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Abstract

We analyze the trade-off faced by authorities envisaging a one-shot structural re-
form in a capitalistic industry. A structure is modeled as (1) a sharing of productive
capital at some time and (2) a sharing of scarce sites or any other non-reproducible
assets. These two distinct dimensions of policy illustrate the importance of a dy-
namic theory in which firms durably differ in several respects. Though equalization
of endowments and rights is theoretically optimal, realistic constraints force com-
petition authorities to adopt second-best solutions. Affirmative action here is the
policy that recognizes the fact that, under certain circumstances, helping the dis-
advantaged contributes maximally to social surplus.
Keywords. Competition policy, capacity accumulation, Cournot competition,
asymmetric duopoly, regulatory consistency.
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Résumé

Nous analysons les enjeux d’une réforme structurelle radicale unique dans un
secteur capitalistique. Une structure est modélisée par (1) un partage du capital
productif à un moment donné et (2) un partage de sites rares ou de tout autre
actif non-reproductible. Ces deux dimensions illustrent l’importance d’une théorie
dynamique dans laquelle les concurrents diffèrent sur plusieurs plans. Bien que
l’égalisation des conditions initiales et des droits soit théoriquement optimale, des
contraintes réalistes obligent à des solutions de second rang. La discrimination
positive est la politique qui reconnaît que, sous certaines conditions, aider les plus
désavantagés est le plus avantageux socialement.
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1 Introduction
Restructuring a capital-intensive industry where some incumbent dominates the market
is a challenging task. It may not be a reliable option to open the market and let time
pass. First, capital may be so long-lived that the incumbent will influence prices for a long
time. Second, the incumbent may retain the best sites and know-how, which leaves the
incumbent with a permanent superiority vis-à-vis the entrants. These issues are especially
pertinent for merger remedies or regulatory reforms in electricity, telecommunication and
other spectrum-based industries where investment is durable and capacity expansion is
constrained.

For example, in several mergers and acquisitions involving energy and telecommuni-
cation companies, structural remedies including asset divestiture have been imposed by
competition authorities. In the EDF/Segebel (SPE) case filed to the European Com-
mission in September 2009,1 the France-based energy giant, EDF, acquired the Belgian
holding company Segebel, who holds 51 percent stake in the second largest electricity
generator in Belgium, SPE. The concerns of concentration in the Belgian wholesale elec-
tricity market and incentive to boost competition in electricity market in Belgium made
the Commission order structural remedies following its Phase I investigation. The reme-
dies mainly include immediate divestiture of the assets of one of the two companies set up
to implement EDF’s planned CCGT project. On the other side of the Atlantic, the Fed-
eral Communications Commission (FCC) approved Verizon Wireless’ acquisition of Rural
Cellular Corporation (RCC) on August 1, 2008 with structural remedies too.2 With con-
cerns of potential competitive harm in the market for mobile telephony services in six
local areas, the FCC requested that one of the two companies divest the licenses and
related operational and network assets in those markets.

Let’s assume that a competition authority has to decide merger remedies such as
asset transfer from the newly dominant firm to its competitors. Or let’s assume that a
regulator has to ignite competition by transferring assets from an incumbent to an entrant.
Theoretically, creating a symmetric oligopoly by splitting the total installed capacity into
several identical lots is sensible in both cases. However, such radical moves exceed the
routine of competition policy and they are rarely employed.3 Obvious reasons are that,
for efficiency purposes, firms have to keep a degree of geographic or technological integrity.

A complete evaluation of reforms or remedies requires a dynamic theory of the full
consequence of reorganizing an industry under certain constraints. In this paper, a firm
is characterized by initial capacity (i.e. productive forces at divestiture date 0) and op-
portunities (i.e. quality of sites and technologies that the firm inherits). Opportunities,

1Case No COMP/M.5549 - EDF/SEGEBEL.
2Applications of Cellco Partnership d/b/a Verizon Wireless and Rural Cellular Corporation, Memo-

randum Opinion and Order and Declaratory Ruling, FCC WT Docket 07-208, FCC 08-181, August 1,
2008 (Verizon Wireless/RCC Order).

3Major exceptions in the US are Alcoa and AT&T, as well state-level and country-level restructuring
of electricity, telecoms or railways.
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modeled as investment costs, summarize conditions under which the firm will operate and
develop.

If firms have the same technologies, investment costs are normally the same for all. In
practice, performance depends on location and availability of inputs other than capital,
labor or energy. In the case of power generation, regions differ considerably in the com-
parative and absolute advantages of wind farms, dams or nuclear plants. The difference
between nominal and actual power is particularly clear for wind farms: with identical tur-
bines (nominal capacity), the intensity and variability of wind power directly determine
production (actual capacity). History and geography may have established asymmetric
positioning of firms among available sites. Typically, one firm is a former monopoly and
the other a start-up, the structure of the industry has been deeply marked by political
interference, or two regions have been interconnected and opened to trade after a long
period of isolation. Moreover, in the markets that have been competitive for a long time,
the firms’ past race to sites may have resulted in clearly differentiated outcomes.

These historical processes, interesting as they may be, are not the focus of this study.
Instead, we take their consequences (here different investment costs) as initial conditions
for structural reforms. Authorizing investments, reshuffling assets, or splitting dominant
firms are especially relevant for mature industries like the energy sector. In this sense,
costs and opportunities are controls for the competition authority or the regulator. This
paper will discuss the type of constraints under which these controls can be used.

Restructuring an industry poses numerous challenges. Two practical limitations may
be encountered. The first comes from technological criteria. Due to economies of scale
in technical expertise, production planning and management, it may be proposed to set
up technologically uniform firms. For example, restructuring could result in one firm
specialized in nuclear plants, a second in gas-fired turbines, a third in dams, and a fourth
in windmills. Other groupings are also possible: green versus dirty, thermal versus non-
thermal, etc. The second limitations comes from geographic criteria. It may be reasonable
to have the plants of a particular firm close to each other. On the contrary, it may be
preferred that each firm should be present in each region. In the case of the electricity
industry, it is important to decide where the boundaries between regions or sub-regions
should be drawn in that interaction between firms via electric grid depends on location.
Therefore, when the competition authority or the regulator decides that N firms should
be established, the key issue is the attribution of various existing technologies or locations
to firms.

