
HAL Id: hal-01686159
https://hal.science/hal-01686159v2

Submitted on 24 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Probabilistic Modelling of Printed Dots at the
Microscopic Scale

Quoc Thong Nguyen, Yves Delignon, François Septier, Anh Thu Phan Ho

To cite this version:
Quoc Thong Nguyen, Yves Delignon, François Septier, Anh Thu Phan Ho. Probabilistic Modelling of
Printed Dots at the Microscopic Scale. Signal Processing: Image Communication, 2018, 62, pp.129-
138. �10.1016/j.image.2018.01.003�. �hal-01686159v2�

https://hal.science/hal-01686159v2
https://hal.archives-ouvertes.fr


Probabilistic Modelling of Printed Dots
at the Microscopic Scale

Quoc Thong Nguyena, Yves Delignonb, François Septierb, and Anh Thu Phan Ho.c
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bIMT Lille Douai, Université Lille, CNRS UMR 9189 - CRIStAL, F-59000 Lille, France
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Abstract

Microscopic analysis of paper printing shows regularly spaced dots whose random

shape depends on the printing technology, the configuration of the printer as well as

the paper properties. The modelling and identification of paper and ink interactions are

required for qualifying the printing quality, for controlling the printing process and for

application in authentication as well. This paper proposes an approach to identify the

authentic printer source using micro-tags consisting of microscopic printed dots em-

bedded in the documents. These random shape features are modelled and extracted as a

signature for a particular printer. In the paper, we propose a probabilistic model consist-

ing of vector parameters using a spatial interaction binary model with inhomogeneous

Markov chain. These parameters determine the location and describe the diverse micro

random structures of microscopic printed dots. A Markov chain Monte Carlo (MCMC)

algorithm is thus developed to approximate the Minimum Mean Squared Error estima-

tor. The performance is assessed through numerical simulations. The real printed dots

from the common printing technologies (conventional offset, waterless offset, inkjet,

laser) are used to assess the effectiveness of the model.

Keywords: Probabilistic model; Bernoulli process; Metropolis Hastings within Gibbs;

Microscopic printing; Markov chain.
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1. Introduction

Preventing and discouraging unauthorised printed materials is the expected achieve-

ment of the authentication methods. Papers dealing with this subject can be categorised

in two strategies. The first one consists in embedding an extrinsic signature such as se-

cure tags in the prints [1, 2]. While the second one, which is the motivation of this5

paper, consists in characterising the intrinsic features of printing and scanning process

[3]. As examples of intrinsic features, the signature consisting on the banding artefact

coming from fluctuation of the optical photoconductor angular velocity in case of laser

printers [4], dimple effect which is specific to inkjet printers or also texture features

[5], or the analysis of quality signature of the unique print to differentiate one printer10

technology/supplier from another [6]. Authentication can be performed based on paper

statistics, for example, the paper statistics is extracted by capturing microstructure im-

ages from different carton packages under different light conditions and with different

cameras. These microstructure images are considered as digital fingerprinting on which

the authentication frameworks are derived [7]. In [8], the authors proposed the intrinsic15

feature of paper based on a texture speckle pattern, a random bright/dark region forma-

tion at the microscopic level when light falls on to the paper. The extracted signature

of printer is a unique pattern of misplaced toner powder on each paper [9]. For elec-

trophotographic printers, the intrinsic signals extracted from banding artefact are used

to identify the device [10]. Printer source identification is an important forensic tool.20

The techniques using characters for identification of source scanner and printer have

been proposed [11]. Source identification using printed character in different languages

has been recently studied [12, 13, 14, 15, 16].

Besides the role in print authentication, depending on the purposes of the problems,

there are a number of applications concerning the printing models. A specific model is25

considered in the scale of the experiments/applications. For instance, in the human vi-

sion scale, halftoning technique is a method that takes advantage of the optical illusion

of human vision to display continuous tone grayscale image with only black or/and

white dots [17, 18, 19]. The scale of the model is the resolution of the printer. An

image of print not only contains the properties of a printing process but also includes30
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image degradation; Baird proposed a physics-based model in which the parameters

defining imaging defects are described [20]. Under the microscopic scale printing, a

probabilistic model for the average coverage of the toner particles ink of electropho-

tographic printing process is introduced by Norris et al. [21]. However, the model

has a limited validation, and the estimation procedure has not been considered. For35

authentication purpose, we propose a probabilistic modelling of microscopic printed

dots.

