
HAL Id: hal-01686265
https://hal.science/hal-01686265v1

Submitted on 17 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Causal Semantics for UML2.0 Sequence Diagrams
with Nested Combined Fragments

Fatma Dhaou, Inès Mouakher, Christian Attiogbé, Khaled Bsaïes

To cite this version:
Fatma Dhaou, Inès Mouakher, Christian Attiogbé, Khaled Bsaïes. A Causal Semantics for UML2.0
Sequence Diagrams with Nested Combined Fragments. 12th International Conference on Evaluation
of Novel Approaches to Software Engineering, Apr 2017, Porto, France. �10.5220/0006314100470056�.
�hal-01686265�

https://hal.science/hal-01686265v1
https://hal.archives-ouvertes.fr

A Causal Semantics for UML2.0 Sequence Diagrams with Nested
Combined Fragments

Fatma Dhaou1, Ines Mouakher 1, Christian Attiogbé2 and Khaled Bsaies 1

1Lipah, Faculty of Sciences Tunis, Tunisia
2Lina University of Nantes, France

Keywords: UML2.0 Sequence Diagrams, Semantics, Nested Combined Fragments.

Abstract: Combined Fragments (CF) are the new features added to UML2.0 sequence diagrams (SD). They have widely
increased its expressiveness power, permitting to model complex behaviours, they can be nested to allow more
sophisticated behaviours. We focus on the most popular CF of control-flow ALT, OPT, LOOP, SEQ allowing
to model respectively alternative, optional, iterative and sequential behaviours. They require a meticulous
processing for the generation of partial order between their events. We proposed in a previous work, a causal
semantics based on partial order theory, which is suitable for deriving of all possible valid traces for sequence
diagrams with CF modelling behaviours of distributed systems. In this work, to deal with nested CF, we first
update the formalization of sequence diagram, then we extend this semantics.

1 INTRODUCTION

Context. The speed of design, the intuition and
the ease of graphical representation make UML2.0
sequence diagrams (SD) a privileged language often
used by the engineers in the software industries. Al-
though the Object Management Group (OMG) (Ob-
ject Management Group, 2009) has defined an offi-
cial standard semantics for UML2.0 SD, some short-
comings still persist. For instance, we report the in-
adequacy of the standard semantics for the compu-
tation of possible valid traces for an SD that models
behaviours of a distributed system.

Motivation. The defined rules by the OMG for
deriving partial order of a given basic SD impose to
order the events along each lifeline, even if they are
received from independent lifelines, which do not al-
low the computation of all possible valid behaviours.
This lead to the emergence of unspecified behaviours
in the implementation.
With UML2.0, the combined fragments allow
the modelling of several kind of behaviours.
We focus especially on a subcategory of
CF: ALT, OPT, LOOP, SEQ; they permit a com-
pact syntactic representation of behaviours. In
contrast, they cause challenges for the determination
of precedence relations between the events. To
compute traces for SD equipped with these CF, the
OMG standard recommends to flatten the underlying
SD to obtain basic SDs that are semantically equiva-
lent. However, the benefits of the compact syntactic

representation are lost.
Moreover, the ALT and the LOOP CF have a dif-
ferent meaning than in the structured programming
languages; although, to ease the processing of these
CF, the existing approaches (Gàbor Huszerl, 2008),
(Hammal, 2006), (Shen, 2013), restrict their use by
interpreting them in the same way. However, in the
standard they have much more flexible interpreta-
tions allowing to model more complex behaviours;
for instance the ALT CF is not equivalent to the
IF − T hen− Else structure, and in the LOOP CF,
weak sequencing between the iterations is applied,
rather than strict sequencing, permitting the inter-
leaving of the occurrence of the events of different
iterations.

In the practical cases, CF can be nested to model more
sophisticated behaviours. All the cited problems are
increasing. In the standard semantics, the notion of
nested CF is briefly mentioned. In literature, few
works (Shen, 2013), (Hammal, 2006), (Gàbor Husz-
erl, 2008) deal with nested CF. In (Gàbor Huszerl,
2008) the authors study the issues resulting of the
nesting of some kinds of CF (different of those
considered in this paper), and by limiting the nesting
levels of CF (Gàbor Huszerl, 2008), (Hammal, 2006),
or by proposing a complicated formalization very
close to the target formalism (Shen, 2013).

Although the existing semantics that are proposed
for UML2.0 SD are various (øystein Haugen and
STAIRS, 2005), (Harel and Maoz, 2008), (Grosu and

Smolka, 2005), (Cengarle et al., 2005), but they are
usually based on the rules of the standard semantics
for the computation of traces of the SD, thus they
are not suitable for SD modelling behaviours of dis-
tributed systems. This justifies the need of a seman-
tics for UML2.0 SD with nested CF that models be-
haviours of distributed systems.

Contribution. This paper extends our previous
work (Dhaou et al., 2015), in which we have extended
an existing semantics proposed for UML 1.X (O.Tahir
and J.Cardoso, 2005) to deal with SD with the most
popular combined fragments (ALT, OPT and LOOP),
by processing the SD as a whole (without parsing the
SD). We have proposed several rules to derive the par-
tial order between the events.