The diversity of available policies calls for an abstract version of the trade-off faced
by competition authorities or regulators. The literature connected to our question either
uses rich static models to address competition policy issues, or sets up complete dynamic
descriptive theories. We propose an approach which links these two domains and further
explore the dynamic effect of restructuring an industry in competition policy.

In merger control and competition policy, symmetry versus asymmetry is an on-going
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debate among competition authorities and scholars. Perry and Porter (1985) consider
a model of asymmetric competition among sellers with increasing marginal costs that
depend on firms’ productive capacity. When capacity is tied to physical assets and when
there is a fixed amount of such assets available to the sellers in the market, the competitors’
ability to increase output in response to rising prices is limited. Asymmetry in the initial
distribution of the productive capacity among the sellers can reinforce this effect, making
it particularly attractive for two relatively large sellers to merge. Farrell and Shapiro
(1990a,b) also permit firms to differ in their costs. They find that with no synergies the
market price will go up post merger, even if one firm is highly inefficient and gets to use
the more efficient firm’s technology. McAfee and Williams (1992) study mergers between
firms with asymmetric but constant average costs. They find that mergers increasing the
size of the largest firm will reduce welfare.

Motta et al. (2007) raise questions on the recent symmetric settlements of merger
remedy in Europe and claim that they increase the potential for tacit collusion and joint
dominance. Compte et al. (2002) also cast some doubt on standard merger remedies,
which favor divesting some capacity of the merged firm and transferring it to other com-
petitors in order to maintain a reasonable amount of symmetry between competitors. The
argument is made through a repeated Bertrand game. It confirms that introduction of
asymmetric capacities makes tacit collusion more difficult to sustain when the aggregate
capacity is limited, which may benefit competition.

In fact, repeated games are not suitable for capital-intensive industries. In these in-
dustries, building capacity takes time and thus production flexibility is narrow; moreover,
depreciation of capital being slow, firms see their capacities as fixed temporarily, thus
limiting their ability to commit to a punishment scheme (which involves increased pro-
duction).

Besides the static and the repeated games, theories of the dynamics of industries have
been well developed. Most of them are descriptive in that they try to retrieve empirical
facts like durable asymmetries or to explore the role of preemption. Ingredients may vary
as they may concern economies of scale, indivisibilities, idiosyncratic shocks or learning
curves.

Tombak (2006) studies asymmetry as a strategic choice by firms and extends Fuden-
berg’s and Tirole’s (1984) classic results using the Boeing vs. Airbus case. Besanko and
Doraszelski (2004) find, in a model with lumpy investment and idiosyncratic shocks, that
asymmetry may tend to persist under certain conditions and symmetry is a rare and
temporary coincidence in an ever-moving economy. Koulovatianos and Mirman (2004)
find that when large firms have a cost advantage due to their size, asymmetry leads to
a decline in the supply of all firms, which suggests that cost advantage is an important
aspect to the role of asymmetry in oligopolistic markets. Chen (2008) investigates the
price and welfare effects of mergers through simulations of capacity accumulation. He
finds that asymmetric costs may lead to asymmetric sizes post merger even though firms
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are ex ante identical. Ishii and Yan (2007) use an empirical dynamic model to study the
“make or buy” decision faced by independent power producers (IPP) in restructured U.S.
wholesale electricity markets. Asymmetry in plant characteristics between divested and
new assets leads to the difference in expected profit between the two assets. They find
that divestiture has encouraged new IPP participation and has not crowded out a large
amount of new generation capacity in the long run.

In this paper we produce a simple and workable model in which policies can be eval-
uated analytically. The industry dynamic models that inspire us are in Reynolds (1987)
and Hanig (1986). Differential games are practical to analyze the accumulation of produc-
tive capacity in an imperfectly competitive market. As capacity accumulation takes time,
initial capacities and investment cost are the crucial factors of differentiation between
firms. These are the channels that the competitive authorities or the regulators use to
improve market performance.

We introduce affirmative action which captures the best response to various constraints
faced by competition authorities and regulators: if for some reasons, full-symmetrization
of initial capacities and opportunities is impossible, compensation has to be implemented.
The firm that receives lesser opportunities should receive more initial capacity and the
other way around. These two dimensions of policy, and the way they can compensate
each other, illustrate the importance of having and using a dynamic theory in which firms
may differ in several respects. Affirmative action appears to explain why helping the
disadvantaged firms maximizes social surplus.

Our paper is organized as follows. In Section 2, we set up the model and present the
key assumptions on the constraints faced by the policy-maker. In Section 3, we solve the
model and establish the general features of the investment trajectories. Section 4 describes
the trajectories, in particular their dependency on the choice of the policy-maker. Section
5 provides the comparative statics of the steady state. Section 6 shows the importance
of affirmative action. Section 7 discusses the robustness of the results with respect to
synergies. Section 8 gives a series of extensions. A conclusion follows.

2 The model

2.1 Capacity and market for final product

The game is played in continuous time with an unbounded horizon; in the following game,
t is a date in R+. There are two firms serving the market, i denotes an arbitrary firm
while j denotes the other. Capacity is the maximum a firm can produce at a given date t
(no difference between actual and virtual capacity is made here). Capacity accumulation
by firm i follows

•
ki ≡

dki(t)
dt

= Ii(t)− δiki(t), (1)
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where Ii(t) and ki(t) are, respectively, firm i’s investment and capacity at date t, and δi
is a constant depreciation rate.4

The instantaneous cost of investment is quadratic

Ci(Ii) = γ0
i + γiIi + I2

i

2θi
, (2)

with γ0
i , γi and θi non-negative reals.5 A fundamental difference between our model and

Reynolds’ (1987) or Cellini’s and Lambertini’s (2003) is that, in our case, the two firms
may have different technologies, namely, different investment costs and depreciation rates.
The product is homogeneous and firm i’s marginal production cost is constant and equal
to ci. The global constraint of the industry is an important modeling choice: we expose
in Subsection 2.2 how we model the joint condition on Ci(·) and Cj(·).