The shapes of microscopic printed dots can be considered as the intrinsic feature of

the printing process. At the microscopic scale, a dot is a random pattern whose shape

depends on the technology, the setting of the printer, the ink quality and/or the paper40

properties. From a statistical point of view, the digital acquisition of these random dots

can be modelled as a spatial interaction binary model based on an exponential power

kernel that depends on location parameter and shape parameters. The accurate and

consistent model can help to create an authentic signature to improve the authentication

procedure. The model proposed in our previous works [22, 23] consists in a spatial45

distribution model that simulates the randomness of the shape of printed dots. The

random shape is manipulated by the parameters in this probabilistic model. In [24],

the numerical estimation procedure using MCMC algorithm is developed. However, in

order to cover the diverse random shape of printed dots, the surrounding pixels or the

conditional probabilities has to be taken into account.50

In this paper, we propose a spatial interaction binary model that describes more

precisely the random shape of the microscopic dots by taking into account the neigh-

bourhood of the pixels. In particular, the Markov property between pixels in the image

is considered. This property helps to describe more accurately the intrinsic features of

the print, which can thus improve the discrimination power. An MCMC algorithm is55

developed for estimating the model parameters. Finally, we analyse the performance of

the proposed unsupervised identification algorithm. The rest of this paper is organised

as follows. Section 2 is devoted to visually describe the randomness of shape of micro-

scopic dots. The formulation of spatial stochastic model is discussed in Section 3. The

Metropolis-Hastings within Gibbs algorithm for the estimation is developed in Section60

4. In Section 5, the Posterior Cramér - Rao bound used to evaluate the performance of
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the algorithm is derived. Section 6 is devoted to the performance of the new algorithm

which are analysed through simulations, and the benefit of such a model and estimation

algorithm are illustrated in the case of real microscopic scale printed dots. The basic

authentication of printer identification using the model is also described in Section 7.65

Concluding remarks are given in Section 8.

2. Printed dots at the microscopic scale

As aforementioned, we consider the shape of microscopic printed dots as an intrin-

sic feature to perform authentication on printer identification. This section is devoted

to describing the random shape of microscopic printed dots. We then demonstrate70

intuitively that the shapes are different between different printers, which can benefit

printers discrimination. Let us start by the observation of printed dots at the micro-

scopic scale. A single printed dot is created by printing an image containing one black

pixel. In our study, the microscopic printed dots are captured using an optical Zeiss

Microscope with an AxioCam camera. The camera has a maximum solution of 2464 x75

2056 (5Mp) with a sensor size of 8.5 mm x 7.1 mm and a pixel size of 3.45 µm x 3.45

µm. Since the focus of the study is on the physical shape of coverage area of the ink,

the collected images are only in black and white.

The images on the left column in Fig. 1 illustrate the dots printed by offset, laser,

inkjet printers respectively. Random shapes of these dots are observed under micro-80

scope scale. The physical size of the dots is very small. For example, size of a dot

from the offset printer (1200 dpi) is theoretically 21.16µm. The printing resolution is

an important element in this study. If the resolution is too high, the outcome will be

similar to the dust noise from the printer. For instance in our study, the dots printed

from a laser printer under resolution 1200 dpi are not distinguishable from the noise.85

The resolution can neither be too low, since the shape of the dots are no more random

except for the edge. Therefore, the resolution has to be chosen manually for a specific

printer.

Visually, from the left column of Fig. 1, we can see that the shapes of printed dots

from different printers are dissimilar. Fig. 2 illustrates the shape of dots printed by90
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Figure 1: Binary image of 4 single dots printed by an offset printer (a), the empirical probabilities of appear-
ance of black pixels in the given position (profile) of 100 samples of one printed dot with the resolution 1200
dpi (b). The dots from a laser printer with the resolution 600 dpi (c), and the profile (d). The dots from an
inkjet printer at 720 dpi (c), and the profile (f).

two different laser printers at the same resolution 600 dpi. On the right column in Fig.

