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Abstract We investigate the physics behind the com-

plex thermo-mechanical behavior of clays. Depending

on their loading history, clays exhibit thermal expan-

sion or contraction, reversible or irreversible, and of

much larger magnitude than for usual solids. This ano-

malous behavior is often attributed to water adsorption,

but a proper link between adsorption and thermo-me-

chanics is still needed, which is the object of this paper.

We propose a conceptual model starting from the scale

of the adsorption up to the scale of the geomaterial,

which successfully explains the thermo-mechanical be-

havior of clays. Adsorption takes place between clay

layers at the nanometer scale. The mechanics of the

clay layers is known to be strongly affected by adsorp-

tion, e.g., swelling with humidity increase. Here we in-

vestigate the effect of drained heating and show that
an increase of temperature decreases the amplitude of

the confining pressure oscillations with the basal spac-
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ing. More subtle is a shift of the oscillations to larger

basal spacing. To relate the mechanics of a clay layer

to that of the geomaterial, we propose an upscaling in

two steps: the clay particle and the clay matrix with

inclusions. We model the particle as a stack of layers in

which different hydration states (number of water lay-

ers in a nanopore) can co-exist. This description builds

on the theory of shape memory alloys, the physics of

which is quite analogous to the case of a clay particle.

Upscaling to the scale of the clay matrix with inclusions

is performed with conventional self-consistent homoge-

nization. The conceptual model is confronted to three

typical experiments of the thermo-mechanical behavior

of clay. It captures all the anomalous behaviors of clays:

expansion / contraction, reversibility / irreversibility,

role of loading history and impact on preconsolidation
pressure. Moreover, it offers a possible nanoscale inter-

pretation of each of these anomalous behaviors.

Keywords clays · thermal expansion / contraction ·
micromechanics · water adsorption

1 Introduction

Clays are geomaterials ubiquitous in sedimentary soils

and rocks and are therefore involved in a wide variety of

geomechanical applications. For instance, clays usually

exhibit low permeability and are thus suitable sealing

media for nuclear wastes disposal or caprocks for carbon

geological storage. Regarding mechanics, clays exhibit

some unusual behaviors such as the well-known swelling

with increasing humidity. This mechanical behavior is

at the heart of many challenges in geomechanics from

foundations design to oil and gas recovery and geother-

mal energy. A particular issue, which we investigate in

this paper, is the thermo-mechanical behavior of clays.
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Indeed, many applications involve thermal loadings, no-

tably nuclear waste disposal, which has long motivated

studies of the mechanical response of clays to tempera-

ture variations. The first studies of thermo-mechanical

behavior of clays dates back to the 1960’s [42,13,46]

and have identified some key features that were con-

firmed on a wide variety of clays since then. We can

summarize these as follows :

– Normally consolidated clays contract irreversibly upon

drained heating under constant confining stress. Drained

cooling is reversible. This observation leads to the

concept of thermal consolidation.

– The irreversible contraction is reduced for over-con-

solidated clays. Heavily over consolidated clays ex-

hibit first a reversible thermal expansion at low tem-

peratures and then irreversible contraction at higher

temperatures.

– The elastic domain is reduced with temperature in-

crease, i.e., preconsolidation pressure decreases with

temperature. Moreover, thermal consolidation in-

duces strain hardening. However, temperature has

almost no influence on the elastic and plastic com-

pressibilities.

– Apparent drained irreversible thermal contractions

are typically ∼ −10−3K−1 whereas reversible ther-

mal expansions are typically∼ 10−4K−1. These mag-

nitudes are significantly higher than that of other

solids (e.g., ∼ 3 · 10−5K−1 for steel or concrete) and

that measured for the solid mineral constituents of

clays : 1.5 · 10−5 to 5.4 · 10−5K−1 [36].

To clarify and illustrate this thermo-mechanical be-
havior we display in Figure 1 the results of three typical

experiments. In the first experiment (Fig. 1 (a)) volu-

metric deformations of clay samples upon temperature

cycles (20◦C to 100◦C) are reported. The samples are

drained, under constant confining pressure, and differ

in over consolidation ratio (OCR) defined as the ratio

between the plastic limit and the current confining pres-

sure. These results clearly show that consolidation state

is a key property for the thermo-mechanical behavior.

Normally consolidated clays (OCR = 1) contract ir-

reversibly upon heating, while over-consolidated clays

(OCR > 1) first expand reversibly and then contract

irreversibly. The pressure has only little effect on the

deformation. The experimental results presented here

were obtained by [48] for Boom clay (see also [20]), but

similar results have been observed for Pontida silty clay

[5], Pasquasia clay [29], kaolin clay [54,16], Bangkok

clay [3], bentonite [51] and Opalinus claystone [39]. Ac-

cordingly, this behavior can be considered representa-

tive of swelling clays in general.
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Fig. 1 (a) Drained heating experiments under constant con-
fining pressure, adapted from [48]. (b) Isotropic drained con-
solidation experiments at different temperatures, adapted
from [13]. (c) Effect of temperature cycles on drained con-
solidation experiments, adapted from [46].

The second experiment (Fig. 1 (b)) is a drained con-

solidation experiment performed at three different tem-

peratures. The consolidation curves are simply shifted

to lower void ratios at higher temperatures. The tem-

perature does not affect the slopes, i.e., the compress-

ibilities, in both the plastic and the elastic regimes.

These results were obtained by [13] for illite clay and
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similar observations confirmed this observation for kaolin

clay [8,16], Todi clay [12], Bangkok clay [3] and ben-

tonite [51].

The last experiment (Fig. 1 (c)) is a drained consoli-

dation under isothermal conditions that has been inter-

rupted twice to perform a heating-cooling cycle. At the

beginning of each cycle, the material is normally con-

solidated. Accordingly, it contracts irreversibly during

the cycle. When isothermal consolidation is resumed, it

appears that the plastic consolidation occurs at higher

pressures than what would have been expected from

the consolidation before the temperature cycle (dashed

lines). Accordingly, the temperature cycles have increased

the preconsolidation pressure and enlarged the elastic

domain of the initial temperature. Other experiments

reported in the literature investigate the effect of tem-

perature on the elastic domain starting from over con-

solidated states for which thermal deformations are re-

versible [53,40,48]: one observes a reduction of the elas-

tic domain with temperature. The interpretation of the

experiment of Figure 1 (c) is then as follows: heating

leads to a strain hardening of the material because the

confining stress is maintained constant while the elas-

tic domain reduces. When the consolidation is resumed,

the increase of the elastic domain can be interpreted as

a consequence of the thermally-induced strain harden-

ing. Note however, that this last experience is not as

consensual as the previous ones: [11] report similar ob-

servations as [46], whereas [54] report the same consol-

idation before and after heating-cooling cycles. Experi-

mental conditions, such as drainage time scales, might

explain this discrepancy [12].

