
HAL Id: hal-01686268
https://hal.science/hal-01686268

Submitted on 20 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multiscale Estimation of the Fluctuations of Mechanical
Fields in Poroelasticity: Application to Cement-Based

Composites
Tulio Honorio, Laurent Brochard

To cite this version:
Tulio Honorio, Laurent Brochard. Multiscale Estimation of the Fluctuations of Mechanical Fields in
Poroelasticity: Application to Cement-Based Composites. Sixth Biot Conference on Poromechanics,
Jul 2017, Paris, France. �10.1061/9780784480779.164�. �hal-01686268�

https://hal.science/hal-01686268
https://hal.archives-ouvertes.fr


	
   –	
  1	
  –	
  	
   	
  

 
 

Multiscale estimation of the fluctuations of mechanical fields in poroelasticity: 
application to cement-based composites 

 
Tulio Honorio, Ph.D.1 and Laurent Brochard, Ph.D2  

 

1Laboratoire Navier, UMR 8205, Ecole des Ponts, IFSTTAR, CNRS, UPE, Champs-sur-Marne, 
France; e-mail: tulio.honorio-de-faria@enpc.fr  

2Laboratoire Navier, UMR 8205, Ecole des Ponts, IFSTTAR, CNRS, UPE, Champs-sur-Marne, 
France; e-mail: laurent.brochard@enpc.fr  

 
ABSTRACT 
 
Analytical estimations of stresses and strains fluctuations (or statistical variability) in elasticity at 
early-age are provided according to different scales of interest of cement-based materials (CBM). 
The estimations are obtained by means of relations between square means and effective 
properties for isotropic medium. Mori-Tanaka (MT), Self-Consistent (SC) and Generalized Self-
Consistent (GSC) schemes are combined to represent the multiscale microstructure of CBM. In 
the estimations, the evolution of volume fractions of phases due to cement hydration processes is 
accounted for at the cement paste level. Interfacial Transition Zone (ITZ) is considered at mortar 
level. These estimations provide important information regarding the heterogeneity of the 
mechanical fields in cement-based materials, which can be used, for instance, in the definitions 
of failure or onset of damage criteria. The distributions of stress and strains are provided for the 
phases of interest at a given scale for different loadings. 
 
INTRODUCTION 
 
Cement-based materials (CBM) have a heterogeneous and hierarchical character, which is 
intimately related to key properties (elastic moduli, strength, conductivities) affecting its thermo-
mechanical performance. Moreover, in these materials, we find a multiscale porosity with pore 
sizes ranging from few Angstroms (in the interlayer space between C-S-H sheets) up to few 
millimeters (in air trapped voids). Homogenization techniques, notably in poroelastic context, 
have been employed both to upscale macroscopic properties of interest in industrial application 
and to estimate by inverse analysis (or relaxation) the properties of some basic constituent phases 
of CBM. In general, these studies are limited to first-order estimations, i.e. only the averages of 
mechanical fields in a given phase are taken into account.  

Local information regarding the deviation of these fields might be, though, useful 
information for the development of more precise estimations (especially in the case of strength 
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and damage evolutions – in which a stress or strain criterion is often required). Indeed, 
fluctuations in a composite play a major role in the determination of failure mechanisms (Ponson 
2016). For CBM, this local information have been obtained in some studies by means of 
numerical tools (e.g. with finite elements analysis (Honorio et al. 2016)). However, classical 
homogenization techniques can also provide analytical estimations of the fluctuations of strain or 
stresses fields in composites (Kreher and Pompe 1985). These analytical estimations can be more 
easily transposable to the study of different aspects related to CBM as, for instance, the 
composition (e.g. w/c, volume of aggregates) and hypothesis regarding the representation of the 
microstructures (the presence of an interfacial transition zone (ITZ), polycristal-like structure 
compared to matrix-inclusion structure). 