1, each image illustrates the frequency of appearance of black pixels at each position

(profile) from 100 captured samples. As observed, the probabilities of emergence of

the black pixels are lower when the pixels are further from the centres. The shape

of the profile contains the characteristics of the printed dots, which means the shape95
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(a) (b)

Figure 2: The dots printed by two laser printers, Dell laser printer (a) and HP laser printer (b). The conditions
are identical, resolution is 600 dpi.

of the dots contains the identity of the source printer in some sense. The model in

[22, 23] introduced the parameters controlling the width of the droplets, the density

of the black pixels and the average number of black pixels. However, the interaction

with the surrounding pixels was not taken into account. In particular, when a pixel

is black, its neighbour is more likely to be blackened. In addition, when the pixels100

are further from the centre of the dots, this influence of the black pixel(s) on their

vicinity is also smaller. Including these properties could help the model to have a more

precise simulation, thus describing in more details the identity of source printer. These

properties are detailed in the next Section.

3. Spatial interaction binary model with Markov chain105

Let S be a finite set corresponding toN pixels of a binary image U that displaysK

dots. We consider the random process U = (Us)s∈S , where each Us is a Bernoulli ran-

dom variable which takes its value from {0, 1}, respectively black state and white state.

Let Vs be a neighbourhood of the pixel s, the geometric shape of Vs is independent of

s ∈ S. U is modelled by a Markov random field

P (Us = us | (Ut = ut)t 6=s) = P (Us = us | (Ut = ut)t∈Vs) , (1)

i.e. the probability that the pixel s takes the value us conditional on all other pixels of

the image equals to the probability of us conditional on the values of the pixels in the

neighbourhood Vs. This probability also has to depend on the distance of the pixel s to
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the centre µ, which means P (Us = 0 | (Ut = ut)t 6=s) decreases when the pixel s goes

further from the centre, i.e. the Euclidean distance ||s− µ|| increases.110

A two-dimensional image can be transformed into a one-dimensional chain by

Hilbert curve [25] (see Fig. 3). Because the targeted interactions (statistical depen-

dencies) between pixels within the microscopic dot are well preserved in the spatial

structure by Hilbert curve, the Markov chain with Hilbert path is used in many image

processing applications [26, 27, 28]. Moreover, Pseudo-Hilbert Scan algorithm can be

applied to arbitrarily-sized image [29]. In convenient index, let U = (U1, U2, ..., UN )

be a vector of random variables ordered according to the Hilbert curve transformation

of the image. In case the neighbourhood Vs is restricted to one pixel, the image U

becomes a Markov chain

P (U = u) = P (U1 = u1)

N∏
i=2

P (Ui = ui | Ui−1 = ui−1). (2)

Figure 3: Scanning of 8× 8 image

The Markov chain (2) encompasses the parameters of the initial probability

P (U1 = 0), (3)
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and transition probabilities

P (Ui = 0 | Ui−1 = u), (4)

for 1 < i ≤ N . The parametric probabilities for (3), (4) are

P (U1 = 0) = 1−
K∏
k=1

(1− pk(s1)) (5)

P (Ui = 0 | Ui−1 = u) = 1−
K∏
k=1

(1− pk(si))λ
(1−u). (6)

The function pk(.), named kernel, measures the ability to blacken the surrounding

pixels of the k-th dot. The kernel pk(s) has to decrease with respect to the distance

||s − µk||, so that, as requisite property, the initial and transition probabilities also115

decrease with respect to the distance. The support of pk(.) is a subset of (0,1].

The positive parameter λ characterises the interaction between pixels when the

neighbour pixel is black, Ui−1 = 0. With λ = 1, the probabilities (6) only depend

on the relative position to the centres, P (Ui | Ui−1) = P (Ui), which is the approach

proposed in [22, 23]. In case λ < 1, the smaller λ leads to a higher chance of being120

black of current pixel Ui, since P (Ui = 0 | Ui−1 = 0) is greater with smaller λ (see

Eq. (6)). When the neighbour pixel is white, Ui−1 = 1, the probabilities depend on

the distances of the current pixel to the dots centres. With these properties, the dots

are more compact, and the density of black pixels at the areas closer to the centres is

higher. The new proposed parameter λ helps to describe a wider variety of shape of125

dots.