The physical origin of the thermo-mechanical be-
havior of clays is debated and remains unclear. Since

thermal contraction disagrees with the thermal expan-

sion of the clay minerals, both in sign and amplitude,

one usually attributes the thermo-mechanical behavior

to the water filling the porous network. This statement

relies on the peculiar state of water in clay. Indeed,

for a conventional porous solid in drained conditions,

any thermal expansion of the fluid is expected to flow

out of the material. According to usual poromechanics

[17], the corresponding thermal expansion of a drained

porous solid is equal to that of the solid skeleton. How-

ever, one of the hypothesis behind usual poromechan-

ics is that the fluid in the pore has the same proper-

ties as the bulk fluid. Clays are made of extremely fine

grains (∼ µm or less) which offer a large specific sur-

face on which a large amount of water adsorbs (typ-

ically tens of % of all water in saturated clays). A

fluid is adsorbed when its constitutive molecules inter-

act with a solid (e.g., electrostatic interactions). The

properties of adsorbed water differ strongly from that

of bulk water and usual poromechanics does not hold

anymore. Water adsorption in clays is well-known to

trigger swelling. Since heating induces desorption, one

thus expect thermal contraction. This explanation re-

mains very qualitative and, so far, attempts to relate

adsorption to the thermal contraction of clays have

failed. Early models of adsorbed water in clay consider a

continuum fluid with peculiar ionic distribution (diffuse

double layer theory) which generates an osmotic pres-

sure different from the bulk water pressure [38]. These

models do predict swelling due to low salinity or high

humidity. However, when it comes to temperature ef-

fects, one expects thermal expansion and not contrac-

tion, even when accounting for the change of permit-

tivity with temperature [43]. Application of the double

layer theory is indeed questionable when the pores are

only a few molecules large, which is the case for consol-

idated materials. This theory focuses on electrostatics,

whereas in very small pores water molecules arrange-

ment is strongly constrained because of short range

forces (e.g., steric repulsion) which prevents the devel-

opment of the diffuse double layer [4]. To sum up, while

there is consensus to attribute the complex thermo-

mechanical behavior of clays to water adsorption, a

proper relationship between the physics of adsorption

and the thermo-mechanics of clays is still needed. In

particular, some aspects of the thermo-mechanical be-

havior of clays remain unexplained :

– Adsorption is generally a reversible process. What

is the origin of the irreversibility of thermal contrac-

tions?

– Why over-consolidation changes radically the thermo-

mechanical behavior? How is it related to adsorp-

tion?

Since the effect of adsorption is poorly understood,

existing engineering models of the thermo-mechanical

behavior of clays do not account for nanoscale adsorp-

tion. The models are macroscopic only, usually based on

an extension of the cam-clay model to account for tem-

perature [30,43,18,26,34]. These models capture exper-

imental observation reasonably well, but their valid-

ity beyond experimental results is questionable since

the physics of adsorption is not accounted for. In this

work, we investigate the physical origin of the thermo-

mechanical behavior starting from the scale of adsorp-

tion. Recent experimental and theoretical advances in

micro- and nano-mechanics of clays offer promising per-

spectives in the understanding of the mechanical prop-

erties (see for instance [1,2]). It is now possible to prop-

erly relate the adsorption scale to the macroscopic scale,

which is done here for the thermo-mechanical behavior.

We use a molecular simulation approach to go beyond
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Fig. 2 Schematic representation of the micro- and nanos-
tructure of clays.

usual theories and focus specifically on the structura-

tion of the fluid which dominates the adsorption behav-

ior in slit-like nanopores. We study the effect of tem-

perature on the mechanics of a single nanopore and

then propose an upscaling approach to confront with

the experimental behavior. We find consistent results

for all the key behaviors presented in this introduction.

To the best of our knowledge, we propose in this work

the first consistent explanation of the physical origin of

the thermo-mechanical behavior of clays based on wa-

ter adsorption. Other physical explanations may exist

of course and we do not pretend that our explanation is

comprehensive, but this work offers a new look at the

fundamentals of clay mechanics.

2 Mechanics at the scale of a clay layer

The elementary constituents of clays are extremely thin

minerals layers (∼ 1 nm) made of alumino-silicate crys-

tals (Fig. 2). The matrix of clay soils and rock, is made

of many of such layers locally stacked together in small

particles (a few tenth of layers, ∼ 100 nm). At the mi-

crometer scale, such particles are aggregated with some

orientational disorder to form a matrix and this matrix

is mixed with various mineral inclusions (silica, carbon-

ate) to form a rock. In hydrophilic clays, e.g., smectites,

water penetrates and adsorbs between the mineral lay-

ers. In geological conditions, the thickness of the water

film is less than 2 nm. While the diffuse double layer

theory is well suited to describe thick films, it does not

hold anymore at such small scales. The arrangement

of the fluid molecules is constrained by the slit geome-

try and a layering of water appears with integer-layers

configurations [31]. This peculiar structuration can be

observed experimentally by X-ray diffraction [23]. One

usually observes up to 2 (possibly 3) water layers (see

Fig. 3 (b)). The number of water layers is shown to

increase with humidity, thus explaining the humidity-

induced swelling. A precise characterization of the me-

chanical effect of water is extremely hard to obtain ex-

perimentally. Experiments of [32] with highly precise

surface force apparatus show that the forces exerted

by the fluid on the solid oscillates because of the fluid

structuration. Alternatively to experiments, molecular

simulation studies, relying on the elementary atomic in-

teractions, provide complete strain-stress curves at the

layer scale. For convenience, the strain are usually re-

ported through the basal spacing and the stress through

the uniaxial pressure in the direction orthogonal to the

layer. For instance, we display in Figure 3 (a) typical

molecular simulation results of the drained behavior of

a Na-montmorillonite layer at ambient water pressure

and temperature. In this particular example, there are

two oscillations in the curve. Similar curves are avail-

able in the literature for other conditions and other

types of clay [57,50,14]. A system whose pressure is

an increasing function of the basal spacing is unstable.

Accordingly, only the decreasing branches of the oscil-

latory behavior can be observed experimentally. Each

decreasing branch corresponds to an integer number of

water layers (0 for the first branch, 1 for the second

etc.). The example of Figure 3 (a) exhibits 3 decreas-

ing branches, that is 0, 1 and 2 water layers. There-

fore, at the layer scale, the mechanical behavior is made

of forbidden unstable basal spacings separating autho-

rized (meta)-stable spacings. This is in contrast with

the macroscopic scale, where all deformations are pos-

sible. Therefore, the transition from the nanoscale to

the macroscale is not straightforward and is the focus

of the next section.

Before addressing the upscaling methodology, one

needs to understand how the behavior of the layer scale

evolves with temperature under drained conditions. In-

terestingly, the effect of temperature has not attracted

much attention in the literature so far and only a few

results have been reported. The influence of tempera-

ture has been studied by X-ray diffraction (see for in-

stance [19,41,23]), but these experiments are performed

at controlled humidity in unsaturated conditions, which

is therefore not suited for a confrontation with geome-

chanical experiments (saturated conditions at constant

bulk water pressure). Regarding molecular simulation

approaches, [52] study the effect of temperature but

undrained conditions are considered, which is, again,

not adapted. To the best of our knowledge, only [47]

report molecular simulation results of the effect of tem-

perature under drained conditions. According to their

results, the free energy barrier between stable states

(number of water layers) decreases with temperature.

The results provided by [47] are limited to free energy

and compares two temperatures only. One can derive

the confining pressure from the free energy but the

derivation is rather inaccurate and difficult to confront

with geomechanical experiments.
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Fig. 3 (a) Typical mechanical behavior at the layer scale
in drained conditions obtained by atomistic simulations of
Na-Montmorillonite [28]. The inset displays typical configu-
rations associated to no water layer (0W), one water layer
(1W) and two water layers (2W). (b) Structuration of pore
water evidenced by X-ray diffraction for Na-Montmorillonite
[23].