The inverse demand function is linear. Thus denoting qi(t) the quantity sold by firm
i at time t, the price is

P (t) = A− qi(t)− qj(t). (3)

Firm i’s production qi(t) is a proportion αi(t) of its capacity ki(t), with αi(t) ∈ [0, 1]; thus
qi(t) = αi(t)ki(t).

As firm i’s instantaneous profit is

πi(t) = (P (t)− ci)qi(t)− Ci(Ii(t)), (4)

firm i’s objective is to maximize the present value of its profit flow∫ ∞
0

πi(t)e−ρitdt, (5)

where ρi is firm i’s discount rate. The control variables are the instantaneous investment
rate Ii(·) and the rate of capacity utilization αi(·); accumulation equation (1) and firm
j’s strategy are the constraints.

2.2 Sites and investment costs

We propose a simple theory of the feasibility constraint faced by the competition authority
or the regulator in the allocation of costs. Let’s focus on the trade-off between Ci(·)
and Cj(·). Clearly, sensible comparative statics has to be made along certain efficiency
frontier, i.e. where Ci(·) cannot be decreased without increasing Cj(·). Our ideas are
close in inspiration to those expressed in Perry and Porter (1985) or Farrell and Shapiro
(1990a,b) for the analysis of mergers. However, the substantial difference is that, in our
model, restructuring of an industry impacts investment rather than production costs.
Our focus on investment costs only is motivated by its direct relevance for the industry
dynamics.

4This is inspired by the growth model in Solow (1956) and Swan (1956).
5Hanig (1986) defines a quadratic adjustment cost which depends on the net investment Ii(t)−δiki(t);

the advantage and the limitation are that investment cost is null in the stationary state. Fudenberg and
Tirole (1983), in a model based on Spence (1979), assume no depreciation.
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Assume that there is a continuum of sites parameterized by θ ∈ [θ, θ]. The investment
cost attached to site θ is γ(θ)z + z2

2θ where z is the site specific rate of investment and
γ(·) is a positive function. Firm i can be described by the sites it owns. Ownership is
summarized by ωi(θ), the mass of θ-sites that firm i owns out of an exogenous total h(θ),
with ωi(θ)+ωj(θ) = h(θ). When it invests a total Ii, firm i optimally spreads its capacity
augmentation across the sites it owns, which yields the aggregate Ci(Ii). We find the
expression of costs already given above (see equation 2):

Given that γi is the average γ(θ) (weighted by wi(θ) · θ) and that θi is the weighted
(by wi(θ)) sum of θ, we have the overall constraints:

θi + θj = Θ, (6)
θiγi + θjγj = Γ, (7)

where Θ and Γ are economy-wide (i.e. independent of site sharing between firms) invest-
ment costs. All calculations and exact expressions are in Appendix A.1.

2.3 The competition authority’s problem

The competition authority has to evaluate policies by taking into account their full con-
sequences, in particular capital trajectories (ki(t), kj(t))t≥0. We will first determine these
trajectories by solving the game and then calculate the present profits, the present con-
sumer surplus and the present social surplus.

The constraint on capacity at reform date 0 is

ki(0) + kj(0) = K(0), (8)

where K(0) is total initial capacity. To simplify policy analysis, we shall assume at the
evaluation stage that sites differ only with respect to the quadratic part (γ(·) is then a
constant function). The two constraints on costs (6) and (7) boil down to (6):

A policy is summarized by (ki(0), kj(0), θi, θj), a choice of initial capacities and per-
spectives for the two firms under the two constraints (8) and (6). Some of our results will
be illustrated with the Edgeworth boxes in Figure 1, where each point represents a policy.
Two regions represent the policies that compensate an advantaged firm in one dimension
by a disadvantage in the other (affirmative action), and vice versa. The other two regions
are giving advantages to one firm in both dimensions. We shall see that affirmative action
is generally preferable.
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θi

Monopoly i

Monopoly j

Affirmative action

ki(0)/K(0)

Affirmative action

Symmetry

Biggest gets more

Biggest gets more

kj(0)/K(0)

θj 

Figure 1: A kind of Edgeworth box.

3 The Cournot-Nash equilibrium

3.1 The equilibrium

The existing literature on differential games focusses on two types of strategies: open-loop
and closed-loop strategies.6 Both types can form a Nash equilibrium. In the open-loop
equilibrium, strategies are just functions of time; they are weakly time consistent.7 In
the closed-loop equilibrium, one player defines actions that depend on what the other has
done and the equilibrium is sub-game perfect.

We explore the open-loop solution in the study for three reasons. First, the solution
is unique and analytically tractable. This is extremely convenient for pursuing the com-
parative statics that the competition authorities need to decide on policy. In contrast,
due to the multiple solutions of the nonlinear characteristic equations, the calculation of
the closed-loop equilibrium requires a selection that seems resistant to algorithmic treat-
ment.8 Second, far from being an inferior concept, the open-loop equilibrium represents
specific assumptions on players’ information (Dockner et al., 2000, chapter 4). For ex-
ample, the other’s position may be imperfectly observed, e.g. with delay or noise; also,
if investment has to be programmed in advance, reaction to the opponent’s decisions
may not be immediate and sharp. Since delayed state variables are hard to handle, the
open-loop equilibrium may be a reasonable approximation.9 Third, open-loop strategies

6By closed-loop we mean here the feedback solution as in Reynold (1987). See Dockner et al. (2000)
for a complete survey.

