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Abstract—The optimal power allocation that maximizes the
secrecy capacity (SC) of block fading Gaussian (BF-Gaussian)
networks with causal channel state information (CSI), M -
block delay tolerance and a frame based power constraint is
examined. In particular, the SC maximization is formulated
as a dynamic program. First, the SC maximization without
any information on the CSI is studied; in this case the SC is
maximized by equidistribution of the power budget, denoted
as the “blind policy”. Next, extending earlier results on the
capacity maximization of BF-Gaussian channels without secrecy
constraints, transmission policies for the low SNR and the high
SNR regimes are proposed. When the available power resources
are very low the optimal strategy is a “threshold policy”. On
the other hand when the available power budget is very large a
“constant power policy” maximizes the frame secrecy capacity.
Subsequently, a novel universal transmission policy is introduced,
denoted in the following as the “blind horizon approximation”
(BHA), by imposing a blind policy in the horizon of unknown
events. Through numerical results, the novel BHA policy is
shown to outperform both the threshold and constant power
policies as long as the mean channel gain of the legitimate
user is distinctively greater than the mean channel gain of
the eavesdropper. Furthermore, the secrecy rates achieved by
the BHA compare well with the secrecy rates of the secure
waterfilling policy in the case of acausal CSI feedback to the
transmitter.

Index Terms—delay constrained secrecy capacity, causal CSI

I. INTRODUCTION

Physical layer security (PLS) investigates the potential of

taking advantage of the impairments in real communication

media, such as fading or noise in wireless channels, in order

to achieve confidentiality in data exchange. PLS was pioneered

by Wyner, who introduced the wiretap channel and established

the possibility of creating perfectly secure communication

links without relying on private (secret) keys [1]. Recently,

there have been considerable efforts devoted to generalizing

this result to the wireless fading channel and to multi-user

scenarios [2], [3].

In the present study we investigate optimal power allocation

policies in block fading Gaussian (BF-Gaussian) wireless

networks with secrecy and delay constraints. In our model, a

transmitter wishes to broadcast secret messages to a legitimate

user by employing physical layer security approaches, subject

This research was supported in part by the Marie Curie Outgoing Fellowship
Program under Award FP7-PEOPLE-IOF-2010-274723, and in part by the
U.S. National Science Foundation under Grant CMMI-1435778.

to a strict M -block delay constraint; accordingly, at the source

a stochastic encoder maps the confidential messages to code-

words of length n = MN transmitted over M independent

blocks, i.e., we assume that an interleaver of at most depth

M is employed. We assume that the fading realizations are

independent and identically distributed (i.i.d), that they remain

constant over each block of N channel uses and that they

change independently from one block to the next.

In the investigated setting, in order for random coding

arguments to hold it is required that n → ∞. For finite n,

the BF-Gaussian channels are typically not information-stable

and the generalized capacity expressions in [4] need to be

employed. In this work, similarly to the work in [5], we bypass

such issues by assuming that N → ∞. The case of M → ∞
that corresponds to the ergodic channel has been investigated

in [2] and [6].

The presentation of our results is organized as follows. First,

in Section II we restate the secure waterfilling solution to the

optimal power allocation problem in M -block BF-Gaussian

networks with acausal channel state information (CSI). This

framework is pertinent to applications with parallel chan-

nels (e.g. in the frequency domain) under short-term power

constraints (e.g. OFDM networks with frame based power

constraints). Assuming that the M -block CSI is available

at the transmitting and receiving nodes at the beginning of

the transmission frame, the secure waterfilling policy that

maximizes the network secrecy capacity [7] is discussed.

Next, in Sections IV and V we investigate BF-Gaussian

channels with long term power constraints. We begin with a

“blind scenario” in which the optimal power allocation is to

be decided without any CSI information; the statistics of the

channel gains are the only variables in the power allocation

decision process. In absence of any CSI information we show

that the optimal policy is to equally distribute the power budget

in the M transmission blocks.

