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Refinement process applied to UML2.0 Sequence Diagrams (SD) is adopted to deal with the complexity of modeling distributed systems. The various steps leading to the checking of the refinement of SDs theoretically as well as practically are explained. A refinement relation possessing the necessary properties, is formalized; its implementation in the Event-B method is proposed in order to check the correctness of the refinement of SDs, and to verify some safety, liveness properties and the termination of the new introduced events.

INTRODUCTION

Context. The UML2.0 sequence diagrams (SD) are widely used by designers thanks to their intuitiveness, the ease of graphical representation, and their high expressivity, allowing to model complex behaviour of systems. Refinement process is a privileged approach adopted by researchers to manage complexity. SDs must be refined correctly, this requires the formalization of refinement relation supporting an incremental development. Since the semi formality of SD didn't allow such a verification, the coupling of a formal and tooled method supporting this process is recommended.

Motivation. The notion of refinement was well studied, in several works, for the labeled transition systems (LTS), and more generally for the modal transition systems (MTS) [START_REF] Fischbein | A Foundation for Behavioural Conformance in Software Product Line Architectures[END_REF]. However, few works are interested in the refinement of UML2.0 SDs, which are more and more used. Intuitively, refinement of SD consists either in substituting a lifeline by new lifelines and/or detailing the internal behaviour of a lifeline by adding new sublifelines and eventually new events. We outline two aspects for the SD: the structural aspect (lifelines, messages, events, CF) and the semantic aspect that is its traces. Mainly, the existing approaches that deal with refinement of SDs focus on one aspect and impose a restrictive hypothesis for the other aspect: i) most of them use a refinement relation which does not support explicitly the introduction of new events in the refined SD; these later are then hidden in order to verify the refinement relation, which can lead to some errors of modeling that might not be detected; ii) other approaches ignore or didn't deal correctly with the guards of combined fragments (ALT, OPT, LOOP), in the formalization of the considered refinement relation that they consider; iii) most of the existing approaches did not propose efficient tools for the checking of refinement relation; iv) to our knowledge, all the approaches are based on trace semantics, and the verification of the refinement relation requires the computation of traces of SD pairs. This can lead to combinatorial explosion of number of traces to generate. Moreover, they are based on rules of standard semantics (Object Management Group, 2009) for the derivation of traces, that are not suitable for SD modeling distributed systems, since they take no account of the independence of components of distributed systems.

In our approach, SDs are equipped with an operational semantics based on causal semantics [START_REF] Dhaou | Extending Causal Semantics of UML2.0 Sequence Diagram for Distributed Systems[END_REF], which in turn are based on partial orders theory; this is suitable for distributed systems, permits to formalize the refinement relation straightforwardly and facilitates its verification.

The verification of the approach is absolutely necessary. The choice of a formal method that supports the refinement process [START_REF] Schneider | The behavioural semantics of Event-B refinement[END_REF], and which offers the verification of data as well as the verification of traces is primordial.

Contribution. The contribution of our work is manifold: we proposed an approach that deals with refinement of SDs, while preserving required behaviours and deals correctly with guards. We formalize a refinement relation favourable to an incremental development, it is based on existing ones that are already defined on guarded LTS. Finally, we propose a generic implementation with Event-B/Rodin-ProB, for checking of correctness of refinement relation.

Organization. The remainder of the article is structured as follows. In Section 2, we present a case study that is used to illustrate our approach. In Section 3 we first present an overview of the operational semantics of UML2.0 SD, then we formalize our refinement relation. Section 5 is devoted to the implementation of our approach in Event-B, we provided an overview on the methodology that allows us to verify the refinement between two SDs. Before concluding in Section 7, we present some related works in Section 6.

CASE STUDY

Through the following case study, we show a concrete example of an incremental development of behaviour of a distributed system. We model the interactions in a restaurant with UML2.0 SD (depicted in Fig. 1). The restaurant system has independent and distributed components: the Client, the Head Waiter, the Kitchen and the Barkeeper. The Client orders meal and drink to the Head Waiter. This latter transmits the orders respectively to the Kitchen and to the Barkeeper. Once the orders are ready, the kitchen and the Barkeeper solicit the Head Waiter to serve it. Then, the Head Waiter brings the bill. For bill payment, the Client has several alternatives: he can pay by cash, by card or by cheque. Once the bill was paid, the Head Waiter delivers a receipt to the Client. A possible refinement is depicted in Fig. 2. The abstract lifeline Head Waiter is substituted by the new lifelines Waiter1 and Waiter2. The events of Head Waiter are distributed between Waiter1 and Waiter2. The lifeline Kitchen delegates the task of preparation of meal to the new lifeline Cook, which in turn, once the meal is ready, alerts the Kitchen at most 3 times. For simplicity, all the abstract events keep their same name in the refined SD.

