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Abstract—The topic of physical layer authenticated encryp-
tion using high rate key generation through shared randomness
is investigated in this work. First, a physical layer secret key
generation scheme is discussed exploiting channel reciprocity
in wireless systems. In order to address the susceptibility of
this family of schemes to active attacks, a novel physical layer
authentication encryption protocol is presented along with its
extension to multi-node networks in the presence of active
adversaries. Secondly, in order to increase the key generation
rate, a multi-level quantization algorithm with public feedback
is discussed. It is demonstrated that the proposed scheme is
superior to direct information distillation approaches and can
substantially increase the key generation rates even at low and
medium SNRs.

I. INTRODUCTION

One of the most promising topics in the area of physical

layer security is the generation of secret keys via public

discussion, based on either the so-called source model or the

so-called channel model. Regarding the former, the potential

for generating secret keys at a source and a destination in

the presence of passive eavesdroppers through the exchange

of correlated sequences was examined in [1]. In [2] single

letter characterizations of the channel key capacity were

derived while it was demonstrated that the secret keys can

be generated without any information leakage to a passive

adversary. On the other hand, the channel model alternatively

exploits the inherent correlation of the channel gains in

the wireless transmission medium due to reciprocity [3]. A

straightforward application of the channel model was pro-

posed in [4]. In [5] the shared randomness of the multipath

wireless channel was exploited to generate a common secret

key between a source and an intended destination assuming

that the adversarial channel is uncorrelated with the main

channel between the legitimate nodes.

Traditionally, secret key generation from wireless channel

estimates includes three distinct phases [6]:

- Advantage distillation: Alice and Bob obtain estimates of

their reciprocal channel state information (CSI) and pass

them through a suitable quantizer [5], [7]–[9].

- Information reconciliation: Discrepancies in the quantizer

local outputs due to imperfect channel estimation are recon-

ciled through public discussion.

- Privacy amplification: Applying universal hash functions to

the reconciled information ensures that the generated keys

are uniformly distributed and completely unpredictable by

Eve.

In the present work, we use the phase of the local CSI es-

timates for information distillation. Following this approach

the estimation error is shown to be approximately Gaussian

while the phase estimates at the adversary are uncorrelated

to those at the legitimate nodes. We propose a novel adaptive

quantization scheme with multi-level public feedback, acting

in essence as the interface between the advantage distillation

and the information reconciliation phases. The proposed

quantizer achieves a particularly high information distillation

rate at the two legitimate nodes and allows a substantial

reduction in the complexity of the reconciliation process.

Finally, the generated secret keys are employed in a novel

physical layer authenticated encryption protocol (PLAE).

The complexity of the proposed scheme is minimal in

comparison to public key encryption schemes , rendering

it a compelling approach for establishing secure links in ad-

hoc networks and device-to-device communication.

The rest of the paper is organized as follows. Section II

introduces the system model and the achievable secret key

rate. Our key generation algorithm along with a detailed

description of secure error reconciliation process is discussed

in Section III. In section IV the PLAE scheme is described.

A feedback quantizer with an improved information distilla-

tion rate (IDR) is discussed in Section V. Finally, the paper

conclusions are drawn in Section VI.

II. SYSTEM MODEL AND ACHIEVABLE SECRET KEY

RATES

A. System Model

The system model is shown in Fig.1 with Alice and Bob

denoting legitimate nodes and Eve an active adversary. The

channel between Alice and Bob is assumed to be reciprocal

and stationary during each transmission cycle and to change

independently from one transmission cycle to the next. Each

cycle includes the transmission of two consecutive probe

signals, from Alice to Bob and from Bob to Alice. During

the i-th cycle Alice obtains an estimate hA(i) and Bob an
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Fig. 1. Wireless system model.

estimate hB(i) respectively of their reciprocal CSI, denoted

by h0(i), so that,

hA(i) = h0(i) + ∆hA(i), (1)

hB(i) = h0(i) + ∆hB(i), (2)

h0(i) = x0(i) + jy0(i), (3)

∆hA(i) = ∆xA(i) + j∆yA(i), (4)

∆hB(i) = ∆xB(i) + j∆yB(i), (5)

where x0(i) and y0(i) are zero mean Gaussian random

variables distributed as ∼ N (0, σ2) and ∆xA(i), ∆yA(i),
∆xB(i) and ∆yB(i) are zero mean unit variance Gaussian

random variables, ∼ N (0, 1). Using this modelling the

variance σ2 of x0(i) and y0(i) is equal to the channel SNR.