We start from a given representation of the multiscale character of CBM combining 
matrix-inclusions morphologies according to classical homogenization schemes (Honorio et al. 
under review). Then, we use estimations of the variance of strain and stresses fields for these 
schemes (Bobeth and Diener 1987). We assume micro and macro isotropy. The estimations of 
fluctuations are made for spherical (or equiaxed) inclusions. As results, we present fluctuations 
within the phases defined in cement paste, mortar (including ITZ) and concrete scales according 
to different types of loading.  

 
OVERALL AND LOCAL BEHAVIOR IN THE PRESENCE OF TRANSFORMATION 
FIELDS 
 
Consider a composite with elastic constituent phases, which are perfectly bonded at their 
interfaces. We assume that the properties of the phases are statistically independent quantities. 
Assuming that such composite is homogeneous at a given macro-scale (so that a representative 
elementary volume (RVE) Ω can be chosen to study local and overall behavior), the overall 
behavior is, in terms of Cauchy stress 𝜎 and linearized strain 𝜀 , respectively (Dvorak and 
Benveniste 1992): 

𝜎 𝐱 = ℂ 𝐱 : 𝜀 𝐱 + 𝜎 ! 𝐱 ,          ∀𝐱 ∈ Ω 
where ℂ is the elastic stiffness symmetric fourth-rank tensor and 𝜎 !  is the overall stress 
transformation field (or eigenstress). This affine form with the presence of transformation fields 
can be used to model different physical phenomena including thermo- and poro-elasticity as well 
as phase transformation. In saturated poroelasticity the transformation stresses read: 

𝜎 ! = −𝐁 𝐱 𝑃 
where 𝑃 is the pressure in the fluid filling the pores and 𝐁 is the tensor of Biot coefficients. 
 Consider now a sub-volume Ω!  of the RVE. The local constitutive equation reads: 

𝜎 𝐱 = 𝔹 𝐱 : Σ+ 𝜎!"# 𝐱 ,          ∀𝐱 ∈ Ω! 
where 𝔹 is the stress localization forth-rank tensor; Σ is a uniform stress applied at the boundary 
𝜕Ω of the RVE and 𝜎!"# is the residual stress field resulting from the incompatibility of the local 
eigenstrains. Adopting a mean-field approach one might write the localization expression for a 
given phase 𝑝: 
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𝜎 ! = 𝔹 !: Σ+ 𝜎!"# ! 
With this equation the interphase distribution of the stress within a composite is obtained. In 
order to estimate both volume averages in the second term of last equation, we can resort to the 
well-known Eshelby solution for an ellipsoidal inclusion in an infinite homogeneous linear 
medium under a homogeneous loading Σ. Finally, it can be shown (Bornert et al. 2001; Laws 
1973) that the average residual stress tensor can be obtained from the effective properties of the 
medium and the averaged stress localization tensors. 
 
FLUCTUATIONS OF MECHANICAL FIELDS 
 
Besides averaged information per phase or interphase distribution of fields, more precise local 
information regarding the intraphase estimations of the distribution of fields can be obtained by 
mean of analytical methods. Let the fluctuation or covariance (forth-rank) tensor of a field 𝜙 
within phase 𝑝 be defined by 

𝑞!
! ≡ 𝜙⨂𝜙 ! − 𝜙 !⨂ 𝜙 !     (1) 

where ⨂ denotes the dyadic product. Note that, even if the constituents are isotropic, the 
fluctuation field is anisotropic per se (Bobeth and Diener 1986), for instance, under uniaxial 
loading, 𝑞!

! is significantly stronger in the direction of loading. The standard deviation 𝜔!,      !"#$
!  

of a field 𝜙 within a phase 𝑝, according a considered direction, can be approximated by the 
square root of the components of the fluctuation tensor (Bobeth and Diener 1987): 𝜔!,      !"#!