7At any intermediate instant τ during the game, players will find it optimal to implement the strategies
decided at t = 0 for t = τ given the state at time τ .

8Reynolds’ (1987) ingenious resolution of the fully symmetric (symmetry halves the number of un-
knowns) case is evocative of the difficulty one faces with the closed-loop equilibrium in our more general
case.

9It may be felt that the open-loop equilibrium is inadequate for representing reaction to unexpected
shocks. However, the closed-loop equilibrium doesn’t address this problem (it is designed as a theory of
reaction to voluntary deviations by the competitor, which is a totally different issue).
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capture well the ability to commit on the part of investors. Playing strong is known to
be an individually beneficial strategy; it can become a mutually beneficial one if it limits
temptation to play a preemption war (a dynamic version of the prisoner’s dilemma).10

Whether a firm plays strong is a modeling choice that can be discussed rather than a
logical necessity.

3.2 General solution

The law of motion followed by firm i’s investment is

(ρi + δi)Ii −
•
I i + (2αiki + αjkj)αiθi = ((A− ci)αi − (ρi + δi)γi)θi. (9)

See proof in Appendix A.2.
In the differential game in Dockner (1992), full utilization of capacity is assumed (it

was not in the two-period setting of Kreps and Scheinkman, 1983). Firms in our model
can choose to leave a fraction of their capacities idle. For example, if a firm inherits
huge capacity in a small market (e.g. due to permanent reduction of demand caused by
the introduction of a substitute), withholding capacity makes sense. The method we
follow is simple. We characterize in detail trajectories along which firms fully utilize their
capacities. We check equilibrium conditions ex post and show the clear practical relevance
of the full utilization scenario (see also Section 4).

Using accumulation equation (1), we eliminate investments to simplify (9) as
••
k i + δi

•
ki − (2θi + (ρi + δi)δi) ki − θikj + (A− ci − (ρi + δi)γi)θi = 0. (10)

We show in Appendix A.3 that capacities, as functions of time, have the form

ki(t) = k∗i + k
(1)
i eλ1t + k

(2)
i eλ2t, (11)

where λ1 and λ2 are two strictly negative reals.11 We also provide restrictions on the other
parameters. The practical consequence is that once initial capacities ki(0) and kj(0) and
investment costs θi and θj are chosen or known, trajectories are in fact fully determined.

3.3 Simplification

The capacity trajectories are entirely solvable with asymmetric costs. Calculation of the
surpluses, which is on the basis of any policy evaluation, require a few simplifications:

1. Perfect capital markets: Firms have the same interest rate ρ.

2. Homogenous capital: Firms have the same depreciation rate δ.
10Reynolds (1987) shows that the closed-loop equilibrium is more competitive—less profitable—than

the open-loop equilibrium for that reason.
11They are the negative eigenvalues of the matrix characterizing the dynamics of the system.
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3. γi(·) = Constant. The only constraint on costs is θi + θj = Θ.12

4. Identical production cost (ci = cj = c).

Moreover, we will denote
A ≡ A− c− (ρ+ δ)γ. (12)

With these simplifications, λ1 and λ2 can be calculated explicitly:

λ1 = − δ
2 −

1
2

√
5δ2 + 4

(
δρ+ θi + θj +

√
θ2
i + θ2

j − θiθj
)
, (13)

λ2 = − δ
2 −

1
2

√
5δ2 + 4

(
δρ+ θi + θj −

√
θ2
i + θ2

j − θiθj
)
. (14)

Note that λ1 < λ2 < 0. These explicit expressions simplify the characterization of the
trajectories. Convergence speeds only depends on opportunities, not on the sharing of
capacities.

4 Dynamics
Figure 2 delivers the essential message. Panel (a) gives an asymmetric case. Panel (b)
gives the symmetric case θi = θj, which we comment in detail.

E is the steady state. Trajectories combine two movements:

1. The fastest, parallel growth, associated with λ1. Trajectories follow the 45◦ line:
AE arrives from below, CE arrives from above.

2. The slowest, difference reduction, associated with λ2. Trajectories follow FE and
F ′E, along which total capacity is constant.

At each instant, capital is predetermined but production decisions are controlled
by utilization rates and are thus very flexible. An understanding of the instantaneous
Cournot game (in which only demand and the linear production costs are considered) suf-
fices to calculate αi and αj. More precisely in Figure 2, CD supports player i’s Cournot
reaction function ki = 1

2(A−c−kj), and BC supports player j’s Cournot reaction function
kj = 1

2(A − c − ki). Thus the quadrilateral ABCD is the region in the plane (ki, kj) in
which players are constrained by their actual capacities; necessarily, αi = αj = 1.

The steady-state E is in the interior of ABCD, meaning that capacity is fully employed
when the economy converges.13 Finding a large and realistic set of initial conditions such
that capacity is fully utilized all along the accumulation path is now straightforward.
It suffices to look at the trajectories that converge to the steady states, follow them
backwards, and eliminate their portions outside the full-utilization region ABCD. We

12See Subsection 2.3.
13In the steady state, it is immediate to check that the left hand side of (36) is strictly positive, thus

we conclude that µi > 0, i.e. αi = 1.
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propose a simple (though not maximal) “safety zone” in which assuming full-utilization
all along the trajectories is consistent: AGFCF ′G′ in Figure 2.14

In view of this, we can now state:

Proposition 1 (Relevance of full-utilization scenarios). In any equilibrium, capacities
become fully-utilized and remain so as the long-run is sufficiently approached.

  

Safe zone

C Short run Cournot

E Long run equilibrium

F

F’

ki

kj

B

A
D

C

E

G

G’
  

Safe zone

C Short run Cournot

E Long run equilibrium

F

F’

ki

kj

B

A
D

C

E

G

G’

(a) An asymmetric case. (b) The symmetric case.

