1. Einstein summation convention is used. Upper and lower indices respectively refer to contravariant and covariant components.

2. a ij is the covariant form

Résumé

The covariant derivative of the 4-components electromagnetic potential in a flat Minkowski spacetime is split into its antisymmetric and symmetric parts. While the former is well known to describe the electromagnetic field, we show that the latter describes the associated particles. When symmetry principles are applied to the invariants in operations of the Poincaré group, one finds equations which describe the structure of the particles. Both parts of the tensor unify the concept of matter-wave duality. Charge and mass are shown to be associated to the potential.

Introduction.

Classical Electrodynamics [START_REF]The expression "action électro-dynamique[END_REF] (CED) was developed during the XIX th century and its theoretical laws synthesized by J.C. Maxwell [START_REF] Maxwell | A treatise on Electricity and magnetism[END_REF] led to astounding technical applications especially in the field of telecommunications [START_REF] Huurdeman | The worldwide history of telecommunications[END_REF]. This theory was perfectly adapted to the macroscopic world and its successes led physicists to apply it also to the electron ( [START_REF] Lorentz | The theory of electrons and its applications to the phenomena of light and radiant heat[END_REF]) . We know that this try was a complete failure which led to the development of Quantum Mechanics in order to describe the atomic structure ( [START_REF] Bohr | La théorie atomique et la description des phénomènes[END_REF], [START_REF] Born | La Statistique en Physique[END_REF], [START_REF] De Broglie | Recherches sur la théorie des quantas[END_REF], [START_REF] Eisenberg | Understanding Heisenberg 'magical paper' of july 1925, a new look at the calculational details[END_REF], [START_REF] Schrödinger | An undulatory theory of the mechanism of atoms and molecules[END_REF], [START_REF] Pauli | Prinzipien der Quantentheorie[END_REF], [START_REF] Dirac | The fundamental equations in Quantum Mechanics[END_REF], [START_REF] Neumann | English Translation : Mathematical fundations of quantum mechanics[END_REF] ) and then Quantum Electrodynamics (QED) ( [START_REF] Schweber | QED and the men who made it[END_REF]). The purpose of QED was to model elementary particles and their interactions. During more than 70 years, progress in experimental discoveries allowed to refine QED leading ultimately to the elaboration of the standard model of elementary particles. This period is marked by spectacular discoveries of new particles, but also by theoretical predictions such as the Higgs boson which was experimentally confirmed [START_REF] Aad | Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC[END_REF]. QED is now a strong mature theory but it fails in explaining "Black Matter" which manifests itself in cosmology where it accelerates the rotation of outside stars in spiral galaxies. It fails also to explain the size of the electron. The concept of particle-wave duality [START_REF] De Broglie | Recherches sur la théorie des quantas[END_REF], [START_REF] Born | La Statistique en Physique[END_REF] is clearly demonstrated, even for large molecules [START_REF] Arndt | Wave-particle duality with C 60 molecules[END_REF], [START_REF] Eibenberger | Matter-wave interference of particles selected from molecular library with masses exceeding 10 000 amu[END_REF] but remains also obscure. The electron is the elementary particle which is the best known ([17]) : it can be isolated, manipulated ( [START_REF] Ekstrom | The isolated Electron[END_REF]) and its properties are characterized by four quantities which are its charge, its mass, its angular momentum and its spin. However there is no classical equivalent to the spin, which still confers some mystery to this particle. The first model of the electron was a little sphere with a circulating current [START_REF] Lorentz | The theory of electrons and its applications to the phenomena of light and radiant heat[END_REF], [START_REF] Eddington | The Mathematical Theory of Relativity[END_REF]). But such an electron should explode and another model (in the context of CED) was studied by M. Born and L. Infeld in 1934 ( [START_REF] Born | Proc. R. Soc[END_REF]) : they introduced non-linear electrodynamics and this subject has never been abandoned since [START_REF] Kerner | tsov, Topics in Born-Infeld electrodynamics[END_REF] and has been applied to various subjects such as light-light interaction [23], string theory [START_REF] Tseytlin | On non-abelian generalization of the Born-Infeld action in string theory[END_REF], [START_REF] Fradiin | Non-linear Electrodynamics from quantized strings[END_REF] or cosmology [START_REF] Denisov | The non-linear electrodynamics bending of the X-rays and Gamma-ray in the magnetic field of pulsars and magnetars[END_REF] . Now, facing the considerable success of QED, and the huge amount of work done in CED, including nonlinear CED, it seems improbable, even impossible, that CED has still hidden properties which can help the understanding of QED and some of its weaknesses : one can be very skeptical at this idea. However, the aim of the present article is to try it, starting only from first principles without any ad-hoc assumptions : The fundamental remark is that CED is based on the electromagnetic field whose components are those of an antisymmetric tensor, usually named F ik ([27]). F ik is the antisymmetric part of the covariant derivative D(A i ) of the 4-potential vector A i in Minkowski's spacetime. Our study is devoted to the symmetric part S ik of D(A i ). We have found that limiting CED to F ik makes mandatory the replacement of S ik by phenomenological quantities which are basically the mass and the charge of the particle. It follows that these quantities can be expressed in term of the 4-potential components. When studying the complete tensor D(A i ) instead of its antisymmetric part only, one finds that CED could open a new way to explain a lot of mysteries, the first of them being the wave-particle duality which is contained in S ik : this tensor is characterized by a wave and by a concentration of energy around the origin of coordinates. We have found that invariants of these tensors in a coordinate transformation belonging to the Poincaré group naturally introduce the Lorenz gauge and the Lagrangian of the system. It follows that both parts of the tensor are complementary and necessary to the harmony and the coherency of the theory. In what follows, we first describe the gradient tensor, or the covariant derivative, of the 4-potential and its splitting between its two parts. The symmetric part can be diagonalized which leads to a first equation which links the scalar potential and the components of the vectorial potential. When this equation is associated to the invariance of the trace of S i k , one finds a Helmholtz equation whose solutions correspond each to a concentration of energy around the origin of coordinates. This result led us to name S ik (or S i k )the particle tensor. We describe some of these solutions then we develop the relation between the phenomenological charge and the potential. Finally we compute the eigenvectors of the tensors. The study is limited to single solutions. Interactions between solutions or with sources are not considered here.