Then, we examine networks with causal access to the

legitimate user’s and the eavesdropper’s CSI over a horizon of

M transmission blocks; the pairs of the legitimate user’s and

eavesdropper’s channel gains are sequentially revealed to the

network nodes. We distinguish three subcases accounting for:

(i) the low SNR regime, (ii) the high SNR regime, and, (iii) a

novel universal approximation incorporating the blind scenario

in the horizon of future events, denoted in the following as the

“blind horizon approximation” (BHA).
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In the low SNR regime a threshold transmission policy is

shown to be approximately optimal, in line with earlier results

in networks without secrecy constraints [8]. On the contrary,

in the high SNR regime the optimal strategy is to transmit with

constant power in those blocks in which a non zero secrecy

capacity can be achieved, in agreements with the results

presented in [9] for the case without secrecy. Finally, using

the BHA we derive a tractable expression for the transmission

policy that depends quadratically on the remaining power and

linearly on the gap between the legitimate and eavesdropping

receivers’ CSI. The derived policy is shown to outperform

both the threshold and the constant power policy as long

as the expectation of the gap between the legitimate and

eavesdropping receivers’ CSI is non-negligible.

II. SYSTEM MODEL

We assume a BF-Gaussian channel with i.i.d. realizations.

During the m-th transmission block the legitimate user’s

channel gain is denoted by αm and the eavesdropper’s channel

gain by βm. The proofs of the coding theorems will be

included in the journal version of this paper.

Definition: The secrecy capacity density during one trans-

mission block of the BF-Gaussian channel for an input power

γ and channel gains (α, β) can be expressed as

cs(γ, α, β)
.
=

 

log
1 + αγ

1 + βγ

!+

(1)

with [·]+ = max(·, 0). The secrecy capacity of the M -

block transmission frame for a vector of input powers γ =
[γ0, γ1, . . . , γM−1] and pairs of channel gains (α, β) =
[(α0, β0), (α1, β1), . . . , (αM−1, βM−1)], can be expressed as:

Cs
.
=

1

M

M−1
"

m=0

cs(γm, αm, βm). (2)

III. POWER CONTROL WITH SHORT-TERM POWER

CONSTRAINT AND FULL M -BLOCK CSI

The optimal power allocation policy assuming that at the

beginning of the transmission frame the CSI of M parallel

blocks is revealed to the transmitting and receiving nodes

has been derived in [2] and [7] and is repeated below for

convenience. This is the baseline secure waterfilling policy and

its performance cannot be exceeded in the causal scenario.

Without loss of generality we assume that the pairs of

channel gains (αm, βm), m = 0, . . . ,M − 1 are already

permuted so that the differences

δm = αm − βm (3)

appear in non-increasing order. The optimal power allocation

problem can be stated as:

max
γ

Cs (4)

s.t.

M−1
"

m=0

γm ≤ MP and γm ≥ 0,m = 0, . . . ,M − 1.(5)

We further define the inverse channel gaps dm as:

dm =
1

βm

− 1

αm

. (6)

The power allocation γ∗ = (γ∗
0 , γ

∗
1 , . . . , γ

∗
M−1) that maxi-

mizes the secrecy capacity satisfies the M -block power con-

straint with equality, i.e,

M−1
"

m=0

γ∗
m = MP, (7)

and is given by the secure waterfilling algorithm

γ∗
m

#

1

λ

$

=

%

&

'

1

2

(

)

d2m + 4

λ
dm −

#

2

αm

+ dm

$

*

, m ∈ Q

0, otherwise

(8)

where Q = {i : λ−1 ≥ δi
−1}.

The functions γ∗
m(λ−1) are monotone increasing and con-

tinuous in λ−1. As a result, there exists a unique integer

µ in {0, . . . ,M − 1} such that λ−1 ≥ δm
−1 for m ≤ µ

and λ−1 < δm
−1 for m > µ. The waterlevel λ−1 can

be derived by sequentially pouring water to the functions

γ∗
m(λ−1) until the power constraint is met with equality, i.e.,
+µ

m=0
γ∗
m(λ−1) = MP .

IV. POWER CONTROL WITH LONG-TERM POWER

CONSTRAINT WITHOUT CSI

We assume an overall long-term power constraint over M

sequential transmission blocks in the form of (5). Accordingly,

the channel gains of the legitimate user and the eavesdropper

are assumed stationary over time with known expected values

µα and µβ respectively and realizations αm and βm during

the m-th block. Our objective at block m, given that we have

remaining power pm, is the identification of the power alloca-

tion γ∗
m that maximizes the instantaneous secrecy capacity and

the secrecy capacity for the future transmission blocks from

block m+ 1 to M .

