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Controlling the evolution of morphology and properties during the precipitation of mesoporous
materials is a key technological challenge. This entails the scientific challenge of modelling and simu-
lating a complex mesoscale kinetics. We present an original off-lattice Kinetic Monte Carlo approach
to simulate various precipitation mechanisms at the mesoscale of nanoparticle aggregates. The sim-
ulations are based on novel coarse-grained rate expressions of nanopartice precipitation/dissolution,
accounting for both solution chemistry and mechanical interactions. The precipitation of ordered
and amorphous domains is simulated, showing how particle-particle and particle-substrate inter-
actions determine various mechanisms: layer-by-layer precipitation, islands formation, Cahn and
Avrami nucleation and growth, and gel-like precipitation. The simulations clarify how the total
precipitation rate depends on the triggered mechanism, and therefore on solution chemistry and on
mechanical interactions. This brings together chemical kinetics and nanoparticle simulations for a
more fundamental understanding of mesostructure development, towards a computer-aided design
of mesoporous materials.

I. INTRODUCTION

Mesoporous materials, with pore size between 2 and
50 nm, are very important for our economy.1,2 Their
production often involves nanoparticle precipitation from
supersaturated solutions, during which some key struc-
tural features develop at the mesoscale between the
nanometre and the micrometre.3 Being able to tailor
this mesostructure would help improving the strength,
functionality, and durability of important engineering
materials, such as mesoporous metal oxides, zeolites,
and cement paste.4,5 The current approaches to meso-
structural optimization are mostly empirical6–8. What
is missing is a theoretical understanding of the rela-
tionship between mechanisms of nanoparticle precipita-
tion/aggregation and experimental synthesis variables,
such as solution chemistry and temperature.9,10

Several challenges limit the current models and simula-
tions of nanoparticle precipitation and aggregation, hin-
dering a more fundamental understanding of mesostruc-
ture formation.10 Here we will address two of them:

• The timescale of nanoparticle precipitation is usu-
ally too large for molecular dynamics simulations11.
Kinetic Monte Carlo overcomes this limitation, but
it requires a priori knowledge of the rates of all pos-
sible events12, and typically there is an infinity of
possible events (e.g. infinite possible positions for
the nucleation of a new nanoparticle).

• The rates of nanoparticle precipitation or dis-
solution depend on free energy changes from
both chemical reactions and mechanical interac-
tions. Typically, the models of chemical kinetics,
e.g. Classical Nucleation and Growth, neglect or
strongly simplify the effect of mechanical interac-
tions between particles and the role of entropy-

induced fluctuations.10,13–15 Simulations based on
the Phase Field Method16 have started to ad-
dress the coupling between mechanical stress and
chemistry, but they become extremely onerous for
systems with thousands of particles with local
interactions.16,17 Vice versa, particle-based simu-
lations consider aggregation and entropy-induced
fluctuations in detail, but they usually simplify the
chemical evolution of the system using effective
rates of precipitation that are not rigorously linked
to the underlying chemical reactions.18,19

To address these two challenges, we develop an orig-
inal, off-lattice Kinetic Monte Carlo (KMC) simulation
approach for nanoparticle precipitation and aggregation.
The rates of nanoparticle formation and dissolution are
coarse-grained from the molecular scale and account
for both chemical reactions and mechanical interactions.
The simulations are first benchmarked against simple sce-
narios with analytical solution. The complexity is then
increased to consider the precipitation of idealised, or-
dered mesoporous materials. Finally we simulate the
precipitation of amorphous mesoporous domain, refer-
ring to cement hydrates to illustrate how the rates can
be parametrised for real materials. The simulations pre-
dict various mechanisms of mesostructure formation and
show how chemical drive and mechanical interactions can
affect the overall precipitation rate.

II. METHODOLOGY

We propose two original methodological developments:
(i) a Kinetic Monte Carlo approach that reduces the in-
finite number of possible positions for nanoparticle for-
mation to a finite off-lattice sampling; (ii) new coarse-
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FIG. 1. (a) Simulation box containing implicit solution (not
shown), insoluble substrate (grey) and several particles (or-
ange) that interact via a distance-dependent potential ∆U(r).
(b) Same configuration with trial particles (yellow) that can
move locally within their Vc and interact with existing par-
ticles but not with each other. (c) Molecular process behind
nanoparticle formation: n molecular units of solid form radi-
ally via chemical reactions that change the chemo-mechanical
equilibrium free energy of the system ∆Geq and have an as-
sociated activation energy made of two contributions: ∆Ga,0,
which depends on the chemical reaction and on the solution
chemistry, and a fraction χ of ∆Geq (more details in the text).

grained expressions for the chemo-mechanical rates of
nanoparticle insertion and deletion.

The formation of a nanoparticle is considered as the
product of multiple chemical reactions in an implicit
background medium, e.g. aqueous solution of salts (Fig-
ure 1). For simplicity, we will move within the bound-
aries of the four assumptions listed below, but the KMC
sampling and coarse-grained rates that we will develop
will be a starting point to treat cases also beyond these
assumptions.

• The chemical composition of the medium is uniform
in space but can change with time. Hereafter we
will always consider the medium as a liquid solution
from which solid nanoparticles can precipitate.

• The nanoparticles to be inserted or deleted are
spherical, isotropic in terms of their internal molec-
ular structure, monodisperse in size, and have all
the same chemical composition.

• The particle size, shape, and chemical composition
do not change during the simulations. Therefore
only particle insertion and deletion will be consid-
ered; no partial growth, dissolution, or leaching.

• The position of the existing particles is changed
only by energy-minimisation between subsequent
KMC steps of particle insertion/deletion. This
means that we consider particle displacements as
instantaneous compared to the slow kinetics of so-
lidification and dissolution.

• The mechanism behind nanoparticle formation is
classical growth starting from preexisting nuclei.
We assume that the background medium contains
a certain concentration Ccn of already-formed nu-
clei of solid consisting of one molecular unit (red
in Figure 1c) and that these grow via sequential
attachment of n other molecular units of solid in
all radial directions. This corresponds to assuming
that the critical nucleus of solid is as small as a sin-
gle molecular unit, and that the nucleation time is
much smaller than the time for the nucleus to grow
until reaching the size of the considered nanopar-
ticle. An explicit account of nucleation and other
possible non-classical mechanisms is left to future
work20,21 (a discussion on including classical nu-
cleation can already be found in ref.22). Despite
this assumption, the rate expressions that we will
obtain here will display general features of coarse-
grained rates that should emerge irrespectively of
the molecular mechanisms considered. These fea-
tures will be highlighted and discussed.

A. Off–lattice Kinetic Monte Carlo

KMC stochastically explores state transitions, select-
ing events (here particle insertion or deletion) in propor-
tion to their rates. The rates must be determined be-
forehand depending on the current configuration of par-
ticles and implicit medium. We will refer to the classical
rejection-free KMC algorithm23, whereby the time incre-
ment associated to any event is the inverse of the cumu-
lative rate of all the events that are possible at that time.
In this work we will consider events whose rates explic-
itly depend on time: this requires a slight modification
of the original algorithm, as per ref.24

Particle deletions are easy to consider. For example,
the N orange particles in Figure 1a are all possible can-
didates for deletion, and the list of their associated rates
is built by trying to remove each of them separately from
the same reference configuration. In the next subsection
II B we will see that the deletion rates depend on the
change of interaction energy ∆U that the deletion itself
would cause in the system, hence the deletion rate de-
pends on the position of the particle to be deleted.