SET THEORY NOTATIONS AND DEFINITIONS

This section introduces some necessary rudiments on UML2.0 SD as well as a part of the set theory notation that we use. The table 1 provides a summary of set theory notations. We consider a sub-set of SD containing sequential combined fragment CF.

alt [type=1] [type=2] • O, M, EV T are respectively a finite and non-empty set of lifelines, messages and events. We consider asynchronous messages, the set M is well formed if every message is identified by a pair of events: a sent event and a received event. • E s, E r denote respectively the set of sent events and the set of received events, • FCT s, FCT r are two bijective functions that associate respectively for each message a sent event and a received event, • FCT o is total surjective function that associates for each event one lifeline representing the transmitter or the receiver, A conditional combined fragment F is a sequence of couples F =< (guard 1 , OP 1 ), (guard 2 , OP 2 ), ..., (guard j , OP l ) > where: guard i is the constraint which guards the i th operand; OP i is the set of events covered by the i th operand. Definition 3 (Combined fragment (LOOP)). A combined fragment F is a quadruple F = guard, min, max, OP where guard is the constraint which guards the loop operand, min is the minimum number of iteration, max is the maximum number of iteration and OP is the set of events covered by a LOOP CF.

• F =< F 1 , F 2 , ..., F k > is

REFINEMENT OF SEQUENCE DIAGRAM

In this section, we present the formalization of the refinement relation, and we enunciate the rules that govern a correct refinement between SD.

Operational Semantics of Sequence Diagram

Refinement based on trace semantics requires a meticulous work that consists in generating of all possible traces of SD, then in their categorization into required and possible traces [START_REF] Lu | Required Behavior of Sequence Diagrams: Semantics and Refinement[END_REF] and (øystein [START_REF] Haugen | Towards Formal Design with Sequence Diagrams[END_REF]; where possible traces correspond to all possible combinations of SD events, that are obtained by rules of derivation of traces of the considered semantics, and required traces are those that must be preserved when refining the SD. Moreover, these semantics are based on rules of standard semantics that are not suitable for SD that model distributed systems. The refinement of guard is not treated correctly. These drawbacks explain our orientation for defining refinement relation based on operational semantics that we defined on a previous work [START_REF] Dhaou | Extending Causal Semantics of UML2.0 Sequence Diagram for Distributed Systems[END_REF]. [START_REF] Dhaou | Extending Causal Semantics of UML2.0 Sequence Diagram for Distributed Systems[END_REF].

The operational semantics that we proposed, is useful for the formalization of refinement relation. Indeed, an operational semantics is concretely given as a guarded transition system. Besides refinement relation is already well defined on transition system as a simulation relation. This advantage is exploited to express our refinement relation in Subsection 4.2. In addition, in our operational semantics, guards are supported intuitively. Our proposed operational semantics is different from existing approaches because it is based on the semantics for the scenario-based lecture named causal semantics; that is based on rules taking account of the independence of the objects involved to interaction, in a given distributed system. Intuitively, these rules are defined by the set of traces with some properties which can be summarized as follows: i) the events of the same lifeline are not necessarily ordered; ii) two successive events emitted by the same lifeline are ordered. In certain case of distributed systems, if they are addressed to the same lifeline, their receptions are ordered; iii) the reception of an event by a lifeline causes the emission of the event that is successive to it. These obvious rules was extended, in our previous work [START_REF] Dhaou | Extending Causal Semantics of UML2.0 Sequence Diagram for Distributed Systems[END_REF], to support SD with the most popular combined fragments (ALT, OPT, LOOP). Contrarily to the standard semantics, the computation of traces, in our work, for SD with combined fragment is made without flattening them.