We now propose some additional contributions
that consist, in updating the formalization of sequence
diagrams in order to support nested CF, as well as ex-
tending the previous results: we generalize the previ-
ous rules for the derivation of partial order between
events.

Organization. The remainder of the article is
structured as follows. In Section 2, we propose a run-
ning example that is used to illustrate our approach.
Section 3 is devoted to an overview of the causal
semantics. In Section 4, we provide the new for-
malization, based on set theory and tree structure, of
UML2.0 SD that are equipped with nested CF. Then
in Section 5, we explain our approach for the exten-
sion of causal semantics. Before concluding in Sec-
tion 7, we present some related works in Section 6.

2 RUNNING EXAMPLE

We consider the interactions in a web site that
proposes trainings as an example of UML2.0 SD
modelling the behaviours of a distributed system (as
depicted in Fig.1, Fig.2). The web site has in-
dependent components: the training o f f icer, the
home page, the custom page, the training page, and
the authentication page.

We model the update of the training catalog by
the training o f f icer (as depicted in Fig.2). The
training o f f icer has to authenticate at first (as de-
picted in Fig.1). He enters the web site url, he can
be redirected directly to the custom page if he has
chosen, in the last connection, the option to remain
connected for a limited duration. Otherwise, he is
redirected to the authentication page. We have three
possible cases:
• a successful authentication,
• missing informations, in this case the site asks the

user to complete them,

• wrong login and / or wrong password, in this case
the site asks the training officer to correct them.

Authentification SD

home page

opt

alt

opt

loop

Custom page

[option stay_connected=True][

Authentification page

[success]

[Failure1:missing_data]

[Failure2:wrong _pwd or wrong_login]

[1,100]

enter_url

redirect1

authentification_ request

redirect2

authentification_accepted

DNS_attack

please_complete

please_rectify

OP00
OP11

OP21

OP31

OP41

OP23

OP22

Training officer

Figure 1: Authentification

SD2

Training officer Custom page training page

loop

alt

[1,3]

[choice1]

[choice2]

[choice3]

update _request

redirect3

add_ training

create _calender_ session

choose_ training

update_ session

delete_ session

view _list _of _participants

Figure 2: Update training catalog

In the second case, domain name system (DNS)
attacks may accidentally occur.
The Fig. 2 depicts the update of the training catalog.
The training officer requests to update the training
catalog, he is redirected to the training page where
he has three possible alternatives: i) he can add new
training and create calender session; ii) he can choose
training and update session, iii) he can remove train-
ing, the list of participant to this training is displayed.

3 CAUSAL SEMANTICS

The causal semantics was proposed (O.Tahir and
J.Cardoso, 2005) for basic SD modelling behaviours
of distributed systems. Its rules take into account

the independence of the components, (modelled by
lifelines), involved in the interactions. Indeed, in
contrast with the standard semantics that totally or-
der the events on each lifeline even for the receiving
events from independent lifelines, the causal seman-
tics imposes slighter scheduling constraints on the be-
haviour of lifelines results in more expressive SDs,
since each SD describes a larger number of acceptable
behaviours. This larger expressive power facilitates
the task of the designer since a great number of cases
have to be considered, and permits to prevent the is-
sue of the emergence of unspecified behaviours in the
implementation. The causal semantics is founded on
a partial order theory. However, the causal semantics
is mainly proposed for basics UML1.X SD modelling
behaviours of distributed systems, and the applica-
tion of its rules causes some inconsistencies (aberrant
relations, deadlock and inadvertent triggers of some
events (Dhaou et al., 2015)). Based on these verdicts,
in our previous paper (Dhaou et al., 2015), we pro-
posed an extension of the causal semantics that con-
sists in defining and formalizing new rules for both
relationships <RE and <EE for an SD with sequen-
tial ALT, OPT and LOOP CF by avoiding their flat-
tening. The new defined relationships permit to ob-
tain the partial order between events, that allows to
compute all the possible valid traces of an SD mod-
elling behaviours of a distributed system on a com-
pact way. The previous approach consists in process-
ing each concerning the various localizations of two
events to be ordered.

Intuitively, the causal semantics (Sibertin-Blanc
and J., 2005) is based on the idea of ordering events
if there is a logical reason to do so. Two successive
events that are sent by the same lifeline are necessar-
ily ordered. Two successive events on the same life-
line that are received by two independent lifelines are
not necessarily ordered; even if the messages are sent
by the same lifeline, the receiving events are not or-
dered (if the architecture do not allow their ordering).
In the following, we present briefly the rules of causal
semantics as defined in (O.Tahir and J.Cardoso, 2005)
in informal way.
Synchronization Relationship <SY NC. Each mes-
sage m is received only if it was sent previously.
Reception-Emission Relationship <RE . Receiving a
message causes the sending of the message that is di-
rectly consecutive to it.
Emission-Emission Relationship <EE . If two mes-
sages are sent by the same lifeline their sending events
are ordered.
Causal order Relation <caus. This relation is defined
as follows: <caus= (<SY NC

⋃
<RE

⋃
<EE)

The transitive closure of the relation <caus that we

note <+
caus permits to obtain all the causal dependen-

cies between the events of the SD. The event occur-
rence depends on the partial order relationship <caus.
Illustration: in the Fig. 1, we consider the messages
enter url,redirect1,authentication request, accord-
ing to the rules of the standard semantics: on the
training o f f icer lifeline the events !enter url1 and
!authentication request are ordered, on home page
lifeline the events ?enter url2, !redirect1 and
?authentication request are ordered. With the rules
of the causal semantics the reception of the messages
enter url and authentication request are not ordered
thus we obtain much more traces than with the rules
of the standard.