In this section, we report a molecular simulation

study of the effect of temperature in saturated drained

conditions. For sake of simplicity, we consider a 2D toy

model system made of a Lennard-Jones fluid adsorbed

between planar solid surfaces (Fig. 4). We deliberately

study a very simplistic system to favor accurate results

to the detriment of realism. This toy model is one of

the simplest system one can imagine that captures the

structuration of a fluid film in a flat nanopore. More-

over, a 2D system preserves phase transitions and thus

the Lennard-Jones fluid can exist in a liquid state, mak-

ing it possible to study the saturated drained thermo-

mechanical behavior. Of course, real clays are much

more complex, but this model is sufficient to capture

fluid structuration, which is at the heart of the mechan-

ics of clay layers. In return, the computational cost of

the toy model is an order of magnitude smaller than

for realistic models of clays, thereby one can assess pre-
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Fig. 4 Toy model considered for molecular simulation study
of the effect of temperature on the drained mechanical be-
havior.

cisely highly sensitive properties such as thermal ex-

pansion.

The interactions between fluid particles is a classical

Lennard-Jones potential : U12−6 = 4εlj

((σlj

r

)12 − (σlj

r

)6)
.

The potential is truncated at r = rc. To avoid spu-

rious energy discontinuity at the truncation distance,

we consider the shifted potential Uff (r) = U12−6 (r)−
U12−6 (rc). The interactions between a fluid particle and

a solid wall is a 9-3 Lennard-Jones potential, which

results from an integration of 12-6 Lennard-Jones in-

teraction over a semi-infinite solid domain of constant

density : U9−3 = εlj

(
2
15

(σlj

r

)9 − (σlj

r

)3)
. The fluid-

solid potential is truncated as well and we consider the

shifted potential : Ufs = U9−3 (r)−U9−3 (rc). Note that

we use the same Lennard-Jones parameters σlj and εlj
for both the fluid-fluid and the fluid-solid interactions.

The simulated systems are with periodic boundary con-

ditions in the direction parallel to the solid wall and

with non-periodic boundary conditions in the direction

orthogonal to the solid wall. We perform Grand Canon-

ical Monte-Carlo (GCMC) simulations of the Lennard-

Jones fluid while controlling the basal distance between

the solid walls. GCMC simulations mimic drained con-

ditions since fluid molecules are let in and out to satisfy

a prescribed chemical potential of the fluid. All simu-

lations were performed with LAMMPS software pack-

age [45] (http://lammps.sandia.gov) with small mod-
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ifications of the code to enable the use of the fluid-

solid 9-3 potential for GCMC simulations. All compu-

tations of pressure are obtained with the virial esti-

mate. Hereafter, for sake of generality, all the quanti-

ties are reduced to their dimensionless formulation with

respect to the Lennard-Jones parameter σlj and εlj : re-

duced basal spacing e∗ = e/σlj , reduced temperature

T ∗ = kBT/εlj (kB is Boltzmann constant), reduced

pressure P ∗ = Pσ2
lj/εlj .

A preliminary study of the bulk fluid is required to

determine its phase diagram and relate the chemical

potential to the temperature and bulk pressure for the

liquid phase. In 2D, the liquid Lennard-Jones fluid can

be observed for reduced temperatures T ∗ ranging from

0.40 to 0.46. Approaching the critical point (0.46), large

fluctuations are detrimental for the accuracy of the sim-

ulations. So we limited ourselves to temperatures rang-

ing from T ∗ = 0.40 to T ∗ = 0.44. We perform GCMC

simulations of the bulk fluid and compute the pressure

Pbulk of the fluid in function of the fugacity f . Fugacity

is defined with respect to the chemical potential µ ac-

cording to the relation : µ = µ0
IG+kBT ln

(
f

kBT

)
, with

µ0
IG = kBT ln

(
λ2
)

the chemical potential of an ideal

gas at a numeral density of 1 particle per square meter

(λ is the thermal de Broglie wavelength). Considering

fugacity in GCMC is more convenient than considering

chemical potential since the term µ0
IG cancels out in

the insertion / deletion probabilities of the Metropolis

algorithm [25]. Fugacity has the dimension of a pres-

sure and, therefore, the reduced formulation of fugacity

is f∗ = fσ2
lj/εlj . In Figure 5, we display the fluid bulk

pressure in function of the fugacity for various temper-

atures. The sudden change of slope corresponds to the

phase transition from gas at small fugacities to liquid at

large fugacities. We also display the case of an ideal gas

(f = Pbulk) as a reference. The saturation points sig-

nificantly deviate from the ideal gas law for the highest

temperatures. The regime we are interested in is the liq-

uid phase. Simulating thermal expansion / contraction

of the saturated drained toy model requires to know the

fugacity of the fluid in function of the temperature at

constant fluid bulk pressure. Such data can be derived

from the fugacity-pressure isotherms: we display in Fig-

ure 6 the associated temperature-fugacity isobars. The

isobars of Figure 6 are used hereafter as input for the

toy model simulations.

We then perform GCMC simulations of the toy model

for fugacities and temperatures following the isobars

of the bulk fluid (Fig. 6). We thus simulate saturated

drained conditions. In these simulations, we vary the

basal spacing e (here defined as distance between the

solid walls) and we compute the average amount of fluid

filling the pore and the total pressure P supported by

the solid. Because of confinement, the total pressure P

differs from the bulk pressure of the fluid Pbulk. Sev-

eral names can be found in the literature for P such

as ’solvation pressure’ or ’disjoining pressure’, which

sometimes designate the difference between the total

pressure and the bulk fluid pressure. To avoid con-

fusion, in what follows, we will refer to P as to the

confining pressure. The results of the GCMC simula-

tions are presented in Figure 7. Figure 7 (a) represents

the amount of fluid per unit length of the pore (linear

density) in function of the basal spacing. One readily

observes that the amount of fluid increases stepwise,

each step corresponding to a new layer of fluid filling

the pore. The steps are less pronounced for large basal

spacing and large temperature. At the highest tem-

perature T ∗ = 0.44, the first 4 to 5 steps are visible.

This structuration of the confined fluid is typically ob-
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served in clays, but to a lesser extent (maximum 3 lay-

ers, see [37]). Structuration is particularly pronounced

for the toy model because the Lennard-Jones fluid can

easily adopt semi-crystalline structures, whereas water

arrangement in clays is perturbed by the counter-ions.

Pure rare gas, which are well modeled with Lennard-

Jones fluid, do indeed exhibit strong layering (see for

instance the experimental results of [60] which study

argon and neon adsorption in graphene: up to 10 layers

are observed). Even though, real clays exhibit only a

few layers, the theory that we propose hereafter holds

as long as at least one layer is present.

As a consequence of fluid structuration, the confin-

ing pressure oscillates with respect to the basal spacing

(Fig. 7 (b)). Oscillations vanish at large basal spacings

and high temperatures. At T ∗ = 0.44, consistently with

the density isotherm, only 4 to 5 oscillations can be ob-

served. Proper thermodynamic derivation shows that

the confining pressure P is related to the linear density

ρlin according to [10] :

P =

∫ µ

−∞

∂ρlin
∂e

∣∣∣∣
T,Pbulk

dµ (1)

Equation 1 shows that the highest confining pres-

sures correspond to the basal spacings with steep in-

crease of linear density, i.e., to the steps in the den-

sity isotherms. Conversely, the lowest confining pres-

sures correspond to basal spacings with decreasing lin-

ear density, i.e., in-between two steps. This is indeed

what can be observed in Figure 7. An increase of tem-

perature tends to smoothen the linear density isotherm.