According to this semantics a trace is a sequence of event occurrences and it may be finite or infinite. We consider only the finite traces by excluding infinite loop. A trace depicts the history of messageexchange corresponding to executions of the system. Since, we deal with interleaving semantics, two enabled events to be executed may not occur at exactly the same time. We allow the same event to occur only once in the same trace, and N times in the LOOP CF. Definition 4 (Trace). Let EV T be the set of events in a sequence diagram SD. A trace of SD is a finite sequence: < e 1 , e 2 , e 3 , e 4 , ..., e n > where e i ∈ EV T .

The operational semantics of a SD is the traces of events. It is given as a guarded transition system, that allows to take account of guard Sem(SD) = S, S 0 , where S is the set of possible states of the SD, S 0 is the initial state, the transition relation.

State. Each state of a SD is expressed with two variables (state, current instance) such that, the first one expresses the states of all events of SD, and the second one expresses the lifeline of the current event. The variable state is a function

State : EV T → {-1, 0, 1, N}
where 1 and N express that the event is not yet executed, and must be executed respectively 1 or N times; 0 and -1 express that the event is respectively consumed or ignored. Initially all the events are not yet executed (1 or N). The initial state S 0 of SD is when any event is not yet executed (1 or N). The final state of SD is when all events are occurred or ignored.

Transition Relation. The events of the guarded transition system correspond to the events of the considered SD and some fictitious events. Consequently, the transition system has two rules such that the first rule deals with the execution of a single event; and the second rule handles the fictitious events. The introduction of the fictitious events is necessary to allow a high flexibility in defining execution strategies for ALT, OPT and LOOP CF. We define the following set of fictitious events: evt f ic = { f ic alt , f ic opt , f ic loop }. By disregarding fictitious events, the set of traces of SD is the same as the set of traces of its correspondent operational semantics. For each category of event we define a rule for the guarded transition system. For instance, for an event e in SD, we associate the following transition:

p [Guard]e → q de f ≡ ((p, [g] e, q) ∈ ∧ g)
An event e is enabled in state p only when its trigger conditions hold. The triggers conditions of an event e consist in: verifying the execution of its preceding events, it is not yet executed and its guard is true. After its execution, its state is decreased and the current lifeline is updated.

Formalization of the SD Refinement Relation

The existing approaches focus on one aspect of refinement by imposing restrictive hypothesis for the other aspect, this can be constraining. In our work, we tried to benefit of the advantages of the existing approaches for proposing an approach that takes account of both aspect of refinement (structural and semantic) by relaxing some hypothesis. We consider SD with distinct alphabets. We define a refinement relation with respect to an explicit mapping between the abstract and refined labels (lifelines, events). It permits the introduction of new events and lifelines, and guaranties the preservation of required behaviours. In addition, the refinement relation supports intuitively guard since it is defined as a simulation between guarded LTS [START_REF] Leuschel | Automatic Refinement Checking for B[END_REF].

The verification of the correctness of the refinement requires the satisfaction of the rules of the refinement that must be defined beforehand, and formalized in the refinement relation.

In the following, we explain the refinement of SD that we consider, and we give the rules of a correct refinement that are marked with the symbol (Ri). The rules are dependents. Structural refinement concerns the refinement of labels (lifelines, messages) of the abstract SD. R1. The events of substituted lifelines must be inherent by the new substituted lifelines. R2. The lifelines which are not refined have to keep the same events. R3. New events, if they exist, must be exchanged only between new lifelines. Indeed, each lifeline can be substituted by new lifelines or its internal behaviour can be detailed by adding new sub-lifelines (child lifelines). For the first case of lifeline refinement, it is obvious that the abstract events must be distributed between new lifelines (R1), and the not-refined lifelines must keep its abstract events (R2). Evidently, the new lifelines can exchange between them new events (R3). R4. By remaining in the same level, a behaviour of a given lifeline can be detailed. Its sub-lifelines must exchanged exclusively messages with it . In the second case of lifeline refinement, the internal behaviour of the refined lifeline (parent lifeline) is not visible by the other lifelines. Hence, the child lifelines must exchange exclusively new events with their parent lifeline (R4), and the parent lifeline keep the same abstract events (R2). R5. The new events must terminate. In order to make verification of refinement relation. The new events are considered as silent events (τ events). Our approach supports semantic refinement by the reduction of abstract possible traces in the refined SD. This is achieved by the following methods: i) changing the order of appearance of some abstract messages in the refined SD. This is allowed by our semantics since the events are not ordered along lifelines. For example, in the refined SD of Fig. 2, the message order drink is moved after the message serve meal. ii) reduction of non-determinism for guarded CF: this is done by strengthening the guards with supplementary conditions (C). For instance, in the refined SD of Fig. 2, the guards of the second and the third operand of ALT CF are strengthened such that guard2 becomes (type = 2 ∧ m >= 20) and guard3 becomes (type = 3 ∧ m >= 20); where m denotes the amount bill. iii) adding some CF like STRICT or ASSERT to cover some abstract events in the refined SD; R6. All the events of SD1 must be present in SD2 up to a renaming. To preserve branches of ALT CF, the rule R6 must be applied. Indeed, by applying one method among them we must ensure that each refined trace must have its counterpart in the abstract SD, by disregarding new events. Some approaches, proposed the suppression of some branches of ALT CF [START_REF] Kruger | Distributed System Design with Message Sequence Charts[END_REF] in order to eliminate non-determinism. However, the non-determinism offered by branches of alt reflects choices and must be kept during refinement. But it can be reduced by strengthening guards.