The transition probabilities depend on pk(s) which relates to the position of the

pixels, this implies that U is a non-stationary Markov chain. The expected number of

black pixels of the image, denoted nb, is calculated as

nb =

N∑
i=1

E (δ(Ui)) =

N∑
i=1

P (Ui = 0), (7)

with δ(x) = 1 if x = 0, δ(x) = 0 elsewhere. The probability P (U1 = 0) is computed
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by (5), while the other terms are calculated by (6) with the recurrence relation and the

law of total probability

P (Ui = 0) = P (Ui = 0 | Ui−1 = 0)P (Ui−1 = 0) +P (Ui = 0 | Ui−1 = 1)P (Ui−1 = 1),

(8)

with 2 ≤ i ≤ N . Let us note that with smaller λ, P (Ui = 0 | Ui−1 = 0) is greater,

that leads to the value of P (Ui = 0) also becoming greater. This implies that smaller

λ statistically increases the number of black pixels. In the following, the kernel pk is

chosen as a Gaussian power kernel

pk(s) = η exp

−
(
‖s− µk‖2

σ2

)β . (9)

Fig. 4 illustrates the simulation of one dot with σ2, β equal to 70 and 5 respectively130

and various values of λ and η. It can be seen that the dots with small λ are more

continuous, in other words, the black pixels make their neighbourhood more likely to

be black. The parameter η controls the amplitude of the kernel and the density of black

pixels increases with η. When η is large, the density of black pixels near the centre is

almost independent of λ.135

4. Estimation

A Bayesian framework is employed to estimate the model parameters. Let us recall

our problem, the parameters of interest in (5), (6) are θU =
[
{µk} , σ2, β, η, λ

]
which

belong to a 2K + 4 dimensional space. The Minimum Mean Squared Error (MMSE)

estimator θ̂ of θU given the observed data u is

θ̂(u) =

∫
θp(θ | u)dθ, (10)

where p(θ | u) is the posterior distribution. To approximate the integral (10), an

MCMC algorithm is applied [30]. Since the vector of parameters is of high-dimension,
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Figure 4: The simulation of the model (5), (6) with Gaussian power kernel with σ2 = 70, β = 5 and
different values of λ, η.

it is more efficient to use Gibbs sampling procedure which consists in sampling suc-

cessively each parameter from their conditional posterior distribution. Unfortunately,

since no closed form expression is available for these distributions, we propose to use

a Metropolis-Hastings within Gibbs algorithm [30]. The chosen strategy is to run a

random walk as proposal distribution:

θ∗ = θ(t) + εt, (11)

where εt is a zero mean normal random vector with a diagonal covariance matrix.

We generate θ2 = log(σ2), θ3 = log(β) instead of σ2, β to ensure their positiv-

ity; a transformation is also applied for η and λ to generate θ4, θ5 respectively, i.e.

η = 1
1+eθ4

, λ = 1
1+eθ5

. For convenient notation, we rewrite the vector of interested140
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parameters as θ = [θ1, θ2, θ3, θ4, θ5]. The Metropolis-Hastings within Gibbs using

random walk is summarised in Algo. 1.

Algorithm 1 Sampling algorithm with random walk

1: Initialise θ(0) =
[
θ

(0)
1 , θ

(0)
2 , θ

(0)
3 , θ

(0)
4 , θ

(0)
5

]
2: for i = 1 to N iter do
3: for b = 1 to 5 do
4: Generate θ?b ∼ N (θ

(i−1)
b , σ2

b )
5: Compute the acceptance ratio

α(θ
(i−1)
b , θ?b ) = min

 p
(
θ?b | θ

(i−1)
−b ,u

)
p
(
θ

(i−1)
b | θ(i−1)

−b ,u
) , 1


6: Decide

θ
(i)
b =

{
θ?b with probability α

(
θ

(i−1)
b , θ?b

)
θ

(i−1)
b otherwise

7: end for
8: end for

Where θ(i−1)
−b =

[
θ

(i)
1 , . . . , θ

(i)
b−1, θ

(i−1)
b+1 . . . , θ

(i−1)
5

]
.