Figure 2: Trajectories.

Along all trajectories except the 45◦ line (or the equivalent in the generic case), one
capacity is monotonic whereas the other peaks and then decreases. This is a consequence
of the different speeds of the two pure movements described above. In this sense, we have
an overshooting effect for at least one of the firms.15,16

Overshooting here can be interpreted as a form of transitory preemption. The intuition
is that building capacity takes time, thus the firm starting with large capacity is able
to take advantage of its advance and to play a temporary monopoly strategy; indeed,
having more capacity is akin to moving first, i.e. preempting the market. This temptation
vanishes as the small firm catches up: in the long run, maintaining the advance is too
costly since it would suppose sustaining a higher rate of investment (higher marginal cost)
for the same marginal revenue.

As effects are continuous with respect to cost allocation, generalization to θi 6= θj

is direct. One movement could be labeled approximate parallel growth, and the other
approximate difference reduction, where one capacity-unit less for one firm corresponds
to about one capacity-unit more to the other firm. Overshooting for one of the firms is
also typical. Overshooting of total capacity now becomes prevailing on one side of the
approximate parallel growth trajectory; on the other side, total capacity simply grows.

14If a trajectory starts somewhere in the shaded area AGFCF ′G′, then it stays therein. This safety
zone is bounded by the axes, the Cournot best responses (BC and CD) and edges GF and F ′G′ that
are parallel to the 45◦ line.

15Strictly speaking, if a firm starts big and close to the steady state, we may observe the contraction
of capacity only for this firm.

16This confirms Hanig’s (1986) simulations.
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5 The long run
In the steady state k∗i = I∗i /δ. Thus we find

k∗i =

(
1+

(ρ+δ)δ
θj

)
(

2+
(ρ+δ)δ
θi

)(
2+

(ρ+δ)δ
θj

)
−1
· A. (15)

A higher θi decreases the cost of sustaining any level of capital. Consistently, the
equilibrium capacity of firm i is increasing with respect to θi and decreasing with respect
to θj. Note that when θi is close to an extreme point (0 or Θ), the economy behaves as if
the market were monopolized.

Proposition 2. The steady-state profit π∗i is such that

∂π∗i
∂θi

> 0 and ∂π∗i
∂θj

< 0. (16)

Proof. See Appendix A.4.

Each firm’s steady-state profit decreases in its own instantaneous investment cost, but
increases in its rival’s instantaneous investment cost. When we take the constraint on the
allocation of sites into account, these two effects draw in the same direction, thus

dπ∗i
dθi

∣∣∣∣∣
θi+θj=Θ

> 0 and dπ∗i
dθj

∣∣∣∣∣
θi+θj=Θ

< 0. (17)

Proposition 3. Equalizing investment costs

1. maximizes the steady-state total capacity, and thus the steady-state consumer sur-
plus, and

2. maximizes the steady-state total surplus.

Proof. See Appendix A.5.

The second point is not a consequence of the first, since the proposition says nothing
of profits. In fact, profits are maximized when one firm collects all sites and monopolizes
development and sales. So when a regulator has to assign sites to firms, full symmetry of
capacities and opportunities gives the most propitious conditions for competition in the
long run.

The intuition for these results is very similar to that of static Cournot models.
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6 Affirmative action
How should competition authorities or regulators approach the long run optimum? Firms
could be given equal numbers of plants of various types of technologies; in theory, there
is considerable flexibility in the way sites can be reallocated to yield similarly performing
firms if the only constraint were θi+θj = Θ and ki(0)+kj(0) = K(0). In practice, however,
the flexibility in the grouping of plants or technologies may be limited: the competition
authority may follow a geographical or technological logic when it comes to redefining the
two firms; more importantly, sites cannot be reshuffled without reshuffling assets.

The former argument says that, presumably, there are constraints on the policies that
can be chosen in effect in the Edgeworth box (see Subsection 2.3). Whether the fully
symmetric allocation of plants is feasible is a matter of circumstances. We examine now
the consequences of these restrictions for policy. We start with descriptive comparative
statics and we continue with normative assessments.

The first approach to the dynamics is to draw “half-lives”, which is the time needed
to cover half the distance between the current state and the steady state. As there are
two combined processes, we have half-lives T1 and T2 with

T1 = − log[2]/λ1 < T2 = − log[2]/λ2, (18)

where λ1 and λ2 are defined at the end of Section 3 and interpreted in Section 4.

Proposition 4 (Redistributing opportunities). More asymmetric opportunities foster ca-
pacity growth (T1 decreases) and cause longer durability of initial differences in capacities
(T2 increases).

Proof. See Appendix A.6.

For simulations, the depreciation and the interest rates take plausible values. The
others parameters are arbitrarily simple.

Table 1: Parameters
Demand A = 1
Production cost c = 0
Investment cost Θ = 1/10 with θi + θj = Θ
Rates δ = .05 ρ = .08
Capacity K(0) = 1/2 with ki(0) + kj(0) = K(0)

Figure 3 shows how T1 and T2 vary with θi. We see that T1 (growth) is relatively
insensitive to the sharing of opportunities. On the contrary, T2 (difference reduction)
becomes relatively high with unequal sharings: half-life towards the steady state takes as
much as 6 years when a firm is given essentially all sites.

Note also that a faster depreciation (higher δ) accelerates convergence along the two
dimensions. Intuitively, since investment is less durable, the current state is less durably
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Figure 3: Half-lives.

affected by the past, which means that long-term values can be attained quickly. In
addition, the steady-state capacities decrease as δ increases; thus an economy starting
with no capacity will always approach its long run equilibrium faster if δ is higher (less
distance to be covered and higher speed). Of course this intuition doesn’t recognize that
investment rates are endogenous.

These descriptive results depict the behavior of the economy in a useful way. However,
competition authorities need firmer normative guidance. To look more precisely at the
impact of asymmetry on consumer welfare, a natural (and simple) angle is to look at total
capacity over time, which represents total consumption. We start with the impact of the
initial conditions.