Particle insertions are more difficult to deal with be-
cause insertion can occur at infinite possible positions.
Considering only a finite number of positions on a lattice
would require extremely fine lattices, because the inter-
actions in nanoparticle systems are typically very short
ranged25(precisely, one would have to consider a lattice
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size of the order of or less than the interaction length
between particles, i.e. Angstroms). A small particle dis-
placement can thus result in substantial changes of ∆U
caused by particle insertion, and therefore of the rate. We
propose instead an off-lattice approach: M trial particles
are first placed on a cubic lattice and, before calculating
the rates, we let each trial particle move within its lat-
tice cell volume Vc to minimize its interaction energy with
the other existing particles (no interaction between trial
particles; see Figure 1b). The position of a trial particle
after local minimization is considered as representative
of all other positions within the same Vc. In appendix
A we will discuss how this approach ensures convergence
of mechanisms and rates with the fineness of the lattice.
It is worth noting that “off-lattice” in the KMC com-
munity refers to the possibility of particles to access any
position in space, which is typically achieved by some sort
of relaxation26. This does not remove the need of creat-
ing a finite catalog of possible events, thus only a finite
set of representative positions must be considered in the
end. One may argue that “KMC with adaptive lattice”
would be a better name for this approach, but here we
will retain the conventional terminology (“off-lattice”).

Each KMC step performs either a particle insertion or
a deletion. Before moving to the next step all the exist-
ing particles, that thus far were kept fixed in their posi-
tions, are allowed to rearrange and minimize their inter-
action energy. Time is advanced only by the KMC steps.
All the simulations in this work have been performed
with a specifically written code that uses LAMMPS as a
library.27

B. Coarse-grained rates

The mechanisms of nanoparticle formation/dissolution
in Figure 1c involve a series of chemical reaction, each
causing the addition or removal of one molecular unit of
solid in radial direction. We call rate ri+ the rate of the
ith reaction of molecular unit addition, ri− the one-unit
dissolution. Transition State Theory (TST) provides ex-
pressions for the rates (per unit area) of molecular units
forming on a solid surface or dissolving from it15:

ri± =
kBT

h

1

γ∗
exp

(
−

∆Ga,i±

kBT

)
. (1)

kB is the Boltzmann constant, T the temperature, γ∗

the activity coefficient of the activated complex at the
transition state (in units of area), and h the Planck con-
stant. ∆Ga,i+ and ∆Ga,i− are the activation free en-

ergies for the ith addition and dissolution respectively.
TST implies assumptions about the underlying kinetics,
e.g. that only one reaction pathway exists for each tran-
sition, that the activated state is unique, and that re-
actants are at equilibrium with activated complexes. In
complex liquid-solid reactions these conditions are often
unmet and more advanced kinetic theories and rate ex-
pressions are needed28. Here we use TST because we

will not refer to specific material systems for which an
alternative theory is known to be preferable, and because
the simplicity of TST will allow us to analytically obtain
coarse-grained rates which nevertheless display some im-
portant features that will be listed and discussed later
in this section. Once developed under the assumption
of TST, our approach to derive coarse-grained rates will
provide a methodology for future works that may be tar-
geted to specific material systems and include a richer
descriptions of their molecular-scale kinetics.

∆Ga,i± are determined by two contributions (Fig-
ure 1c): ∆G0

a,i which depends only on the chemical re-
action under consideration and on the concentration of
reactants in the implicit solution, and a fraction χ (be-
tween 0 and 1) of the change of free energy ∆Geq of
the system in (metastable) equilibrium just before and
just after the ith reaction. ∆G0

a,i for dissolution coin-
cides with the activation energy of dissolution in stan-
dard state, ∆G∗, whereas for solidification one must add
−kBT ln(β) to account for the increased energy level of
the starting configuration due to the supersaturation β
of reactants in the implicit medium15. ∆Geq instead is
due to the change of interaction energy U and particle
surface Ω caused by the ith reaction (times the solid-
solution interfacial energy γi, which in general depends
on the radial particle size i29,30). All this leads to:

∆Ga,i+ = ∆G∗ − kBT ln(β) + χ
(
γi∆Ωii−1 + ∆U ii−1

)
,

(2)

∆Ga,i− = ∆G∗ + (1− χ)
(
γi∆Ωi−1

i + ∆U i−1
i

)
, (3)

where ∆Ωii−1 should be read as the change of particle
surface area caused by the reaction that takes the particle
from size “subscript” (i-1) to size “superscript” (i).

The atypical part of ∆Ga+ and ∆Ga− in eqs 2 and 3
is their dependence on the change of equilibrium free en-
ergy ∆Geq caused by the reaction, viz. the terms follow-
ing the χ parameter. A value of χ intermediate between
0 and 1 means that ∆Geq occurs progressively during
the chemical reaction, and not entirely before (χ = 1) or
after (χ = 0) the transition state. This is analogous to
the Prandtl-Eyring model of non-Newtonian flow, which
considers that the strain energy released by the activa-
tion of a deformation mechanism contributes to reduc-
ing the activation energy of the mechanism itself31,32.
To understand why this aspect is important for our ap-
proach, we will use the rest of this paragraph to com-
pare eqs 2 and 3 to classical crystal growth theory. In
classical crystal growth, χ = 0 and therefore γi∆Ω and
∆U affect only the dissolution rate15. This implies that
a one-molecular solidification causing a large increase of
∆U , e.g. forming a new molecular unit in the same place
as an existing one, would have the same rate as a solid-
ification reaction causing a negative, hence favourable,
∆U . This approximation is manageable in algorithms
with molecular-scale resolution, in which the unit that
caused the unfavourable positive ∆U would have a very
high dissolution rate in the next step. The approximation



4

is more problematic at the coarse-grained level, where
one particle formation represents n molecular reactions
of solidification. In this case, accepting the formation of a
particle with large positive ∆U means disregarding that
dissolution would immediately block the progression of
n unfavourable molecular reactions. The issue is avoided
in classical growth theory because net growth rates are
adopted: ri,net = ri+ − ri− . Net rates however are not
well suitable to nanoscale simulations because they limit
the effect of entropy-driven fluctuations. To understand
why, notice that eqs 1, 2 and 3 with χ = 0 would lead
to ri,net ∼ β − exp

[
(γi∆Ωi−1

i + ∆U i−1
i )/(kBT )

]
. Now

consider for example the formation of non-interacting
(∆U = 0) two-molecular metastable clusters with γi = 0,
from a solution containing single molecules. If the solu-
tion is such that β = 1 (equilibrium with respect to the
growth of a large crystal), then ri,net = 0 and no clus-
ter could form. This is incorrect because some clusters
should still form driven by the entropy of mixing, which
the net rates average out. This approximation is accept-
able for large crystals but problematic at the nanoscale.
Another issue is that net rates can be negative: this is
not a problem when net rates are used in the integration
of rate equations at a continuum level, e.g. in Phase Field
approaches, but in a KMC algorithm all the rates must
be positive. Hereafter we show that eqs 2 and 3 with
χ intermediate between 0 and 1 penalise events increas-
ing the free energy of the system while leading to coarse
grained rates of particle insertion and deletion that are
always positive and leave room for the entropy of mix-
ing. Overall this is more appropriate for nanoparticle
simulations than classical growth theory.