By applying the same approach for an SD with
nested CF, we face a problem of combinatorial explo-
sion in the number of possible cases for the localiza-
tion of two successive events to order. In the next sec-
tion, we propose a new formalization of the sequence
diagrams that is required for the extension of causal
semantics to support nested combined fragments.

4 TOWARD A NEW
FORMALIZATION

We consider a sub-set of SD containing combined
fragment of control-flow ALT, OPT, LOOP and SEQ
CF. The considered CF are sequential, and can be
nested to model more sophisticated behaviours. We
assume that the operands of the CF do not overlap,
but can be nested. For the formalization of sequence
diagrams equipped with nested CF, we choose, on
the one hand, the set theory notations3 that is a
privileged way due to its several advantages. For
instance, although it is founded on first order logic,
it permits to manipulate objects of high order such
as sets and relations of any depth (that is, sets and
relations built themselves on sets and relations,
and so on) (Abrial, 1996). On the other hand, we
use the tree structure that is hierarchic by nature
and it is convenient to capture the nested structure
of SD, and allow to represent them in an intuitive way.

4.1 BACKGROUND

A tree is a data structure consisting of nodes orga-
nized as a hierarchy. We summarize in the following

1!m denotes the sent of m message
2?m denotes the reception of m message
3N.B we use the same set theory notation as those of

Event-B method

the vocabulary that relates to tree structure. A tree is
either empty or a root node connected to 0 or more
trees (called subtrees). i) Root: it is a node at the top
of the tree. There is only one root per tree and one
path from root node to any node, ii) parent: any node
(except the root node) that has one edge downward
to a node is called a parent, iii) child: node below
a given node connected by its edge upward is called
a child node, iv) each node is either a leaf or an in-
ternal node: an internal node has one or more chil-
dren and a leaf node (external node) has no children,
v) nodes with the same parent are siblings, vi) the de-
scendants of a node n are all nodes reached from node
n to the leaf nodes, vii) a path is a sequence of nodes
n0,n1, ...,nn, where there is an edge from one node to
an unique node. The path can be only downward, and
it connect a node with a descendant, viii) the length
of a path is the number of edges in the path, ix) the
ancestors of a node n are all nodes found on the path
from the root to node n, x) the depth of a node n is the
length of the path from root to n.

4.2 Sequence Diagram Definitions

Definition 1. (Sequence Diagram)
A sequence diagram SD is a tuple
SD : 〈L,M,EV T,FCT s,FCT r,FCT l,OP,F,<caus, tree OP〉
where:

• L is a not empty set of lifelines, and card(L)≥ 2,
• M is a not empty set of asynchronous messages

which is well formed. The set M is well formed if
every message is identified by a pair of events: a
sent event and a received event,

• EV T = E s∪E r is a set of events such that
card(EV T)≥ 24, E s = {!m | m ∈M} and
E r = {?m |m ∈M} denote respectively the set of
sent events and the set of received events such that
E s∩E r = /0,

• for a set of message M we define two bijective
functions: i) FCT s : M�→E s5: for each message
we associate one sent event; ii) FCT r : M�→E r:
for each message we associate one received event,

• FCT l : EV T � L6 a total surjective function that
associates to each event one lifeline, the transmit-
ter or the receiver,

• F = {F1,F2, ...,Fn} is the set of n combined frag-
ments, where Fi = 〈OPi,operatori,Li〉 is a CF that
is identified by its operands, an operator, and the
set of lifelines that are covered by it,

4Cardinal of a set E
5�→ denotes a bijective function
6→→ denotes a total surjection

• <caus⊆EV T↔EV T denotes the partial order re-
lationship,

• OP: a set of operands,
• tree OP is a partial function that allows to struc-

ture the SD in the form of a tree of operands.

To obtain the local order within each lifeline noted
<SD,l , we project the causal order relation <+

caus
7 on

the lifeline l.

4.3 Operands and Tree Structure

Nesting combined fragments are not expressed in the
meta-model, we propose its extension as illustrated in
Fig.3. We redefine the class Interaction Operand as
an abstract class that can be instantiated by: a leaf
operand and nested operands, where this latter can be
related to child operands.

We propose a formalization of UML2.0 SD that is

Interaction Operand

Leaf Operand Nested Operands
parent

child0..*

1

Figure 3: Interaction Operand Metamodel

compliant with the standard UML2.0 meta-model up
to a renaming of some constituents. We opted for the
use of a tree structure that is hierarchic by nature, and
that is convenient to capture the nested structure of SD
allowing to represent them in an intuitive way. An SD
is abstracted as a tree of operands. Intuitively com-
bined fragment will be viewed as an operator together
with its operands; this will be detailed in the sequel.
Our approach supports multiple nesting levels of frag-
ments. Neither the number of fragments enclosed by
another fragment nor the depth of operand nesting are
limited.