Proposition 5 (Redistributing initial capacity). Fix θi and θj. Without loss of generality,
assume that θi ≥ θj (Firm i has the least costs).

Denote total capacity as K(t) ≡ ki(t) + kj(t). Fix total initial capacity K(0). ki(0) is
the portion allocated to Firm i, while K(0)− kj(0) goes to Firm j.

1. Total capacity at date 0 and in the long run are independent of initial sharing.

2. Total capacity K(t) increases more slowly at date 0 for higher ki(0).

3. Total capacity K(t) at any date t > 0 is smaller for higher ki(0).

Proof. See Appendix A.7.

The proposition provides a strong result: initial conditions determine uniform ranking
of capacity over time. We can directly conclude the impact on consumer’s welfare without
further calculations: consumers prefer that less efficient firms (in terms of investment cost)
be compensated by better opportunities. The result is even stronger: consumers would
prefer maximal compensation, i.e. giving all the capacities to the less efficient firm. See
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Figure 4(a). A corollary is that if costs are symmetric (θi = θj), total capacity as a
function of time is independent of the initial allocation of the existing capacity.

The intuition is that longer survival of the inefficient firm constrains the efficient
firm for a longer time. The efficient firm has to accommodate its non-trivial rival in
production while preparing, with smooth investment, its future dominance. Though the
initial conditions on capital vanishes in the long run, the transition is so important for
consumers that they want such extreme remedies if exact symmetry is not possible.

The appreciation by firms is of course very different, as we illustrate in Figure 4(b).
Firms collectively prefer monopolies. Low contours have not been traced for legibility.
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Figure 4: Synthesis.

The symmetric initial allocation θi = θj = Θ/2 and ki(0) = kj(0) = K(0)/2 is a
singular point. Indeed, all firms are symmetric in cost parameters and initial capacities;
thus in the Edgeworth box, social welfare (or consumers’ surplus or total profit) exhibits
a central symmetry. It is less clear why it should be a maximum, a minimum or a saddle-
point. In fact, all possibilities are open.

Figure 5 shows the contours of the present value of total surplus in the Edgeworth
box.17 We retrieve numerically the maximum for the fully symmetric situation. The
stretched shape illustrates that constraints on ki(0) (respectively θi) have to be compen-
sated by distortion on θi (respectively on ki(0)).18 Indeed, the firm with lesser investment
opportunities has to be compensated with more initial capacity if the competition au-
thority or the regulator seeks maximum efficiency.

17Note that the function can be calculated exactly with Mathematica, but its full expression takes
several pages.

18The sign of the off-diagonal terms of the Hessian matrix informs on how contours are stretched.
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7 Synergies
The constraint on site allocation θi + θj = Θ is without synergies. We could assume
instead that grouping sites is efficiency enhancing or degrading. A simple formulation is

θi + θj + aθiθj
Θ = Θ with a ∈ (−∞, 1). (19)

Positive a means that concentration degrades the economy’s investment potential, thus
reinforcing the interest of promoting two equal firms. Negative a means that there are
synergies: θi + θj is maximal for a monopoly. This may lead the competition authority
to prefer to asymmetric structure. We study this case now using parameters in Table 2.

Table 2: Parameters
Demand A = 1
Production cost c = 0
Investment cost Θ = 1/100 with θi + θj + aθiθj

Θ = Θ
Synergy parameter a < 0
Rates δ = .05 ρ = .08
Capacity K(0) = .17 with ki(0) + kj(0) = K(0)

The contours of the long-run total present surplus in Figure 6(a) have the control
variable θi − θj on the horizontal axis and the exogenous synergy parameter a on the
vertical axis. For a below −3.5, the optimal structure in the long run is the monopoly.
Above −3.5, symmetric duopoly is optimal.

To show in this context the importance of transition, we took a = −.5. Though
in this case symmetry is preferred in the long-run, the value of a implies that splitting
sites into two equal lots decreases θi + θj by about 10% compared to the maximum. In
Figure 6(b), we traced the contours of the total present surplus with K(0) = .17 as in
Table 2. Low contours have not been traced for legibility. We see two maxima involving
both an asymmetric structure of the industry (they are equivalent by permutation). They
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represent the optimal social trade-off between concentrating sites for investment efficiency
(due to a < 0) and balancing market power by avoiding the establishment of a monopoly.
This is the affirmative effect again: a disadvantaged firm in one dimension is compensated
in the other. This is entirely due to the dynamics, since the optimum policy here differs
from the long-run optimal choice.
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Figure 6: Total surplus with synergies.

8 Extensions
Extension 1. Some new sites may be discovered; others may be exhausted or degraded.
The impact on the parameters could be a change of Θ. Assume that we expand Θ keeping
θi = θj = Θ/2; we take γ = c = 0 to shorten expressions. The steady-state flow of profit
is then

π∗sym(Θ) = Θ(Θ+(2ρ+δ)δ)
(3Θ+2(ρ+δ)δ)2 · A2. (20)

We find

∂π∗sym(Θ)
∂Θ = δ(2δ3+6δ2ρ+δ(Θ+4ρ2)−2Θρ)

(3θ+2(ρ+δ)δ)3 · A2 Q 0, (21)
∂π∗sym(Θ)

∂δ
= −2Θ(2δ3+6δ2ρ+δ(Θ+2ρ2)−Θρ)

(3Θ+2(ρ+δ)δ)3 · A2 Q 0. (22)

To simplify the discussion, let’s assume that Θ is “large”.
The sign of ∂π

∗
sym(Θ)
∂Θ is given approximately by δ−2ρ. Very patient (impatient) players

gain (lose) if their investment costs decrease: they see (they don’t see) the durable impact
of investment on profits and thus tend (not) to restrict themselves.