To turn the reaction rates per unit solid per unit area
in eq 1 into coarse-grained rate expressions (per unit time
only), we assume that particle insertion entails n straight
formations of one-molecular units, whereas particle dele-
tion entails n straight dissolution reactions. This gives:

Rin = CcnVc(1− φloc)a2

(
n∑
i=1

r−1
i+

)−1

, (4)

Rdel = a2

(
n∑
i=1

r−1
i−

)−1

. (5)

Rin and Rdel are the coarse-grained rate of particle in-
sertion and deletion, Ccn is the concentration of single
molecular units of solid that we assumed to be always
present in the solution, φloc is the volume fraction of Vc
occupied by already precipitated solid particles (not the
trial ones), and a is the linear size of the molecular unit
of solid (Figure 1). Overall, CcnVc(1− φloc) is the num-
ber of single-molecule nuclei in the portion of Vc that is
not already occupied by solid particles. Other sequences
assuming both solidification and dissolution reactions be-
hind particle insertion (or deletion) may be possible but
would require more than n events, taking more time and
thus having lower probability in the KMC algorithm.

Combining eqs 1 to 5 we obtain:

Rin = kr∗0βa
2

{
n∑
i=1

exp

(
χ
γi∆Ωii−1 + ∆U ii−1

kBT

)}−1

,

(6)

Rdel = r∗0a
2

{
1∑
i=n

exp

[
(1− χ)

γi∆Ωi−1
i + ∆U i−1

i

kBT

]}−1

,

(7)

where we defined k = CcnVc(1 − φloc) and r∗0 =
kBT
h

1
γ∗ exp

(
−∆G∗

kBT

)
. These coarse grained expressions

reflect the assumptions that we listed in the introductory
part of this section II. However, they address both the
challenges that we presented in the introduction of this
manuscript and display general features to be expected
from any coarse-grained rate of nanoparticle formation
and dissolution. Specifically:

• k accounts for the fact that particle insertion in-
volves not only growth, but also nucleation (here
simply captured by the constant Ccn, but elabora-
tions are possible22). Furthermore, Vc in k ensures
that increasing the number of trial nuclei M to
sample possible positions of particle insertion (Fig-
ure 1.b) does not lead to a systematic increase in

the total rate of particle insertions
∑M
j=1R

in
j (be-

cause Vc = Vbox/M , where Vbox is the volume of
the simulation box).

• r∗0 sets the timescale, linking it to the chemical
reactions taking place in the system via γ∗ and
∆G∗. The resulting chemistry-controlled timescale
can be many orders of magnitude larger than that
of phonons in molecular dynamics simulations.

• β accounts for the chemistry of the solution and
how it drives precipitation. This is important be-
cause β is what the experimentalists typically can
control, e.g. the concentration of ions in a solution.

• n captures the fact that forming or deleting a large
particle (large n) take longer and thus have lower
rate compare to forming or deleting a small one.

• ∆Ωii−1 and ∆U ii−1 account for changes in equilib-

rium free energy caused by the ith chemical reac-
tion, or more specifically in the χ-related portion
of equilibrium free energy that affects the activa-
tion energy of the reaction. ∆U is important be-
cause it captures how mechanical interactions im-
pact mesoscale precipitation in terms of both rates
and mechanisms (thanks to ∆U , Rin depends on
the position of particle insertion). In particular,
∆U disfavours the occurrence of any particle inser-
tion/deletion event that causes an increase of local
stress, and favours events causing stress relaxation.
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Later in this manuscript we will use interaction poten-
tials with interaction strength scaling as the surface area
of the interacting particles, viz. U ∼ Ω. In this case the
coarse-grained rates simplify to:

Rin = kr∗0βa
2

{
n∑
i=1

exp

[
χ

(
γi + ∆Uin

Ω

kBT

)
8a2i

(2i− 1)
2

]}−1

,

(8)

Rdel = r∗0a
2

{
1∑
i=n

exp

[
(1− χ)

(
−γi + ∆Udel

Ω

kBT

)
8a2i

(2i+ 1)
2

]}−1

.

(9)

∆U in and ∆Udel are the total changes in interaction en-
ergy that would be caused by a whole particle insertion
or deletion. Ω is the whole surface area of the particle,
and the i-dependent fractions are the absolute value of
the changes of surface area caused by the ith molecular
reaction ∆Ωii−1 and ∆Ωi−1

i for a sphere (NB: ∆Ωii−1 is the
difference in Ω between a particle of size i − 1 and the
same particle of size i, divided by the number Ωi−1/a

2 of
molecular reactions that occur on the particle’s surface).

C. Implications for equilibrium

Equilibrium is reached when the total rate of particle
insertion equals on average the total rate of particle dele-
tion: Rintot/R

del
tot = M

〈
Rin

〉
/(N

〈
Rdel

〉
) = 1. The angle

brackets indicate averages over all possible insertions and
deletions. Considering eqs 6 and 7, this gives:

β
kM

N

∑1
i=n exp

[
(1− χ)

γi〈∆Ωi−1
i 〉+〈∆Ui−1

i 〉
kBT

]
∑n
i=1 exp

(
χ
γi〈∆Ωi

i−1〉+〈∆Ui
i−1〉

kBT

) := βapp = 1 .

(10)

For a more convenient notation, we call µ all what comes
after β, thus equilibrium entails βapp = βµ = 1.

In classical crystal growth, equilibrium of a large crys-
tal occurs at β = 1. eq 10 shows that other terms are also
important for the equilibrium of nanoparticle systems.
Consider for example a scenario in which the formation
of a new particle causes on average an increase of inter-
facial or interaction energy (positive, thus unfavourable,
∆Ωii−1 and ∆U ii−1). This implies µ < 1 in eq 10 and the

equilibrium condition βapp = 1 will require β = µ−1 > 1.
The µ term depends on the mesoscale morphology of the
nanoparticle aggregate, thus the equilibrium of a meso-
porous material is related to the mesoscale morphology
too. When one experimentally sets the equilibrium of a
mesoporous material forming e.g. by precipitation, the
condition that is actually created in the experiment is
βapp = 1, not β = 1. Later in this manuscript we will
refer to an experimentally measured supersaturation for
the precipitation of mesoporous cement hydrates: it will

be important to remember that the supersaturation from
that experiment is βapp and must be converted to β be-
fore using it in our rates. This conversion requires know-
ing µ, because β = βappµ

−1. Obtaining µ directly from
eq 10 can be tedious. A simpler approach, which we will
use, is to start a preliminary simulation with a sufficiently
large β, which stimulates particle insertion, and when the
number N of inserted particles is sufficiently large to have
a representative morphology, reduce β progressively until
N stays constant on average. This β corresponds to the
condition βapp = 1, thus equals µ−1.

Another important implication of eq 10 concerns en-
tropy. Consider again the example that we discussed in
section II B in relation to classical growth theory: a sys-
tem of two-molecular clusters with γi = 0 and U = 0,
forming from a solution of single molecules with concen-
tration Ccn. In this case, µ in eq 10 is simply kM/N
and, when β = 1, the equilibrium condition becomes
N = kM = CcnVbox(1 − 〈φloc〉). This corresponds to
maximising the entropy of mixing of an ideal binary mix-
ture, i.e. the number of two-molecular clusters N equals
the number of single molecules in the volume of solu-
tion that is not occupied by two-molecular clusters. This
means that, differently from the previously discussed case
of classical growth theory using net rates, our approach
accounts for the entropy of mixing as an additional driv-
ing force for particle formation and dissolution.