Finally, Eve’s channel to Alice and Bob is uncorrelated with

either hA(i) and hB(i).
We focus on a single transmission cycle and drop related

time indices. The central scope of the remainder of this

section is to discuss the achievable key rates that can be

generated at Alice and Bob from the angles of the estimated

channel coefficients, i.e., the effective distillation of the

common parts of the correlated random variables θA and θB ,

which are calculated locally at Alice and Bob, respectively,

as:

θA = ∠hA = tan−1

⑩

y0 +∆yA
x0 +∆xA

❿

, (6)

θB = ∠hB = tan−1

⑩

y0 +∆yB
x0 +∆xB

❿

. (7)

In the following we investigate in further detail the distri-

bution of θA (respectively of θB). Based on the assumption

that σ2 ≫ 1, the following approximation holds:

y0 +∆yA
x0 +∆xA

=
y0

x0 +∆xA
+

∆yA
x0 +∆xA

≃ y0
x0

+
∆yA
x0

. (8)

Furthermore, exploiting the fact that the Taylor series ex-

pansion of tan−1 (x+ y) around y = 0 can be written as

tan−1 (x+ y) = tan−1(x) +
y

x2 + 1
+ O(y2), (9)

we can establish the following approximations for small

values of ∆yA

x0

≪ 1, ∆yB

x0

≪ 1 (these conditions are satisfied

with very high probability when σ2 ≪ 1, i.e., for medium

and high SNRs):

θA ≃ θ0 +∆θA, (10)

θB ≃ θ0 +∆θB , (11)

where,

θ0 = tan−1

⑩

y0
x0

❿

, (12)

∆θA =
∆yA
x0

x2
0

x2
0 + y20

, (13)

∆θB =
∆yB
x0

x2
0

x2
0 + y20

. (14)

The pdf of the ratio r = y0

x0

follows the standard Cauchy

distribution and as a result θ0 = tan−1(r) is uniformly dis-

tributed in the range (−π
2 ,

π
2 ) with zero-mean and variance

π
12 :

pΘ0
(θ0) =

➜

1
π , θ0 ∈

[

−π
2 ,

π
2

]

,
0 otherwise.

(15)

On the other hand, the random variable ∆θA (∆θB respec-

tively) is the product of two dependent random variables;

(i) of vA = ∆yA

x0

which follows a Cauchy distribution with

location parameter 0 and scale parameter 1
σ and (ii) of

u =
x2

0

x2

0
+y2

0

which follows an arcsine distribution with mean
1
4 and variance 1

8 :

pV (vA) =
σ

π(1 + σvA)2
, (16)

pU (u) = =

➝ 1

π
√

u(1−u)
, u ∈ (0, 1),

0 otherwise.
(17)

while the corresponding analysis holds for ∆θB as well.

During each transmission cycle and for a particular real-

ization of the channel, the phase estimate θA (respectively

θB) of the common phase θ0 is a Gaussian random variable

with mean θ0 and variance σ2
t , which is given as:

σ2
t = EX0,Y0

➊

⑩

x0

x2
0 + y20

❿2
➍

− EX0,Y0

⑩➉

x0

x2
0 + y20

➌❿2

,

(18)

as a function of the channel SNR σ2. As a result of this

discussion, the quantities ∆θA and ∆θB will in the following

be approximated by zero-mean Gaussian random variables

with variance σ2
t .

B. Secret Key Capacity and Achievable Key Rates

The maximum rate at which Alice and Bob can extract

identical secret bits from θA and θB , is denoted hereafter as

the phase secret key capacity C
(φ)
k and is upper bounded by

the mutual information of θA and θB in the channel model



[2]. Based on the previous discussion, the phase secret key

capacity can be expressed as:

C
(φ)
k = I(θA; θB) = h(θA) + h(θB)− h(θA, θB)

= 2 log2

⑩

2πe

⑩

π2

12
+ σ2

t

❿❿

− log2

❶

(2πe)2
➊

⑩

π2

12
+ σ2

t

❿2

−
⑩

π2

12

❿2➍➀

= log2

❸

1 +
π2/12

2σ2
t +

σ4

t

π2/12

➂

. (19)