We consider two sequence diagrams SD1 and SD2 such that: SDi = O i , M i , EV T i , E i s, E i r, FCT i s, FCT i r, FCT i o, F i , < Caus i , and their operational semantics Sem(SD i ) = S i , S 0 i , i with i ∈ {1, 2}.

Structural Refinement. The preliminary step of the refinement checking is the definition of the mapping relation between the considered SDs; this requires the software designer's intervention. A mapping relation between SD1 and SD2 is defined as a mapping between their lifelines and their messages.

A lifeline O can be either substituted by lifelines, or its internal behaviour can be detailed by adding new sub-lifeline(s). Hence, a mapping relation must be defined between the abstract lifeline and refined lifelines. Each abstract lifeline must be linked to one or more lifelines, that can be either not refined lifelines or new lifelines (substituent or child lifelines).

Definition 5 (Lifeline mapping).

We define the function, lifeline mapping χ, that is a partial surjective function:

χ : O 2 O 1 .
All the abstract messages must be present in the refined SD, and the refined SD may contain new messages.

Definition 6 (Message mapping).

We define the function ρ, ρ : M 2 → M 1 , which is a partial bijection, such that its domain is the set of the refined messages, and its codomain is the set of the abstract messages.

For simplicity, we overload the partial bijection ρ as follows to support events.

ρ :

           EV T 2 → EV T 1 {(e, e )|e ∈ E s 2 ∧ e ∈ E s 1 ∧ e = FCT s 1 (ρ(FCT s -1 2 (e)))}∪ {(e, e )|e ∈ E r 2 ∧ e ∈ E r 1 ∧ e = FCT r 1 (ρ(FCT r -1
2 (e)))} We introduce a new set New M 2 , and New EV T 2 such that New M 2 = M 2 \ ρ -1 (M 1 and New EV T 2 = EV T 2 \ρ -1 (EV T 1 ) to identify respectively the new introduced messages and new events in refined diagram.

Proposition 1. (Does SD2 χ SD1?) Let SD1 and SD2 be two sequence diagrams in SD. We define two functions χ and ρ. SD2 is a structural refinement of SD1 with respect to χ and ρ, denoted SD2 χ,ρ SD1, if the following conditions hold:

• the abstract messages in the SD2 are mapped to its correspondents in the SD1 by means of the function χ: M 1 ⊆ ρ(M 2 ); • the abstract lifelines must keep all their abstract events, and the substitute lifelines inherit the abstract events in SD2:

FCT o 1 = ρ -1 ; (EV T 1 FCT o 2 ); χ • the new messages exchanged between new lifelines in the SD2 are linked to the same abstract lifeline:

(New M 2 ) FCT s 2 ;FCT o 2 ;χ = (New M 2 ) FCT r 2 ;FCT o 2 ;χ Each item of Prop.1 refers to one or more rules defined above. The first one references R6; the second one deals with R2, R1 and the third one refers to R3. This relation is in accordance with Event-B refinement relation. Indeed, we support a refinement relation based on alphabet translation, that requires an explicit mapping between labels of SD pairs. New events in refined SD are considered as silent and replaced by τ transitions. We introduce the mapping relation between operational semantics pairs associated to SD pairs. Semantic Refinement. The refinement relation is defined as a simulation on operational semantics. Two models may be compared only if they have the same alphabet. Therefore, the new events are considered as silent and replaced by τ transitions.