D. Mesh effects of the trial particle lattice

We pointed out that the total insertion rate does not
scale with the number of trial particle lattice cells M
(Figure 1b), because Vc in k, in eq 6, scales as M−1.
Other errors however can occur due to the finite size
of the trial particle lattice, in particular because only
one position for each lattice cell is taken as representa-
tive of the interaction energy anywhere in that cell (sec-
tion II A). This approximation is good as long as one
position is overwhelmingly favourable in terms of energy
compared to all other possible positions within the cell,
and as long as the trial particle can find that position.
In appendix A we discuss in more detail the possible is-
sues related to mesh effects, concluding that they should
be evaluated case by case depending on the specific pro-
cess to be simulated and on the quantities of interest.
In appendix A we show how we evaluated mesh effects
for the cases considered in this manuscript, concluding
that a trial lattice with linear size equal to one parti-
cle diameter is sufficient to describe correctly the overall
mesoscale mechanism of precipitation, which is our main
focus here, even if the absolute value of the rates may be
overestimated by several orders of magnitude.
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E. Condensation of parameters

The coarse-grained rates in eqs 6 and 7 contain many
parameters. This is a necessary consequence of having
based our coarse graining on a mechanistic description of
molecular scale processes. Nevertheless, these parame-
ters are coupled to the extent that approximate insertion
and deletion rates averaged over all possible deletions
and insertions can be expressed using three independent
parameters only. To do this we take χ = 0.5 and approxi-
mate ∆Ωii−1 and ∆U ii−1 as Ω/( 4

3πn
3) and 〈∆U〉 /( 4

3πn
3),

i.e. all 4
3πn

3 chemical reactions involved in the formation
or dissolution of a particle contribute with same change
in particle surface and interaction energy. This leads to:〈

Rin
〉
≈ r∗0aγn · αβγ · αU , (11)〈

Rdelavg

〉
≈ r∗0aγn · α−1

U . (12)

r∗0aγn = r∗0a
2n−1 exp

(
γΩ

2kBT
4
3πn

3

)
is a kinetic constant

that sets the timescale but, being the same for inser-
tion and deletion, it does not affect the mechanism of
precipitation nor the evolution of the rate with time.

αβγ = β exp
(

−γΩ
kBT

4
3πn

3

)
depends only on the chem-

istry of the system, whereas αU = exp
(

〈∆U〉
2kBT

4
3πn

3

)
ac-

counts for the relative magnitude of free energy changes
caused by mechanical interactions and thermal fluctua-
tions. 〈∆U〉 is the same but opposite in sign for average
particle insertion and deletion. Overall, this means that
our model is governed by three main elements: the kinetic
timescale, the chemical driving force, and the change in
free energy caused by mechanical interactions. In section
III we look into the effect of the mechanical interactions,
αU , while section IV explores also the chemical drive αβγ .

III. RESULTS: MECHANISMS OF ORDERED
PRECIPITATION

We consider a 3D system of particles that precipitate
and aggregate on an insoluble substrate (orange and grey
particles in Figure 2). To favour the formation of or-
dered precipitates, we build the substrate as an ordered
fcc array of spherical particles and we allow for the pre-
cipitation of spherical particles with only one possible
diameter, same as for the substrate particles. In eqs 11
and 12 we set r∗0aγn = αβγ = 1 and focus only on: (i) the
strength of inter-particle cohesion compared to the inten-
sity of thermal fluctuations αU , and (ii) the strength of
the interactions between precipitate and substrate.

In the coarse-grained rate expressions we use χ = 0.5
and pairwise Lennard-Jones interactions:

Uij(r) = 4ε

[(σ
r

)2α

−
(σ
r

)α]
, (13)

with α = 6 and σ = 1. The interaction strength ε is
initially set to 70kBT , which is in the range of covalent

bonds. In a maximum-density fcc packing, monodisperse
spherical particles have 12 neighbours. On a growing sur-
face we can expect that half of these contribute to the
change of interaction free energy, 〈∆U〉 = 6ε. This gives
αU ≈ exp(50), having taken n = 1 here. The particle-
substrate interactions are initially identical to those be-
tween precipitating particles.

The mechanisms emerging from these conditions is
the layer-by-layer precipitation in Figure 2a. This is an
enthalpy-driven mechanism governed by the strong αU
and particle-substrate interactions. Forming a new par-
ticle on top of a fully formed layer takes much longer than
adding a particle to a horizontally growing layer, because
of the reduced number of neighbours, approximately 6 on
an growing layer, and 4 on a new layer, giving a difference
of ca. ∼ exp(17) in terms of relative rate. Consistently,
the temporal evolution of the process in Figure 2 displays
horizontal plateaus which are the waiting time to nucle-
ate a new layer, and sharp steps up corresponding to the
rapid horizontal growth of a layer. This is known in the
literature as Frank-van der Merve regime.33 Predictably,
the precipitating layers preserve the fcc order.

Decreasing αU to ∼50, corresponding to ε ≈ 6kBT (in
the range of van der Waals interactions), leads to the
irregular layering mechanism inFigure 2b. The weaker
interactions of a particle forming on a new layer, which
favours the mechanism of horizontal layer growth, are
now statistically in competition with the smaller num-
ber of particles that can form on the perimeter of the
growing layer, compared to those that can form on its
surface and start a new layer. Therefore the timescales
of layer growth and nucleation are similar, the precipi-
tating domain gets rougher, and the temporal evolution
of the process is smoother compared to the previously
discussed stepwise trend.

A further decrease of αU to ∼10, still in the van der
Waals range, leads to an even rougher layer accompa-
nied also by the homogeneous precipitation of particle
clusters in the bulk solution (Figure 2c). Even if αU is
still significantly larger than 1, homogeneous precipita-
tion occurs because the number of possible locations for
particle precipitation in the bulk is much larger than the
number of locations on the layer surface: this is an en-
tropic effect. All characteristic timescales are of similar
magnitude, thus the reaction proceeds linearly in time
and the stepwise trend is lost.

We now move the focus onto the precipitate-substrate
interactions. We go back to the original αU ≈ exp(210)
and reduce the substrate-particles interactions by 50%.
This triggers the mechanism of island growth in Fig-
ure 2d, known as the Volmer-Weber regime.33 The rate
of forming an isolated particle on the substrate is much
smaller than the rate of forming a particle next to an-
other precipitated one. Because of this, new particles ag-
gregate preferentially with as many existing ones as pos-
sible and not as much on the substrate, which favours the
3D growth of the aggregated domain rather than horizon-
tal growth of layers. Furthermore, precipitating the first
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FIG. 2. Effect of substrate-particle and particle-particle in-
teractions on the precipitation of ordered domains. The size
of the cubic simulation boxes explored are between 203 and
503 particle diameters. Snapshots created with OVITO34.

particle takes a long (induction) time, and then the pro-
cess accelerates as more and more particles are formed.
The structure of the island appears to have mainly fcc
symmetry with a small fraction of hcp regions.

The same conditions that led to the island mechanism
applied to an initial configuration with amorphous sub-
strate structure trigger the interesting mechanism in Fig-
ure 2e. At first, the aggregated domain grows disorderly
as a hemisphere. At some point however the local ar-
rangement of some precipitated nanoparticles happens
to display some ordering, which triggers the much faster
growth-by-aggregation of an ordered domain on top of
the amorphous one. This delayed ordered domain dis-
plays a comparable incidence of hcp and fcc regions. The
disorder of the substrate has two further implications: (i)
it generates a sufficiently rough energy landscape to allow
for multiple particles to form on the substrate before the
large domain eventually takes over, and (ii) it removes

separation of timescales between first precipitation and
island growth, hence the induction time discussed for the
ordered island mechanism disappears. The appearance
of the ordered domain corresponds then to a sharp accel-
eration of the precipitation.