Accordingly, the amplitude of confining pressure oscil-

lations are decreasing with temperature. Temperature

acts as a disordering force.

Another more subtle effect of temperature is that

the oscillation peaks are shifted to larger basal spac-

ings upon temperature increase. At a confining pres-

sure equal to the bulk fluid pressure, one can observe

that the nanopore expands upon heating. One could
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6 where the correction arise from the steric
repulsion of the 9-3 Lennard-Jones potential of the fluid-solid
interactions.

interpret this effect as the thermal expansion of an

undrained fluid, insofar as adsorption prevents part of

the fluid from leaving the pores (’bound water’). If ex-

actly true, one would expect the following relationship

to hold : 1
l
∂l
∂T

∣∣
P=Pbulk

= 1
vbulk

2∂vbulk

∂T

∣∣
Pbulk

, where l is

the pore width and vbulk is the molecular volume of the

bulk fluid (inverse of the numeral density). The term

on the left hand side quantifies the thermal expansion

of the solid maintained at a confining stress equal to

the bulk fluid pressure; and the term on the right hand

side quantifies the thermal expansion of the closed bulk

fluid (the factor 1/2 converts a surface thermal expan-

sion into a linear one). This relationship is not strictly

verified as shown in Figure 8. At small pore widths (first

fluid layers), the thermal expansion of the nanopore

is significantly smaller than that of the bulk fluid. At

larger pore widths however, the thermal expansion of

the nanopore resembles that of the bulk fluid. Discrep-

ancies arise from the fact that the adsorbed fluid is not

undrained (part of the fluid is drained upon heating),

and the fluid-solid interactions alter the behavior.

In summary, drained heating at the layer scale has

two consequences on the mechanics :

1. The amplitudes of the oscillations in the confining

pressure isotherm decrease.

2. The oscillations are shifted to larger basal spacings.

3 From the nanoscale to the macroscale :

upscaling methodology

In the previous section we have investigated the effect of

drained heating at the layer scale. But the link with the

macroscopic experiments presented in the introduction

is far from obvious. Let us consider for instance the

case of a drained heating at constant confining stress

(Fig. 1 (a)). This loading applied to the confining pres-

sure isotherm at the layer scale (Fig. 7 (b)) would lead

to thermal expansion at small confining pressure (P ∗

close to P ∗bulk) and to thermal contraction at confining

pressure close to the oscillation peaks (one fluid layer

is drained). This corroborates several aspects of the ex-

periments :

– Both thermal expansion and thermal contraction

can be observed.

– Thermal contraction is more likely for large temper-

ature increase.

– The amplitude of contraction is larger than the am-

plitude of expansion.

– Irreversibility of thermal contractions could be in-

terpreted as hysteresis when changing the number

of water layers.

However, the role of over-consolidation is still ob-

scure and no proper confrontation with experiments is

possible.

We propose in this section an upscaling methodol-

ogy inspired from the well-established theory of marten-

sitic transformations in materials such as shape memory

alloys (SMA) [7]. SMA are peculiar crystalline materi-

als in which the elementary crystals can exist under

various phases depending on the temperature and on
the mechanical loading. Which phases are present un-

der given conditions is a problem of energy minimiza-

tion. We illustrate a simple situation in Figure 9 where

we represent schematically the Helmholtz free energy

of an SMA crystal in function of the strain for dif-

ferent temperatures. At high temperature, there is a

global energy minimum which corresponds to the so-

called austenite phase. Upon cooling two other phases

becomes more favorable, called martensite. However the

stress free strains of the martensite phases differ from

that of the austenite phase. In the case of a cooling at

fixed strain, one can minimize the total energy by mix-

ing the two martensite phases so that the global strain

is preserved. Such mixing is possible only for very pecu-

liar crystallography, which makes SMA so special. Any

strain in-between the relaxed strains of the two marten-

site phases can be reached by varying the fraction of the

martensite phases in the microstructure, thus leading to

an apparent plastic behavior. Upon heating, the mate-

rial will invariably transform into the austenite phase
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culiar crystallography. The phase composition is dictated by
free energy minimization.

and recover the initial strain, hence the ’shape memory’

effect.

Interestingly, the physics behind SMA share many

similarities with the case of clay. Indeed, at the sub-

micrometer scale clay layers are stacked together in par-

ticles of a few tens of layers. Considering that the num-

ber of water layers defines a ’phase’ of a clay layer, then

such stack is analogous to a mix of martensite phases.

The overall strain of a stack is a consequence of the

respective fractions of the phases. Following the theory

of SMA, the mechanics of a stack of clay layers is dic-

tated by energy minimization. For a system in drained

conditions, the thermodynamic potential that is mini-

mum at equilibrium is the sum of the Helmholtz free

energy of the solid and grand potential of the fluid :

Λ = E − TS −µfNf , where E is the internal energy, S

is the entropy, µf is the chemical potential of the fluid

and Nf is the number of fluid particles. This energy

per unit length of the layer λ = Λ/L can be obtained

by integrating the confining pressure isotherms (Fig. 7

(b)) over the basal spacing :

∂λ

∂e
= −P ⇒ λ (e, T, Pbulk) = −

∫ e

0

P (e, T, Pbulk) de

(2)

where we considered the arbitrary reference λ (0, T, Pbulk) =

0. We display in Figure 10 (bottom) the energy λ in

function of the basal spacing e for T ∗ = 0.40. The

different local minima correspond to the phases, i.e.,

integer number of water layers. A stack can mix differ-

ent phases to minimize the energy, i.e., one follows the

’convex envelop’ of the energy isotherm, highlighted in

green. The dashed portions of the convex envelop cor-

respond to mixes of two phases. These portions have a

constant slope, so the associated confining pressure is

constant. The convex envelop of the energy includes all

the possible stable states of a stack under displacement-

controlled loading. Note that this theory implies that

different number of water layers can co-exist within a

stack, which is confirmed experimentally [6,24]. The

portions of the energy isotherm which are not convex

(highlighted in red) are unstable. If an initially homoge-

neous stack were in such a configuration, it would spon-

taneously separate in two phases. The remaining por-

tions of the energy isotherm (in blue) are convex but not

part of the convex envelop. These are metastable states:

a homogeneous stack in such a configuration would not

spontaneously separate in two phases, but there exists a

heterogeneous stack configuration of lower energy which

is more stable. We display in Figure 10 (top) the confin-

ing pressure isotherm in which we highlight the stable,

unstable and metastable portions with the same color

scheme. The most stable mechanical behavior of a stack

is the green curve. The phase transitions (dashed) are

straights branches at constant pressure which can be

interpreted as apparent plasticity.

So far, we have investigated the mechanical behavior

of a clay particle, i.e., a stack of clay layers. Above the

micrometer scale clay particles arrange with some ori-

entational disorder to form a matrix in which other min-

erals grains are embedded (silica, carbonate...). Current

reconstruction algorithms provide realistic arrangements

of particles in the matrix (see for instance [22]). Such

reconstructions account for the variability of particle

size and shape and their orientational order parameter.

