
HAL Id: hal-01686201
https://hal.science/hal-01686201

Submitted on 20 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From yield to fracture, failure initiation captured by
molecular simulation

Laurent Brochard, Ignacio G. Tejada, Karam Sab

To cite this version:
Laurent Brochard, Ignacio G. Tejada, Karam Sab. From yield to fracture, failure initiation captured
by molecular simulation. Journal of the Mechanics and Physics of Solids, 2016, 95, pp.632 - 646.
�10.1016/j.jmps.2016.05.005�. �hal-01686201�

https://hal.science/hal-01686201
https://hal.archives-ouvertes.fr


From Yield to Fracture, Failure Initiation Captured by

Molecular Simulation

Laurent Brocharda,∗, Ignacio G. Tejadab, Karam Saba
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Abstract

While failure of cracked bodies with strong stress concentrations is described
by an energy criterion (fracture mechanics), failure of flawless bodies with
uniform stresses is captured by a criterion on stress (yielding). In-between
those two cases, the problem of failure initiation from flaws that moderately
concentrate stresses is debated. In this paper, we propose an investigation
of the process of failure initiation at the atomic scale by mean of molecular
simulations. We first discuss the appropriate scaling conditions to capture
initiation, since system sizes that can be simulated by molecular mechanics
are strongly limited. Then, we perform a series of molecular simulations
of failure of a 2D model material, which exhibits strength and toughness
properties that are suitable to capture initiation with systems of reasonable
sizes. Transition from fracture failure to yield failure is well characterized.
Interestingly, in some specific cases, failure exceeds yield failure which is
in contradiction with most initiation theories. This occurs when stress are
highly concentrated while little mechanical energy is stored in the material.
This observation calls for a theory of initiation which requires that both
stress and energy are necessary conditions of failure. Such an approach was
proposed by Leguillon (2002). We show that the predictions of this theory
are consistent with the molecular simulation results.
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1. Introduction

Understanding the mechanical failure of materials is of prime concern for
the security and reliability of man-made structures. Yet, the initiation of fail-
ure under moderate stress concentrations is still very debated and there is no
clear consensus in the scientific community about a generic failure criterion
that could predict initiation. In this paper, we show that failure initiation
behavior can be evidenced at the atomic scale with classical molecular me-
chanics simulations, considering the case of a 2D model material. This work
opens the perspective to revisit the fundamentals of failure initiation starting
from where failure originates, that is atoms and atomic interactions.

Mechanical failure of a material with a pre-existing crack is captured by
the theory of Linear Elastic Fracture Mechanics (LEFM) initially formulated
in the pioneering works of Griffith (1921) and Irwin (1957). According to
LEFM (Anderson, 2005), the pre-existing crack propagates if the mechanical
energy G that is released upon the crack advance exceeds a critical value
Gc, a.k.a. critical energy release rate: G ≥ Gc. The stress and strain fields
are singular at the crack tip with a term in 1/

√
(r) in their asymptotic

development (where r stands for the distance to the crack tip). The energy
released upon the crack advance is related to this singularity according to
Irwin’s formula, e.g., for a mode I loading in plane stress: G = K2

I /E, where
E is the Young’s modulus and KI = limx→0+

√
2πrσyy (y = 0) for a crack

orthogonal to the y direction. The critical stress intensity KIc =
√
EGc is

called the toughness. Even if the existence of a singularity at the crack tip
is questionable, LEFM has been successful at predicting the failure of pre-
cracked structures under the small scale yielding assumption, i.e., the region
of yielding at the crack tip is much smaller than the size of the structure.
In the following of the paper, we will refer to this type of failure as ’fracture
failure’.

In contrast, in the absence of stress concentration, the failure of materials
is caused by an excessive stress or strain instead of energy released. The
collection of critical stresses or strains constitutes a failure surface, and the
corresponding failure criterion takes the form f (σ or ε) ≥ 0. In the following
of the paper, we will refer to this type of failure as ’yield failure’. Accordingly,
the criterion describing the failure of an intact material differs radically from
that describing the failure of a pre-cracked material, down to the very nature
of the apparent cause of failure: stress or energy.

These two cases, a pre-cracked body and an intact material, are very
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particular cases of structures. In reality, structures are most likely to contain
flaws with moderate stress concentrations such as notches or holes. These
stress concentrations are ’moderate’ because the singularities are in 1/rα

with α < 1/2 (for notches) or because the stress field is not singular at all
(for holes, blunted notches etc.). Accordingly, the stress intensity factor and
energy release rate are zero for this type of flaws, KI = G = 0, and thus the
energy criterion of LEFM is never verified: the structure should never fail
regardless of the loading. In contrast, because of the singularity at a notch
tip, the yield surface criterion is always verified: the structure should always
fail regardless of the loading. This simple observation demonstrates that
failure originating from ’moderate’ stress concentrators cannot be predicted
by any of the two criteria (stress or energy) and a more universal criterion is
needed.

2. Theories of initiation

Many theories and criteria have been proposed to predict failure initia-
tion. One of the first approaches that reconciled fracture failure and yield
failure were the Cohesive Zone Models (CZM) originally proposed by Dugdale
(1960) and Barenblatt (1962). CZM consist in introducing cohesive forces
between the crack faces which oppose the opening of the crack and suppress
the non-physical singularity at crack tips. CZM approaches, which capture
the yielding inside the cohesive zone, are equivalent to LEFM under small
scale yielding, but predict yield failure when the size of the cohesive zone
becomes significant (Anderson, 2005). In addition to the yield stress and
critical energy release rate, CZM introduce an additional material property,
the cohesive law, which relates the cohesive force to the crack opening. The
cohesive law is not a totally independent property since its integration must
be equal to the critical energy release rate. Only the shape of the law is a new
property which can significantly affect failure initiation. Various shapes have
been considered in the literature depending on the nature of the material
such as the ’plastic’ (constant) law for metals (Dugdale, 1960). Application
of CZM requires to specify a priori the path of the initiated crack which is
known unambiguously for the modeling of interface debonding (Marigo and
Truskinovsky, 2004) or for the simple loading and geometries (Ferdjani et al.,
2007), but which is a limitation in the general case.

