t > 0 large enough and for any z ∈ Jp\{−1, 2} there exists n ≥ 0 such
that pn(z) ∈ At.

Proof of Claim 8.6. Notice that p is semi-conjugated on Jp to the doubling map on
R/Z via the map ϕ : R/Z→ Jp given by ϕ(x) = 2 cos(2πx). Note that ϕ([0]) = 2 and
ϕ([1

3 ]) = −1. We start by proving the following statement: let ε > 0 and let

Ã :=

(
ε,

1

3
− ε
)
∪
(

2

3
+ ε, 1− ε

)
⊂ R/Z.

Then for any θ ∈ R/Z\{[0], [1
3 ], [1

2 ], [2
3 ]}, there exists n ∈ N such that 2nθ ∈ Ã. To see

that this last statement holds, first note that if θ ∈ [−ε, ε] and θ 6= 0 then eventually
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2nθ ∈ Ã (provided ε is small enough, say ε < 1
8). So, setting I := (1

3 − ε,
2
3 + ε), we may

assume that 2nθ ∈ I ∪ {[1
2 ], [0]} for all n. Thus, apart from the point θ = [1

2 ] (which is
sent to the fixed point 0), we have that 2n+1θ belongs to I for all n. Thus, 2nθ must
remain forever in a small neighborhood of {1

3 ,
2
3}, and therefore that θ ∈ {1

3 ,
2
3}.

From this it follows that for small enough δ > 0, we have that for any z ∈
Jp\{−2,−1, 2} there exists n ∈ N such that pn(z) ∈ (−1 + δ, 2 − δ). Since for t > 0

large enough we have that t(z + 1)(z − 2) > 3
√
t for z ∈ (−1 + δ, 2− δ), the claim is

proved (notice that −2 ∈ At for t large enough). �

Claim 8.7. The following three assertions hold for t large enough, for δ > 0 small
enough (allowed to depend on t).

(1) {|Im(w)| ≤ δ} ∩Kz = ∅ for all z ∈ Jp such that |z + 1| > δ and |z − 2| > δ.
Set Uδ := {|Im(w)| ≤ δ, |Re(w)| ≤ 1

3} and U
′
δ := {|Im(w)| ≤ δ, |Re(w)| ≤ 1

4}. Then
(2) for all z ∈ Jp such that |z + 1| < δ or |z − 2| < δ, we have qz(Uδ) ⊂ U ′δ;
(3) for all z ∈ Jp\{−1, 2}, we have Uδ ∩Kz = ∅.

Proof of Claim 8.7. Let us prove each item separately.
(1) Since K is closed, it is enough to prove that for all z ∈ Jp\{−1, 2}, {Im(w) =

0} ∩ Kz = ∅. Fix z ∈ Jp\{−1, 2} and w ∈ R. For t large enough, by Claim
8.6 there is some n ≥ 0 such that pn(z) ∈ At. Set wn := Qnz (w) ∈ R. Then
Qn+1
z (w) = w2

n + t(z + 1)(2 − z) ≥ t(2 − z)(z + 1) ≥ 3
√
t and therefore

fn(z, w) /∈ K, hence (z, w) /∈ K.
(2) Let t > 0 large enough for Claim 8.6 to hold. Let δ > 0 be given by the previous

item. Note that for all z ∈ Jp such that either |z − 2| ≤ δ or |z + 1| ≤ δ, we
have |t(z + 1)(z − 2)| ≤ 4tδ.

Fix z ∈ Jp as in the statement and w ∈ Uδ. Set w1 := qz(w). Then,{
Re(w1) = Re(w)2 − Im(w)2 + t(2− z)(z + 1)

Im(w1) = 2Im(w)Re(w)

and therefore {
|Re(w1)| ≤ 1

9 + δ2 + 4tδ < 1
4

|Im(w1)| ≤ 2δ 1
3 ≤ δ

provided that δ is small enough. The assertion follows.
(3) For each z as in the statement and w ∈ Uδ, by means of Claim 8.6 and iterating

the second item we find a smallest n ≥ 1 such that pn(z) ∈ At and Qnz (w) ∈ Uδ.
By the first item, fn(z, w) /∈ K; so (z, w) /∈ K, and the proof is completed.

�

Let us now return to the proof of Proposition 8.5. Item 3 is trivial. Item 2 follows
immediately from the last item of Claim 8.7. In order to prove that gt is indeed
hyperbolic, we prove that the post-critical set does not accumulate on J (see Theorem
2.5). Since the critical set over Jp is given by [−2, 2]× {0}, it is enough to prove that

for every z ∈ [−2, 2] we have d(Fn(z, 0), J) > δ for every n ≥ 0.

where δ is as in Claim 8.7. We can assume that δ < 1
12 and that the distance between

J and Jp × {w ≥ 3
√
t} is also larger than δ.
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Notice that item 3 of Claim 8.7 and the lower semicontinuity of Jz imply that we
have J ∩ ([−2, 2]× Uδ) = ∅. Thus, the claim is true for n = 0. Since (2, 0) and (−1, 0)
are fixed, the claim is true for these two points. Moreover, the claim holds for every
z ∈ At, since by definition |qz(0)| = |t(z + 1)(z − 2)| ≥ 3

√
t.

Fix then any other z ∈ Jp and set (zn, wn) := (pn(z), Qnz (0)). Notice that wn ∈ R.
By Claim 8.6, there exists n such that zn ∈ At. By the first item of Claim 8.7, it is then
enough to prove that d((zj , wj), J) ≥ δ for 1 ≤ j < n. But the second item of Claim
8.7 implies that wj ∈ R ∩ U ′δ. Since J ∩ ([−2.2]× Uδ) = ∅, the assertion follows. �

Proposition 8.8. Let p(z) = z2 − 2. There are unbounded hyperbolic components in
Sk(p) of type {−1, 2}, {2}, and {−2, 2}.

Notice the the component {−1, 2} corresponds to two periodic points for p, while
{−2, 2} corresponding to a periodic point and a corresponding preperiodic point.

Proof. According to Proposition 8.5, the maps gt are all hyperbolic, and since t 7→ gt
is a continuous, unbounded path in Sk(p, 2), they all belong to the same hyperbolic
component which is unbounded and of type {−1, 2}. The existence of components
of type {2} and {−2, 2} follows from considering skew-products of respective forms
(z, w) 7→ (z2− 2, w2 + t(2− z)) and (z, w) 7→ (z2− 2, w2 + t(z+ 2)(2− z)), and adapting
Proposition 8.5 to those cases. �

Question 8.9. Let p be any quadratic polynomial, and z1, z2 ∈ Jp be periodic points. Is
it true that there exists in Sk(p, 2) an unbounded hyperbolic component of type {z1, z2}?
The method that we used here in the case p(z) = z2 − 2 relies crucially on the real
structure of Jp, and cannot readily be adapted to the case where p is not real.
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