C
(φ)
k is only achievable if infinite blocklength encoders

are employed at the information reconciliation stage to

correct for any discrepancies between θA and θB . In the

realistic scenario in which finite blocklength encoders are

used instead, we can estimate the achievable phase secret

key rate, denoted by R
(φ)
k , for any blocklength n and non

zero (output) error probability ǫ by employing the results

of [10]. The achievable phase secret key rate can then be

expressed as:

R
(φ)
k (n, ǫ) = C

(φ)
k −

➱

V

n
Q−1(ǫ) +

1

2n
log n. (20)

In (20) V denotes the channel dispersion–a quantity which

describes the backoff from capacity in the finite blocklength

regime; using the additive white Gaussian model, [10]–eqs.

(292-293), the channel dispersion with respect to C
(φ)
k can

be expressed as

V =

(

π4 + 48σ2
t π

2 + 288σ4
t

)

π4

(π4 + 24σ2
t π

2 + 144σ4
t )

2
log22 e. (21)

In (20) Q =
∫∞

x
1√
2π

e−t2/2dt, ǫ is the error probability,

0 < ǫ < 1, and n is the blocklength.

Finally, in a direct application of the previous results, the

required blocklength n is evaluated with respect to a target

fractional rate η = R
(φ)
k /C

(φ)
k . For illustration purposes, the

required blocklength as a function of ǫ is depicted for η =
0.5 and η = 0.9 in Fig 2.

III. KEY GENERATION PROTOCOL

A. Information Distillation

Based on our estimate of σ2 we split the range from

(−π
2 ,

π
2 ) to quantization levels of width at most lσt (e.g.

l = 4). The number of quantization intervals, Q, is given by

Q =

➏

π

lσt

➒

, (22)

where ⌊·⌋ denotes the floor function. The phase estimate

θA (respectively of θB) is mapped to quantization interval

q ∈ {1, . . . , log2(Q)} using the mapping:

⌊x⌉ = q if x ∈
➉

π(q + 1)

Q
,
πq

Q

❿

− π

2
, q = 0, 2, . . . , Q− 1,

(23)
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Fig. 2. Blocklength n required to achieve desired fractional rate η =

R
(φ)
k

/C
(φ)
k

as a function of the error rate ǫ for various SNRs.

where ⌊·⌉ denotes quantization. In the present protocol we

employ this straightforward approach of a quantizer with

no feedback while later in Section V we will discuss an

improved design using public feedback.

B. Information Reconciliation Phase Using FEC

A low complexity information reconciliation approach is

built using standard linear block codes as follows: Alice

and Bob use length n buffers to store length n-tuples at the

output of the quantizer. These n-tuples are here denoted by

kA and kB respectively. Subsequently, using a predetermined

block code they estimate locally their respective syndromes,

denoted by sA and sB and the corresponding error patterns

eA and eB so that

kA = k0 ⊕ eA, (24)

kB = k0 ⊕ eB . (25)

In essence, kA and kB correspond to θA and θB respectively,

k0 to θ0 and eA, eB to ∆θA and ∆θB respectively.

For Bob to derive an estimate of kA, it is required that

Alice communicates her syndrome sA to Bob via public

discussion as will be explained later. In Section IV we

will demonstrate that although the syndrome will be sent

in the clear, the key generation scheme combined with an

authenticated encryption (A.E) protocol can still be robust

to active attackers. At present, we concentrate on how Alice

and Bob can establish a common secret key. Bob, given sA
can derive an estimate of k̂A of kA as:

k̂A = k0 ⊕ eA = kB ⊕ eB ⊕ eA. (26)

It is important to note that by communicating sA in the

clear, Eve by mere interception can also estimate eA. The

following Lemma discusses the related information leakage.
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Fig. 3. Information reconciliation rate (IRR) for the quantizer without
feedback.

Lemma 1: Using the key distillation scheme discussed in

(24)-(26), the transmission of the syndrome sA in the clear

does not leak more than n−k bits of information with respect

to kA.

Proof: sA can be used to obtain eA. On the other

hand k0 and eA are independent because they correspond

to the quantization of two independent continuous random

variables, namely of θ0 and ∆θA. As a result, we have that

H(kA) = n, (27)

H(kA|sA) = H(kA|eA) = H(k0) = k. (28)

Therefore, the transmission of sA does not leak more than

n− k bits of information as claimed.