The initialisation of θ proceeds as following. The centres are initialised by the

careful seeding [31]. The other parameters are respectively initialised as σ2 = 0.6 ×
N
πK , β = 2. Since η and λ are in (0, 1], intuitively, we may initialise both of them equal

to 0.5. From Bayes’ law, we have:

p (θb | θ−b,u) =
p (u | θb, θ−b) p (θb, θ−b)

p (θ−b,u)
, (12)

where p (u | θb, θ−b) is the likelihood and p (θb, θ−b) is the prior. Since all parameters

are independent, the acceptance ratio in Alg. 1 is rewritten as

α(θ
(i−1)
b , θ?b ) = min

 p (u | θ?b , θ−b) pb (θ?b )

p
(
u | θ(i−1)

b , θ−b

)
pb

(
θ

(i−1)
b

) , 1
 , (13)

with pb the prior of parameter θb. The prior distributions are chosen with fixed pa-
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rameters by experience. Each centre {µk} has multivariate normal distribution, σ2 is

log-normal distributed, β follows gamma law, while both η and λ are beta-distributed.145

Let us note that when the priors are closed to uniform, the acceptance ratio mainly de-

pends on the likelihood ratio. The choice of the variances of the priors depends on the

confidence of the initialisation and the experience.

5. Posterior Cramér - Rao bound

Let u be the observation vector and θ be the r-dimensional vector of random pa-

rameters (with r = 2k+ 4). The joint probability density of the pair (U, θ) is p(U, θ).

Let θ̂(u) denote an estimate of θ. The Posterior Cramér-Rao Bound (PCRB) states that

[32, 33]:

E[(θ̂(U)− θ)(θ̂(U)− θ)T ] ≥ I−1, (14)

where I is r × r Fisher information matrix (FIM)150

I = E
[
∇θ log p(U, θ)∇Tθ log p(U, θ)

]
= −E

[
∆θ
θlog p(U, θ)

]
, (15)

where ∆θ
θ := ∇θ∇Tθ is the second derivative operator and ∇θ is the gradient operator

with respect to θ.

Using the fact that p(U, θ) = p(U | θ)p(θ), the expression of the FIM in (15) can

be expressed as:

I = −E
[
∆θ
θlog p(U | θ)

]
− E

[
∆θ
θlog p(θ)

]
= Id + Ip, (16)

where Ip stands for the a priori information matrix and Id is the ”standard” FIM (Id(θ)155

is used in the derivation of the CRB) averaged over the a priori distribution of θ:

Id =

∫
Θ

Id(θ)p(θ)dθ. (17)
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In many special cases, when only the i-th component of θ, say θi, is of interest, the

PCRB is expressed as

E[(θ̂i(U)− θi)2] ≥ [I−1]ii (18)

6. Experimental results and performances

In this section, we aim at assessing both the performance of the estimators and

the adequacy of the model. The Metropolis-Hasting within Gibbs algorithm is anal-

ysed, the performance of the algorithm is evaluated from the images generated by the160

parametric model. The experiment on the real captured dots is also conducted.

6.1. Synthetic Data

The simulated images are generated with a size of 64 × 64. As mentioned previ-

ously, the priors are fixed, the expected values of the prior are set by the initial val-

ues, and the variance are chosen large in order to consider a highly uncertain prior165

knowledge. The estimation is implemented with 20000 MCMC iterations and a burn-

in period of 5000, which means that 15000 last samples are used to approximate the

parameters over 20000 generated samples.

6.1.1. Analysis of the estimation with respect to β

In this analysis, only β is varying. The simulated images of single dot are gen-170

erated. The true centres µ of the dot is (32, 32). With σ2 = 50, η = 0.8, λ = 0.6,

along with three values of β, β ∈ {0.8, 2, 5}, Tab. 1 shows the mean squared errors of

the estimators. Larger value of β leads to smaller errors for σ̂2 and η̂. In contrast, the

errors of β̂ and λ̂ are larger with large β. With a large value of β, the simulated dots are

different mainly near the edges. It means that the information of λ is less significant,175

which makes the estimation of λ less consistent. While with smaller β, the contribution

of λ to the connected black pixels is more visible (see Fig. 5). On the other hand, the

simulated dots look similar for large values of β (see Fig. 6), which also makes the

estimation of β less consistent.
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(a) λ = 1 (b) λ = 0.6 (c) λ = 0.2

Figure 5: The role of λ with small β = 0.8.

(a) β = 7 (b) β = 7.5 (c) β = 8

Figure 6: Realization with three different values of β.