A. Blind Scenario

We first consider the case in which during the m-th block

we take a decision on the value of γm without having

information on the current channel gains (αm, βm), except for

their stationarity over time and the remaining power pm. In this

formulation, our objective is to maximize the expected secrecy

capacity over the entire horizon. In essence, this formulation

corresponds to the case without delay and with perfect CSI at

the receiver and no CSI at the transmitter ( [5] Section II.A).

Let γ = (γ0, . . . , γM−1). The stochastic optimization ob-

jective function can be written as follows:

max
γ

E

,

M−1
"

m=0

cs(γm, αm, βm)

-

= max
γ

E

,

M−1
"

m=0

cs(γm, α, β)

-

,

(9)

where the expectation taken over the random variables αm and

βm is re-written with rapport to the generic random variables

α and β.

The above problem can be written as a stochastic dynamic

program as follows: We let Vm(pm) (called the value function)
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be the aggregate secrecy capacity density gained from block

m to the end of the horizon if the optimal power allocation

policy is used. Then the dynamic programming equations can

be written as:

Vm(pm) = max
0≤γm≤pm

E{cs(γm, α, β) + Vm+1(pm − γm)}
m = 0, . . . ,M

VM (pM ) = 0 (resources exhausted). (10)

We perform backward dynamic programming on the opti-

mality equations (10). We define the function:

f(γ) ≡ E

 

!

log
1 + αγ

1 + βγ

"+
#

. (11)

We start the dynamic programming recursion at block m = M ,

where the optimality equations are:

VM (pM ) = max
0≤γM≤pM

f(γM ), (12)

Since f is nondecreasing, the maximization in (12) is achieved

at γ∗
M = pM . Thus, we have: γ∗

M = pM and VM (pM ) =
f(pM ). Thus, at block m = M − 1 the optimality equations

are:

VM−1(pM−1) = max
0≤γM−1≤pM−1

f(γM−1) + f(pM−1 − γM−1).

(13)

Let h(γ) = f(γ) + f(p − γ). Note that h′(γ) = f ′(γ) −
f ′(p − γ), and since f ′(γ) is nonincreasing and f ′(p − γ)
is nondecreasing in γ, we have that h′ is nonincreasing. This

means that it can have at most one extreme point in the interval

[0, p], and the extreme point must be a maximum. At γ = p
2

we have: h′
$

p
2

%

= f ′(p
2
) − f ′(p

2
) = 0. Therefore in (13) the

maximum is achieved at γ∗
M−1 = pM−1

2
and VM−1(pM−1) =

2f(pM−1

2
).

Continuing the recursion we get

VM−n(pM−n) = (n+ 1)f
&pM−n

n+ 1

'

(14)

and the optimal decision is γ∗
M−n = pM−n

n+1
. This implies that

if we have no information about the channel the optimal thing

to do is to divide the power into as many equal parts as there

are periods remaining, i.e., for m = 0, . . . ,M − 1

γ∗
m = P. (15)

The above results are intuitive; as expected, the blind maxi-

mization of a function of the outcomes of M independent trials

can be achieved by equidistribution of the available resources.

V. POWER CONTROL WITH LONG-TERM POWER

CONSTRAINT AND CAUSAL CSI

In the current section we investigate the case in which

during the m-th transmission block we causally obtain infor-

mation regarding the channel state, i.e., the pair (αm, βm) is

causally revealed to the transmitter before the decision on γm
is made. In this setting, during the m-th transmission block,

we have to solve the following optimization problem:

Vm(pm) = max
γm∈A

cs(αm, βm, γm) + E

(

Vm+1(pm − γm)
)

Am =
*

γm : 0 ≤ γm ≤ pm1{δm>0}

+

. (16)

We distinguish two cases, according to the available power

budget P ; the low SNR and the high SNR regimes.