As a result of Lemma 1, the effective size of the key space

of kA is 2k and its entropy is k bits. As result appropriate

hashing of the encoder output to remove redundant bits is

required and is performed in the privacy amplification stage

(details are omitted due to space limitations). The overall

key generation rate can be estimated as the product of the

IDR, the IRR and the rate of the FEC. As an example, we

have used a BCH code with rate 513
1023 and length-1023 bit

codewords in our error reconciliation stage. The choice of

this encoder stems from the analysis in Fig. 2 in order to

achieve a negligible ǫ across all SNRs. In Fig. 3 the IRR is

depicted for a simple quantizer l = 4 is shown.

Finally, further exploiting the use of public feedback, it is

possible to design a key validation process as follows. First,

Bob transmits to Alice his estimated syndrome sB which

Alice uses to derive eB . Using (26), Alice can then estimate

k̂A and check that k̂A = kA. Blocks which fail the validation

test are subject to further processing or are discarded.

IV. PHYSICAL LAYER AUTHENTICATED ENCRYPTION

Assuming that the key generation protocol is publicly

available and that Eve is an active eavesdropper, the threat

model is summarized as follows:

- Eve can intercept all information exchanges between Alice

and Bob, i.e., Eve can mount chosen plaintext attacks [11].

- Eve can modify the transmitted signals in a predetermined

manner, i.e., Eve can mount chosen ciphertext attacks [11]

and can act as a man-in-the-middle.

Existing literature on shared randomness exclusively fo-

cuses on key generation for data confidentiality applications

in the presence of passive adversaries. On the other hand,

secure communication in the presence of an active adversary

without any pre-shared secret (i.e., a pre-established key at

both Alice and Bob) is currently solely based on the use of

public key encryption schemes (PKE) [11] that employ trap-

door functions such as the RSA (Rivest-Shamir-Adleman)

or the DH (Diffie Hellman) with asymmetric key lengths

of at least 1024 or 2048 bits. However, the computational

resources required to encrypt and decrypt using PKE are

substantial; as a result, PKE can limit the performance of

ad-hoc or device-to-device networks in which the nodes join

or leave the network frequently.

To overcome such limitations, in this section we alterna-

tively propose a PLAE scheme that instead of computation-

ally demanding trapdoor functions employs the low com-

plexity scheme described in section Section II to generate

pair-wise keys. To begin with, we assume that Alice wishes

to transmit a secret message m to Bob without having access

to a public key infrastructure. We build a PLAE protocol

using the following elements:

1) A physical layer key seed generation scheme employing

the simple quantizer without feedback described in sec-

tion II. The scheme will in the following be denoted by

FGen(hA, hB) = {sA, sB , eA, eB , kA, kB}.

2) A semantically secure hash function (random oracle)

denoted by H(x) = k where k = {ke, ki} is a pair of keys.

ke is to be employed by a symmetric encryption algorithm

and ki is the key to be used by a message authentication

code (MAC).

3) A semantically secure A.E scheme (e.g. an encrypt-

then-MAC protocol) [11] that comprises four algorithms:

an encryption algorithm denoted by Es(ke,m) = c, a

decryption algorithm denoted by Ds(ke, c) = m, a signing

algorithm denoted by S(ki,m) = t and a verification

algorithm denoted by V (ki,m, t) = v ∈ {m,⊥}.

A. Two Node PLAE Protocol

- FGen scheme: During cycle 1 Alice transmits a probe

signal to Bob who evaluates sB(1), eB(1), kB(1). Subse-

quently, Bob transmits a probe signal to Alice who eval-

uates sA(1), eA(1), kA(1). This procedure is repeated un-

til suitable length tuples sA, eA, kA, sB , eB , kB are gen-

erated from the concatenation of successively generated

parameters, i.e., sA = [sA(1)||, . . . , ||sA(n)], eA =
[eA(1)||, . . . , ||eA(n)], kA = [kA(1)||, . . . , ||kA(n)], sB =
[sB(1)||, . . . , ||sB(n)], eB = [eB(1)||, . . . , ||eB(n)] and



kB = [kB(1)||, . . . , ||kB(n)] where || denotes concatenation.

The number of cycles depends on the required key entropy

according to the specifications of the A.E. algorithms.