Here, for sake of simplicity, we consider conventional

homogenization techniques assuming that particles are

circular and with random orientations. The motivation

of this choice is the same as for the use of the molecu-

lar toy model: we favor understanding the physics. Since

the thermo-mechanical behaviors presented in introduc-

tion holds irrespective of the nature of the clay, even a

very basic representation of the microstructure should

capture them.

We consider self-consistent homogenization of an

heterogeneous material made of elastic circular inclu-

sions in a 2D infinite homogeneous isotropic elastic solid.

According to the corresponding Eshelby solution, the
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Hill’s tensor P for this problem is (derivation from the

general 2D solution of [35], or equivalently from the 3D

solution of a cylindrical inclusion [27]):

P =
1

2 (K + µ)
J +

K + 2µ

4µ (K + µ)
K (3)

where J, K = I−J and I are the unit forth-order spher-

ical, deviatoric and identity tensors: Iijkl = 1
2 (δikδjl +

δilδjk), J = 1
21⊗ 11.

The Hill’s tensor relates the local microscopic de-

formation εI in the elastic inclusion (elasticity tensor

CI) to the remote macroscopic deformation E applied

to the infinite matrix (elasticity tensor C):

εI = (I + P : (CI − C))
−1

: E = A : E (4)

1 The notation ⊗ is defined as
(
a⊗ b

)
ijkl

= aijbkl

where A is called the strain localization tensor. In a

medium made of many such inclusions, self-consistency

requires that the average deformation over all the inclu-

sions equals the macroscopic deformation which leads

to a self consistent condition that the homogenized elas-

ticity C must verify [21]:

C = CI : A = CI : (I + P : (CI − C))
−1

(5)

where the notation · stands for the space average op-

erator and · : · stands for the double tensor contrac-

tion2. Here, the homogeneous matrix is isotropic, and,

accordingly its elasticity tensor takes the form : C =

2KJ + 2µK, with K the 2D bulk modulus and µ the

2D shear modulus. Regarding the inclusions, these are

orthotropic (stacks of layers) with random orientations

so that the homogenized medium is isotropic. Consid-

ering t and n the orthogonal directions of orthotropy

of an inclusion, its elasticity tensor can be expressed in

Voigt notation in this basis :

CI =

 Ctttt Cttnn 0

Cttnn Cnnnn 0

0 0 Ctntn

 (6)

where Ctttt, Cnnnn and Ctntn are the transverse, normal

and shear elasticities, and Cttnn is the coupling elastic-

ity between the transverse and normal directions. Al-

ternatively, one can decompose this elasticity tensor in

a 2D equivalent of the Walpole basis [56]:

CI = CttttE1 + CnnnnE2 + 2CtntnE3 + Cttnn (E4 + E5)

(7)

where the (Ei)i∈{1,...,5} are a convenient basis for or-

thotropic tensors : E1 = It ⊗ It, E2 = In ⊗ In, E3 =

In⊗It + It⊗In3, E4 = In ⊗ It and E5 = It ⊗ In, where

we used the notation It = t⊗ t and In = n⊗ n4. Usual

tensor operations are simplified within this basis : for

i ∈ {1, 2, 3}, Ei : Ei = Ei, E4 : E1 = E4, E4 : E5 = E2,

E5 : E2 = E5, E5 : E4 = E1, and all other Ei : Ej = 0.

One can decompose the isotropic unit tensors I, J and J
as follows I = E1 +E2 +E3, J = 1

2 (E1 + E2 + E4 + E5),

and K = 1
2 (E1 + E2 + 2E3 − E4 − E5).

Using this algebra, the right-hand side of Equation

5 is conveniently decomposed as a linear combination

2 (A : B)ijkl =
∑

mn AijmnBmnkl

3 The notation ⊗ represents a special product defined as

follows :
(
a⊗b

)
ijkl

= 1
2

(aikbjl + ailbjk).

4 The product ⊗ between one dimensional vectors is defined
as follows : (a⊗ b)ij = aibj .
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of the averages Ei, since averaging is taken over the

orientation (t, n) of the orthotropic inclusions and the

dependency on orientation is fully accounted for within

the Ei. Assuming a uniform distribution over all pos-

sible orientations, we obtain : E1 = E2 = 1
2J + 1

4K,

E3 = 1
2K, and E4 = E5 = 1

2J −
1
4K. Therefore, the

right-hand side of the self-consistent condition equa-

tion (Eq. 5) can be decomposed as a linear combina-

tion of J and K. As expected the averaging does lead

to an isotropic elasticity, and one ends up with a direct

identification of two scalar equations for the J and K
components, respectively. The self consistent problem

is solved numerically with classical algorithms for fixed

point search.

Two aspects however require adaptation of the self-

consistent homogenization :

1. The mechanical behavior of the inclusions is non

linear, so a specific formulation is needed to account

for non linearity. Here, we consider an incremental

formulation known as Hill’s approach [9].

2. Thermal loadings induce pre-stresses / pre-strains

that have to be accounted for.

Let us first consider the presence of pre-stresses [58,

44]. The Eshelby solution with pre-stresses is modified

and Equation 4 becomes :

εI = A :
(
E + A : P : σI0 − P : σI0

)
(8)

where σI0 is the pre-stress of the inclusion. The consis-

tency conditions εI = E leads to the same self-consistent

equation (Eq. 5) for the homogenized elasticity. Accord-

ingly, the determination of the homogenized elasticity

remains unchanged. In addition, the presence of pre-

stresses triggers a macroscopic pre-stress Σ0 = σI0 : A,

where the strain localization tensor A is identical to the

case without pre-stresses (Eq. 4). In fine, the macro-

scopic behavior law is :

Σ = C : E +Σ0 (9)

Now, we can consider Hill’s incremental formula-

tion of the homogenization [9]. This approach is one of

the simplest to account for non linearity, but neglects

intraphase fluctuations and thus is known to overesti-

mate the homogenized rigidity. In an inclusion, an in-

crement of stress can arise from an increment of strain,

or from an increment of pre-stress because of a change

of temperature. Accordingly, the incremental behavior

law of an inclusion is: dσI = CI : dεI + αdT , where

α =
∂σI0

∂T

∣∣∣
εI

is the thermal rigidity of the inclusion. An

incremental homogenization thus provides the following

macroscopic behavior law:

dΣ = C : dE +AdT with A = α : A (10)

A is the macroscopic thermal rigidity. To apply this

incremental formulation, one has to proceed by small

loading increments (dE, dT ) and, at each increment,

update the values of the microscopic properties α and

CI . This update requires the update of the local strains

which is given by :

dεI = A : dE + A : A : P : αdT − A : P : αdT (11)

Since many experiments on clays are performed un-

der stress control, one may be interested in an alterna-

tive formulation of the homogenization in which Σ is

the loading parameter instead of E. In that case, the

macroscopic behavior law would be:

dE = S : dΣ−BdT with S = C−1 and B = C−1 : α : A
(12)

S is the macroscopic compliance tensor and B is the

macroscopic thermal expansion. The local strains in the

inclusion are obtained according to:

dεI = A : S : dΣ−A : BdT+A : A : P : αdT−A : P : αdT

(13)

In the application of this upscaling methodology, we

limited ourselves to isotropic loadings. Non isotropic

loadings would induce different local deformations in

the inclusions depending on their orientation, and, be-

cause of non linearities, one would loose the symme-

try of the microstructure, i.e., the macroscopic medium

would not be isotropic anymore. Considering isotropic

loadings ensures that all inclusions follow the same evo-

lution irrespective of their orientation.