4.3.1 Operands

The SD is considered as a set of operands. We asso-
ciate a label to each operand. Two operands with the
same index i belong to the same combined fragment;
for instance, in Fig. 1, OP21, OP22 and OP23 belong to
the same CF ALT.

We consider the whole SD as a root
operand that we note OP00; we define the set
OP = (

⋃
i={1..n}

OPi)∪{OP00}; where n is the number

of operands of the considered SD. Each operand in
an SD has a weight. For instance, each operand of a

7R+: the transitive closure of R

SEQ, an ALT and an OPT CF have a weight equal to
1, and an operand of a LOOP CF has a weight equal
to a value max, where max is the maximum number
of iteration of the considered LOOP CF. We assume
that each operand of a CF has only one first event.
The general definition of an operand in a combined
fragment is given as follows:

Definition 2. (Operand in Combined Fragment)
We define a set of operands OPi in a CF Fi as follows:

OPi = {OPi, j={1..k} |OPi j =
〈
guardi j,weighti j,EV T Di j

〉
}

where: i) k is the number of operands in CF Fi,
ii) weighti j is the weight of the operand OPi j, iii)
EV T Di j are the events that are directly contained in
an operand OPi j.

We use the following functions to manipulate the
operands:

• EV T D permits to get the events that are directly
contained in each operand:

EV T D : OP→ P(EV T)8

• EV T G permits to get all the events that are con-
tained in an operand including those which are
contained in its nested operands:

EV T G : OP→ P(EV T)

• weight permits to return the weight of each
operand:

weight : OP→ NAT+

The instantiation of the definition 2 for SEQ, ALT,
OPT and LOOP CF is given as follows:

Definition 3. (Operand in the SEQ Combined
Fragment)
A sequential combined fragment contains only

one operand linked to the SEQ operator.

OPSEQ
i = {OPi1}

where OPi1 = 〈True,1,EV T Di1〉
Definition 4. (Operand in the ALT Combined
Fragment)
An alternative combined fragment Fi is composed
of a set of k operands:

OPALT
i = {OPi1, ...,OPik}

where OPi j =
〈
(gi j ∧Ai j),1,EV T Di j

〉
and gi j is the guard of the operand OPi j, the
weight is equal to 1, and Ai j is a predicate that
ensures that we have exclusively one operand that
must occur in combined fragment Fi.

8P(EVT): set of subsets E,→ denotes a total function

OP00

OP11 OP21 OP22

OP31

OP41

OP23

Figure 4: Tree associated to the SD of Fig.1

Definition 5. (Operand in the OPT Combined
Fragment)
An optional combined fragment Fi is composed of
one operand:

OPOPT
i = {OPi1}

where OPi1 =
〈
gi j,1,EV T Di j

〉
and gi1 is the guard of the operand OPi j.
Definition 6. (Operand in the LOOP Combined
Fragment)
An iterative CF has one operand. Its events will

execute for at least the minimum mini of iterations
and no more than the maximum maxi of iterations
as long as the guard is evaluated to True.

OPLOOP
i = {OPi1}

where OPi1 = 〈((gi1∧Bi)∨Ci),maxi,EV T Di1〉
and gi1 is the guard of the LOOP operand; Bi is
a predicate which indicates that the current itera-
tion is between mini and maxi values of iteration.
Ci is a predicate that is satisfied if the current it-
eration is less than mini.

4.3.2 Tree Structure

An SD is a tree that is composed by a set of linked
operands, such that each operand has at maximum
one direct ancestor. For instance, the Fig. 4 illus-
trates the associated tree for the SD of the Fig. 1.
The root operand OP00 has no ancestor. Each
node represents an operand, and has as children
the nested operands that are inside it.
We define tree structure for SD operands as fol-
lows:
Definition 7. (Tree Structure for SD Operands)
The tree structure tree OP related to an SD is de-
fined as a partial function:

tree OP : OP 7→ OP

which is acyclic and non-reflexive. The root is the
only operand that does not have a parent:

(∀X)[X ∈OP∧X /∈ dom(tree OP)∧X ∈ ran(tree OP)

⇒ X = OP00]

We introduce new relations ancestor and brother
such that the first one permits to associate to each
operand all the operands where it is nested (its
node ancestors in the tree OP); the second one
permits to link each operand to the other operands
of the same combined fragment (its brothers).
– ancestor: a binary transitive relation that is de-

fined on OP.

ancestor : OP↔ OP9

For an operand X we compute its ancestors as
follows:

ancestor[{X}]10 =
⋃

s∈{1,..,d}
{tree OPs(X)}

Where d is the depth of the node X in the
tree OP.
Illustration: ancestor[{OP00}] = /0, and
ancestor[{OP31}] = {OP21,OP00}.