- Hashing and A.E.: Alice generates a secret key

k = {ke, ki} = H(kA) and encrypts the message as

c = Es(ke,m). Subsequently, she signs the ciphertext c
using the signing algorithm t = S(ki, c) and transmits to

Bob the extended ciphertext.

C = [sA||c||t] (29)

- Integrity check and decryption: Bob checks the integrity

of the received data as follows: from sA he evaluates kA and

obtains k = {ke, ki} = H(kA). Subsequently, Bob evaluates

V (ki, c, t), which is either equal to ⊥ if the integrity test

of the A.E. failed or c if the integrity test of the A.E.

was successful. The integrity test will fail if any part of C
was modified; for example, if sA was modified during the

transmission then Bob would have evaluated a wrong key

k and the integrity test would have failed. If the integrity

test was successful then Bob decrypts m = Ds(ke, c). Using

standard chosen ciphertext attack and chosen plaintext attack

semantic security proofs, it is straightforward to demonstrate

that the proposed scheme achieves semantic security and

integrity.

B. Multi-node Key Generation Scheme

Generalizing the PLAE protocol to a wireless network

with multiple nodes can have many different flavors depend-

ing on the application of the FGen function. In this paper

we briefly present a scheme suitable for a network of N
nodes who want to establish a common key k. We note that

generating a common secret key using the RSA or the DH

schemes is an open problem for networks with N > 3.

The procedure comprises two phases. In the first phase,

the FGen scheme is applied pairwise between node 1 and

the remaining nodes 2 to N . In this phase, the nodes

sequentially transmit suitable probe signals one after the

other and obtain estimates of the pairwise CSIs h1,i and

hi,1, i = 2, . . . , N . At the end of this procedure node 1
generates N−1 pairwise syndromes s1,i, i = 2, . . . , N while

the remaining nodes generate syndromes s2, . . . , sN . The

syndromes s1,i correspond to the error pattern from the key

seed k1 extracted from h1,2 to key seeds extracted from

h1,i, i = 3, . . . , N . Finally the syndromes si, i = 2, . . . , N
correspond to error patterns of key seeds k2, . . . , kN , ex-

tracted from hi,1, i = 2, . . . , N . At the second phase, node

1 generates a key k = H(k1) and broadcasts its extended

syndrome s1 = [s1,1||, . . . ||s1,N ] so that nodes 2 to N can

regenerate the common secret key k using k = ki⊕ei⊕e1,N ,

for i = 2, . . . , N .

V. IMPROVING THE KEY GENERATION RATE USING

INFORMATION DISTILLATION WITH FEEDBACK

After discussing the PLAE protocol, we re-focus our

attention to the IDR phase and discuss an improved scheme

0 1 2 3 Q-1 … Quantizer 

Alice Slot 

Bob Slot 1 2 3 4 5 6 7 8 

1 2 3 4 5 6 7 8 

 

 

 

Fig. 4. Proposed quantizer with public feedback

with feedback. In future work, this will be incorporated in

the PLAE protocol. In order to increase the information

distillation rate at the output of the quantizer, we propose the

following public feedback approach: each quantization inter-

val is split into n slots as shown in Fig. 4. Alice determines

the quantization interval and the slot index iA ∈ {1, . . . , n}
of her estimated phase sample; the latter is transmitted to

Bob. Similarly, Bob identifies the quantization interval and

the slot index iB ∈ {1, . . . , n} of his own estimate. Based on

the public feedback received by Alice he then computes the

likelihood that his own estimate is in the same quantization

interval as Alice’s. According to a slot agreement (SA)-

disagreement (SD) protocol he announces the retaining or

rejection of the current output of the quantizer. No useful

information is revealed to Eve when Alice and Bob exchange

slot indices. This is due to the fact that irrespective of

the quantization level, all slots are equiprobable. Below we

explain alternative SA− SD protocols for a quantizer with

eight slots (n = 8) in each quantization interval.

SA− SD(0) : Hard decision (same slot)

In this approach Alice and Bob must be in the same slot,

otherwise the output of the quantizer is discarded, i.e.,

SA− SD(0) =

➜

1, if iA = iB , iA, iB ∈ {1 . . . , n}
⊥, otherwise,

(30)

where ⊥ denotes rejected. In Fig. 5 the information

distillation rate (IDR) for the SA − SD(0) approach is

depicted.