While CZM localize the yielding in a strip at the crack tip, it is not suited
for a numerical implementation in Finite Element Methods (FEM) in which
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elements of finite volumes are considered. Hillerborg et al. (1976) proposed a
non linear FEM approach to capture crack initiation in concrete structures.
This approach produces bands of yielding where cracking initiates that are
analogous to cohesive zones, but over elements of finite volume. The as-
sociated cohesive law is decreasing to capture the micro-cracking prior to
(macro-)cracking. Bažant and Cedolin (1979) followed with the crack band
theory built on the same principle. These FEM approaches proved objective
(Cedolin and Bažant, 1980; Bažant and Cedolin, 1980, 1983) and ensure con-
tinuity between fracture failure and yield failure (Bažant, 1984). Similarly,
continuum damage mechanics approaches which consider a damage variable
to captures the dissipative processes in a finite volume (e.g., microcracking)
can be used to predict initiation with a criterion on the damage variable
(Chaboche, 1981; Lemaitre, 1986). An advantage of these FEM approaches
over CZM is that one does not need to specify a priori the path of the initiated
crack. However, one has to introduce a characteristic length (or volume), the
physical meaning of which is not straightforward (e.g., a few aggregate sizes
are suggested for concrete and rocks (Bažant, 1984)).

Alternatively, the non-local approach has been proposed by Novozhilov
(1969) to capture initiation: failure occurs when the average (’non-local’)
stress over a small distance from the point of singularity equals the yield
stress. Owing to the integrability of the 1/

√
(r) singularity in the case of

a pre-cracked body, this criterion leads to a finite non-zero fracture failure
consistent with LEFM; while predicting yield failure for an intact body. A
new parameter, the length of averaging, is introduced but is necessarily re-
lated to the yield stress and toughness to ensure consistency with LEFM.
Non-local approaches are applicable to any ’moderate’ stress concentrations
and loading modes and can be used to predict the crack orientation (Sew-
eryn, 1994; Seweryn and Mróz, 1995; Seweryn, 1998). A criterion of similar
formulation is that proposed by Ritchie et al. (1973): failure occurs if the
stress exceeds the yield stress over a characteristic length. Interestingly, the
criterion of Ritchie et al. (1973) was proposed in the context of plastic ma-
terials, whereas Novozhilov (1969) consider elastic brittle materials down to
the atomic scale. And yet both formulations are very similar.

Finally, Finite Fracture Mechanics (FFM) approaches were proposed to
capture crack initiation (Hashin, 1996): whereas LEFM considers an in-
finitesimal crack advance, FFM considers crack advances of finite length (ini-
tiated cracks appear with finite length). While the LEFM failure criterion
is never satisfied for moderate stress concentrations (notches and holes), the
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energy released by a finite crack advance does reach the critical value at finite
loading. Although FFM general principle is analogous to LEFM, in practice
it takes the form of a complex minimization problem over the set of possible
crack paths. Francfort and Marigo (1998) proposed a variational formulation
to solve this minimization problem. In the case of a pre-cracked body FFM
and LEFM are equivalent (limit of infinitesimal crack advance), but FFM
ability to predict failure in a wider range of stress concentration makes it
more versatile and physically relevant (Marigo, 2010). In itself, FFM does
not reduce to a criterion on stress in the absence of stress concentration.
To capture yield failure, the variational approach of Francfort and Marigo
(1998) has been combined with cohesive zone interfaces instead of a Griffith
(infinitely thin) surface (Laverne and Marigo, 2004; Charlotte et al., 2006;
Bourdin et al., 2008), thus offering a more general application of CZM since
the path of initiated crack is no more needed a priori. Another approach has
been proposed by Leguillon (2002) to capture yield failure in FFM, the ap-
plication of which is simpler than cohezive zone interfaces since it relies on a
linear elastic calculation only: failure occurs if the energy criterion of FFM is
satisfied and if the yield failure criterion is verified along the path of the ini-
tiated finite crack. This criterion has been applied to failure from notch and
holes (Leguillon et al., 2007; Leguillon and Piat, 2008; Martin et al., 2012)
and is supported by some experiments (Romani et al., 2015). A initiation
criterion very close to that proposed by Leguillon (2002) has been considered
by Li et al. (1995) earlier to study desiccation. In this formulation, the yield
failure has to be attained only at the point of initiation. The former criterion
(Leguillon, 2002) seems more general than the later (Li et al., 1995) which
does not seem applicable to notched bodies (one cannot evaluate yield only
at the tip because of the stress singularity). A particular feature of FFM
approaches is that the initiated crack length is not a material property but
depends on the geometry of the structure, which is contradictory with the-
ories considering a fixed characteristic length (non-local approaches, FEM
with crack band or damage). Whether or not one should consider a char-
acteristic length of the material as a third material property (with strength
and toughness) to describe failure initiation is a debated question. Material
properties other than a characteristic length have also been considered as
third material parameter (Li and Zhang, 2006).