4 Capturing irreversibilities

In the upscaling methodology we proposed in the pre-

vious section, one essential phenomenon is missing: ir-

reversibility. Indeed, with this methodology, the me-

chanical behavior is fully reversible. The mechanics of

a particle is given by the green curve in Figure 10

which is reversible. And the homogenization approach

does not introduce any irreversibility. This is inconsis-

tent with experiments which show that irreversibility
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is at the heart of the thermo-mechanical behavior of

clays. Irreversibilities may arise from a wide variety of

mechanisms. In shape memory alloys for instance, re-

cent advances attribute hysteresis to the energy bar-

riers due to imperfect interfaces between the austen-

ite and martensite phases [59]. Regarding clays, irre-

versibility may be due to various mesoscale processes

such as rearrangements in the assemblies of particles,

but we focus in this work on irreversibilities arising at

the nanoscale. Indeed, in Figure 10 we highlight some

portions of the confining pressure isotherm which are

metastable. These states may be observed even though

there exists a (stable) state of lower energy for the same

basal spacing. To reach the stable state, the system

has to overcome an energy barrier. Metastability is un-

likely if the energy barrier is easily overcome by thermal

agitation (kBT/2 per degree of freedom). Conversely,

metastability is likely if the energy barrier is larger than

thermal agitation.

The energy barrier is the energy needed by one clay

layer to undergo a phase change. A basic estimate of

this energy barrier is obtained by considering the com-

plementary energy ω = λ − Pcontrole, characterizing a

clay layer maintained at constant pressure Pcontrol (for

large stacks, a single clay layer is almost under pres-

sure control). In Figure 11, we illustrate, for the 2D toy

model, the case of the transition between the 3 fluid

layers and 2 fluid layers. When the pressure Pcontrol is

equal to the phase transition pressure, the two phases

have exactly the same complementary energy and the

energy barrier in-between is the highest. As Pcontrol is

increased, one starts to explore metastable configura-

tions of the 3 layers phase. The energy of the 2 layers

phase becomes lower and the energy barrier decreases.

When the energy barrier is small enough, it is overcome

and the metastibility is lost. The energy barriers for our

toy model are up to ω∗ ≈ 0.35. Comparison with ther-

mal agitation gives ω/ (kBT ) ≈ 0.85/σlj . ω is an energy

per unit length. Since any clay layer is orders of magni-

tude longer than the size of a fluid molecule (σlj), our

toy model is prone to metastability.

Regarding realistic molecular models of clay, some

studies in the literature investigate this energy barrier.

The complementary energy ω is often referred to as

’swelling energy’ in the literature. [50] report values of

a few tens of kBT/nm2 for various montmorillonites.

Since the surface area of clay layers is about 103 to

105nm2, the total energy barrier is in favor of metasta-

bility. Such a representation of the energy barrier is

highly idealized. In reality the phase changes are likely

to involve bending of the minerals so that only a small

portion of the clay layer needs to overcome the en-

ergy barrier (in the spirit of dislocations involved in

metal plasticity). Conventional nanometer-scale molec-

ular simulations do not experience any bending, but

high performance simulations at the scale of a full clay

layer (sub-micrometer) have shown that bending is sig-

nificant [49]. Moreover additional energy penalties may

arise from the peculiar interactions at the extremities

of the clay layers. In fine, little can be said about the

true energy barriers involved in clays. Assuming that

bending of the mineral layers takes place over a dozen

of nanometers, the energy barrier would be a few hun-

dreds of kBT without taking into account the bending

energy, which could be significant. Such minimal esti-

mation is clearly in favor of metastability. Finally, let

us mention that experimental observations do support

the existence of hysteresis at the layer scale (see for

instance [55] or [33]).

In our upscaling approach, we include the metasta-

bility at the nanoscale. A clay layer does not undergo

phase change at the point of phase coexistence but ex-

plores the metastable branch of Figure 10 at least in

part. Since little is known about the true energy barri-

ers, the point of phase transition has to be chosen ar-

bitrarily somewhere along the metastable branch. Here

we consider a threshold κ in complementary energy bar-

rier ∆ω/ (kBT ) to decide of the point of phase transi-

tion: if the complementary energy barrier is smaller or

equal to the threshold (∆ω/ (kBT ) ≤ κ) then metasta-

bility is lost and phase transition occurs. We do not

pretend that this choice is fully relevant, but it makes

sense with respect to the physics involved and what is

currently known of nanoscale metastability. With this
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modification of the nanoscale behavior, we keep the

same upscaling approach as described previously. The

behavior of a stack of layers can be formulated formally

as follows:

P = −
∑
i∈phases θi

∂λ(ei)
∂e

∣∣∣
T,Pbulk

and

dθi
dt =

{
= −r < 0 if ∆ωi/ (kBT ) ≤ κ
≥ 0 otherwise

(14)

where the subscript i refer to the phases and θi is the

fraction of phase i in the stack (
∑
i θi = 1 and ∀i, θi ≥

0). The first equation relates the total confining pres-

sure of a stack to the confining pressures of its constitu-

tive phases. Here, we assume the same confining pres-

sure in all the phases ( ∂λ(ei)∂e

∣∣∣
T,Pbulk

=
∂λ(ej)
∂e

∣∣∣
T,Pbulk

),

thus giving the closure condition to determine the basal

spacings ei of the different phases. The second equation

is the condition for phase change and thus change of the

fractions θi. The fraction θi decreases if the complemen-

tary energy criterion is met (there is one criterion for

compression and another one for traction). The rate r

is arbitrary and has no influence on what follows. When

a fraction θi is decreasing, the other fractions increase

to ensure the consistency condition
∑
i θi = 1. Since

only two phases can coexist in a stack, no additional

condition is needed to fully determine the change of

phases.

We represent this mechanical behavior in Figure 12

(a). The mechanics of a stack does not follow the stable

branch anymore but can evolve in a domain represented

by the shaded area. Phase transition is possible only

along the horizontal borders of the domain. Inside the

domain, the fractions of the phases are fixed and the

mechanical behavior of the stack is a linear combina-

tion of the behaviors of its constitutive phases. When

phase transition occurs, the stack deforms at constant

pressure, thus exhibiting apparent perfect plasticity. In

Figure 12 (b), we display the evolution of the domain

with temperature. An increase of temperature reduces

significantly the confining pressure at phase transition.

This is mainly due to the decrease of the oscillation

peaks of the confining pressure isotherms. The effect

of temperature in the complementary energy criterion

(Eq. 14) is almost negligible in this evolution.

To sum up, we discuss in this section the possible

origin of irreversibility of clay thermo-mechanics at the

layer scale and we proposed a modification of the up-

scaling approach to account for it. The homogenization

technique proposed in the previous section can be ap-

plied without modification. In the next section we con-
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Fig. 12 Mechanical behavior of a stack of layers assuming
metastability at the layer scale for κ = 0.1. (a) The shaded
area represents the domain accessible to the mechanical be-
havior of the stack. Phase transition and variation of the frac-
tions of phases can occur only at the horizontal boundaries of
the domain. Inside, the fractions are fixed and the mechani-
cal behavior is a linear combination of that of the phases. (b)
Evolution of the domain with temperature.

front our conceptual model to the known experimental

behavior of clays.