6.1.2. Analysis of the estimation with respect to η180

The MSE of the estimators are given in Tab. 2. The simulations of single dot

were conducted with β = 2, σ2 = 50, λ = 0.6, along with three values of η, η ∈

{0.5, 0.8, 0.97}. The estimators of σ2 have smaller MSE with large η, which means

the black pixels give a significant information to the estimation procedure. The MSE

of λ̂ increases due to the fact that when η is large, the role of λ is visually presented185

around the edge of the dots. This phenomenum can be observed in Fig. 4.

σ2 β η λ
0.8 218.51 0.029 0.022 0.0025
2 45.12 0.23 0.011 0.0068
5 13.20 2.011 0.0037 0.0025

Table 1: The mean squared errors of the estimators with various values of β, σ2 = 50, η = 0.8, λ = 0.6.
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σ2 β η λ
0.5 100.9 0.2041 0.0065 0.0058
0.8 45.12 0.23 0.011 0.0068

0.97 49.85 0.1845 0.032 0.01

Table 2: The mean squared errors of the estimators with various values of η, σ2 = 50, β = 2, λ = 0.6.

6.1.3. Analysis of the estimation with respect to λ

The simulations of one dot were conducted with β = 2, σ2 = 50, η = 0.8, along

with three values of λ, λ ∈ {0.2, 0.6, 0.9}. Tab. 3 shows the MSE of the estimators.

The estimators of σ2, β, η have decreasing MSE when λ increases. Since the number of190

black pixels decreases when the value of λ increases, the information for the estimation

of σ2, β, η exposes clearer on the realisations. On the other hand, the estimation of λ is

better for small values, because the connection between black pixels strongly emerges.

σ2 β η λ
0.2 66.06 0.247 0.026 0.0017
0.8 45.12 0.23 0.011 0.0068
0.9 36.57 0.199 0.0113 0.0181

Table 3: The mean squared errors of the estimators with various values of λ, β = 2, σ2 = 50, η = 0.8.

6.1.4. Posterior Cramér-Rao bound for single dot case195

The PCRB is used to assess the precision of the estimators. Since the posterior

information matrix I in (16) cannot be calculated analytically, it is approximated by

Monte Carlo simulation. The random values of vector of parameters θ generated N

times by the priors. For each generated vector of parameter, M images are simulated

to approximate the standard Fisher information matrix Id(θ) in (18).200

µx µy σ2 β η λ
PCRB 0.111 0.109 9.621 0.002 0.002 0.003
MSE 5.180 5.605 33.146 2.843 0.044 0.054

Table 4: The approximated PCRB and the Mean Squared Error (MSE) of each parameter in case of single
dot.

In Tab. 4, we demonstrate the approximated values of the Posterior Cramér-Rao
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Bound in case of single dot with N = 100 generated random values of vector θ. The

values of priors are as follows: centre (µx, µy) has multivariate normal distribution

with mean (32, 32) and covariance matrix diag(5, 5); σ2 is log-normal distributed with

mean 50 and variance 100; β follows gamma law with mean 2 and variance 1.5; η and205

λ are beta-distributed B(3, 1.5). For each value of θ, M = 40 images are generated to

approximate matrix Id(θ). Specifically, the size of each image is 64 × 64. With each

generated image, the parameters are estimated using Algo. 1. In total, 40×100 images

are used to approximate the Mean Squared Error. As we observe in this example, σ2 is

estimated least accurate.210

6.1.5. The performance with many dots

The impact of the number of dots,K, is analysed. Instead of one dot on each image

as the analyses above, each image contains multiple simulated dots. The experiment is

set up with σ2 = 50, β = 2, η = 0.8, λ = 0.6, and all generated dots are completely

separated from each other. As demonstrated in Tab. 5, the estimators are clearly more215

consistent for the images with more dots. The accuracy and consistency of β̂, η̂, λ̂ is

crucial in authentication. Therefore, analysing many dots is a good mean to have a

more consistent estimation of the parameters. Since more dots give more information

about the shape, which are determined by the parameters of the model, the estimators

are more consistent.

1 dot 2 dots 4 dots 7 dots
σ2 6.03 3.08 2.42 1.92
β 0.25 0.19 0.18 0.15
η 0.08 0.04 0.04 0.03
λ 0.08 0.06 0.05 0.03

Table 5: The standard deviation of the estimators with different number of cluster-dots K, σ2 = 50, β =
2, η = 0.8, λ = 0.6.