Apart from stress concentration, transition from fracture failure to yield
failure is also a matter of scale. A material is flaw tolerant (or flaw insen-
sitive) when the characteristic dimension of its structure is comparable to
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the characteristic length l0 = (KIc/σyield)
2 Gao and Chen (2005), where KIc

is the toughness and σyield is the yield stress. l0 quantifies the process zone
size at a crack tip. At such a scale, the small scale yielding hypothesis does
not apply and LEFM would predict failure at a stress exceeding yield fail-
ure. Instead, one expects yield failure to prevail over fracture failure. Flaw
tolerance is thus defined as the capacity of a material to be insensitive to
fracture failure. Flaw tolerance is commonly observed in biological materials
such as bone, spider silk or nacre Gao et al. (2003); Gao (2006); Ritchie et al.
(2009), but also in polycrystalline materials Gu et al. (2013); Zhang et al.
(2012). A seemingly accepted principle of flaw tolerance is that yield failure
is an upper bound to failure, which is consistent with some of the initiation
theories (e.g., CZM).

In the view of this short, certainly non-exhaustive, review of existing the-
ories of initiation, it is clear that no consensus exists in the scientific commu-
nity. The inherent differences between materials (microstructure, mechanical
behavior) may well be the primary reason why no unified theory as emerged.
But, an other important reason is that the physics of failure initiation is still
poorly understood. As an attempt to improve our understanding of initia-
tion, we propose here to investigate failure initiation by molecular simulation.
Since failure of brittle materials originates from the breaking of atomic bonds,
the molecular scale seems the appropriate scale to develop a fine understand-
ing of the physics of initiation. A lot of effort has already been dedicated
to the atomistic study of fracture failure and yield failure, respectively. Yet,
few molecular simulation works have focused on the question of initiation.
Inoue et al. (1995), Cao and Wei (2007) and Pan and Rupert (2014) investi-
gated crack initiation at grain boundaries (polycrystals). Fyta et al. (2006)
investigated crack initiation in a nanocomposite containing strong inclusions
in a soft matrix (crystals in polymer). Kumar et al. (2011) and Gu et al.
(2013) investigated initiation from blunted notches in polycrystals. In all
these works, failure initiation is strongly influenced by microstructure. In or-
der to evaluate the fundamentals of initiation theories, one needs to address
the question of initiation in a simple homogeneous system without interfaces.
Interesting works in this respect are that of Lu et al. (2008), Zhang et al.
(2012) and Brochard et al. (2015) who considered failure of initially flawed
homogeneous materials. They showed that fracture failure can be observed
for brittle solids (diamond, graphene and silica, respectively) even for very
small cracks (a few atoms large), while only yield failure is observed on the
same scale for more ductile materials (amorphous carbons). Most interest-
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ing with respect to initiation are the works that investigate the continuous
transition from fracture failure to yield failure. Mattoni et al. (2005) and
Zhang et al. (2012) studied the failure of pre-cracked silicon carbide and
nano-crystalline graphene and observed deviations from fracture failure at
small crack lengths (∼ l0). These deviations correspond to the flaw tolerant
regime and Mattoni et al. (2005) showed that it could be captured with a
CZM model (Bilby et al., 1963). Yield strength appears as an upper bound-
ary to failure in this regime. Similarly, deviation from fracture failure at
small crack lengths is observed by Yin et al. (2015) for pristine graphene,
although the effect is more subtle because of the high strength of the mate-
rial. Alternatively, Zhang et al. (2012) considered failure from elliptic flaws
with major axis orthogonal to the loading direction, and varied the aspect
ratio thus modulating the stress concentration. They showed that for nano-
crystalline graphene (in the flaw tolerant regime), failure is insensitive to
the aspect ratio, whereas for single-crystalline graphene (subject to fracture
failure), failure stress increases continuously with stress concentration. The
former case corresponds to yield failure only, and the later case is a deviation
from fracture toward yield. To summarize, previous works have studied initi-
ation in the regime of small flaws (∼ l0) or from elliptic flaws with major axis
orthogonal to loading. In all these cases, failure never exceeded yield failure,
and CZM model seem to capture the transition from fracture failure to yield
failure for initiation from small cracks. No such confrontation with modeling
was performed for initiation from elliptic flaws. Moreover, other situations
may be of interest that have not been investigated yet: for instance, initiation
from notch, from elliptic flaws with major axis in the direction of loading, or
from large cracks where the size of the remaining intact material if of order
l0. In this paper, we present a molecular simulation study that investigates
initiation from cracks and elliptic flaws. Initiation is modulated by changing
the aspect ratio of the elliptic flaws or by changing the size of the crack. We
explore in particular situations that have not been investigated yet in the
literature. We capture the transition from fracture failure to yield failure,
that we confront to existing initiation theories.

3. Capturing initiation

To capture the transition from fracture failure to yield failure, a simple
approach consists in considering failure from flaws inducing stress concentra-
tions that range from strong concentrations (∼crack-like) to weak concentra-
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Figure 1: Stress concentration in the vicinity of an elliptic hole in an infinite body.

tions (∼uniform). This could be done with notches of various angles. Here,
we consider elliptic holes of various aspect ratios instead. In the limit of
infinitely thin elliptic holes, stress concentration approaches that of a crack.
This was first noticed by Inglis (1913) considering the stress around an el-
lipse in an infinite body. We display in Figure 1 the stress profile in function
of the aspect ratio for an elliptic hole in an infinite body (exact solution by
(Maugis, 1992)). Although the stress near an elliptic hole is not singular, the
crack-like singularity arises in the limit of a infinitely thin ellipse.