The sign of ∂π
∗
sym(Θ)
∂δ

is given approximately ρ−δ. Very patient players suffer more from
higher depreciation rate, which is the intuitive result (investment cost raises and commit-
ment through investment regresses). For very impatient players, a higher depreciation
rate is beneficial as it diminishes equilibrium capacities, a discipline they are not able to
impose on themselves. They benefit from a higher depreciation rate mostly because they
are discouraged from investing (direct effect).
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This comparative statics shows that patient players react less aggressively to cost
reductions: they prefer to benefit from cheaper capital which reduces their bill, rather
than increase capacity by too much, which would undermine profitability. In contrast,
impatient players can’t resist the temptation to grow. In both comparisons above, they
may benefit from higher costs.

Extension 2. A has been treated up to now as a constant. In fact, it can be replaced by
A(t), an arbitrary function of time without changing the algebra. More precisely, in the
expressions in which A appears, it can be revised by replacing A with A(t). The conditions
for full utilization of capacity may become complex, but the case A(t) = A exp(gt), with
g > 0 a growth rate, could be used to avoid this problem.

9 Conclusion
The dynamic oligopoly model presented in this paper makes a case for affirmative ac-
tion in competition policy. The argument has to be examined with care, however, since
misunderstanding the effects would lead to suboptimal decisions.

Obviously, firms do better if competition is minimized, namely, if one firm gathers
all opportunities and capacity at the starting point, and quickly builds and sustains a
monopoly position in the long run.

As far as consumer surplus is concerned, if investment costs cannot be set exactly equal,
symmetric allocation of initial capacity is no longer optimal: firms with less investment
opportunities (higher investment cost) should be compensated with as much capacities as
possible at the initial stage. That is what we called affirmative action.

The complete analysis shows that these two opposite mechanisms compensate each
other when social surplus is considered. If competition authorities or regulators are free
to set investment cost and initial capacity independently, symmetry maximizes social
surplus. By keeping firms in equal positions, the authority avoids creating quasi-monopoly
or quasi-Stackelberg situations, which would be detrimental to consumers.

The role of constraints on restructuring becomes clear. The results directly uncover the
important issue of policy consistency. Assume the authority can intervene frequently but
is limited, every time it acts, in its ability to reshuffle assets. Once the short run benefits
of asymmetry are reaped, it will wish to restructure the industry again to get another
crop of short run benefits. This may be feasible because the constraint that prevented full
equalization in the first place is likely to relax over time. However, the rational anticipation
of such discretionary interventions by firms would perturb and invalidate the notion of
equilibrium we have studied. In practice, it is extremely unusual for a competition or
regulatory authority to get a second chance to restructure an industry.

Future research along these lines might consider other aspects of competition policy.
One example is planned capacity transfer from one firm to the other at dates posterior to
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the first reform. They might be associated with monetary transfer (ceding conditions).
For example in 2001, the European Commission urged the French energy giant, Electricité
de France (EDF), to sell part of its capacities through auction as an EDF/EnBW merger
remedy.19 These capacities are called virtual power plants, which are a form of financial
instead of physical divestiture as analyzed in this paper. It is worthwhile to investigate
whether the welfare effect of affirmative action still hold when the timing of the game is
changed and when financial transactions are involved.

19http://ec.europa.eu/comm/competition/mergers/cases/decisions/m1853_en.pdf
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A Proofs.

A.1 Constraint on investment costs

Investment is represented by the function zi(θ); the corresponding cost for site θ is
γ(θ)zi(θ) + zi(θ)2

2θ .
Let’s define

〈f(θ), g(θ)〉 ≡
∫ θ

θ
f(θ)g(θ)dθ, ∀g, f. (23)

Therefore, Ci(I) as defined in Section 2 solves the following program

Ci(I) = min
zi

〈
ωi(θ), γ(θ)zi(θ) + zi(θ)2

2θ

〉
, (24)

s.t. I = 〈ωi(θ), zi(θ)〉 .

The first order condition gives (λ is the Lagrange multiplier)

zi(θ) = (λ− γ(θ))θ, ∀θ. (25)

The relationship between λ and I can now be calculated:

λ = I+〈ωi(θ),γ(θ)θ〉
〈ωi(θ),θ〉 . (26)

We can now express firm i’s investment cost

Ci(I) = 〈ωi(θ),γ(θ)θ〉2−〈ωi(θ),θ〉〈ωi(θ),γ(θ)2θ〉
2〈ωi(θ),θ〉 + 〈ωi(θ),γ(θ)θ〉

〈ωi(θ),θ〉 I + 1
2〈ωi(θ),θ〉I

2. (27)

The (constant) first term γ0
i equals 0 if γ(·) is constant, as we assume in the text for

policy analysis. We can identify directly γi and θi:

γi = 〈ωi(θ),γ(θ)θ〉
〈ωi(θ),θ〉 , (28)

θi = 〈ωi(θ), θ〉 . (29)

Given that ωi(θ) + ωj(θ) = h(θ) (all sites are allocated), we have 〈ωi(θ), ·〉 + 〈ωj(θ), ·〉 =
〈h(θ), ·〉, therefore

θi + θj = Θ = Constant, (30)
θiγi + θjγj = Γ = Constant, (31)

with Θ = 〈h(θ), θ〉 and Γ = 〈h(θ), γ(θ)θ〉.

A.2 Fundamental dynamic equations

Using the inverse demand function, we can write the Hamiltonian function of firm i as

Hi(I, α, k) = (A− αiki − αjkj − ci)αiki − γiIi −
I2
i

2θi
+ λi(Ii − δiki)− µiαi. (32)
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where λi is the co-state variable associated with ki and µi is the Lagrange multiplier of
the constraint forcing capacity utilization not to exceed 1.