SA− SD(d) : Soft decision ±d slot indices:

Alice and Bob must be at most one slot apart otherwise the

observed phase sample is discarded, i.e.,

SA−SD(d) =

➜

1, if |iA − iB | ≤ d, iA, iB ∈ {1 . . . , n}
⊥, otherwise.

(31)

As an example, for d=1, if Alice is in slot with index iA = 5
as shown in Fig. 4, the quantizer output is retained only

when Bob is in a slot with indices iB = 4, 5 or 6. Unlike

the SA− SD(0), this approach has an increased IDR. Fig.

5 shows the IDR for d = 1 and d = 2.
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Fig. 5. Information distillation rate for the SA − SD(0), SA − SD(1)
and SA− SD(2) approaches for 8 slot division.

Increasing the number of slots within each quantization

interval decreases the complexity of the subsequent recon-

ciliation phase.

Using the FEC described in Section III-B, discrepancies

in the quantizer output are reconciled. An IRR of 100%
is achieved at SNRs of 14.6 dB, 15.5 dB and 18 dB for

SA − SD(0), SA − SD(1) and SA − SD(2) respectively

when Q = 4 and l = 4. These results are shown in Fig. 6.

A. Probability of Error at the Information Distillation Pro-

cess

Let Alice’s and Bob’s quantizers generate log2 Q-tuples

denoted by qA and qB respectively. In the outlined ap-

proaches an error (disagreement in the quantizer outputs at

Alice and Bob) occurs when SA− SD = 1 & qA 6= qB . In

more detail, for the SA − SD(0) approach the probability

of error can be expressed as:

Pe =

Q
∑

q = 1
q 6= log 2(qB)

∫ qu

ql

∫ ∞

−∞

1

σt

√
2π

exp− (θ − θ0)
2

2σ2
t

dθ

=
Q− 1

n
, (32)

where

ql = lσt

⑩

iA − 1 +
i− 1

n

❿

π

Q
− π

2
, (33)

qu = lσt

⑩

iA − 1 +
i

n

❿

π

Q
− π

2
= ql +

1

n

π

Q
. (34)

Extending this analysis, the probability of error can be

estimated as a function of the number of the slots n,

according to the approach employed:

±d slots : Pe = (Q− 1)
1 + 2d

n
. (35)
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Fig. 6. Information reconciliation rate (IRR) for the SA−SD(0), SA−

SD(1) and SA− SD(2) approaches for 8 slot division.

VI. CONCLUSIONS

In this paper a physical layer approach for secure secret

key generation in wireless networks with passive and active

adversaries were investigated. Using a simple version of

the proposed key generation scheme we developed a novel

physical layer authenticated encryption (PLAE) scheme,

employing standard semantically secure algorithms. The

proposed PLAE scheme offers a compelling alternative to

computationally demanding PKE schemes and can be em-

ployed in the setup of secure sessions in wireless networks.

Due to its low computational complexity it can be partic-

ularly attractive in resource limited networks (e.g. sensor

networks) or dynamic settings (e.g. ad hoc and device-to-

device networks). We have extended earlier physical layer

key generation approaches by proposing a novel key ex-

traction scheme with multi-level feedback that allow for

a substantial reduction of complexity in the information

reconciliation phase.

REFERENCES

[1] U. M. Maurer, “Secret key agreement by public discussion from
common information,” IEEE Trans. Information Theory, vol. 39, no. 3,
pp. 733–742, 1993.

[2] R. Ahlswede and I. Csiszár, “Common randomness in information
theory and cryptography. Part I: secret sharing,” IEEE Trans. Infor-

mation Theory, vol. 39, no. 4, 1993.
[3] G. Smith, “A direct derivation of a single-antenna reciprocity relation

for the time-domain,” IEEE Trans. Antennas Propagation, vol. 52,
no. 6, pp. 1568–1577, Jun. 2004.

[4] J. E. Hershey, A. A. Hassan, and R. Yarlagadda, “Unconventional
cryptographic keying variable management,” IEEE Trans. Communi-

cations, vol. 43, no. 1, pp. 3–6, 1995.
[5] A. Sayeed and A. Perrig, “Secure wireless communications: Secret

keys through multipath,” in IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP), Las Vegas, NV, Mar.
30 Apr. 4 2008, pp. 3013– 3016.

[6] C. Bennett, G. Brassard, C. Crépeau, and U. Maurer, “Generalized
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