220

6.2. Estimation results from printed dots

The dots from four printers of four popular technologies are taken: conventional

offset, waterless offset, laser and inkjet printings. The resolutions of each printing

process for each sample are respectively 1200 dpi with offset printers, 600 dpi with
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laser printer, and 720 dpi with inkjet one. For each printer, 10 images of size 64x64225

of one dot are collected for the experiment. Fig. 7 represents the images of the real

dots and the realisation generated from the estimated parameters obtained from the

developed MCMC method. Metropolis-Hasting within Gibbs algorithm is conducted

with 30000 MCMC iterations with 10000 as burn-in period. The realisation from the

Spatial binary model [23] is illustrated to compare the improvement as well.230

Conventional Offset Waterless offset
Avg. Std. Avg. Std.

β 3.71 1.4 6.55 1.74
η 0.96 0.05 0.99 0.0004
λ 0.67 0.15 0.52 0.13

Laser Inkjet
Avg. Std. Avg. Std.

β 1.21 0.92 2.28 0.51
η 0.59 0.32 0.99 0.01
λ 0.30 0.06 0.20 0.04

Table 6: The estimators of the real dots by MCMC.

Tab. 6 gives the numerical values of the estimators by MCMC estimation method

as well as the standard deviation values. Fig. 7 visually compares the printed dots,

the realisations from the proposed Markov spatial model and from the spatial binary

model that does not take into account the neighbour dependence developed in [22,

23]. The results are very promising when the interaction is taken into account. The235

realisation from Markov spatial model is more realistic to the real dot than the one

from spatial binary model. With the offset and inkjet images, the fragment near the

border is resembled better, which makes them more similar to the real dots. The shape

of the dot from inkjet printer is more complicated to simulate due to the concave parts.

With the print from laser printer, we can see the substantial improvement using the240

Markov spatial model w.r.t. the spatial binary model. The simulated dot is much more

realistic and continuous.

In Fig. 8 and Tab. 7, we give other estimation of four printed dots with the resolu-

tion 600 dpi from HP-600 M620 laser printer. We can again have a visual comparison

to show the improved simulation using the Markov spatial model. The capability of245
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the proposed model to capture more details can clearly increase the power of discrim-

ination between printers. Moreover, since the characteristics of printed dots are repre-

sented by the parameters, the proposed model may significantly reduce training data

than using machine learning generative models to characterise the printed dots.

Estimators Error with 99% of confidence
σ2 66.82 ±0.019
β 1.36 ±3.6× 10−4

η 0.76 ±2.6× 10−4

λ 0.35 ±1.2× 10−4

Table 7: The estimators of σ2, β, η, and λ from four printed dots.

7. Application in printer source identification250

The capability of simulating the random shape of printed dots of the model and the

performance of the estimation are demonstrated in previous Section. In this part, we

use the typical random shape which is characterised by the parameters as a ”signature”

to identify the printer source. The vector of three parameters (β, η, λ) can be used as

a characteristic of a printer with a specific setting. These three parameters are dimen-255

sionless, which means that the size of image of dots does not affect the value of these

parameters. With the model, we are able to set up an authentic tag from an exact printer

by setting specific values for the parameters of the printer (ink toner, paper...). Under a

specific setting, a particular printer statistically creates the same shape of microscopic

dots. In this experiment, we applied the maximum likelihood classification method to260

discriminate the printed dots from different sources [34, 35]. Fig. 9 summarises the

procedure of the proposed printer identification method.

The estimations of the shape parameters are displayed in Fig. 10 that shows respec-

tively β vs. λ, β vs. η and λ vs. η. Each printer is 3D Gaussian cluster in the space

of parameters. Their location and shape are respectively given by their means (Tab. 6)265

and their covariance matrices (Tab. 8). For each printer (conventional offset, waterless

offset, laser and inkjet), we take 10 other images for the discrimination experiment. In

total, 20 images for each printer with 10 images are used to approximate the param-

eters of 3D Gaussian cluster. In this specific experiment, all the dots are printed on
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uncoated paper, and other conditions are identical during the experiments. In this case,270

the normal distributions of the shape parameters enable to use the maximum likelihood

classification method. All the samples are correctly classified (100%) with respect to

their printer sources. The confusion matrix is presented in Tab. 9

1.910 0.011 0.095
0.011 6e-4 0.001
0.095 0.001 0.033

3.034 6e-4 0.193
6e-4 e-7 4e-5
0.193 4e-5 0.018

(a) Conventional offset (b) Waterless offset

1.199 -0.190 0.030
-0.190 0.096 0.006
0.030 0.006 0.007

0.253 0.001 0.015
0.001 1.2e-5 e-4
0.015 e-4 0.002

(c) Laser (d) Inkjet

Table 8: The covariance matrices calculated from the estimators of four printers.