5 Confrontation with experiments

We apply the approach to typical thermo-mechanical

loadings in order to confront with experiments. Let us

first precise all the details of the calculations we perform

:

– The elementary behavior of a stack of layers is that

displayed in Figure 12 (b).

– This behavior provides the values of Cnnnn of the

elasticity tensor of the inclusions (Eq. 6) : Cnnnn =

e ∂P
∂e

∣∣
T,Pbulk

. It also provides the values of the com-

ponent
(
α
)
nn

of the thermal rigidity of the inclu-

sions.
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– The coupling component Cttnn of the elasticity ten-

sor is set to zero since any non zero value would vio-

late the Maxwell relation ∂σtt

∂εnn
= ∂σnn

∂εtt
. This comes

from the fact that in our toy system the solid min-

erals are infinitely thin, and thus cannot exhibit any

Poisson effect.

– Linear elastic behavior is assumed for all the other

components of the inclusion elasticity: C∗tttt = Cttttσ
2
lj/εlj =

17.9 (high value corresponding to Cnnnn for the 1

fluid layer at P∗ = 0), Ctntn = 0.3 · Ctttt. We de-

liberately choose a high value for Ctttt because the

elasticity of clay layers in the transverse direction is

governed by the mineral layers and is expected to be

higher than in the normal direction [15]. The choice

for Ctntn is arbitrary and choosing other values does

not seem to affect our conclusions.

– The other components of the thermal rigidity are

chosen as follows :
(
α∗
)
tt

=
(
α
)
tt
σ2
lj/kB = 5 and(

α
)
tn

= 0 (no thermal shear). The value of
(
α
)
tt

corresponds to a thermal expansion (C−1 : α) about

10 times lower than that of the bulk liquid fluid (0.3

vs. 3 in reduced units). We choose this deliberately

low thermal expansion because the transverse ther-

mal expansion is governed by the minerals (as for

the elasticity), which are known to have thermal ex-

pansions about one order of magnitude lower than

that of bulk water [36].

– In the homogenization, we consider 50% of inclu-

sions with the properties detailed above, and 50%

of isotropic linear elastic inclusions that represent

the other minerals in clay rocks (silica, carbonate).

The corresponding mechanical properties are cho-

sen as follows : C∗tttt = C∗nnnn = 17.9 (same value as

the transverse elasticity of the stacks), Cttnn = 0.4 ·
Cnnnn and Ctntn = 0.3 · Cnnnn (to ensure isotropic

elasticity). Regarding the thermal rigidity, we use

the same values as for the transverse directions of

the stacks :
(
α∗
)
tt

=
(
α∗
)
nn

= 5 and
(
α
)
tn

= 0.

A preliminary step, necessary before any further in-

vestigation of the thermo-mechanics, is to perform con-

solidation of the material (see Fig. 13). To do so, we

consider an initial configuration at large basal spacing

and moderate confining pressure. In this initial config-

uration, all the inclusions have the same initial stress

state (spherical stress equal to the confining pressure

of a stack). Then, we apply a macroscopic volumet-

ric compression to reach a normally consolidated state

(red curve in Fig. 13). Unloading the material pro-

duces an over-consolidated material (blue curve). Fur-

ther loading-unloading cycles follows elastic-plastic cy-

cles which recall that observed experimentally. By re-

straining ourselves to volumetric loadings and neglect-

ing intra-phase fluctuations in the self consistent ho-
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Fig. 13 Consolidation of the material by applying volumet-
ric compression to an initial configuration at large basal spac-
ing and moderate confining pressure. (a) Mechanical response
at the scale of a stack. (b) Mechanical response at the macro-
scopic scale.

mogenization, we impose the same loading to all stacks

irrespective of their orientation. Accordingly, for any

loading history, there is a single corresponding con-

figuration at the scale of a stack. Thus, any macro-

scopic mechanical response to consolidation is associ-

ated to a specific mechanical response at the scale of

a stack, which is displayed in Figure 13 (a). Obviously,

intra-phase fluctuations and consolidation with devi-

atoric loadings would lead to a whole distribution of

configurations at the micro scale depending on the ori-

entations of the stacks. But, this simplification offers

a particularly convenient interpretation of the macro-

scopic behavior with a one to one correspondence with

the microscopic scale. Regarding consolidation, it ap-

pears that macroscopic plasticity arises from micro-

scopic phase transitions, whereas the elastic behavior of

over consolidated states is associated with microscopic
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Fig. 14 Mechanical response of the material to an increase-
decrease of temperature under constant confining pressure.
(a) Mechanical response at the scale of a stack. (b) Deforma-
tion in function of the temperature at the macroscopic scale.

response without phase transitions. However, consider-

ing all stack orientations identical introduces some spu-

rious consequences such as sudden elastic-plastic tran-

sitions, whereas in real clays the transition is usually

progressive. Other spurious consequences are the small

elastic portions along the consolidation curve, which

corresponds to microscopic configurations with a sin-

gle phase. If orientations were distinguished and mi-

crostates distributed over a sufficiently large range of

basal spacings, at least some orientations would un-

dergo phase coexistence and irreversibility, and no such

reversible portions would appear along the consolida-

tion curve. In what follows, we avoid these elastic por-

tions in our investigations. A more realistic investiga-

tion would require to consider homogenization captur-

ing intra-phase fluctuations and deviatoric stresses which

differentiate the stack orientations. This is left for fu-

ture work.

We then apply thermal loading to the normally and

over consolidated states of Figure 13 (red and blue

dots). We subject those states to a temperature in-

crease and decrease at constant macroscopic pressure as

is done in the experiments of Figure 1 (a), and we look

at the volumetric deformation induced by this thermal

loading. The macroscopic response is displayed in Fig-

ure 14 (b) while the corresponding response at the scale

of the stack is displayed in Figure 14 (a). Several addi-

tional states are considered : one of higher over consoli-

dation ratio, and three others of similar over consolida-

tion ratios but higher confining pressure. These results

capture the essential features observed in experiments

(Fig. 1 (a)) :

– Normally consolidated materials (OCR = 1) ex-

hibit large irreversible contractions upon heating

and moderated reversible contractions during cool-

ing. The response is almost insensitive to the con-

fining pressure.

– Moderately over consolidated material (OCR = 1.13

for −Σ∗ = 1.83, and OCR = 1.07 for −Σ∗ = 3.36)

exhibit moderate reversible expansions followed by

large irreversible contractions upon heating, and mod-

erate reversible contraction upon cooling. As be-

fore, the magnitude of thermal contractions / ex-

pansions is almost insensitive to confining pressure.

But the transition from expansion to contraction

during heating depends on over consolidation ratio

and confining pressure. Identical over consolidation

ratio but different confining pressures lead to differ-

ent transition temperature.

– The higher the over consolidation ratio is, the higher

the temperature of transition from expansion to con-

traction. At high over consolidation ratios, the tran-

sition is no more observed (OCR = 1.29 for −Σ∗ =

1.60, and OCR = 1.18 for −Σ∗ = 3.06). The mate-

rial exhibits only a reversible expansion upon heat-

ing, which is recovered during cooling.