It is common in molecular simulations to consider periodic boundary con-
ditions to mimic the state of a system in an infinite body. Doing so, one can
avoid surface effects at non-periodic boundaries that are particularly strong
at nanoscale and could affect the material behavior. In addition, when the
typical length of inter-atomic interactions exceeds the system size, periodic
boundary conditions are more suited to model the macroscopic material be-
havior (this is especially the case for electrostatic interactions). Accordingly,
we consider the molecular simulation of failure of a periodic system with
an initial elliptic hole in its center (see Figure 2). The system is loaded in
the vertical direction in displacement, while the horizontal dimension is kept
constant. The horizontal axis of the elliptic hole is set to half the system
size, whereas we vary the vertical axis. The geometry is invariable in the
transverse direction (z) so that we restrict ourselves to the 2D problem only.
For a system periodic in the transverse direction, this set up corresponds to
plane strain conditions. In this paper, we consider a 2D material with no
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Figure 2: Periodic system considered in this work with elliptic flaws (left) and cracks
(right).

third dimension, thus in plane stress conditions.
When the aspect ratio b/a of the ellipse is small, fracture failure and

crack-like stress singularity are expected. The stress intensity is that of a
material with a doubly periodic array of cracks, which is of the form:

KI = Σ
√
πaC

(
2a

L

)
(1)

where Σ is the remote stress and C (2a/L) is a correction factor due to the
presence of periodic replicas of a crack (in the limit 2a/L → 0, C → 1 and
one recovers the usual stress intensity of a single crack in an infinite body).
There exists no analytic expression of the correction factor C (2a/L), but
several numerical approaches were proposed in the literature. We use here
the numerical approach of Karihaloo et al. (1996), and we display in Figure
3 how the correction factor depends on the reduced periodic crack length
2a/L. As expected, it converges to 1 at small crack lengths and to +∞ when
the crack length reaches the periodic cell size (2a/L → 1). The influence of
the periodic replicas becomes significant for 2a/L > 0.5 (C > 1.11).

According to equation 1, the critical remote loading at failure is:

Σcr =
KIc

C
(

2a
L

)√
πa

(2)

We adopt a dimensionless formulation of Equation 2 that is more conve-
nient in our analysis:
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Σcr

√
L/2

KIc

=

(
C

(
2a

L

)√
π

2a

L

)−1

(3)

Accordingly, the dimensionless quantity Σcr

√
L/2/KIc characterizing the

critical stress of fracture failure is a function of the dimensionless crack length
2a/L. We display this relationship in Figure 4, along with the case of a single
crack in an infinite body (the same dimensionless relationship applies without
the correction factor C (2a/L)). As expected, the critical stress diverges in
1/
√
a at small crack lengths, and differ from the non periodic case at crack

lengths approaching the periodic cell size. Irrespective of the system size L
and toughness KIc, fracture failure of any material is expected to follow this
master curve.

As for yield failure, it arises when the aspect ratio b/a of the elliptic hole
becomes large and the local curvature of the ellipse at the point of initiation
tends to 0. In the limit of yield failure, the stress is uniform, and the system
is made of periodic vertical strips of thickness L − 2a. Yield failure occurs
when the uniform stress in the strips reaches σyield, that is the remote stress
on the overall material reaches:

Σcr = σyield
L− 2a

L
(4)
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Adopting the same dimensionless formalism as for fracture failure, we
obtain:

Σcr

√
L/2

KIc

=

√
L

2l0

(
1− 2a

L

)
(5)

where l0 = (KIc/σyield)
2 is a length characterizing the size of the yielding zone

at a crack tip (Anderson, 2005). According to Equation 5, for yield failure,
the dimensionless quantity Σcr

√
L/2/KIc decreases linearly with 2a/L from√

L/ (2l0) for 2a/L = 0 to 0 for 2a/L = 1 (see Figure 4). Unlike for fracture
failure, this curve is size dependent since the periodic cell size L appears
in the y-intercept

√
L/ (2l0). Two regimes are possible. For small periodic

cell sizes with L/ (2l0) < 1.96, the critical stress for yield failure is always
smaller than the critical stress for fracture failure. Hence the system is too
small with respect to the crack process zone to observe any fracture failure,
and only yield failure is expected. This ’yield-only’ regime corresponds to
a flaw tolerant material. It was observed by Lu et al. (2008) and Brochard
et al. (2015) in the case of molecular simulation of amorphous carbons. For
larger periodic cell sizes with L/ (2l0) > 1.96, the critical stress for yield
failure is larger than the critical stress for fracture failure except when 2a/L
approaches 0 or 1. In this regime, one should be able to capture fracture
failure by considering the materials with initial cracks. Fracture failure was
indeed observed by Lu et al. (2008) and Brochard et al. (2015) in the cases of
diamond and silica, by Zhang et al. (2012) and Yin et al. (2015) in the case of
single-crystalline graphene. Mattoni et al. (2005) and Zhang et al. (2012) also
observed fracture failure for silicon carbide and nano-crystalline graphene,
but noticed a deviation from fracture failure at small crack length 2a/L
which corresponds to the limit where yield failure no more exceeds fracture
failure. Therefore, it seems possible to capture failure initiation provided that
the system considered is large enough to satisfy the inequality L/ (2l0) >
1.96. Following this observation, in the present work, our investigation of
the transition from fracture failure to yield failure is two-fold: 1- we study
the failure behavior of pre-cracked body in order to observe deviation from
fracture failure at low crack lengths when 2a/L approaches 0 but also at large
crack length when 2a/L approaches 1; 2- we study the failure behavior in
presence of elliptic holes of various aspect ratios b/a for a given ellipse length
2a/L.
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Two regimes are possible depending on the ratio L/ (2l0) = (L/2) · (σyield/KIc)
2
. For

L/ (2l0) < 1.96, yield failure is always lower than fracture failure, whereas for L/ (2l0) >
1.96, yield failure is higher than fracture failure except when 2a/L approaches 0 or 1.

