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ABSTRACT

Clustering is one of the most important steps in the data pro-
cessing pipeline. Of all the clustering techniques, perhaps the
most widely used technique is K-Means. However, K-Means
does not necessarily result in clusters which are spatially con-
nected and hence the technique remains unusable for several
remote sensing, geoscience and geographic information sci-
ence (GISci) data. In this article, we propose an extension of
K-Means algorithm which results in spatially connected clus-
ters. We empirically verify that this indeed is true and use the
proposed algorithm to obtain most significant group of wa-
terbodies mapped from multispectral image acquired by IRS
LISS-III satellite.

Index Terms— Clustering, Graphs, K-Means

1. INTRODUCTION

Clustering is one of the most important steps in data min-
ing and machine learning [1, 2, 3]. Clustering has been used
across several data domains ranging from text processing to
hyperspectral images. Clustering in the context of image data
is also referred to as segmentation. Thanks to its unsupervised
nature, it can be used for several tasks such as simplifying and
understanding the data, visualizing the important aspects etc.
Due to the same reason, the solution to the problem of cluster-
ing is also extremely dependent on the domain of application.
This requires adapting the existing methods to the domain,
ensuring that the appropriate properties are preserved. In this
article, we tackle one such problem - using K-Means while
preserving spatial connectivity.

K-Means is one of the most widely used methods for clus-
tering data [1, 4]. It is categorized under partition based
methods and has some very important properties. It has been
shown that using expectation maximization idea for cluster-
ing gaussian mixture models is closely related to the K-means
method [3]. It is also very efficient and variations of k-means
are also used for clustering big-data. K-means used along
with map-reduce framework was proposed in [5]. However,
for segmentation it is seen that k-means does not preserve
the spatial connectivity of the final clusters. This property
of connectedness of the clusters is important in the context
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Fig. 1. An example showing that K-means does not ensure
the connectivity of the clusters. (a) Original Image - Simple
image with gaussian noise. (b) Clustering result obtained by
using simple K- Means without any constraint on connectiv-
ity. Number of clusters is taken to be 10. (c) Clustering result
obtained using the proposed algorithm 1, which performs K-
Means with constraint on connectivity. Number of clusters is
taken to be 10

of remotely sensed spatial images and hence K-Means cannot
be directly used. For instance consider the image in figure
1(a). When simple K-Means is used in this case, we obtain
the result as in figure 1(b), with number of clusters fixed at
10. Note that the final clustering is highly noisy. The reason
for this is because, classical K-Means algorithm does not take
into consideration the connectivity of the data.

In this article, we propose an algorithm which extends the
classical K-Means algorithm to preserve the connectivity of
the final clusters. The result of this algorithm on figure 1(a)
is shown in figure 1(c). This is the main contribution of this
article. The description of the algorithm is given in section 3,
and the fact that the proposed algorithm is indeed an extension
of K-Means is verified empirically on toy datasets. We then
show an application of the proposed algorithm to obtain k
most significant waterbodies mapped from multispectral im-
age taken from IRS LISS-III satellite in section 4.

2. REVIEW

K-Means is a simple algorithm which is widely used in
literature [6]. The algorithm starts with picking K initial
points as the centroid and repeating the following steps until



convergence-

1. Form K clusters by assigning every point to the closest
of the K initial points.

2. Recalculate the centers of the K clusters.

Assume that we have a clustering C = {C1, C2, · · · , CK},
then, squared sum of errors (SSE) is defined by

SSE(C) =
K∑

k=1

∑
xi∈Ci

d(xi, ci) (1)

where xi denotes the points, ci denotes the center of the clus-
ter Ci and d(., .) denotes the distance metric. It can be shown
that K-Means algorithm works by monotonically reducing the
SSE error function until it reaches a local minima. (See
chapter 4 of [3] for details.)

In this article, we aim to extend the K-Means technique
with an additional constraint of resulting in clusters which are
connected. This requires specifying the adjacency relation in
the problem statement, thus allowing to maintain the connec-
tivity of the clusters. We achieve this by using the framework
of the edge-weighted graphs.

An edge weighted graph G = (V,E,W ) is a tuple with
three sets - a set of nodes/vertices where each node/vertex
denotes each data point, a set of edges which defines the adja-
cency relation on the given data and a function W : E → R+

which denotes the weight of each edge.
Also, one of the important steps of the K-Means algorithm

is to calculate the ‘mean’ of the objects in the cluster. This
however, is not always possible in general since objects need
not necessarily belong to a space where averages are defined.
This is especially common in the field of geoscience and re-
mote sensing. For instance, consider the problem of clus-
tering of water bodies (discussed in [7]), or more abstractly
sets in the euclidean space. Thus in this article we consider a
variant of the K-Means algorithm, known as K-Medoids (see
chapter 4 of [3] for more details) where the center is taken to
be one of the data points in the set.

3. EXTENDING K-MEANS TO EDGE WEIGHTED
GRAPHS

Thus, the problem of clustering becomes minimizing the op-
timization problem in (1) subject to the constraint that each
cluster Ci is connected with respect to the adjacency relation
given by E. To solve this minimization problem, we propose
the algorithm 1.

The algorithm proceeds similarly to the K-Means algo-
rithm and starts with picking out K random seeds from the
data. At each stage, all the nodes are assigned to the nearest
reachable seed, that is there exists a path between the node
and a seed and all the nodes in the path are assigned to this
seed. This is achieved by using a priority queue, where the

Algorithm 1 K-means with connectivity constraint
Input: An edge weighted graph, G = (V,E,W )
Output: C = {C1, C2, · · · , CK} - K clusters

1: Pick K random points from the set of nodes V as initial
seeds.