Actual/Predicted Con. offset Wat. offset Laser Inkjet
Con. offset 20 0 0 0
Wat. offset 0 20 0 0

Laser 0 0 20 0
Inkjet 0 0 0 20

Table 9: Confusion matrix for ML classification of four different types of printer: conventional offset, wa-
terless offset, laser and inkjet.

Other experiment is also conducted on two laser printers, a HP laser printer and a

Dell laser printer. The resolution of 600 dpi is set up for both printers, and the samples275

are printed on uncoated paper. The relation between estimated parameters of each

printer is given in Fig. 11 which clearly separates two printers. Their location and

shape of the 3D Gaussian clusters of each printer are respectively given by the means

in Tab. 10 and the covariance matrices in Tab. 11. Similar to the previous experiment,

20 images are captured from each printer with 10 images are used to approximate the280

parameters of 3D Gaussian cluster. The maximum likelihood classification method

also gives a completely accurate classified result (Tab. 12). These results point out the

relevance of the model for printed dots at the microscopic scale.

As demonstrated in Fig. 8, Tab. 7 and the analysis in the simulation experiment
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section, the estimation of parameters is more consistent with many dots. Therefore,285

the analysis of many dots will help to improve the accuracy of discrimination an exact

printer source of a document from the other printers. In practice, a micro-tag consisting

in printed dots can be embedded in an authentic document.

β η λ
HP 0.668 0.225 0.129
Dell 2.218 0.947 0.116

Table 10: The mean values of the estimators of HP laser printer and Dell laser printer.

0.0147 0.001 -0.0003
0.001 0.009 0.0009

-0.0003 0.0009 0.0007

0.243 0.054 -0.003
0.054 0.028 0.001
-0.003 0.001 0.0007

(a) HP (b) Dell

Table 11: The covariance matrices calculated from the estimators of HP and Dell laser printers.

Actual/Predicted HP laser Dell laser
HP laser 20 0
Dell laser 0 20

Table 12: Confusion matrix for ML classification of two laser printers.

8. Concluding remarks

In this paper, we have proposed a novel statistical model that considers the spatial290

interaction of printed dots at microscopic scale. This model allows to describe more

accurately the formation of the shape of the binary dot. The spreading of the ink on the

surface was described as the emergence of the black pixels and the interaction between

pixels that depends on the distance between the centres of the dots. All these features

are modelled by non-stationary Markov chain.295

An estimation method for the parameters based on the Metropolis-Hasting within

Gibbs algorithm is proposed. The performance of this approach is assessed, not only

with simulated data but also with real dots coming from four different printing tech-

nologies. Thanks to the proposed model and inference algorithm, the realisations are

20



very close to the real images. The fragmentation on the border of the dot is better300

treated, and the density of the black pixels is more realistically simulated with the

newly introduced interaction. Authentication of printers from micro-prints has shown

promising results owning to the accuracy of both the Markov spatial model and the

estimation algorithm. Future research directions are consisting in extending this model

to grayscale images and colour images.305
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primés à l’échelle micro-métrique, in: XXVème Colloque GRETSI, 2015.

[25] D. Hilbert, Ueber die stetige abbildung einer line auf ein flächenstück,395
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Waterless Offset
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Figure 7: The estimation from four printing processes and the realisations from the models.

(a) Real image (b) Regenerated image (c) Approximated centres

Figure 8: The real dots vs. the regenerated image, the approximated centres are demonstrated.
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Figure 9: Procedure of printer identification scheme.
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Figure 10: Relation between the estimated parameters of the samples from four printers with four printing
technologies.
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Figure 11: Relation between the estimated parameters of the samples from a HP laser printer and a Dell laser
printer.
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