Definition 7 (States mapping).

Let Sem(SD1) and Sem(SD2) be two operational semantics associated to SD pairs. The mapping relation R between pairs operational semantics consists in linking their respective states S i with respect to both functions χ and ρ. S i depends on values of the two variables current instance i and state i; where i ∈ {1, 2}

• each refined lifeline must be mapped with an abstract one: current instance 1 = χ(current instance 2) • by disregarding new introduced events, each abstract event, in the refined SD, must be mapped to its correspondent in the abstract SD:

(New EV T 2 )state 2 = ρ; state.

Proposition 2. (Does SD2 R SD1?) Let SD1 and SD2 be two sequence diagrams such that SD2 is a structural refinement of SD1 (SD2 χ,ρ SD1), and Sem(SD i ) = S i , s 0 i , their operational semantics. Moreover, the new events of SD2 must terminate. SD2 is refinement of SD1 with respect to a map relation R(ρ, χ) denoted SD2 R SD1 if the following conditions hold:

• Initial states are linked : (s 0 1 , s 0 2 ) ∈ R • For each execution of an event e in SD2 which refines an abstract event e ∈ ρ -1 (M1), there exists an execution of ρ(e) in SD1 that is relied to it, with strengthening of guard, in case of an event whose its execution depends on guard:

(∀e ∈ ρ -1 (M 1 )) (∀p ∈ S1) (∀q ∈ S2) (∀q ∈ S2) [(q, p) ∈ R ∧ q [g]e → 2 q ⇒ (∃p ∈ S1)[p [g ]ρ(e) -→ 1 p ∧ g ⇒ g ∧ (q , p ) ∈ R]]
• New events didn't change the state of abstract SD.

(∀e

∈ New EV T 2 ) (∀p ∈ S 1 ) (∀q ∈ S 2 ) (∀q ∈ S 2 ) [(p, q) ∈ R ∧ q e -→ 2 q ⇒ (q , p) ∈ R]
Properties Preserved by Refinement Relation. As consequence of the Prop.2, we have a trace refinement [START_REF] Leuschel | Automatic Refinement Checking for B[END_REF], by disregarding new introduced events in SD2, where the required behaviours are preserved. The refinement relation allows the extension of traces, by distinguishing between the observable and the non-observable events.

It is reflexive, since we have SD1 R SD1 that always holds. It is transitive, since SD 2 R SD1 and

SD3 Q SD2 implies SD3 R;Q SD1.
Finally it is substitutive because it supports the renaming of abstract labels in the refined SD.

IMPLEMENTATION OF REFINEMENT RELATION IN EVENT-B

Our semantics is encoded in Event B [START_REF] Rodin | Rigorous Open Development Environment for Complex Systems[END_REF], in such way that proving the consistency (PO) of B models establishes the correctness of the refinement. For correctness analysis purpose, SD pairs to be checked are translated into Event-B specifications; these specifications are updated with the defined rules and analyzed with theorem prover Rodin, as well as checking model ProB. The choice of Event-B method is justified thanks to several advantages offered by it. Firstly, the existing similarities between both formalisms [START_REF] Dhaou | Extending Causal Semantics of UML2.0 Sequence Diagram for Distributed Systems[END_REF] provide an immediate translation of both SD formal definition, that is based on set theory and predicate logic, and its operational semantics, into Event-B specification. Secondly, Event-B refinement relation supports naturally the introduction of new events as well as the verification of their termination. Moreover, contrarily to the most refinement relations that require an implicit mapping between labels of SD pairs, Event-B refinement relation is based on alphabet translation which requires an explicit mapping between labels of SD pairs. Hence, errors of modeling are easily detected when the invariant is broken. Finally, Event-B has a powerful tool that allows the verification of the correctness of refinement SD. An Event-B specification is composed by a B-machine and a context. Event-B machine is mainly made of four elements: a name, a list of named predicates, the invariants, and the events. The context referenced by a B-machine is made of: a name, a list of distinct carrier sets, a list of constants and a list of named properties.