2: while Convergence is not reached do
3: Initialize a priority queue - Q and a set data structure

P . P indicates the set of pixels already processed.
4: Push all the neighbors of the seeds into Q, where pri-

ority is given by the distance to the node
5: while Q is not empty do
6: Pop the vertex v from Q
7: if v is not in P then
8: Assign it to the nearest seed and add it to the set

P .
9: for each neighbor u of v do

10: Push the neighbor w intoQ, with priority given
by

priority(u) =W (v, u) + priority(v)

11: end for
12: end if
13: end while
14: Update the centers of each cluster with the node that

minimizes the largest distance.
15: end while

priority is given by the distance to the node. These priorities
are updated lazily to ensure efficient implementation. This en-
sures the connectedness of the component once all the nodes
are processed as described by the proposition 1.

Proposition 1. For every iteration between steps 3-12 in al-
gorithm 1, the connectedness of the cluster is preserved.

The seeds are then recalculated. For each component, the
new seed is taken to be the center of the subgraph. Given the
distance d(., .), the center of the graph is defined as

argmin
x

∑
u

d(x, u) (2)

Empirical Verification
To illustrate the fact that the algorithm 1 is an extension of K-
Means to graphs, we perform the following experiment. Ob-
serve that, any theoretical extension of K-Means to graphs
should match with K-Means on the complete graph1. Since,
on a complete graph any two nodes are adjacent, the con-
straint on connectivity is nullified. Another way to interpret
this by considering a neighborhood matrix, whose entries are
0/1, which gives the neighborhood relation between the two

1A complete graph is a graph in which any two nodes are adjacent.
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Fig. 2. Illustration showing that the results of the proposed
algorithm 1 on a complete graph indeed match the ones of
K-means. Top row: Result of clustering obtained on toy ex-
amples using K-Medoids. Bottom row: Result of clustering
obtained on toy examples using algorithm 1 with complete
graph.

pixels. In the degenerate case of all entries in the neighbor-
hood matrix being 1, the algorithm 1 reduces to K-Means.
Figure 2 shows a typical results obtained using the K-Medoids
and algorithm 1.

Remark: The proposed algorithm can be seen as an it-
erated version of the classical watershed algorithm used in
image segmentation [8], where the seeds of the watershed are
updated after each watershed step.

4. APPLICATION

As an application of the proposed algorithm we consider wa-
ter bodies data taken from [7]. In [7], this data was used to
identify the waterbody which is spatially significant. How-
ever, the problem can be extended to identify the most sig-
nificant k water bodies. This type of analysis can be used for
policy planning. Observe that identifying the top k significant
waterbodies can be phrased in the framework of K-Means,
where one can cluster the waterbodies and identify the cen-
ters (spatially significant points). This is an example where
algorithm 1 is useful.

In figure 3(a) we have the multispectral data from which
the water bodies are mapped as in figure 3(b). The question
of interest is to identify the most significant k waterbodies
from the data. The significant waterbody is defined as the
waterbody which is placed closest to all other waterbodies in
the cluster. For this we use the dilation distance [7] as the
distance between the waterbodies. Given two sets S1 and S2,
the dilation distance is defined as

d(S1, S2) = inf{λ | S1 ⊕ λB ⊇ S2} (3)

where B is a unit disk structuring element. The adjacency
relation is obtained by the influence zones of figure 3(b), as
shown in figure 3(c). Two waterbodies are considered adja-
cent, if their influence zones are adjacent in figure 3(c). Using
these parameters, significant waterbodies for k = 2, 4, 6 are
calculated as shown in figure 3 (d)-(f).

5. CONCLUSION AND FUTURE WORK

In summary, we have proposed an algorithm which extends
the K-Means to obtain clusters which are connected. This is
achieved by considering the framework of edge graphs. The
algorithm obtained was shown to give consistent results with
a variant of K-Means in the degenerate case of considering
a complete graph. This was then applied to the waterbodies
data from [7] to obtain k = 2, 4, 6 significant waterbodies.

In future, on the theoretical front, we hope to obtain a rig-
orous proof of equivalence between algorithm 1 and K-Means
technique. On the application front we expect to use the al-
gorithm proposed to various other data and perform extensive
validation.
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7. APPENDIX : PROOF OF PROPOSITION 1

Proof. We only provide the idea of the proof here. Let S =
{si} indicate the seeds and d(u,w) indicate the distance be-
tween u and w. We assume that the distance metric used sat-
isfies the regularity conditions mentioned in [9]. From the
algorithm it is clear that a node u is assigned to the seed si
which minimizes d(u, si).

We show that if u is assigned to the seed si, then the nodes
in the shortest path < u, si > are also assigned to si. Assume
for the sake of contradiction that v is assigned to sj , j 6= i.
This implies that d(v, sj) < d(v, si). Thus,

d(u, si) = d(u, v) + d(v, si)

> d(u, v) + d(v, sJ)

> d(u, sj)

Hence we get a contradiction. So, all the nodes in the shortest
path belong to the component, and hence it is connected.



(a) (b) (c)

(d) (e) (f)

Fig. 3. Application of algorithm 1 to waterbodies clustering. Top row : (a) Multispectral image acquired by IRS LISS-III
satellite. Blue objects indicate the waterbodies. (b) Waterbodies mapped from the image in (a). (c) Influence zones of the
waterbodies in (b). Bottom row: Clustering obtained using algorithm 1. The red color influence zone indicates seed of the
cluster, which is also the most significant waterbody in that cluster. The number of clusters taken are - (d) k = 2 (e) k = 4 (f)
k = 6
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