! =

𝑞!,      !"#$
! . In Eq. (1), the rightmost term, considering the case of stress fields, is the average 

stresses 𝜎 ! per phase that can be obtained as shown in the last section. The term 𝜎⨂𝜎 !, can 
be obtained by the definitions of local and effective elastic energies, 𝑢 and 𝑈, respectively 
(Brenner et al. 2001): 

𝑢 𝐱 =
1
2 𝜎 𝐱 : 𝜀 𝐱 − 𝜀(!) 𝐱 =

1
2 𝜎 𝐱 ⨂𝜎 𝐱 ∷ 𝕊 𝐱  

𝑈 𝐱 = 𝑢 𝐱 =
1
2 Σ:𝕊!"": Σ− 𝜎!"# 𝐱 : 𝜀(!)  

where the effective elastic energy is obtained from the local energy by applying Hill's lemma. 
The second moment of stress field can be then obtained by deriving 𝑈 with respect to the local 
compliance 𝕊! (Brenner et al. 2004; Buryachenko and Rammerstorfer 1998): 

𝜎⨂𝜎 ! = −
2
𝑓!

𝜕𝑈
𝜕𝕊!

=
1
𝑓!

Σ⨂Σ ∷
𝜕𝕊!""

𝜕𝕊!
+ 𝜀(!) 2Σ:

𝜕 𝔹 !
!

𝜕𝕊!
+
𝜕 𝜎!"# !

𝜕𝕊!
 

The second moment of strain fields can also be obtained considering a uniform strain field on 𝜕Ω 
(Brenner et al. 2001). So far, these estimations of the second moments are valid irrespectively of 
any degree of anisotropy. In the micro/macro-isotropic case, for spherical inclusions, the 
expressions are reduced to the ones presented by (Bobeth and Diener 1986) in the absence of 
transformation fields or (Bobeth and Diener 1987) in the presence of transformation/residual 
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fields. The latter expressions are used hereafter to estimate the fluctuations of mechanical fields 
in CBM.  
 
APPLICATION TO CBM  
 
Estimations of fluctuation in undrained Calcium Silicate Hydrates (C-S-H). We first 
consider the simple example of a porous material with saturated pores. A polycristal-like 
microstructure with equiaxed grain is assumed so that Eshelby solution can be employed. We 
employ this simple morphology to represent C-S-H as a function of different packing densities as 
shown in Fig. 1. For a hydrostatic loading, the maximum fluctuations in the solid arise at a 
packing density of ca. 0.55 and in the pore at 0.5. Following (Constantinides and Ulm 2004), the 
packing densities of 0.64 and 0.76 corresponds to Low Density (LD) and High Density (HD) C-
S-H, respectively. Undrained conditions and non-connected pores are assumed so that the 
fluctuations within pores can be assessed even in the absence of transformation fields (as a 
consequence, for a bulk modulus of water equal to 2.18 GPa, the percolation threshold of self-
consistent scheme is close to 0.4). Note that in the absence of macroscopic load, fluctuations may 
arise from the residual stresses due to transformation fields. In a homogeneously distributed 
packing density, LD solid C-S-H and corresponding pores are subject to larger fluctuations 
compared to HD C-S-H. Note that the fluctuations in solids within two standard deviations are 
large enough to involve opposite sign loading (traction if 𝜎! is compression and vice-versa) for 
low packing densities (<0.64). 

The fluctuations are loading dependent. Figure 2 shows the fluctuations in solids for LD 
C-S-H according to 4 different loadings. Loadings involving shear present larger fluctuations. 
 

 
Figure 1. Stress fluctuations within 'undrained' C-S-H according to packing density for a 

hydrostatic load (left).  At right, the PDF at the packing densities corresponding to HD and 
LD C-S-H, (0.76 and 0.64, respectively) assuming normal distribution. 
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Figure 2. Probability Density Function (PDF – assumed to be Gaussian) of stress 

fluctuations in LD C-S-H according to loading type. 
 

 
Figure 3. Multiscale representation of the microstructure of CBM. 