4. Molecular simulation of failure initiation in a 2D model material

The case study we consider here is the failure of a two dimensional crys-
talline material inspired from graphene. Graphene is a material that has
attracted a lot of attention recently because of its exceptional properties.
However, these exceptional properties is not what motivates our choice here.
Instead, we are interested in the simplicity of the material (a 2D lattice)
which limits the computational cost, and, above all, the characteristic length
l0 = (KIc/σyield)

2 we estimated is about 1.5 nm, which is large enough for the
process zone at crack tip to cover many atoms, but small enough to capture
failure initiation by molecular simulation (L must well exceed 1.96 · 2 · l0 ≈ 6
nm, which can be achieved easily with conventional molecular dynamics).
In this respect, this 2D model material is an appropriate test case for the
purpose of this study. Note that these simulations cannot be considered
representative of real graphene. Indeed, we constrain the material in a 2D
space, which is a great simplification in terms of computation, but is not the
true behavior of graphene. Out of plane deformations are essential for the
mechanics of graphene, in particular regarding failure (Moura and Marder,
2013; Dewapriya et al., 2014). Moreover, the interaction potential we use,
based on the second generation REactive Bond Order (REBO) potential
(Brenner et al., 2002), is known to significantly overestimate the strength
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and toughness of graphene as well as of nanotubes or diamond (Shenderova
et al., 2000; Belytschko et al., 2002). Both the 2D constrain and the potential
used enhance the resistance to failure. Assuming a thickness of 3.45 Å, the
strength and toughness we obtained (190 GPa and 7.2 MPa.

√
m) are both

about two times higher than previously reported values for graphene (100
GPa and 4 MPa.

√
m (Zhao et al., 2009)). Therefore we do not pretend to

simulate the true behavior of graphene. Instead, in the remaining of this
article, we will refer to a ’2D model material’ to avoid confusion.

The 2D model material is a crystalline material made of atoms in the
planar honeycomb lattice of graphene (see Figure 5). We performed molecu-
lar simulation of periodic cells of this material in which we introduced initial
flaws (cracks and elliptic holes). We considered two sizes of periodic cells:
L = 10 nm and L = 20 nm. The lattice of graphene does not allow for per-
fectly square cells as displayed in Figure 2. Nevertheless, we consider cells
that were almost square, with ratios Ly/Lx of the cell dimension of 1.014 and
1.002 for the 10 nm and 20 nm systems, respectively. Non perfectly square
cells is expected to have little effect on failure: for instance, in the case of
fracture failure, the impact on the correction factor C (2a/L) is less than
0.1% (estimation from the numerical approach of Karihaloo et al. (1996)).
We initiated cracks by forcing atoms across the line of the crack to ignore
themselves as if they were not neighbors (see Figure 5). We varied the initial
crack size from the size of a few atoms to almost the size of the cell, thus
varying 2a/L from 0 to 1. We initiated holes by removing from the periodic
cell all the atoms included in an ellipse (see Figure 5). The dimension of the
initiated elliptic holes in the horizontal direction was always the same, fixed
to half the periodic cell size (2a/L = 0.5). We varied the dimension in the
vertical direction from b/a = 0.1 to b/a = 1.8. These two types of initial
flaws allow us to explore failure initiation in different manners as explained
in the previous section. In all this work, we study failure of the 2D model
material in the ’armchair’ direction.

The molecular simulations we performed are classical Molecular Dynam-
ics (MD) simulations, based on an empirical inter-atomic interaction poten-
tial. We used the second generation Reactive Bond Order Potential (REBO)
(Brenner et al., 2002) coupled with a non-reactive harmonic approximation
that improves the computational efficiency of the MD. The development of
this coupling methodology and its application were the purpose of a previous
work by Tejada et al. (2016). In short, a reduced non-reactive potential is
built from the REBO potential as an harmonic approximation of it in the
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Figure 5: Hexagonal lattice of the 2D model material (left) and some of the system
simulated (right). ’a’ and ’b’ are two pre-cracked systems for the 10 nm and 20 nm
cells, respectively. ’c’ and ’d’ are two systems with elliptic holes (10 nm and 20 nm cells,
respectively). Atoms on opposite sides of the crack faces (in red) ignore themselves.

vicinity of the ground state of the system. Indeed, the reactive ability of
REBO is needed only where atomic rearrangements occur, e.g., at a crack
tip; elsewhere, the reactive ability is unnecessary and could be replaced by
a simpler non-reactive analogue, the computational cost of which could be
much less than that of the reactive potential. During a MD, the REBO po-
tential is substituted by the reduced potential on the fly on a bond-per-bond
basis in the part of the atomic system where the harmonic approximation
is reasonably valid. A seamless coupling is set up at the interface between
the two potentials, thus ensuring that a system modeled with the coupled
potentials behaves like a system modeled with the reactive potential only.
All the details about this methodology are available in (Tejada et al., 2016).

All the molecular simulations were performed with a Langevin thermo-
stat that ensures isothermal conditions at a prescribed temperature of 300K.
Failure is a process that releases a lot of heat and a constant temperature is
not a relevant assumption after the onset of failure. Here, isothermal con-
dition is valid because we are interested in the onset of failure only and we
disregard the subsequent propagation. Regarding the mechanical loading, a
constant strain rate of 0.5%/ps was imposed in the vertical direction (y) dur-
ing the simulation, which is small enough to ensure no rate dependence of the
elastic behavior of the 2D model material. Most importantly, we considered
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always the same temperature and the same strain rate for all the molecular
simulations. Indeed, failure is a thermally activated process and one expects
the stress at failure to decrease with both temperature and loading time (in-
verse of the strain rate). For instance, Yazdani and Hatami (2015) report
the change in the yield surface of graphene in function of temperature. By
considering always the same temperature and strain rate, we made sure that
those parameters introduce no bias in our analysis. We computed the stress
following the usual virial estimate and, in all the results hereafter, we report
the values of maximum tensile stress Σcr in the vertical direction (y) at the
onset of failure. All the simulations were performed with an in-house code
developed previously by Tejada et al. (2016).