A. Low SNR Regime

In the low SNR regime, the available power is assumed

small, i.e., P � 1. As a result a valid linear approximation

of the logarithmic function would be log(1 + z) ' z, leading

to an approximate expression for the secrecy capacity density

given by:

cs(γ, α, β) ' [α− β]+γ = [δ]+γ, (17)

with δ defined in (3). The value function Vm at m = M could

then be written as

VM (pM ) = max
γM∈AM

[δM ]+γM . (18)

The secrecy capacity is thus approximated as a linear function

of the power, so that at m = M the optimal power allocation

is straightforwardly given by

γ∗
M =

,

pM , if δM > 0,
0, otherwise,

(19)

which gives the following value function at m = M :

VM (pM ) = [δM ]+pM . (20)

At m = M − 1 the value function takes the form

VM−1(pM−1) = max
γM−1∈AM−1

[δM−1]
+γM−1

+ E{[δ]+}(pM−1 − γM−1). (21)

Thus, at m = M − 1, the optimal power allocation is given

by

γ∗
M−1 =

,

pM−1, if [δM−1]
+ > E{[δ]+}

0, if [δM−1]
+ ≤ E{[δ]+} (22)

Motivated by this result, the following near optimal power

policy during the m-th block is proposed:

γ∗
m =

,

pm, if [δm]+ > E{[δ]+}
0, if [δm]+ ≤ E{[δ]+} (23)

with p0 = MP and m = 0, . . . ,M − 1. In the proposed

threshold power policy, whenever a ”good enough” gap in

the channel gains δm of the legitimate and the eavesdropping

receivers occurs then we transmit at full power.

Intuitively, in the low SNR regime there will not be many

opportunities for achieving high values of the secrecy capacity

density, so whenever such an opportunity occurs it should be

seized in order to maximize the secrecy capacity over the

whole horizon. The threshold is fixed to the expected value

of the gap between the channel gains of the legitimate user

and the eavesdropper, lower bounded by zero. Even when

the legitimate user’s channel is on average worse than the

eavesdropper’s, it is still possible to transmit at some non-

zero rate even in the low SNR regime, given a long enough

horizon, i.e., for large M .
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B. High SNR Regime

In the high SNR regime, i.e., for P → ∞, we can transmit

at very high power during any of the transmission blocks. A

good approximation for the secrecy capacity density during

the m-th block is derived as

lim
γ→∞

cs(γ, α, β) =

 

log
α

β

!+

. (24)

The maximization of the secrecy capacity is as a result inde-

pendent of the power allocation and any transmission policy

could be used. Accounting for other important considerations,

e.g. the minimization of the information leakage, it is proposed

to only transmit during the blocks that satisfy the condition

δm > 0, i.e.,

γ∗
m =

" pm

M−m
, if δm > 0

0, if δm ≤ 0
(25)

with p0 = MP and m = 0, . . . ,M − 1.

VI. BLIND HORIZON APPROXIMATION (BHA)

In this section a novel universal approximation is derived

by incorporating the blind policy in the horizon of future

events. Suppose that we have the current CSI at block m,

αm and βm when we take the power allocation decision γm.

The optimality equations for this model are as follows:

Vm(pm) = max
γm∈Am

cs(αm, βm, γm)

+ E

#

Vm+1(pm − γm)
$

(26)

Am =
%

γm : 0 ≤ γm ≤ pm1{δm>0}

&

. (27)

The proposed approximation for Vm is given as:

V̂m(pm) = max
γm∈Am

gm(γm), (28)

where gm is as follows:

gm(γ) = cs(αm, βm, γ) + (M −m)cs

'

µα, µβ ,
pm − γ

M −m

(

,

(29)

with µα and µβ being the expected values of the channel gains

of the legitimate user and the eavesdropper respectively. The

idea behind the BHA is to approximate the expected value of

the secrecy capacity density in future time slots by assuming

that (i) the channel gains will converge to their expected

values, and, (ii) as a result of this the power allocation will

be the blind policy due to symmetry.