Translation of SD into Event-B Specification

Let SD : O, M, EV T, E s, E r, FCT s, FCT r, FCT o, F, < Caus and its operational semantics Sem(SD) = S, S 0 , . Firstly, we translate SD formal definition into contexts; to alleviate B specification and facilitate its proofs, we define two contexts such that: i) in the first context CT X XP, the concrete values the SD configuration (lifelines, messages, events) are expressed by sets and constants; ii) in the second context CT X X that EXT ENDS the first one, properties that express that the considered SD is well-formed are marked as theorems. Secondly, the operational semantics of SD, Sem(SD), is translated into Event-B machine such that: i) the State is translated into two variables: state, which is a total bijective function that expresses the state of each event, and current instance, which expresses the transmitter or the receiver of the current event; ii) each transition that belongs to is represented by an event of Event-B machine.

Checking of the Correctness of Refinement between Two SD

Once we translate independently pairs SD into B-spe ecifications, we express the mapping relations, defined in Subsection 4.2 that should be proved statically, for some of them, and dynamically for the other ones. We add two new contexts CT X 2P and CT X 2, such that in CT X 2P we express the concrete mapping between pairs SD; and in CT X 2 we express the rules of structural refinement, in Subsection 4.2, that are marked as theorems to be proved. Tab. 3 depicts the expression of some structural refinement rules. For instance, R3 is expressed by axiom8, R2 and R1 are expressed by axiom9 and the lifeline mapping is expressed by axiom10. The refined machine is updated by adding the gluing invariant Tab.2 that expresses the state mapping. 

END

Concerning the events of the refined machine, we refund all the abstract events, which corresponds to message mapping, in addition to the new introduced events. In Tab. 4, we present an event of the refined machine: E order drink).

Verification of the Termination of the New Introduced Events. The new events which are introduced in the refined model must not take indefinitely the control. Event-B method allows to verify this property. This is done by the definition of an expression called variant. By demonstrating that the execution of each new event decreases the variant that must never goes below zero. Since a variant cannot be decreased indefinitely, this allows us to prove that a new event cannot take control forever. As example of new event we have E alert. Its status is set to convergent, which means that for each execution of this event, the variant is decreased. In the case study, we have new events, on the one hand E alert, R alert which can be repeated at maximum 3 times, on the other hand we have E delegate and R delegate. We define for them the following variant: ((New event state r) {1}) ∧ N. By proving the termination of new events, the rule R5 Sec. 4 is satisfied. When all proof obligations of B-specification are proved, we have a correct structural and semantics refinement.

The verification of refinement relation of SD pairs is based on systematic rules of translation. The case study is totally implemented in Event-B on the basis of the generic architecture Fig. 3. The refinement is proved correct; through POs that were either automatically proved for some of them, or interactively proved for others ones.

RELATED WORKS

Mainly, existing approaches for building behavioural models of distributed systems by refinement are of two categories: the first one is based on formal frameworks, like Input/Output Automata [START_REF] Peter | Using Timed Input/Output Automata for Implementing Distributed Systems[END_REF], the second one is based on scenarios like MSC, MTS, SD [START_REF] Kruger | Distributed System Design with Message Sequence Charts[END_REF]. Despite the rigour of the approaches of the first category, they remain very hard which repress their use by engineers. The approaches of the second category are attractive and intuitive. Our approach belongs to this category of works.

Two important aspects must be considered for refinement SD: i) structural aspect that includes the different features of the SD (lifelines, messages, events, CF...); ii) semantic aspect that concerns traces. The existing approaches focus on one aspect by imposing strict hypothesis for the other aspects.

In [START_REF] Ohlhoff | Consistent Refinement of Sequence Diagrams in the UML2[END_REF], the authors treated the refinement of SD by defining strict rules of a correct structural refinement of SD that are impractical for de-signer. The majority of the existing approaches, [START_REF] Harald | Semantics of Interactions in UML 2.0[END_REF], [START_REF] Lu | Required Behavior of Sequence Diagrams: Semantics and Refinement[END_REF]Kim., 2011), (øystein Haugen et al., 2005), of the second category, required the computation of positive and negative traces sets, but they are based on rules of standard semantics. Hence, they do not permit the computation of all possible traces for SD that models a distributed system. i.e they are not suitable for such system. In addition, they did not distinguish between mandatory and possible behaviours which can lead to the loss of some mandatory behaviours when refining SD; they also ignore guard conditions. Our approach is more appropriate and safe for distributed systems, because, it is based on an operational semantics permitting to avoid the shortcomings of trace semantics that are related to the factorial complexity of the computation of traces. In (øystein [START_REF] Haugen | Towards Formal Design with Sequence Diagrams[END_REF], the authors define new operator XALT (not yet standardized by OMG) that permits to express mandatory choices. When refining SD, their approach permitted the loss of alternatives expressed by ALT CF when they didn't permit the loss of any alternative expressed by XALT operator. They defined three types of refinement: i) supplementing that consists in categorizing inconclusive behaviours as either positive or negative; ii) narrowing that consists to reduce possible behaviours; iii) detailing that permits to increase the granularity of sequence diagram. In the work of (Lu and required behaviours are expressed by ALT CF; the authors defined a new semantics by extending the definition of trace by including the guard condition as an essential element. This extension is mainly made in order to preserve ALT branches when the SD is refined. In our point of view, this definition is not intuitive because the guard is systematically lost when a trace is generated.