In all the mechanisms discussed in this section (and
in the next one too) we considered a substrate made of
monodisperse particles with same size as the new pre-
cipitating particles. Releasing this assumption, e.g. to
consider coarsely patterned or very finely smoothed sub-
strates, may lead to a substrate that is incompatible with
the immediate ordering of new precipitating particles.
This is conceptually similar to the case of amorphous
substrate discussed above, thus if the precipitating par-
ticles are monodisperse we would still expect delayed or-
dering with details that depend on the morphology of
the substrate. Our simulations may thus help predict
the important effect of substrates in key technological
applications such as thin film deposition.

Overall, our simulations captured some precipitation
mechanisms for ordered mesoporous domains, predict-
ing the corresponding temporal evolution of the process.
We have shown that interaction strength and substrate
structure are key in determining the mechanism, and that
entropic effects can be important too.

IV. RESULTS: MECHANISMS OF
AMORPHOUS PRECIPITATION

Here we start with an amorphous insoluble substrate,
20 nm thick and made of nanoparticles with diameter of
10 nm (not participating to the KMC insertion-deletion).
We allow for precipitation of monodisperse particles, but
then we slightly (±5%) and randomly alter the size of
a newly inserted particle to avoid ordering. The pa-
rameters for the coarse-grained rates in eqs 6 and 7 are
matched to the case of cement hydrates (more specifi-
cally calcium–silicate–hydrate, C–S–H, which is the main
hydrate in ordinary cements), precipitating from aque-
ous ionic solution and forming an amorphous mesoporous
phase. We simulate 4 precipitation mechanisms that ap-
pear in the literature on cement and we discuss the as-
sociated kinetics predicted by our simulations. We also
discuss the effect of an evolving chemical environment,
viz. a supersaturation β that changes with time.

The details of the parametrization for cement hydrates
are in the appendix: here we present only the most rele-
vant features:

• The diameter of the precipitating particles is D =
10 nm.35 The linear size of a C–S–H molecular unit
is a = 0.65 nm,36,37 thus forming a particle requires
n = 8 units in radial direction.

• We use γ = 87.6 mJ/m2 as interfacial energy be-
tween C–S–H and solution38.

• For the interactions between particles we use the
spherical Lennard-Jones-like potential in eq 13 with
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σ = D and α = 14.39,40 We relate ε to the solid-
solution interface that is removed when particles
are in contact: ε = γΩ/6 where 6 is half the num-
ber of first neighbours in an fcc crystal and Ω is
the particle surface area. Since ε ∼ Ω we can use
eqs 8 and 9. The resulting energy scale is ε = 660
kCal/mol which is close to the value indicated by
recent molecular simulations.41

• The supersaturation β in a cement solution de-
pends on coupled processes of cement dissolution,
ion transport, and hydrates precipitation. Here we
focus only on precipitation, thus the temporal evo-
lution of β(t) must be provided as an input. To
clarify the role of the chemical drive, we consider
two extreme cases. Firstly, β = 100 and constant
in time, which represents a solution at equilibrium
with very soluble cement grains. Such a large value
of β ensures that the nanoparticles will precipitate
indefinitely as long as there is space available. Sec-
ondly, we start with a very concentrated ionic solu-
tion which gets rapidly depleted. This type of su-
persaturation evolution for a cement solution has
been simulated in ref.38 (high opacity dataset; see
Figure 3a). The reference actually provides what
we called βapp in section II C. With preliminary
simulations as described section II C we obtained
µ ≈ 1/3, which we used to convert βapp(t) into
β(t) for our coarse grained rate expressions.

• The kinetic constant r∗0 is unknown for cement hy-
drates precipitation, therefore we treat it as a free
parameter. Notice that in our simulations, in which
only one type of particle can form or dissolve, r∗0
only act as a linear scaling factor for the overall
rate. Thus we can set r∗0 to obtain a timescale of
∼24 hours that is meaningful for the precipitation
of cement hydrates, without affecting the shape of
the rate curve as a function of time.

For all the simulations we used lattices of trial parti-
cles with spacings between 0.5D and D. To speed up the
calculations, we did not calculate the local solid fraction
of precipitated solid φloc in eq 6; instead we assumed a
constant value of φloc = 0.5 everywhere, which is rea-
sonable for the dense assemblies of almost monodisperse
nanoparticles that we will obtain. We used the same val-
ues of ε, γ, and β in all simulations except one case in
which we consider weaker interactions from atomic force
microscopy experiments.42 As for the cases of ordered
precipitation, also here we use χ = 0.5 in the coarse
grained rate expressions.

A. BNG (or Cahn) mechanism

The Cahn mechanism describes the heterogeneous pre-
cipitation of a phase on a substrate starting from defects
that provide favourable sites for initial nucleation.14 The

new phase grows hemispherically in 3D, similar to the
island mechanisms in Figure 2d, with a constant rate
of radial growth (extensions to anisotropic growth and
non-constant growth rates exist38). 3D growth causes
acceleration of the total reaction rate, i.e. the total vol-
ume of precipitated solid per unit time. This continues
until adjacent precipitated domains growing from differ-
ent sites start to impinge, which leads to a peak in the
total rate. If there is enough bulk solution space left,
the domains will eventually form a thick layer and grow
perpendicularly to the substrate with constant total rate.

Today the Cahn mechanism is probably the most com-
monly used to describe the precipitation of cement hy-
drates on the surface of slowly dissolving cement grains.
In the cement literature it is better known as the Bound-
ary Nucleation and Growth (BNG) mechanism.14 In a
recent paper the rate of radial growth of the precipi-
tating phase has been expressed as a function of the
supersaturation of the solution with respect to C–S–H
precipitation.38 We will use of the supersaturation data
and BNG results in that paper to inform our simulations
and discuss the results.

The initial condition for our simulation is the substrate
in Figure 3c0, which is periodic in plane and represents

FIG. 3. (a) Temporal evolution of the supersaturation of a ce-
ment solution with respect to the precipitation of mesoporous
cement hydrates.38 (b) Comparison of simulated precipitation
rates for time-dependent and constant β43 with BNG result
from ref38. (c) Our simulated BNG mechanism of precipita-
tion: dark blue areas within the precipitated domains indicate
local compressive virial stress; the rest is under tension.
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a cement grain. Cahn’s model assumes the presence of
favourable nucleation sites on the substrate. To mode
them we consider an interaction strength ε between sub-
strate and cement hydrates particles that is 75% smaller
than the ε between hydrate particles, except for some
substrate particles within a 30 nm region (the favourable
site) which have same ε as for hydrate-hydrate interac-
tions. The density of favourable sites on the substrate is
∼10 µm−1, from ref38. We also run additional tests with-
out the favourable sites and, as for the already-shown is-
land mechanisms in Figures 2d,e, we still obtained the
formation of 3D hemispherical domains growing and im-
pinging. Our simulations therefore could be used to clar-
ify the relationship between density of nucleation sites in
the Cahn model, substrate morphology, and substrate-
precipitate interactions. This however goes beyond the
scope of this manuscript and is left to future work.