A. Case I: αm > βm and µα > µβ

When αm > βm and µα > µβ the function gm can be

rewritten as:

gm(γ) = log
)1 + αmγ

1 + βmγ

*

+ (M −m) log

+

1 + µα
pm−γ
M−m

1 + µβ
pm−γ
M−m

,

(30)

Taking g′m(γ) = 0 gives the following roots:

(x1, x2) =

+

E +
√
G

2F
,
E −

√
G

2F

,

(31)

where E and F are given below, G is given in the Appendix

and for simplicity of notation we let Lm = 1

M−m
:

E = 2µαµβL
2
m(αm − βm)pm + [Lm(αm − βm)

× (µα + µβ) + (αm + βm)(µα − µβ)], (32)

F = µαµβL
2
m(αm − βm)− αmβm(µα − µβ), (33)

We can show that G ≥ 0 (the proof is omitted due to space

limitations). Furthermore, x1 is always outside the interval

[0, pm] so that we always retain only root x2. As a result we

have the BHA power allocation given below (the proof can be

found in the Appendix):

γ∗
m =

-

min(x2, pm), if (αm − βm) ≥ (µα − µβ)
max(0, x2), if (αm − βm) < (µα − µβ)

(34)

B. Case II: αm > βm and µα ≤ µβ

When αm > βm and µα ≤ µβ the function gm can be

rewritten as:

gm(γ) = log

'

1 + αmγ

1 + βmγ

(

(35)

and the BHA reduces to the threshold policy so that

γ∗
m = pm. (36)

C. Case III: αm ≤ βm

When αm ≤ βm the function gm can be rewritten as:

gm(γ) = (M −m) log

+

1 + µα
pm−γ
M−m

1 + µβ
pm−γ
M−m

,

(37)

and the optimal BHA policy is to allocate no power, i.e.,

γ∗
m = 0. (38)

VII. NUMERICAL RESULTS

In this section, we present numerical evaluations of the

per block secrecy rates following the proposed transmission

policies in Rayleigh channels, i.e., the channel gains αm and

βm are exponentially distributed with mean values µα and

µβ respectively. We set M = 10, µβ = 1 and the average

SNR per block as µαP . In Figs. 1-4 we depict the secrecy

rates per block achieved by the various transmission strategies

normalized to the benchmark secure waterfilling rate achieved

with acausal CSI for µα = {0.1, 1.01, 5, 10}, averaged over

1000 channel realizations. We note that the waterfilling rate

is not achievable in the case of causal CSI except for the

asymptotic scenario of an ergodic channel with M → ∞.

The threshold policy outperforms the constant policy in the

low SNR regime and vice versa in the high SNR regime.

Furthermore, the constant policy always outperforms the blind

policy as in the latter part of the power budget is spent on

blocks with zero secrecy capacity density when αm ≤ βm.

On the other hand, for µα ≤ µβ the BHA policy coincides

with the threshold policy. In this case the BHA policy is not
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Fig. 1. Per block secrecy rates normalized to the secure waterfilling rate
achieved by various policies for µα = 0.1, µβ = 1 and M = 10.
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Fig. 2. Per block secrecy rates normalized to the secure waterfilling rate
achieved by various policies for µα = 1.01, µβ = 1 and M = 10.

optimal in the whole SNR axis and is outperformed in the

intermediate and high SNR regimes by the constant policy.

The same is true for µα ' µβ . However, when µα is distinctly

greater than µβ the secrecy rate achieved with the BHA policy

is greater than the rates achieved with the threshold and the

constant policy over the entire SNR axis.

Finally, in Fig. 5 the average secrecy rates per block

achieved by the causal BHA policy and the acausal waterfilling

are depicted for µβ = 1 and M = 10. Interestingly, as long as

µα is distinctly greater than µβ , we loose almost no secrecy

rate -in absolute terms- due to the causal nature of the CSI

feedback over the entire SNR axis.

VIII. CONCLUSIONS

We have investigated the optimal power allocation in delay

constrained M -block BF-Gaussian networks. By studying the

blind case with no CSI availability during the decision pro-

cess we have concluded that the optimal policy consists of

p q r p s r p t r r t r s rr u tr u sr u qr u vr u wr u xr u yr u zr u {t µ
α

| w } µ
β

| t

~ � � � � � � � � � � � � � � � � � � � � �� ��� ����� ����������� � � � � � � � � �   � � ¡ � � � � � �¢ £ � � ¤ £ � � � � � � � � ¥¦ � � ¤   � �   � � � � �� � � � � � � � � � ¥� § ~
Fig. 3. Per block secrecy rates normalized to the secure waterfilling rate
achieved by various policies for µα = 5, µβ = 1 and M = 10.
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Fig. 4. Per block secrecy rates normalized to the secure waterfilling rate
achieved by various policies for µα = 10, µβ = 1 and M = 10.

equally distributing the power along the transmission blocks.