We display in Figures 6 the results of failure simulations. Following the
dimensionless formalism introduced before, we display the reduced failure
stress Σcr

√
L/2/KIc in function of the reduced flaw size 2a/L. The value of

the toughness KIc = 2.5 · 10−3 (N/m).
√

m was fitted so that the results of
pre-cracked systems follow LEFM predictions in the regimes were fracture
failure is smaller than yield failure. The same value of toughness was used
for both the 10 nm systems and the 20 nm systems. The yield limit case
is higher for the 20 nm systems than for the 10 nm systems because of the
size-dependence of yield failure in the dimensionless formulation (Equation
5). The characteristic length l0 = (KIc/σyield)

2 = 1.5 nm is derived from
the value of toughness obtained above and from the value of yield strength
σyield = 65 N/m of a flawless strip.

These results deserve some careful analysis. First, one can observe that
the results for pre-cracked systems follow fracture failure very well in the
regime where yield failure exceeds fracture failure. Interestingly, outside this
regime, one can identify two opposite changes: 1- at small crack lengths,
deviation from fracture failure is observed and yield failure appears as an
upper boundary to the failure stress; 2- at large crack lengths, no deviation
is observed, in other words, the failure stress seems to follow fracture failure
and exceeds the yield limit of the material. These two observations are more
pronounced in the results of the 10 nm system, for which the reduced cell size
L/ (2l0) = 3.3 is small enough for the regimes where fracture exceeds yield to
be of significant extent. In contrast, for the 20 nm system (L/ (2l0) = 6.6),
only two of the molecular simulation results enter those regimes. As for
systems with initial elliptic holes, we observe a continuous evolution from
the fracture failure limit at low aspect ratios b/a to the yield failure limit
at large aspect ratios. This time, the evolution is more accurately followed
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Figure 6: Results of molecular simulations of failure of the 10 nm (top) and 20 nm (bottom)
systems with initial cracks and elliptic holes of various dimensions, and comparison to the
theoretical limit cases of fracture failure and yield failure.
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Figure 7: Failure of the 20 nm systems with elliptic holes, in function of the aspect
ratio. Guides are included that represent the limit cases of fracture failure and yield
failure. Molecular simulation results are compared to the prediction of the FFM criterion
of Leguillon.

for the 20 nm systems than for the 10 nm systems, because the larger the
system size is, the larger the difference between fracture and yield failures is.
For the 20 nm systems, we display in Figure 7 the critical stress at failure
in function of the aspect ratio of the ellipse along with the two limit cases
(fracture and yield).

5. Mechanical analysis and discussion

Let us discuss the implications of these results on our understanding of
failure initiation. Most initiation theories are consistent with the deviation
from fracture failure for the failure of pre-cracked systems with small initial
crack lengths. However, the observation that failure of pre-cracked systems
exceeds yield failure at large crack lengths is remarkable, since many ini-
tiation theories consider yield failure as an upper boundary of the stress.
One may wonder whether this observation is not an artifact because, in such
situations, periodic crack tips are very close from one another which could
trigger unexpected behaviors such as the overlap of surface effects. Neverthe-
less, failure starts exceeding yield when periodic crack tips are separated by
a distance of 2 nm, i.e., about 10 atoms. Surface effects are usually limited to
the very first layers of atoms, which make it unlikely to observe overlap at a
distance of 2 nm (see Figure 11 discussed later). Although, overlap may ex-
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ist for shorter distances (∼ 1 nm), the observation that failure exceeds yield
does not seem to arise from an artifact. This is the case of CZM and dam-
age approaches. Non-local approaches allow the stress to exceeds the yield
strength locally, but not on average, whereas, in the above case, the average
stress along the horizontal axis (x) between periodic crack tips exceeds the
yield failure. As for FFM approaches, some of the proposed criteria allow
for failure at stresses higher than yield, in particular the criterion of Leguil-
lon (2002). An essential consideration at the origin of this criterion is that
strength and critical energy released are both necessary conditions of fail-
ure. According to this postulate, the stress in a system can exceed the yield
strength if the energy released by the failure is less than the critical energy
release rate. Leguillon (2002) gives the example of the experiments of Parvizi
et al. (1978) on constrained failure of composites of various thicknesses: it
shows that, at small thicknesses, failure occurs at strains that exceeds the
yield limit and follow an energy released criterion while, at large thicknesses,
yield failure is observed. In the FFM approach of Li et al. (1995), the authors
propose a modification of the stress part of the criterion to allow for stresses
higher than the yield strength when the energy released part of the criterion
cannot be fulfilled. This modification comes with an additional parameter
(multiplicative constant to apply to the strength in the stress criterion). But
how this new strength is related to the material and structure properties
remains unspecified, which does not offer a systematic failure criterion, in
contrast with the criterion of Leguillon (2002).

In the light of Leguillon’s approach, one can qualitatively understand why
failure exceeds yield at large crack lengths: pre-cracked systems with large
initial cracks strongly concentrate the stress in-between the periodic cracks
while storing little mechanical energy because of their compliance. Therefore,
in such systems, a criterion on stress is more easily reached than a criterion
on energy. Energy is the limiting factor in failure initiation, and stress must
exceed strength before enough energy can be released by failure.

Following FFM and Leguillon’s criterion, let us consider the initiation
of a crack of length l from the existing flaw (see the drawings in Figure 8).
Here, for simplicity, we assume symmetry of the initiation, whereas it is likely
that initiation would start first on one side of the initial flow only. Failure
of the periodic cell is highly unstable and cracking immediately connects
the periodic flaws, irrespective of the symmetry of initiation, which makes it
impossible to analyze from the molecular simulation results. Assuming sym-
metric initiation is expected to have little effect on the results at small aspect
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ratios b/a. But, the results at large aspect ratios may need confirmation by
considering asymmetric initiation. This is left for further developments.