 
Estimations of fluctuations in CBM. Keeping the same philosophy of choosing the simplest 
representation of the microstructure, we provide the estimations of fluctuations for CBM in a 
multiscale framework. Figure 3 displays the representation of the hierarchical microstructures of 
CBM adopted (as in (Honorio et al. under review)). A first stage of homogenization (or 
upscaling) is necessary to obtain the effective properties in each scale (Figure 4). Then, a second 
phase of localization (or downscaling) is needed to obtain the average (or interphase) values of 
the mechanical field of interest. The average values are associated to fluctuations. Thus, in 
localization processes, fluctuations propagate through smaller scales. In order to account, in a 
very simplistic way, for the effects of capillary pressure P! due to hydration induced self-
desiccation (which is the transformation field were are considering), we use the expression 

P! = 37.55(𝑆!
!

!.!" − 1)!.!" (Coussy et al. 2004), where 𝑆 is total saturation degree (including gel 
pores; not discounted chemical shrinkage). Further developments should include different classes 
of pores with different saturation conditions. 
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Figure 4. Homogenization of elastic properties at cement paste, ITZ, mortar and concrete 
scales (left).  Evolution of volume fractions of clinker minerals and hydrate products with 

respect to the degree of hydration (right). 
 

Figure 5 shows the fluctuations (one standard deviation) of stresses in the principal 
direction for a hydrostatic loading 𝜎! in the presence and in the absence of the pressure induced 
by self-desiccation. The fluctuations, in the presence of pore pressure, are larger than in the 
absence. 
 Figure 6 displays the fluctuations (one standard deviation) for the same load at mortar 
and cement paste scales. Recall that the cement paste, as shown in Figure 3, is represented by 
two scales. Sand and clinker grains support higher stresses and are subject to higher fluctuations. 
The leftmost graphic in Figure 6 show that the ITZ is subjected to the lower fluctuations, which 
are comparable to the ones associated to solid phases at cement paste scale. The rightmost 
graphic in Figure 6 show the fluctuations for C-S-H HD, Ettringite (AFt), Calcium hydroxide 
(CH) and water filled pores (the other phases are not shown for clarity). The first three solid 
phases are subject to similar inter and intra-phase distribution of stresses. As can be seen in the 
graphic in the center, the fluctuation in HD and LD layers are similar by one 𝜎!. 
 The accumulation of fluctuations in downscaling is visible in Figure 5 and 6. The 
fluctuations of the clinker grain (the phase with larger fluctuations at cement paste level) are 
roughly five times the fluctuations of cement paste per se, which is, in turn 3 times the 
fluctuations of mortar (in the presence of transformation field). 
 

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

Degree of hydration @-D
V
ol
um
e
Fr
ac
tio
n
@-D

ITZ

Mortar Hwith ITZL
Concrete Hwith ITZL

0 100 200 300 400 500 600
0

5

10

15

20

25

30

Time @hD

Sh
ea
rm
od
ul
us
@GP

aD

0 100 200 300 400 500 600
0

5

10

15

20

25

30
Bu
lk
m
od
ul
us
@GP

aD C3S
C2S
C3A
C4AF
Gypsum
CH
AFt
AFm
C4AH13
Hydrogarnet
HD C-S-H
LD C-S-H
Gel pores
Water
Chem. shrinkage
'Inert'

Paste



	
   –	
  7	
  –	
  	
   	
  

 
Figure 5. Fluctuations of stresses under hydrostatic loading (𝜎! = 1  𝑀𝑃𝑎) at concrete scales 

in the presence and in the absence of the transformation fields (TF). 
 

 
Figure 6. Fluctuations of stresses under hydrostatic loading at mortar and cement paste 

scales. (Layer HD 1 stands for the layer with HD C-S-H functioning as a matrix; Layer LD, 
for LD C-S- H functioning as a matrix)  

 
CONCLUSION 
 
Estimations of the fluctuations of stress fields in CBM are provided in a multiscale framework. 
Homogenization schemes in its most basic form (micro/macro isotropic with spherical 
inclusions) are adopted, so that the estimations do not need to account for the effect of anisotropy 
or other complexities. Our estimations can be seen as a baseline fluctuation occurring in CBM 
based mainly on the contrast and interaction of different forms but irrespective of the forms 
itself. Extensions to estimations in thermo-elasticity are straightforward and treated in a future 
contribution. 
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