With our operational semantics [START_REF] Dhaou | Extending Causal Semantics of UML2.0 Sequence Diagram for Distributed Systems[END_REF], guards are supported intuitively by preserving the standard definition of trace. Although, in their works [START_REF] Lu | Required Behavior of Sequence Diagrams: Semantics and Refinement[END_REF]Kim., 2011), (øystein Haugen et al., 2005), the authors claimed that their approach supports, in addition to the semantic refinement, the structural one, in the formalized refinement relation, new labels are hidden without making any preliminary verification. This leads to many inconsistencies that can not be detected. For instance, in case of horizontal refinement, two child lifelines of distinct parent lifelines can exchange new events which is prohibited. In our refinement relation an explicit mapping between abstract and refined labels is defined and permits to avoid such inconsistencies.

CONCLUSION

This work deals with refinement of SDs that, especially, model behaviours of distributed systems. To overcome the limitations of existing approaches, our proposed approach has the following advantages:

• it considers both structural and semantic refinements of SD: i) by defining clearly rules that govern a correct structural refinement guiding the designer; ii) by proposing an intuitive and coherent method for the formalization of refinement relation. This latter possesses the necessary properties favorable to an incremental development like transitivity; it permits the addition of new labels in the refined SD. It is substitutive since it supports the renaming of labels; which is a desired property in case of reuse of SD and their instantiation, • it permits to reduce the set of possible abstract traces in the refined SD, while the required ones, expressed by ALT CF, are preserved, • we deal correctly with the guards (of ALT, OPT and LOOP CF) as well as their refinement, • our approach is not linked with a target formalism chosen for the implementation. The implementation processing in Event-B for correction of refinement relation is generic.

We are extending our proposal to consider SD with some CF that are particularly important for distributed systems like parallel operator and co-regions, as well as time features and nested CF.
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 2 Figure 1: Interactions in a restaurant (SD1).

  axm8: ran(New EV T R FCT o = New INSTANCES axm9: A FCT o = ((A EV T R FCT o); FCT INSTANCES) axm10 :FCT INSTANCES ∈ R INSATANCES → A INSTANCES
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 3 Figure 3: The generic architecture of the implementation process.

Table 1 :

 1 Notations.

	Symbols	Definition		Symbols	Definition
	-	Domain subtraction			Partial injection
		anti domain restriction			Total injection
		range restriction			Partial surjection
	→	total function	→ →		Total surjection
	→	Bijective function	-		Relational overriding
	→	Partial function	ran(E)	range of a set E
	The formal definition of a SD is as follows:
	Definition	1	(Sequence		Diagram).	A
	sequence	diagram	is	a	tuple	SD :
	O, M, EV T, E s, E r, FCT s, FCT r, FCT o, F, < Caus
	where:					

Table 2 :

 2 Gluing invariant.

inv1: current instance = FCT INSTANCES(current instance r) inv2: New EV T -state r = state

Table 3 :

 3 Some theorems of CTX2.

Table 4 :

 4 The event E order drink.

	E order drink: not extended extraordinary
	REFINES
	grd1: ∀EE.((EE ∈ EV T 2 ∧ EE ∈ [Caus2 ∼ [E order drink])) ⇒
	(state 2(EE) < state 2(R alert)))
	WHERE
	grd2: state 2(E order drink) >= 1
	THEN
	act1: state 2(E order drink) := state 2(E order drink) -1
	act2: current instance 2 = FCT o(E order drink)