– brother: a binary transitive relation that is de-
fined on a set OP.

brother : OP↔ OP
Two operands are brothers if they belong to the
same CF (it’s the case of operands of an ALT
CF).

brother = {(OPi j,OPtk)|(OPi j,OPtk) ∈ OP2

∧(i = t ∧ j 6= k))}
Illustration: the operands OP22,OP21,OP23 belong
to the same CF ALT, thus they are brothers.
brother[{OP11}] = /0 and
brother[{OP22}] = {OP21,OP23}

4.3.3 Weight of an event

We overload the function weight to associate the
weight of the path between two operands.

weight : (OP×OP)→ NAT+

We overload the function weight that permits to
associate to each event its maximal number of oc-
currence.

weight : EV T → NAT+

For an event evt such that evt ∈ EV T D(X), we
compute its weight as follows.

weight(evt) = ∏
s∈{0,d}

weight(tree OPs(X))

= weight(OP00,X). With d = depth o f X

These formalizations of the structures SD and CF
are used as a basis for the extension of the causal
relationships that permits to compute the partial
order between the events of the SD.

9↔ denotes a relation
10R[{e}]: Relational image; gives the set of images

5 EXTENSION OF THE
CAUSAL SEMANTICS

The choice we make for structuring the sequence
diagram in the form of tree gives us the advan-
tage of redefining the <RE and <EE relationships,
to support nested CF, by optimizing the number
of possible cases of event localizations to order.
The synchronisation the <SY NC relationship is un-
changeable. The formalizations of <RE and <EE
relationships permit to order two events that be-
long to the same lifeline and that are successive.
To detail a bit, and to alleviate the presentation
of the formalization of <RE and <EE rela-
tionships, we introduce three binary relations
not in brother, succ1 and succ2. In the follow-
ing, we first give the intuition of each of them
before their formalizations.

Two successive events that belong to distinct
operands of an ALT CF must not be ordered.
The relation not in brother expresses this intu-
ition: the successive events of an ALT CF to be
ordered should not belong to the same ancestor at
any level (or brother operands).

not in brother={(e,e′)|(e,e′) ∈ EV T 2∧ (∀X)(∀Y)
[X ∈ (ancestor[{EV T D−1(e)}]∪{EV T D−1(e)})
∧Y ∈ (ancestor[{EV T D−1(e′)}]∪{EV T D−1(e′)})
⇒ (X ,Y) /∈ brother]}

Illustration:
in Fig.1, the event!please complete ∈ OP22,
the event !please recti f y ∈ OP23 and
OP22 ∈ brother[{OP23}], hence the events
!please complete and !please recti f y should not
be ordered.
The event !DNS attacks ∈ OP41, the
event authentication accepted ∈ OP21,
ancestor[{OP23}] = OP22 and OP22 ∈
brother[{OP21}], hence the events
authentication accepted and !DNS attacks
should not be ordered.

Formally, we distinguish two successive events in
different ways with two distinct relations succ1
and succ2. These relations are used respectively
in the formalization of <EE and <RE relation-
ships. The relation succ1 relates two events that
belong to the same lifeline and which are suc-
cessive. Nevertheless, we admit between them,
events that must necessarily belong to an operand
that can be omitted (i.e. the events between suc-
cessive events do not belong to any operand an-

cestor of the operands of the considered events).

succ1={(e,e′)|(e,e′) ∈ EV T 2∧
(∃l)[l ∈ L ∧ e <∗SD,l e′

∧ (∀e”)[e” ∈ EV T ∧ (e <∗SD,l e” ∧ e” <∗SD,l e′)
⇒ EV T D−1(e”) /∈ (ancestor[{EV T D−1(e)}]
∪ ancestor[{EV T D−1(e′)}])]]}

The relation succ2 expresses the same conditions
and effects as those defined in succ1 relation-
ships, moreover it expresses that we admit re-
ceived events between the successive events.

succ2= {(e,e′)|(e,e′) ∈ EV T 2∧
(∃l)[l ∈ L ∧ e <∗SD,l e′ ∧ (∀e”)[e” ∈ EV T ∧
(e <∗SD,l e” ∧ e” <∗SD,l e′)
⇒ e” ∈ ran(FCT r) ∨
EV T D−1(e”) /∈ (ancestor[{EV T D−1(e)}]
∪ ancestor[{EV T D−1(e′)}])]]}

The relationship <EE permits to order two sent
events that satisfy the conditions expressed in
not in brother and succ1 relations.

<EE= {(e,e′)|[(e,e′) ∈ (EV T)2 ∧
e ∈ ran(FCT s) ∧ e′ ∈ ran(FCT s) ∧
(e,e′) ∈ not in brother ∧ (e,e′) ∈ succ1}]

The relationship <RE permits to order two events
such that the first one is a received event and
the second one is a sent event, and both of them
satisfy the conditions expressed in not in brother
and succ2 relations.

<RE= {(e,e′)|[(e,e′) ∈ (EV T)2 ∧
e ∈ ran(FCT r) ∧ e′ ∈ ran(FCT s) ∧
(e,e′) ∈ not in brother ∧ (e,e′) ∈ succ2}]

5.1 Hidden Precedence Relations in
LOOP Combined Fragment

The events inside a LOOP operand can have as pre-
ceding events that can be located:

– for the first iteration: i) either outside the LOOP
operand and/or, ii) inside the LOOP operand of
the same iteration.

– from the second iteration: i) either outside
the LOOP operand and/or, ii) inside the LOOP
operand of the same iteration and/or of the pre-
vious iterations.