Furthermore, the study of networks with causal access to the

CSI has been performed accounting for three distinct cases;

the low and the high SNR regimes and a novel universal

approximation. In the low SNR regime we have proposed

a near optimal threshold policy whereas in the high SNR

regime a constant transmission policy has been shown to be

near optimal. Finally, by incorporating the blind policy in the

horizon of future events we have been able to derive a novel

universal approximation that we have denoted as “the blind

horizon approximation” (BHA). Through numerical evalua-

tions it has been shown that the BHA compares favorably with

the benchmark waterfilling policy in the acausal feedback case

and consistently outperforms the threshold and constant power

transmission policies as long as the mean channel gain of the

legitimate user is distinctively greater than the mean channel

gain of the eavesdropper.
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Fig. 5. Average secrecy rates per block achieved by the BHA policy and the
waterfilling policy for µβ = 1 and M = 10.

IX. APPENDIX

The expression for G is given in (39) below. It can be shown

that when αm > βm and µα > µβ , G ≥ 0.

Next we prove that x1 is always outside the interval [0, pm].
We have two cases, according to the sign of F . For F > 0,

it is straightforward to show that x1 ≥ E
2F

> pm, since the

coefficient of pm in the ratio E
2F

is greater than or equal to

1 and the constant term is strictly positive. Thus, if F > 0
then x1 > pm. On the other hand for F < 0, x1 < 0, since

E +
√
G is strictly positive. Therefore, x1 is always outside

the interval [0, pm].
Regarding whether x2 is in the interval [0, pm] we first

calculate the derivative of gm at points 0 and pm, given in (40)

and (41) below. If (αm − βm) ≥ (µα − µβ), then g′m(0) ≥ 0.

Since only one root of g′m can exist in the interval [0, pm],
namely x2, if g′m(pm) ≥ 0 then the root (maximum) must be

outside of the interval [0, pm], x2 ≥ pm, and the maximum is

achieved at pm. However, if g′m(pm) < 0 then the root must

be in [0, pm] and the maximum is achieved at x2. Thus the

maximum in [0, pm] is achieved at min(x2, pm).
If on the other hand (αm − βm) < (µα − µβ), then

g′m(pm) ≤ 0. Since only one root of g′m can exist in the

interval [0, pm], namely x2, if g′m(0) ≤ 0 then the root (the

maximum) must be outside of the interval [0, pm], x2 ≤ 0 and

the maximum is achieved at 0. However, if g′m(0) > 0 then

the root must be in [0, pm] and the maximum is achieved at

x2. Thus the maximum in [0, pm] is achieved at max(0, x2).
This gives the power allocation in (34).
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G = (αm − βm)[−4αmµ2
ββmµαL

2
mp2m + 4αmµ2

αβmL2
mp2mµβ − µ2

ββm + αmµ2
β − µ2

αβm + µ2
ααm

− 4αmµ2
βµαL

2
mpm − 4αmµ2

βbLmpm + 4αmµ2
αβmLmpm + 4αmµ2

αL
2
mpmµβ − 4βmµ2

βµαL
2
mpm

+ 4βmµ2
αL

2
mpmµβ − µ2

αL
2
mβm + αmµ2

αL
2
m + αmL2

mµ2
β − βmL2

mµ2
β − 2αmµαL

2
mµβ + 2βmµαL

2
mµβ

− 2αmµ2
βLm − 2βmµ2

βLm − 4µβαmβm + 4µ2
αL

2
mµβ − 4µαL

2
mµ2

β + 2βmµαµβm
+ 2αmµ2

αLm

+ 2βmµ2
αLm + 4µααmβm − 2αmµαµβ ]. (39)

g′m(0) =
[µαµβL

2
m(αm − βm)]p2m + [Lm(αm − βm)(µα + µβ)]pm + [(αm − βm)− (µα − µβ)]

(1 + µαLmpm)(1 + µβLmpm)
(40)

g′m(pm) =
[−αmβm(µα − µβ)]p

2
m + [−(µα − µβ)(αm + βm)]pm + [(αm − βm)− (µα − µβ)]

(1 + αmpm)(1 + βmpm)
(41)