Assuming linear elasticity, the macroscopic behavior of the periodic sys-
tem is of the form:

Σ = ED

(
2l

L

)
ε (6)

where E is the Young’s modulus, ε is the average (macroscopic) tensile strain
in the vertical direction (y), and D is a dimensionless factor accounting for
the presence of the periodic flaw which depends on the geometric ratios 2a/L
and b/a (in the limit 2a/L → 0 of a flawless body, D = 1 /(1− ν2) , with
ν the Poisson’s ratio). We display in Figure 8 the values of the factor D
for the systems studied here. The values for systems with initial ellipse
were computed by FEM calculations with the Code Aster software package
(http://web-code-aster.org). And the values for systems with initial crack
(and infinitely thin ellipse b/a = 0) were computed with the pseudo-traction
method of Karihaloo et al. (1996). We display here the results for a Poisson’s
ratio of ν = 0.3.

Owing to Hill’s lemma in the case of periodic heterogeneous materials
(Michel et al., 1999), the complementary energy of the periodic cell is:

P = −1

2

L2Σ2

E ·D (2l/L)
(7)

The energy released by initiation at constant loading Σ is:

∆P = P (0)− P (2l/L) =
1

2

L2Σ2

E

(
− 1

D (0)
+

1

D (2l/L)

)
(8)

Following Finite Fracture Mechanics, failure can occur if this energy ex-
ceeds the critical energy release rate 2lGc (the factor 2 comes from the fact
two cracks initiate symmetrically on both sides of the initial flaw). This leads
to a first condition for initiation:

f

(
2l

L

)
≥ 2l0

L

(σyield
Σ

)2

with f (u) =
1

u

(
− 1

D (0)
+

1

D (u)

)
(9)

where we introduced the length l0 = EGc/σ
2
yield = (KIc/σyield)

2 characteriz-
ing the size of the yielding zone at a crack tip. Leguillon (2002) introduces a
second condition on stress following the intuition that strength and toughness
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are both necessary conditions of failure. The second condition proposed by
Leguillon (2002) is that stress prior to failure must exceed the yield strength
over the path of crack initiation:

σyy (x, y = 0) ≥ σyield,∀x ∈ path of crack initiation (10)

With the symmetry of the problem, the stress is of the form: σyy =
g (2x/L) · Σ, where g is a dimensionless function which depends on the geo-
metric ratios 2a/L and b/a and which decreases with 2x/L. We display in
Figure 8 the value of the function g computed with the numerical approaches
as for D. The second criterion on stress thus takes the form:

g

(
2l

L

)
≥ σyield

Σ
(11)

For a given loading Sigma, the first condition (Equation 9) provides a
lower boundary of the length of initiation since the function f is increasing
with 2l/L (more precisely, f = O ((2l/L)α) with 0 < α < 1, α = 1 being the
limit of initiation from a flat surface and α = 0 the limit of initiation from a
crack, and any moderate stress concentration is in-between these two limits).
Conversely, the second condition (Equation 11) provides an upper boundary
of the length of initiation l since the function g is decreasing with 2l/L. We
have:

2l

L
≥ f−1

(
2l0
L

(σyield
Σ

)2
)

and
2l

L
≤ g−1

(σyield
Σ

)
(12)

Failure occurs when the loading Σ is strong enough for both conditions
to be compatible (see Figure 9). The critical loading Σcr verifies:

f−1

(
2l0
L

(
σyield
Σcr

)2
)

= g−1

(
σyield
Σcr

)
(13)

Solving for equation 13 provides the critical loading at failure. Alterna-
tively, one could solve for the critical initiation length 2lcr/L instead, which
verifies:

f

(
2lcr
L

)
=

2l0
L

(
g

(
2lcr
L

))2

(14)
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Note that, in Finite Fracture Mechanics, the failure criterion depends on
the nature of loading (force or displacement). In usual Lineal Elastic Fracture
Mechanics, this is not the case. Considering a loading in displacement of
the periodic cell (i.e., a macroscopic strain is imposed), the compatibility
Equations 13 and 14 verified by the critical loading and initial length are
modified as follows:

f ∗−1

(
2l0
L

(
σyield
Σcr

)2
)

= g−1

(
σyield
Σcr

)
and f ∗

(
2lcr
L

)
=

2l0
L

(
g

(
2lcr
L

))2

(15)
where f ∗ (u) = (1/u) · (D (0)−D (u))

/
(D (0))2 .

We compare in Figure 7 the predictions of Leguillon’s combined criterion
to the molecular simulation results of failure initiation from the elliptic holes.
Both loading conditions (stress controlled and displacement controlled) are
displayed. Since the criterion’s only parameters are the toughness and yield
stress, no fitting was performed. The criterion captures failure initiation
reasonably well. We observe some over-estimation at small aspect ratios and
under-estimation at large aspect ratios, but these are moderate with respect
to the inherent variability of the molecular simulation results.

A particular situation of interest, is the limit case of an initial crack
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(b/a = 0). In that case, the condition on stress (Equation 11) imposes a

minimum initiation length: g (2x/L) ≈
√

aC(2a/L)
2x

⇒ l
a
≥ 1

2
C
(

2a
L

) (
Σ

σyield

)2

.