The simulation results are shown in Figure 3: r∗0 was
set to place the rate peak at ∼5 hours, leading to r∗0
= 43.33 ± 0.125 s−1µm−2 for variable β and r∗0 = 46.66
s−1µm−2 for constant β. During the first 4 hours, the 3D
growth of precipitated domains in Figure 3c1 allows an
increasing number of trial particles to find favourable ∆U
positions on the surface of the domains. Trial particles
with favourable ∆U contribute with high Rin to the total
rate, and this explains the initial acceleration, which is
caused by the mechanical interactions and therefore ap-
pears in both cases of variable and constant β. The rate
peak occurs because the precipitated domains impinge
laterally on each other, as shown in Figure 3c2. The im-
pingement reduces the surface area of domains, changing
the growth mechanism from 3D hemispherical to layered,
as in Figure 3c3. Layered growth implies that the part
of the rate related to mechanical interactions is constant
on average, thus the temporal evolution of the rate is
controlled by β (at least in our far-from-equilibrium con-
ditions, when particle deletions are infrequent). This ex-
plains why the post-peak regime of our simulated rate is
constant for the case with constant β and decreases for
the case with decreasing β(t). Overall, our results show
that initial acceleration and post-rate-peak regime of a
BNG mechanism are respectively determined by the me-
chanical interactions between nanoparticles and by the
temporal evolution of the solution chemistry.

B. Layered precipitation mechanism

In the cement literature, the layered growth mecha-
nism is not considered as a likely one for hydrates precip-
itation. It is sometimes used for its simplicity in models
that consider mass and volume balance equations.44–46

Here we consider this mechanism mainly to show how its
associated kinetics, predicted by our simulations, com-
pares with the previous one from BNG. We use the same
parameters as in the BNG simulations, but we remove
the initial favourable sites and set the substrate-hydrates
interaction strength equal to the hydrate-hydrate one ev-

erywhere. This is analogous to the case of layered growth
in Figure 2a, but now the amorphous substrate and the
small size polydispersity of the particles prevent ordering,
as shown in Figure 4a. This leads to the same situation
as in the final stages of BNG (cf. Figure 3c3), therefore
the rate reflects the temporal evolution of β: constant
when β is constant, and decreasing when β is taken from
Figure 3a (r∗0 = 4.785 s−1µm−2 and r∗0 = 2.9 s−1µm−2

respectively for constant and variable beta). Therefore
layered precipitation does not leave any room for initial
acceleration, which disagrees with the experiments.47

C. Gel-like mechanism

The gel-like mechanism has been proposed because
during the first hours and days of cement hydrates precip-
itation the interactions may be governed by rather weak
non-covalent forces.18 Atomic force microscopy (AFM)
experiments42 have quantified these forces showing that
the resulting energy scale ε is approximately one or-
der of magnitude weaker compared to what we are us-
ing here. Such weak interactions may lead to progres-
sively densifying gel-like structures, as discussed in the
literature18,48,49. To test the gel-like mechanism we use
same initial conditions as in section IV B but with inter-

FIG. 4. Mechanisms of amorphous precipitation parametrized
for mesoporous cement hydrates: (a) layered, (b) gel-like, and
(c) Avrami. The inset in (b) shows the box size effect on the
gel-like mechanism with constant β. The BNG result from
ref.38 are shown to favour comparisons.
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actions taken directly from the above-mentioned AFM
experiments42 (data for a 10.3 mM concentration of cal-
cium hydroxide in solution, which is the largest one re-
ported in ref.42). We fitted the AFM interactions using
eq 13, obtaining α = 16 and ε = 70 kCal/mol, much
smaller than the 660 kCal/mol that we used so far. Fig-
ure 4b shows that these weak interactions induce homo-
geneous bulk precipitation and aggregation.

The consequences in terms of rate are interesting. In
Figure 4b we see that the variable β leads to a steadily
decreasing rate similar to the case of layered precipita-
tion (here r∗0 = 10 s−1µm−2). The rate is thus controlled
by β(t) because the interactions are so weak that even a
small variation of β will overcome them. If β is constant
the aggregation of small clusters in the bulk space induce
instead some acceleration (still with r∗0 = 10 s−1µm−2).
This acceleration culminates in a rate peak when the
bulk space starts to get filled. The resulting shape of
the rate curve is similar to that from BNG, thus con-
sistent with the experiments. There are however two
problems: firstly, it is unlikely that β stays constant dur-
ing the precipitation of cement hydrates (although this
scenario cannot be excluded a priori near the cement
surface). Secondly, the position and magnitude of the
rate peak in Figure 4b depends approximately linearly
on the size of the simulation box perpendicular to the
substrate, as shown in the inset. This happens because
the weak interactions imply that the rate of precipitating
near existing particles is similar to the rate of precipitat-
ing far away in the bulk. This causes a direct depen-
dence of the total rate on the volume of the simulation
box. The box size is a parameter that can be changed
to represents non-flocculated cement solutions with dif-
ferent water-to-cement mass ratios (w/c). Experiments
show that even orders of magnitude differences in w/c
of stirred suspensions (to minimise flocculation) do not
affect much the rate,50, which argues against the gel-like
mechanism. This problem however would be solved if the
hydrates could precipitate only within a limited distance
from the cement surface: a “reaction zone” maybe deter-
mined by ion diffusion and mean collision free path.49,50

Overall, the gel-like mechanism displays an interesting
physics, to be explored further for the precipitation of
cement hydrates and relevant also for other materials.
For the case of cement, it presents problems that may be
addressed in more detail by combining our simulations
with models of ion transport and cement dissolution.38

D. Avrami mechanism

The Avrami, or JMAK, mechanism is analogous to
BNG but the initial nucleation takes place in the bulk
solution and not on a surface.13 The resulting kinetics is
similar to the BNG kinetics: initial acceleration during
the spherical growth of precipitated domains and rate
peak caused by the impingement of adjacent domains.
Unlike BNG, however, the Avrami mechanism entails

exponential post-peak deceleration due to the filling of
the bulk space, which is too fast compared to experi-
mental results on cement.46 Furthermore, as we already
discussed for the gel-like mechanism, bulk space filling
entails a strong relationship between precipitation rate
and w/c. However, recent results from nanoparticle sim-
ulations suggest that the Avrami mechanism may still
be important at the interface between different cement
grains when the available bulk space is controlled by the
flocculation of cement grains and not by the w/c.19

In our simulation, we obtain the Avrami mechanism by
taking the same inputs as for the BNG mechanism dis-
cussed above and removing the substrate. The rates in
Figure 4c display acceleration for both constant and vari-
able β (r∗0 = 52.635 s−1µm−2 and r∗0 = 49.764 s−1µm−2

respectively). This is expected because acceleration is
governed by the interactions and not by β. However,
as typical for the Avrami mechanism, the deceleration
is very sharp unlike the gradual slowdown in BNG. The
deceleration is particularly abrupt in our results because
our simulation box is small and therefore only one aggre-
gated domain of precipitated particles can form in it, im-
pinging very regularly with its periodic images. A bigger
bulk space would allow for a statistics of domains at var-
ious distances and impinging at different times, making
the deceleration a bit more gradual although still expo-
nential and therefore too fast.