Frame of the theory.

The theory is based on few ingredients : 1-A point M is defined in the flat Minkowski spacetime 1 by its 4 coordinates x i where x 0 = ct and x 1,2,3 = x, y, z in the cartesian frame with an origin O. The associated vector --→ OM = x i ⃗ e i is defined with respect to the orthonormalized basis ⃗ e i . We choose the metric η = (+, -, -, -), the common dimension is length.

2-To each point is associated an electromagnetic potential

A i = (ϕ/c, ⃗ A) where A 0 = ϕ/c
, is the usual scalar potential and ⃗ A = A x , A y , A z is the vector potential. 3-The fundamental object of the theory is the covariant derivative 2 or the gradient tensor of A i :

a ij = ∂A i ∂x j -Γ m ij A m . (1) 
Christoffel's symbols Γ m ij appear in a non-cartesian coordinates system. When this tensor is split into its symmetric and antisymmetric parts, one is led to study the role of both. The latter part is the usual field tensor on which classical electromagnetism is based. We name the former the particle tensor and the following development is essentially devoted to the study of some of its properties. 4-We divide the potential into two parts : the first describes an isolated particle while the second describes the space in which it is embedded. This second part originates from the fundamental noise : this field has random properties, it is also isotropic and it can be represented by a diagonal tensor the modulus of which can be used as a reference for the amplitude of A i . The following study will essentially be concerned by the isolated particle. 5-The next ingredient is the Poincaré group of coordinates transformations. We will associate the transformations of the Poincaré group to an idealized isolated single entity (field/particle), or cluster of entities, which can be characterized by similar properties, such as a given velocity, a symmetry of rotation or translation. The field tensor and the particle tensor do not mix in a coordinate change and their invariants in the group operations are the fundamental quantities which will provide the description of the system. From these ingredients and using only first principles, we will demonstrate that in the reference frame where the observer and the particle have the same speed, the scalar potential should obey a Helmholtz equation and that the vector potential can also be obtained from its solutions. The components of the tensor are mixed together in a non-linear way to form invariants of the system. One of this invariant is related to the density of energy. We give illustrations for several low-order solutions. An application of the theory to make the link with Maxwell's equations is given with use of the principle of least action. Here, the elementary electric charge is shown to be a characteristic of only a single type of solution.