Accordingly, the initiation length is very small as long as failure occurs at
stresses much smaller than the yield (Σ/σyield small). Assuming this is the
case, the energy released by an infinitesimal initiation is the usual energy
release rate of fracture mechanics: ∆P ≈ 2lG. Thus, the condition on energy
released (Equation 9) becomesG ≥ Gc, which is the usual criterion of fracture
mechanics. Accordingly, this initiation criterion is consistent with fracture
mechanics. Deviation from fracture mechanics arises when the crack length
is very small or very large compared to the cell size (2a/L→ 0 and 2a/L→
1). For small crack lengths, the initiation length is no more infinitesimal
and therefore the energy criterion is no more equivalent to usual fracture
mechanics. In the limit 2a/L = 0, one recovers the yield failure. For large
crack lengths, the maximum initiation length of the criterion on stress can
exceed the length of intact material: g−1 (σyield/Σ) ≥ 1 − 2a/L. In this
situation, all the mechanical energy available in the system is not enough to
satisfy the energy criterion upon complete failure while the stress criterion is
satisfied all along the intact material. The initiation length equals the length
of intact material 2l/L = 1 − 2a/L and only the criterion on energy has to
be satisfied:

f−1

(
2l0
L

(
σyield
Σcr

)2
)

= 1− 2a

L
(16)

where the function f must be replaced by the function f ∗ for loading in dis-
placement. We compare in Figure 10 the predictions of Leguillon’s criterion
(displacement loading) to the results of molecular simulation of failure for
the 10 nm systems with initial cracks. Transition from fracture failure to
yield failure at small and large crack lengths is qualitatively consistent with
MD results. In particular, failure exceeds yield at large crack lengths and
not at small crack lengths. As discussed before, predicting a failure that ex-
ceeds yield failure is uncommon among initiation criteria and is quite specific
to the approach of Leguillon (2002). Quantitatively, the criterion tends to
underestimate failure at small and large crack lengths where failure deviates
from fracture failure. This comparison along with the previous one (Figure
7) tend to support the approach proposed by Leguillon (2002). The idea
of a combined stress-energy criterion captures the main feature of failure
initiation in this example of a 2D model material. Of course, the precise
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Figure 10: Comparison of the FFM criterion of Leguillon with the results of molecular
simulation of failure of the 10 nm systems with initial cracks, in function of the crack
length. For the comparison, we also recall the limit cases of fracture failure and yield
failure.

formulation could be improved to reach a better quantitative comparison,
but the general principle describes well these molecular simulation results.

Interestingly, previous molecular studies of initiation (Mattoni et al.,
2005; Lu et al., 2008; Zhang et al., 2012; Brochard et al., 2015; Yin et al.,
2015) all observed failure that cannot exceed yield. Actually, none of these
works has focused on such systems with low mechanical energy and high
stress concentration. Although, Leguillon’s criterion offers an interesting in-
terpretation of this phenomenon, other equally valid interpretations might
be possible, for instance based on surface effects. We display in Figure 11
the distribution of stress on a per atom basis just before failure in two of the
simulated 10 nm systems: a system with large crack, for which yield limit is
exceeded, and a system with an elliptic hole with high aspect ratio, which
approaches the yield limit. One observes that the most stressed atoms are
surface atoms. For the system with an elliptic hole, one could expect that
stress would distribute almost evenly in the intact region, but this is not the
case and surface atoms are clearly more solicited. Therefore one can reason-
ably think that surface effects are key to the initiation behavior. Note that
the yield strength we considered is that of a strip, i.e., non periodic in the
direction orthogonal to loading. Accordingly, surface effects also contribute
to the strength of the material. However, for a more in depth understanding
of the role of surface effect on failure, further investigation is needed.
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Figure 11: Snapshots of the distribution of volumetric stress just before failure for a system
with large crack, for which yield limit is exceeded, (left), and for a system with an elliptic
hole with high aspect ratio, which approaches the yield limit (right).

6. Conclusion

In this work, we investigate the process of failure initiation by molecu-
lar simulation considering the particular case of a 2D model material. We
show that the transition from fracture failure to yield failure can be cap-
tured if the system size L, usually limited to a few tenth of nanometer for
molecular simulation studies, is significantly larger than the characteristic
length l0 = (KIc/σyield)

2, which characterizes the size of the process zone at
a crack tip. For large values of L/ (2l0) (e.g., 6.6 for the 20 nm systems)
one can well capture failure initiation from non crack-like flaws (elliptic holes
in the present case), but the transition from fracture to yield is difficult to
characterize when considering failure from very small (2a/L → 0) or very
large (2a/L → 1) initial cracks. Conversely, for moderate values of L/ (2l0)
(e.g., 3.3 for the 10 nm systems), transition from fracture to yield is less
pronounced when considering initiation from an elliptic flaw, but more pro-
nounced when considering the transition at small and large initial cracks.
Confronting our results of molecular simulations with existing theories, we
identify a peculiarity of the initiation behavior that most initiation theories
would not predict: the failure exceeds the yield failure in some cases where
the initial flaw strongly concentrates stresses while little mechanical energy
is stored in the material (initiation from large initial cracks). We show that
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the failure behavior we observe is consistent with one specific Finite Frac-
ture Mechanics initiation theory, that of Leguillon (2002), the formulation
of which authorizes failure that exceeds yield failure in these peculiar cases.
The key principle at the heart of this theory is that failure occurs when both
a stress criterion (strengh) and an energy criterion (toughness) are satisfied
for the initiation of a crack over a finite length. Our results of molecular
simulations are consistent with this interpretation. Of course, this work is
focused on a particular model material, under a peculiar loading, stretching
in one direction with restrained deformation in the other direction. Further
investigation is needed to confirm these results and deepen our understand-
ing of failure initiation. Various phenomena at the atomic scale could explain
why the stress can locally exceed yield, from purely statistical reasons (be-
cause of temperature, atoms are not in static equilibrium) to chemistry (the
atomic environment near a flaw differs from that in the bulk giving rise to
unusual behaviors such as surface effects) and lattice geometry (the atomic
scale is not a continuum and failure is governed by bonds breaking between
discrete atoms on a peculiar lattice geometry). In particular, the stress dis-
tribution at the onset of failure suggests that surface effects are likely to play
a key role in the model system studied. How surface effects impact the failure
behavior, and how this articulates with Leguillon’s criterion based on energy
and stress, are open questions that require further investigation.
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