V. CONCLUSION

We have presented Kinetic Monte Carlo simulations for
various mechanisms of nanoparticle precipitation leading
to mesoporous aggregates. Our coarse graining, based
on molecular mechanisms of growth and dissolution, pro-
vides effective rates of nanoparticle insertion and deletion
that involve many parameters. However, all these param-
eters have physical meaning, thus are measurable experi-
mentally and/or calculable by molecular or ab initio sim-
ulations. We have shown that our model can be reduced
to only three independent average parameters, which
fully determine precipitation mechanism and associated
rate. For simplicity, we considered only monodisperse
particles with constant size during a simulation. Thus we
did not explore the richness of morphologies that could
stem from the molecular growth mechanism assumed
when deriving the rates. Nevertheless, assuming a molec-
ular mechanism of precipitation rather than postulating a
rate expression is essential to the molecular-to-mesoscale
coarse-graining approach that we advocate. Choosing
growth rather than other possible ones (e.g. Classical Nu-
cleation Theory) has the advantage of setting the ground
for follow up simulations allowing for changes in particle
sizes and shapes, towards complex morphologies such as
foils and needles.

Our kinetic approach is a step forward compared to ex-
isting equilibrium-based simulation (e.g. Grand Canon-
ical Monte Carlo18,19,53) in which the temporal out-of-
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equilibrium evolution of the system is neglected or de-
scribed qualitatively via heuristic timescales. Three fea-
tures are particularly noteworthy: (i) our KMC algo-
rithm treats precipitation off-lattice, ensuring a consis-
tent sampling of the most probable positions for parti-
cle insertion; (ii) our coarse-grained rates combine free
energy contributions from both chemical reactions and
mechanical interactions, allowing our simulations to ad-
dress chemo-mechanical processes; (iii) our proposal to
alter the activation energies of precipitation and dissolu-
tion based on changes of surface and interaction energies
preserves entropic effects that can be important for the
precipitation of nanoparticle aggregates.

When applied to the precipitation of ordered domains,
our simulations captured the effect of decreasing the
strength of mechanical interactions with respect to ther-
mal fluctuations. An associated change of precipitation
mechanism was predicted, from perfect layering, to rough
layering, and to homogeneous cluster nucleation. The
simulations also showed that weak layer-precipitate in-
teractions trigger island formation with a long induction
period, and that an amorphous substrate initially gen-
erates an amorphous aggregate of precipitated particles
that is eventually overtaken by crystallization, similar to
how amorphous clusters serve as precursors to nanocrys-
tal formation at the molecular scale.33

Finally we considered the precipitation of amorphous
mesoporus cement hydrates, for which we parametrized
our model using data from molecular simulations and ex-
periments, plus reasonable assumptions when data were
not available yet. A substrate with favourable nucle-
ation sites leads to a BNG mechanism, which today is
regarded as a model for the precipitation of cement hy-
drates. Removing the favourable sites and considering
strong substrate-precipitate interactions triggered a dis-
ordered layering mechanism, with unrealistic rate evo-
lution. Starting the simulations without substrate trig-
gered an Avrami mechanism with two shortfalls: a max-

imum rate that corresponds to the filling of bulk space,
which disagrees with experiments on cement pastes at
high water-to-cement mass ratio, and a too abrupt de-
celeration. Finally, weaker interactions induce gel-like
precipitation in the bulk solution, with rate evolution
that under certain condition could be similar to those
given by the BNG model, but that also entail a strong
dependence on the water-to-cement ratio. In all the cases
that we considered, acceleration was determined by the
mechanical interactions while the chemical drive became
more important in the later stage of deceleration.

Overall this work is a first step in developing bottom-
up, chemo-mechanical, coarse-grained simulations in
mesoscale chemistry. Many interesting developments are
possible, e.g. coarse-grained expressions for non-classical
mechanisms of nucleation and growth, partial particle
growth and dissolution to capture autogenous stresses,
multiple options for particle shapes, sizes, and chemical
compositions, and diffusive processes in the implicit so-
lution to address ripening. Our coarse-graining approach
might also be adapted to mesoporous materials that do
not form by nanoparticle precipitation and aggregation,
e.g. zeolites: this may be achieved by adding variables be-
yond size and shape, which describe the evolving molecu-
lar structure inside a particle (e.g. the number and orien-
tation of molecular layers inside a “particle”, or more ap-
propriately a discrete unit representing a finite volume of
a crystalline material). Even without these features, our
simulations already capture some interesting aspects of
the complex kinetic interplay between chemical drive and
self-organizing mechanical interactions during nanoparti-
cle precipitation. Continuing efforts in this direction may
eventually enable mesoscale simulations that explicitly
consider real experimental design variables, such as solu-
tion chemistry and temperature, using them to guide the
experimental development of mesoporous materials with
tailored morphologies and properties.

The authors thank Matthieu Vandamme and Sidney
Yip for valuable discussion.
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Appendix A: Mesh effects of the trial particle lattice

In section II A we explained that before computing Rin

we let each trial particle minimise its interaction energy
with the existing particles by moving locally within its
lattice cell, and that the ∆U at the end of this local
minimisation is taken as constant everywhere in the cell.
If the trial particle finds the global energy minimum in
the cell, this approximation leads to an overestimated
rate. If instead the particle finds a local minimum in the
cell, the rate may be overestimated or underestimated.
In terms of mesoscale mechanism of precipitation, this
approach gives the correct result if:

• Each trial particle finds a global energy minimum
within its cell, and there is only one global mini-
mum in each cell. This is always true if the lattice
cell size is smaller than the characteristic width of
asperities on the interaction energy landscape.

• Other local minima in the cell are much less prob-
able than the global minimum. This is true for
high-energy interactions, because the probability of
a state is proportional to its Boltzmann factor.

FIG. 5. Mesh effect on a 1D system: array of nanoparticles
forming from an implicit medium.
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• The timescale of mechanical vibrations is much
smaller than that of chemical reactions. This justi-
fies the assumption of mechanical equilibrium and
thus the use of energy minimisation.

These conditions imply that our approach averages out
entropy-driven fluctuations at length-scales below the
lattice cell size, so one must be careful when such fluctua-
tions can determine the assembly mechanism, e.g. in the
nucleation of defects during the growth of an ordered do-
main of weakly interacting particles. Furthermore, if the
interaction energy landscape is smooth (low-energy and
medium-ranged interactions), homogeneous and hetero-
geneous particle precipitation may compete and the error
on the rate may bias the mesoscale mechanism. However,
in this case the small energy scale would imply small er-
rors in the rate, mitigating the issue.

If the lattice cell size tends to zero (and M to infinity)
our method converges to the correct rate and mechanism.
This is shown in the 1D example in Figure 5: starting
from an initial particle an array is formed via strong
Lennard-Jones interactions that favour particle forma-
tion near the rightmost existing particle. This example
has analytical solution, whose value for a given set of pa-
rameter is indicated in Figure 5; for brevity we omit the
details of the analytical solution, which results from in-
tegrating eq 6 over r with ∆U(r) of Lennard-Jones type.
Figure 5 shows that our simulations converge to the an-
alytical solution as the lattice spacing tends to zero. In
this example, the conditions are such that each trial lat-
tice cell contains only one energy minimum and therefore
the rate is systematically overestimated (and the inser-
tion time underestimated) as the lattice spacing is in-
creased. This trend breaks down at lattice spacing above
2.5σ, which is the interaction threshold that we used in
the example. At this point, the lattice spacing is so large
that the trial particles may not “see” the rightmost ex-
isting particle. Hence the mesoscale mechanism changes
from sequential chain growth by particle addition to ho-
mogeneous particle insertion anywhere in the box.