All these results are consistent with experimental

observations, and find here a possible explanation from

the microscale (Fig. 14 (a)): when temperature is in-

creased, the confining pressure of phase transition in a

stack decreases. The microstate cannot stay above this

limit pressure. So when the limit pressure reaches the

microstate, the stack inclusions have to reduce the pres-

sure they support. To maintain a constant macroscopic

pressure, load must be transferred to the elastic inclu-

sions (other minerals) which is done by contracting the

stack inclusions by mean of irreversible phase transi-

tion. A normally consolidated state is initially on the

limit pressure, so the material contracts irreversibly as

soon as temperature increases. Instead, an over consol-
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idated state lies below the limit pressure. So, at the

beginning of heating, the mechanical response is re-

versible. The moderate expansion is due to the fact

that the confining pressure isotherm shifts slightly to

larger basal spacings, and also because of the conven-

tional thermal expansion of the solid minerals. When

the limit pressure reaches the over consolidation state,

one observes the same response as for a normally consol-

idated material. If the over consolidation ratio is large

enough, the microstate is still below the limit pressure

at the end of the heating. Thus, one only observes mod-

erate reversible expansion. Irrespective of the state con-

sidered, when temperature is decreased, the microstate

lies always below the limit pressure. So cooling is al-

ways associated with moderate reversible contraction.

The magnitude (slopes) of macroscopic contractions or

expansions are almost insensitive to the confining pres-

sure. This is expected for expansion since the shift of the

isotherms increases almost linearly with the basal spac-

ing (Fig. 8) and we considered linear thermal expansion

for the minerals. For contraction, this is because the

decrease of the phase transition pressure with temper-

ature is almost the same for all the phase transitions

(1 layer - 2 layers, 2 layers - 3 layers, etc.). This last

observation would require confirmation with realistic

molecular simulations of clay layers.

We then consider the loading at different tempera-

tures as investigated in the experiment of Figure 1 (b): a

normally consolidated material is heated to four differ-

ent temperatures under pressure control and then sub-

jected to mechanical loading-unloading. We consider

the normally consolidated state of Figure 13. Three ad-

ditional states are obtained by increasing the tempera-

ture at constant confining pressure. The four states are

then subjected to identical pressure-controlled loading-

unloading. The results are presented in Figure 15. The

macroscopic response (b) is consistent with the experi-

mental results (Figure 1 (b)): the mechanical responses

at different temperatures are identical but shifted in

strain. The higher the temperature is, the lower the

strain. As observed experimentally, the temperature does

not affect the macroscopic elasticity, be it in the plas-

tic (loading) or elastic (unloading) domain. A look at

the mechanical response at the scale of a stack pro-

vides a microscopic interpretation of this result (Fig.

15 (a)): the initial heating induces an irreversible con-

traction since the material is normally consolidated.

The resulting states are all normally consolidated at

their respective temperatures. Thus, further mechani-

cal loading leads to irreversible phase transition. The

corresponding elasticity component transverse to the

stack is the same for all temperatures (Cnnnn = 0), so

the macroscopic elasticity is always the same. During
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Fig. 15 Normally consolidated material subjected to dif-
ferent temperatures under pressure control, followed by a
loading-unloading at these different temperatures. (a) Me-
chanical response at the scale of a stack. (b) Mechanical re-
sponse at the macroscopic scale.

unloading, the elasticity are also almost identical (linear

combination of the metastable branches), so the same

holds for the macroscopic elasticity. As a consequence

the initial thermal contraction is preserved all along the

mechanical loading-unloading and the macroscopic re-

sponses are simply shifted to lower strains.

The last test we perform is a consolidation inter-

rupted by temperature cycles at constant pressure. An

experimental result of this test is presented in Fig-

ure 1 (c). This result shows an increase of the pre-

consolidation pressure after the temperature cycle. As

mentioned in the introduction, this result is debated,

since it is not always observed in the experiments re-

ported in the literature. When applying this test to

our model, we do not observe an increase of preconsol-

idation pressure after a temperature cycle (see Fig. 16

(top)).However, relaxing the condition on the coupling
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Fig. 16 Consolidation interrupted by temperature cycles at constant confining pressure. Charts at the bottom represent the
mechanical response when the elasticity component Cttnn is set to a non zero value: Cttnn = 0.4Cnnnn. (left) Mechanical
response at the scale of a stack. (right) Mechanical response at the macroscopic scale.

coefficient Cttnn = 0 and considering a finite value, we

do observe an increase of preconsolidation pressure (see

Fig. 16 (bottom)). We initially imposed a zero value to

Cttnn because we assumed an infinitely thin solid frac-

tion within a layer which means that no Poisson effect

is allowed (the stress normal to the layer is a function

of the basal spacing only). Of course, this assumption

is questionable and we noticed that relaxing it in the

present case lead to a clear difference in the macro-

scopic behavior. When temperature is cycled, part of

the load is redistributed between the inclusions and the

presence of a Poisson effect plays a role in this redis-

tribution. In Figure 16 (bottom) the choice of Cttnn is

arbitrary and does not reflect reality. Actual Poisson

effect of clay layers is likely to vary significantly from

one clay to another, since the volume fraction of solid

mineral is very different from one clay to another (from

100% in a dry clay to 25% or less in highly hydrated

states). Accordingly, this could explain why the increase

of preconsolidation pressure is not always observed in

experiments.

6 Conclusion

In this paper, we propose a physical explanation of the

complex thermo-mechanical behavior of clays, based on

the effect of adsorption at the scale of clay layers. To

do so, we build a conceptual multiscale model articu-

lated in three scales. At the layer scale, the thermo-

mechanical behavior of a single drained clay layer is in-

vestigated by molecular simulation. The behavior of a

clay layer is dominated by the structuration of the inter-

layer fluid, which gives rise to several possible ’phases’

at different ranges of basal spacing. At the particle

scale, we build on the theory of martensitic transfor-

mations of shape memory alloys to model the mechan-

ics of a stack of clay layers. The mechanics of a stack is

governed by energy minimization which allows different

phases of clay layers to co-exist within a stack. Metasta-

bility and hysteresis of the phase transitions are taken

into account as the source of irreversibility. At the scale

of the clay matrix and mineral inclusions, conventional

self-consistent homogenization is used to estimate the

behavior of the macroscopic material from that of a

stack of clay layers. This conceptual model captures the

main features of the known thermo-mechanical behav-
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ior of clays, in particular: thermal expansion or contrac-

tion depending on the consolidation history, reversibil-

ity or irreversibility of the thermal deformations, effect

on the preconsolidation pressure. Three typical tests

are investigated and confronted to experimental results

representative of a wide variety of clays. Our concep-

tual model provides consistent results in all cases, and

offers interpretations of the macroscopic behavior at the

nanoscale. In this conceptual model, the main source of

thermo-mechanical coupling is adsorption. To the best

of our knowledge, this conceptual model is the first

model relating adsorption and the thermo-mechanics

clays. Of course, other physical mechanisms may con-

tribute to the thermo-mechanical behavior, but have

not been considered in this work.
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ropéennes, 1993.

9. Michel Bornert, Thierry Bretheau, and Pierre Gilormini,
editors. Homogeneisation en mécanique des matériaux
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58. André Zaoui. Continuum Micromechanics: Survey. Jour-
nal of Engineering Mechanics, 128(8):808–816, 2002.

59. Zhiyong Zhang, Richard D. James, and Stefan Müller.
Energy barriers and hysteresis in martensitic phase trans-
formations. Acta Materialia, 57(15):4332–4352, sep 2009.

60. Da-Ming Zhu and J. G. Dash. Evolution of multilayer
Ar and Ne films from two-dimensional to bulk behavior.
Physical Review B, 38(16):11673–11687, dec 1988.