We call hidden relations the relations between the
events of LOOP operand of the current iteration and
the events of the previous iterations (Fig.5). These
relations appear when the LOOP operand is flatten at
least one time. Hence, the necessity of defining a new
relation <hcaus in which we express the constraints of

precedence between the events of the current iteration
and the events of the previous iteration. In order to
compute the hidden precedence relations, we propose
the following steps: we flatten the LOOP operand only
once whatever is the number of iterations; we obtain
an intermediate sequence diagram SD’.
In SD’, we rename the operands as well as the events
of the second iteration with the same name as those of
the preceding iteration by labelling them with a single
quote (Fig. 6). We define the set EV T ′ to represent
the events of the next iteration. <′RE and <′EE are re-
spectively the reception-emission, and the emission-
emission relationships associated to the SD’. In an
SD we can have several LOOP operand that can be se-
quenced or nested. In this case, the same processing is
applied by computing for each LOOP operand its hid-
den relationships; we note <hcausX , the hidden rela-
tions of a given LOOP operand named X . The formal-
ization of the hidden relationships for a LOOP operand
X is given as follows.

<hcausX= {(e,e′)|e ∈ EV T ∧ e′ ∈ EV T ′∧
(e,e′) ∈<′RE ∨(e,e′) ∈<′EE}

Illustration1: consider the SD’ (depicted in Fig. 5),
in the first iteration, the preceding event of !m2 is
!m1, the preceding events of !m3 are ?m1 and ?m2.
In the second iteration, the preceding event of !m2′

is !m4, the preceding events of !m3′ are ?m4 and ?m2′.

Illustration2: as we aforementioned, for an ALT CF,
only one operand must be executed, hence it is in-
tuitive that the events that belong to distinct operands
must not be ordered, otherwise we have the deadlocks
of some events.
However, in some particular cases of nested struc-
ture, we can face a problem that the events of dis-
tinct operands of the same ALT CF (brother operands)
can have precedence relations. The Fig. 7 repre-
sents a possible execution of the SD (depicted in
Fig.6) containing nested CF. In the first iteration
of the LOOP CF, the first operand of the ALT CF
is executed; in the second iteration of the LOOP
CF, the third operand of the ALT CF is executed.
The event !view list o f participants, that belongs
to the third operand of the ALT CF, has among
its preceding events: i) the event ?delete session
that belongs to the same operand, ii) the events
?create calender session,?add training which both
belong to the first operand of the the ALT CF. Which is
problematic, since the events of brother operands are
not ordered. This justifies the renaming of the events
and the operands of the next iteration to prevent this
problem.

In an SD we can have several LOOP operand that

SD'SD

m1

[5]loop

m4

m3

m2

m1

m4

m3

m2

m4

m3'

m2'

'

loop

L1 L2L2L1

Figure 5: Processing of an SD with LOOP CF

SD2

Training officer Custom page Training page

loop

alt [choice1]

[choice2]

[choice3]

update_ request

redirect3

add _training

create_ calender_ session

choose_ training

update _session

delete_ session

view_ list_ of_ participants

alt [choice1]

[choice2]

[choice3]

redirect3'

add_ training'

create_ calender _session'

choose _training'

update_ session'

delete _session'

view_ list _of _participans

Figure 6: Processing of an SD with Nested CF

SD3

Training officer Custom page Training page

update_request

redirect3

add_training

create_ calender_ session

delete_session

view_list _of_participants

redirect3'

Figure 7: Possible execution of The SD of the Fig. 6

can be sequenced or nested. In this case, the same
processing is applied by computing for each LOOP
operand its hidden relationships; the entire hidden
relation is the union of the hidden relations of each
LOOP operand. Now, the causal relationships is com-
puted as follows.

<caus=<SY NC ∪<RE ∪<EE ∪<hcaus

That means the ordering of events depends on the
cumulative rules of the relationships. The valid traces

are those which can be generated satisfying these or-
ders.
The defined rules (<RE , <EE , <hcaus) may be applied
to the standard semantics by restoring the constraints
that we relaxed. In the same way, these rules can be
adapted for any kind of semantics by strengthening or
weakening some constraints.

5.2 Behaviour of sequence diagrams

The behaviour of a given SD is a set of traces. The
trace is a set of events occurrences. The occurrence
of an event depends on its definition.

5.2.1 The state of an event

The causal semantics (O.Tahir and J.Cardoso, 2005)
deals only with basic SD. In the standard semantics,
even the UML2.0 SD, that are equipped with CF, are
treated as basic SD, since the standard recommends
their flattening. An event which belongs to a basic SD
can have two obvious basic states: executed or not
yet executed. In our approach, we support sequence
diagrams with sequential CF that can be nested. The
basic states are not sufficient to express the state of an
event in an SD with sophisticated structures (nested
CF). Indeed, each event in such SD can be: not yet
occurred, occurred, consumed one or several times.
Then, the variable state is defined as follows.

state : EV T → NAT

The state of an event is decreased whenever it is oc-
curred or ignored. To describe the state of an event e,
we use the following vocabulary:

• not yet occurred: when state(e) = weight(e),

• occurred: if the event e is executed or ignored one
or several times and 0 < state(e)< weight(e),

• consumed: when state(e) = 0.