The first order conditions are

∂Hi
∂αi

= 0, (33)
∂Hi
∂Ii

= 0, (34)

and the adjoint equation is
− ∂Hi

∂ki
=
•
λi − ρiλi. (35)

Consequently,

ki (A− 2αiki − αjkj − ci) = µi, (36)
−γi − Ii/θi + λi = 0, (37)

δiλi − αi (A− 2αiki − αjkj − ci) =
•
λi − ρiλi. (38)

From (37), we can derive
•
λi =

•
I i/θi. (39)

Plugging these results into (38), we get equation (9) in the text.

A.3 Trajectories

Let’s define two functions of time hi ≡
•
ki and hj ≡

•
kj. Let’s denote A − ci − (ρi + δi)γi

by Ai.
We rewrite the linear second-order system of equations as a four-dimensional first-order

system:
•
H = MH −N, (40)

where H = (ki, kj, hi, hj)T , N = (0, 0, Aiθi, Ajθj)T and

M =


0 0 1 0
0 0 0 1

2θi + (ρi + δi)δi θi −δi 0
θj 2θj + (ρj + δj)δj 0 −δj

 . (41)

We can now state:

Proposition 6. In the regime where capacities are fully utilized, capacities, as functions
of time, have the form

ki(t) = k∗i + k
(1)
i eλ1t + k

(2)
i eλ2t (42)

where λ1 and λ2 are the two strictly negative eigenvalues of matrix M .
These six parameters k∗i , k

(1)
i and k(2)

i (there are two firms) are such that

1. k∗i and k∗j are uniquely defined as the particular solution M−1N .
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2. (k(m)
i , k

(m)
j ) with m = 1, 2 are the 1st and 2nd coordinate of an eigenvector of M

associated with eigenvalue λm. This fixes the ratio between k(m)
i and k(m)

j .

3. If ki(0) is firm i’s initial capacity, ki(0) = k∗i + k
(1)
i + k

(2)
i .

Proof. The eigenvalues of M are denoted by λs with s = 1, 2, 3, 4. At least one of them
is negative since Tr[M ] = −(δi + δj) < 0. In fact,

Det[M ] = (2θi + δi(δi + ρi))(2θj + δj(δj + ρj))− θiθj > 0, (43)

meaning that there is an even number (namely 2 or 4) of negative eigenvalues. Moreover,
the coefficient of the 2nd order in the characteristic polynomial Det[M − λI] is

(−1)2

2! ·
∑
s,s′={1,2,3,4}

s 6=s′
λsλs′ = −2(θi + θj)− (δ2

i + δ2
j − δiδj + ρiδi + ρjδj) < 0, (44)

meaning that eigenvalues can’t be all negative. We conclude that there are two negative
eigenvalues (noted λ1 and λ2) and two positive ones (noted λ3 and λ4). The weights
given to diverging exponentials must be null (otherwise capacity diverges to ±∞ as t→
+∞).

A.4 Proof of Proposition 2

We have

π∗i =
 (

1+
(ρ+δ)δ
θj

)(
2+

(2ρ+δ)δ
θi

)
2
(

2+
(ρ+δ)δ
θi

)(
2+

(ρ+δ)δ
θj

)
−1
· A

2

+ γρ

(
1+

(ρ+δ)δ
θj

)
(

2+
(ρ+δ)δ
θi

)(
2+

(ρ+δ)δ
θj

)
−1
· A. (45)

As A doesn’t depend on θi nor θj, straightforward calculations show that

∂π∗i
∂θi

> 0 and ∂π∗i
∂θj

< 0. (46)

A.5 Proof of Proposition 3

Total long-run capacity is

k∗i + k∗j =

(
2+

(ρ+δ)δ
θi

+
(ρ+δ)δ
θj

)
(

2+
(ρ+δ)δ
θi

)(
2+

(ρ+δ)δ
θj

)
−1
· A. (47)

Variations with respect to θi can be analyzed directly. The derivative changes sign only
once from positive to negative at θi = Θ/2.

The second point is proved with the help of the formal calculator Mathematica. The
derivative of the total long run surplus has three roots. One is Θ/2; the other two are
symmetric with respect to Θ/2 and one of them is negative (the expression takes several
lines). These conditions guarantee that the surplus has a unique extremum (at Θ/2) in
[0,Θ] when θi varies. The second-order condition at Θ/2 is easy to verify as symmetry
simplifies the expression.
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A.6 Proof of Proposition 4

The variations of the eigenvalues only depend on the variations of θ2
i +θ2

j−θiθj. Along the
efficiency frontier, θi + θj = Θ, thus we have to analyse θ2

i + θ2
j − θiθj = Θ2 − 3θi(Θ− θi).

We find that |λ1| increases and |λ2| decreases as the situation becomes more symmetric.
The consequence is that, for more symmetric distributions of sites, growth of total capacity
(related to λ2) is slower whereas the difference reduction (related to λ1) is faster.

A.7 Proof of Proposition 5

It is obvious from the analysis of the steady state (i.e. the particular solution to the
differential system) that the total capacities at date 0 and in the long run are independent
of the initial allocation rule (ki(0), kj(0)). At date 0, the slope of the total capacity is
denoted by ξ with

ξ = ∂K(t)
∂t

∣∣∣∣∣
t=0

= λ1(k(1)
i + k

(1)
j ) + λ2(k(2)

i + k
(2)
j ). (48)

Calculations of the eigenvectors and eigenvalues plus utilization of Proposition 6 (point
2) gives us the effect of ki(0) on the slope ξ

∂ξ

∂ki(0) = − (θi−θj)(λ1−λ2)
2
√
θ2
i−θiθj+θ

2
j

< 0. (49)

The total capacity increases more at date 0 when more of the initial capacity is given to
the efficient firm.

If we look at the total capacity K(t) at any date t > 0, the derivative of slope ξ(t)
with respect to ki(0) will be

∂ξ(t)
∂ki(0) = − (θi−θj)(eλ1t−eλ2t)

2
√
θ2
i−θiθj+θ

2
j

< 0, (50)

which proves the proposition.
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