In 3D systems, the additional dimensions compared to
the 1D case can lead to more local minima in the inter-
action energy landscape. Therefore in Figure 6 we show
the results of our tests of trial particle lattice size effect
for one of the cases that we considered in the manuscript.
Specifically, we consider monodisperse particles precipi-
tating on an ordered fcc substrate. The interactions are
the strong and narrow Lennard-Jones interactions that
we used in section IV. We use a strong supersaturation of
the solution, β = 1000, in order to avoid particle deletion
and focus only on precipitation. Under these conditions,
the expected precipitation mechanism is layer-by-layer,
as in Figure 2a. Figure 6 shows that the correct mech-
anism is indeed captured as long as the size of the trial
lattice cells is equal to or slightly bigger than the parti-
cle size (10 nm). Similar to the 1D example,the rate is
increasingly overestimated (thus t300 is increasingly un-
derestimated) as the lattice cell size is increased, until
the cell becomes so large that the correct mechanism is

FIG. 6. Mesh effect on a 3D system similar to those that we
used in the manuscript. The particle diameter is 10 nm. t300 is
the time to form 300 particles, viz. 3 layers since the substrate
surface is made of 10 × 10 particles. The trial particle lattice
is cubic, with linear size corresponding to the lattice spacing.

missed and the rate drops.

Overall, Figures 5 and 6 show that the correct
mesoscale precipitation mechanism can be captured al-
ready with a quite coarse lattice of trial particles, even if
the rate may be overestimated by several orders of mag-
nitude. This observation should be checked case by case,
because there are scenarios which may require fine lat-
tices also to capture the correct mechanism. For example,
complex interaction potentials may add roughness to the
energy landscape and thus require fine lattices. Also, if
the focus of the simulations is on local structural details
and not on the overall precipitation mechanisms as in
this manuscript, it is possible that the local details may
change with the lattice size even if the overall precipita-
tion mechanisms is unaffected. For example, the amor-
phous precipitation mechanisms in section IV may persist
even if locally the structure may change, e.g. in the ra-
dial distribution function). Furthermore, the lattice cell
size can bias the overall precipitation mechanism when
multiple competing events can occur, e.g. dissolution of
particles of type A and insertion of particles of type B.
Therefore our overall recommendation is that one should
always run preliminary tests like those in Figures 5 and 6
but specific to the system under consideration and look-
ing at the quantities of interest, judging what lattice cell
size is suitable and whether correction factors should be
applied to the insertion rates in order to mitigate biases.
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Appendix B: Parametrization for mesoporous
cement hydrates

Cement hydrates are produced by chemical reaction
between cement powder and water.51 Ordinary cements
are largely made of calcium silicates that dissolve in wa-
ter releasing calcium and silicon ions. The dissolution
supersaturates the solution with respect to the precipita-
tion of cement hydrates, mostly calcium–silicate–hydrate
(C–S–H) and calcium hydroxide Ca(OH)2 in ordinary
pastes. Experiments on the nucleation of cement hy-
drates showed that the assumption of critical nuclei being
as small as one molecular unit is actually reasonable for
this material47. The hydrates form a mesoporous phase
that is often represented as an assembly of nano-units
with characteristic size of 5 nm.35 Here we assume a par-
ticle diameter D=10 nm to use fewer particles at the 500
nm scale.

We set the concentration of nucleation sites in solu-
tion Ccn equal to the concentration of all ions in solution.
In a Ca(OH)2 saturated cement solution the concentra-
tion of Ca ions is ∼20 mmol/L and that of Si ions is
micromolar.52 Consistently we take Ccn = 0.012 nm−3.
For the molecular unit size we consider a C–S–H molec-
ular unit, thus a = 0.65 nm.36 Experiments on C–S–H
precipitation suggest that the diameter of critical C–S–H
nuclei is sub-nanometric, thus we consider critical nu-
clei with diameter a and we set their nucleation time tN

to zero as mentioned in Section II B. Particle insertion
thus implies growing a nucleus from radius a/2 = 0.325
nm to 5 nm by adding n = 8 molecular unit of cement
hydrates with linear size ∼a. We work at room temper-
ature T = 298 K and for the scaling of the solid-solution
interfacial energy with the particle size we refer to Tol-

man’s theory, whereby γi = γ
(

1 + 8δT
Di−1+Di

)−1

. γ is the

interfacial energy for infinitely large particles, Di is the
particle diameter after i growth reactions in radial di-
rection, and δT is the Tolman’s length, a system-specific
parameter whose value is usually between 0.1 and 0.35
nm.29,30 Here we take δT = a/2 = 0.325 nm and γ = 87.6
mJ/m2 as in ref.38

For the interactions between particles we use the
spherical Lennard-Jones-like potential in eq 13. This
type of potential, sometimes with an additional shoul-
der, is commonly used in nanoparticle models of ce-
ment hydrates.18,39,40,53 Following literature on cement
hydrates39,40 we take σ = D and α = 14 (other works
used α = 12 obtaining similar results.18,53) The energy
scale ε must necessarily depend on the size of the in-
teracting particles. It has been shown that a ε scaling
as the particle volume can describe well the mechanical
stiffness of cement hydrates.39,40 Here however the focus
is not on mechanical deformations but rather on energy
changes due to placing particles near each other. For this
scenario it is more appropriate to relate ε to the solid-
solution interface that is removed when particles are in
contact. Thus we set ε = γΩ/6 where 6 is half the num-

ber of first neighbours in an fcc crystal. The ε ∼ Ω
scaling allows us to use the coarse-grained rate expres-
sions in eqs 8 and 9, and leads to an energy scale ε = 660
kCal/mol which is close to the value indicated by recent
molecular simulations.41 We will use the same values of ε,
α, and γ in all simulations presented hereafter except for
one case in which we consider weaker interactions from
atomic force microscopy experiments.42

The supersaturation β is a key parameter in our sim-
ulations. In a real cement solution it depends on the
coupled processes of cement dissolution, ion transport,
and hydrates precipitation. Here we focus only on pre-
cipitation, thus the temporal evolution of β(t) cannot be
predicted and rather has to be provided as a separate
input. To clarify the role of the chemical drive, we will
consider two extreme cases for β. In the first case we
consider a β = 100 constant in time; such a large value
ensures that the nanoparticles will continue to precipi-
tate indefinitely as long as there is space available. This
condition represents a scenario in which the solution is in
equilibrium with very soluble cement grains, with the so-
lution being immediately replenished of ions that are con-
sumed to form hydrates. In the second case we consider
a solution that starts with ion concentrations well above
the equilibrium for precipitation and that gets rapidly
depleted, almost reaching equilibrium with the precipi-
tates in few hours. Ref.38 describes a similar scenario for
cement hydrates (there called “high opacity”), providing
both the precipitation rate for a BNG mechanism and
the associated supersaturation of the whole mesoporous
phase treated as a homogeneous continuum, which we
call βapp and reproduce in Figure 3a. In Section II B we
discussed how the ∆U and ∆Ω terms involved in the pre-
cipitation of mesoporous materials generate a mismatch
between β and βapp. Therefore we must convert βapp(t)
in Figure 3a to an equivalent β(t) for the molecular reac-
tion to use in eqs 8 and 9. To do this, we assume a linear
relationship β = κβapp and we exploit the fact that when
βapp = 1 our simulations should describe a mesoporous
system in which the average number of nanoparticles does
not change. Therefore we take a domain of precipitated
nanoparticles representing the cement hydrates and look
for the value of β that leads to such mesoscale equilib-
rium: we call this βeq. By definition, βeq corresponds
to βapp = 1, thus we can set κ = βeq and use this κ to
consistently convert βapp in Figure 3a to the β(t) that
our model requires.