During its execution, an SD can be in one state among
the following states:

• an initial state, when all its events are not yet oc-
curred,

• an intermediate state,

• a final state, when all its events are consumed:
state = EV T ×{0}.

5.2.2 The definition of an event

The behaviour of an SD is the occurrence of its events.
An event occurs under some conditions and produces
some effects. Each event which belongs to SD with
combined fragment has triggers conditions including

causality with other events, require formalizing the
computation of events preceding the current event,
and execution effects.
The textual description of the definition an event in a
given SD with nested CF is done as follows.

Triggers conditions consist in checking that: i) the
precedents events of the current event are occurred
(executed or ignored), ii) the current event is not yet
consumed.
Execution effects consist in: i) updating the state of
the event.

6 RELATED WORKS

Most of existing semantics that are proposed for
UML2.0 SD are based on the definitions of the stan-
dard semantics for the computation of traces of an
SD, thus they are not suitable for SD modelling be-
haviours of distributed systems.

This mismatch has motivated the work
of (Sibertin-Blanc and J., 2005), (O.Tahir and
J.Cardoso, 2005) who proposed a causal semantics
for basic SD. In (Sibertin-Blanc and Tahir, 2006),
to show the benefits and the adequacy of causal
semantics for SD modelling distributed systems, the
authors present three kinds of semantics: emission
semantics, linear semantics and message sequence
charts (MSC) semantics.
The linear semantics and the emission semantics im-
pose a restrictive rules for the ordering of the events
of the SD, and they are practicable only for a smaller
kind of SD modelling some kind of systems. The
linear semantics (Cardoso and Sibertin-Blanc, 2001)
permits to order all the messages of the considered
SD by imposing a total serialization of the emission
and the reception of the messages. The emission
semantics (Cardoso, Janette and Sibertin-Blanc,
Christophe, 2002) imposes the total serialization of
emission of all the messages. The semantics of the
MSC (Rudolph et al., 1996), predecessors of the SD,
suffers from ambiguity of semantics interpretation
(Alur et al., 1996). In the authors show that it can
exists some kind of partial order between events that
depend strictly on the considered architecture (for
instance, existence of one or several FIFO queue
for all the process...). The different partial order
defined are (i) visual order: it corresponds to the
order of the events as they appear in the SD and that
does not reflect the occurrence order of the events
during the execution of the system, (ii) enforced
order: it corresponds to the order of the events that
the underlying architecture can guarantee to occur
only in the specified order, and (iii) inferred order: it
is defined as the transitive closure of enforced order.

In our work, we consider the causal semantics that is
founded on a partial order theory. The causal-based
order relation defined accounts for the precedence
relation between the events of an SD as far as all
the synchronization between lifelines are ensured by
the exchanged events, without the use of a global
controller or the addition of other messages.

The presence of CF causes difficulties for the
derivation of traces, to ease the processing of the
LOOP and the ALT CF, some works interpret these
CF similarly as in structured programming languages
which lead to the lose of some possible traces. In
(Hammal, 2006), (Gàbor Huszerl, 2008), in order
to reduce the non-determinism of the ALT CF, the
authors transform it into an IF − T HEN − ELSE
construct. In (Hammal, 2006), the authors state
clearly that for the loop CF, they 88prefer use strict
sequencing rather than weak one to avoid a patholog-
ical case of divergence in LOOP combination when
using asynchronous communication′′. Similarly, in
(Knapp and Wuttke., 2006), the authors define a new
CF SLOOP that enforces strict sequencing between
the iterations. In our approach, we interpret the LOOP
and ALT CF as in the standard semantics, differently
of the interpretation in the structured programming
languages. Moreover, since the rules of causal
semantics relaxed the constraint of the ordering of
the events on each lifeline, we obtain all possible
traces for an SD modelling behaviours of distributed
systems.

Usually, the existing works neglect the issues re-
lated to the use of nested CF in an SD. Although their
use allows several complex scenarios that can be ag-
gregated in a single sequence diagram, an inherent
difficulty of the interpretation and the analysis of the
SD arises. The standard semantics (Object Manage-
ment Group, 2009) does not propose a meta-model
for nested CF. In the work of (Shen, 2013), the au-
thors propose a formal semantics based on the rules
of the standard semantics, and that is close to the tar-
get formalism (LTL) and complicated to apprehend.
Moreover, they consider UML2.0 SDs having finite
traces with LTL formalism, that represents basically
infinite traces.

In (Gàbor Huszerl, 2008), the authors consider
conformance operators (ASSERT, IGNORE, CON-
SIDER and NEGATE, permitting to categorize the
traces as invalid or valid, ALT and PAR) CF, and they
aim to define rules that allow or prohibit the nesting
of these operators, by limiting the nesting level of CF
to two levels.

In (Hammal, 2006), the authors propose a formal
definitions for UML2.0 SD based on branching

time semantics and partial orders in a denotational
style, nevertheless the notion of nested CF is briefly
mentioned, and no explicit formalization for them is
proposed.

7 CONCLUSION

In this paper, we first defined an intuitive formal-
ization, based on set theory and tree structure, of se-
quence diagrams equipped with combined fragments
that can be nested. The formalization can be adapted
for any kind of semantics. Then, we have extended
the causal semantics by redefining its rules in a syn-
thetic way. The new causal relationship allows to
compute all possible valid traces for SDs with nested
CF that model behaviours of distributed systems, by
avoiding the flattening of SD equipped with (ALT,
OPT, LOOP) CF, hence the compact syntactic repre-
sentation is preserved.
The proposed semantics can serves as basis for the
derivation of traces of UML2.0 SD, as well as for
the definition of an operational semantics that facil-
itates the analysis of the SD. Our approach is not
related to any target translation formalism and can
be implemented by any formal method for its veri-
fication, although it is already implemented, (Dhaou
et al., 2015), (Dhaou et al., 2016), by Event-B method
offering powerful tools (Rodin/Pro-B).

Meanwhile, we are extending our proposal to
cover other concepts like the gates and the state in-
variants which allow one to express more complex
behaviours and to cover other CF, in particular those
dedicated to model parallel behaviours and invalid be-
haviours. In addition, we currently study theoretical
properties that are derived from the proposed seman-
tics.

REFERENCES

Abrial, J.-R. (1996). The B Book. Cambridge University
Press.

Alur, R., Holzmann, G. J., and Peled, D. (1996). An An-
alyzer for Message Sequence Charts. In SOFTWARE
CONCEPTS AND TOOLS, pages 304–313.

Cardoso, J. and Sibertin-Blanc, C. (2001). Ordering Ac-
tions in Sequence Diagrams of UML. In 23rd Inter-
national Conference on Information Technology In-
terfaces, pages 3–14, J. Marohnica bb, 10000 Za-
greb, Croatia. University Computing Centre Uniersity
of Zagreb.

Cardoso, Janette and Sibertin-Blanc, Christophe (2002).
An Operational Semantics for UML Interaction: Se-
quencing of Actions and Local Control. Euro-

pean Journal of Automatised Systems, APII-JESA,
36(7):1015–1028.

Cengarle, M. V., Graubmann, P., Wagner, S., and München,
T. U. (2005). Semantics of UML 2.0 Interactions with
Variabilities.

Dhaou, F., Mouakher, I., Attiogbé, C., and Bsaies, K.
(2015). Extending Causal Semantics of UML2.0 Se-
quence Diagram for Distributed Systems. ICSOFT-EA
2015 - Proceedings of the 10th International Confer-
ence on Software Engineering and Applications, Col-
mar, Alsace, France, pages 339–347.

Dhaou, F., Mouakher, I., Attiogbé, C., and Bsaı̈es, K.
(2016). Refinement of UML2.0 Sequence Diagrams
for Distributed Systems. In Proceedings of the 11th
International Joint Conference on Software Technolo-
gies (ICSOFT 2016) - Volume 1: ICSOFT-EA, Lisbon,
Portugal, July 24 - 26, 2016., pages 310–318.

Gàbor Huszerl, Hélène Waeselynck (ed.), Z. E. A. K.
Z. M. (2008). Refined design and testing framework,
methodology and application results.

Grosu, R. and Smolka, S. (2005). Safety-Liveness Seman-
tics for UML 2.0 Sequence Diagrams. In 5th Int.
Conf. on Application of Concurrency to System De-
sign, page 614.

Hammal, Y. (2006). Branching Time Semantics for UML
2.0 Sequence Diagrams. Lecture Notes in Computer
Science: Formal Techniques for Networked and Dis-
tributed Systems - FORTE 2006, pages 259–274.

Harel, D. and Maoz, S. (2008). Assert and Negate Revis-
ited: Modal Semantics for UML Sequence Diagrams.
Software and System Modeling, 7(2):237–252.

Knapp, A. and Wuttke., J. (2006). Model Checking of UML
2.0 Interactions. In Khne, T., editor, Models in Soft-
ware Engineering, pages 42–51. Springer.

Object Management Group (2009). OMG Unified Model-
ing Language (OMG UML), Superstructure Version
2.2.

O.Tahir, C.-B. and J.Cardoso (2005). A Causality-Based
Semantics for UML Sequence Diagrams. In 23rd
IASTED International Conference on Software Engi-
neering, pages 106–111. Acta Press.

øystein Haugen, Knut Eilif Husa, R. K. R. and STAIRS
(2005). Towards Formal Design with Sequence Di-
agrams. In Software and System Modeling, volume 4,
pages 355–357. John Wiley & Sons, Inc.

Rudolph, E., Grabowski, J., and Graubmann, P. (1996). Tu-
torial on Message Sequence Charts (MSC’96).

Shen, H. (2013). A Formal Framework for Analyzing Se-
quence Diagram. PhD thesis.

Sibertin-Blanc, C. and Tahir, O. (2006). From UML1.x
to UML 2.0 Semantics for Sequence Diagrams. In
Ramos, F. F., Lrios, R. V., and Unger, H., editors,
IEEE International Symposium and School on Ad-
vance Distributed Systems (ISSADS), Mexico (Mex-
ique). IEEE.

Sibertin-Blanc, C., T. O. and J., C. (2005). Interpretation of
UML Sequence Diagrams as Causality Flows. In Ad-
vanced Distributed Systems, 5th Int. School and Sym-
posium (ISSAD), number 3563, pages 126–140. Acta
Press.