3 Splitting of the gradient tensor.

Notation.

The electromagnetic potential (4-vector) A i is defined by its contravariant components in the direct space or by the covariant components in the reciprocal space 3 and the scalar product is a Lorentz invariant [START_REF] Lovelock | Tensors, Differential forms and variationnal principles[END_REF] :

|A| 2 = A i A i = η km A m A k = η km A m A k = (ϕ/c) 2 -A 2 x -Ã2 y -A 2 z = (ϕ/c) 2 -A x2 -A y2 -A z2 . ( 2 
)
The components of the potential vector ⃗ A (tensor type (1,0) and the covector à (type (0,1)) have different signs. We will take :

A 0 = ϕ/c , A 1 = A x , A 2 = A y , A 3 = A z A 0 = ϕ/c , A 1 = -A x , A 2 = -A y , A 3 = -A z (3)
The dimension of A i and A i is that of an ordinary electric potential (M LT -1 Q -1 ). Our fundamental object is the covariant derivative of the 4-potential written below in a cartesian frame :

[a ij ] = [ ∂A i ∂x j ] =     ϕ ,t ϕ ,x ϕ ,y ϕ ,z -A x,t -A x,x -A x,y -A x,z -A y,t -A y,x -A y,y -A y,z -A z,t -A z,x -A z,y -A z,z     . ( 4 
)
This is the standard matrix representation of the covariant derivative of A i where the first index in the element a ij = ∂A i /∂x j is the line index and the second the column index. The tensor a is described by its components a ij in a particular system of coordinates.

We have used the compressed notation for the partial derivatives in the cartesian frame :

ϕ ,t ≡ ∂(ϕ/c) c∂t , ϕ ,x ≡ ∂ϕ/c ∂x , ϕ ,y ≡ ∂ϕ/c ∂y , ϕ ,z ≡ ∂ϕ/c ∂z A x,t ≡ ∂A x c∂t , A x,x ≡ ∂A x ∂x , A x,y ≡ ∂A x ∂y , A x,z ≡ ∂A x ∂z ( 5 
)
and the same for the derivatives of A y and A z .

The field and the particle tensors.

The tensor a = [a ij ] can be split into its symmetric and antisymmetric parts 4 :

[a ij ] = [s ij ] + [f ij ] (6) 
with :

s ij = 1 2 (a ij + a ji ) and : f (ij) = 1 2 (a ij -a ji ) (7) 
The antisymmetric part is explicitly written :

[f ij ] = 0.5     0 ϕ ,x + A x,t ϕ ,y + A y,t ϕ ,z + A z,t -A x,t -ϕ ,x 0 -A x,y + A y,x -A x,z + A z,x -A y,t -ϕ ,y -A y,x + A x,y 0 -A y,z + A z,y -A z,t -ϕ ,z -A z,x + A x,z -A z,y + A y,z 0     . ( 8 
)
apart the factor 0.5, [f ij ] is the transpose of the electromagnetic field tensor written below in its standard form [START_REF] Landau | Théorie des champs, Mir-Ellipses[END_REF] :

[F ij ] =     0 E x /c E y /c E z /c -E x /c 0 -B z B y -E y /c B z 0 -B x -E z /c -B y B x 0     . ( 9 
)
3. these components correspond to the duality generally found in physics, for instance in the bra and ket Dirac's formalism [START_REF] Dirac | The fundamental equations in Quantum Mechanics[END_REF].

4. This splitting makes sense for covariant or contravariant tensors because their symmetry is an intrinsic property which remains invariant in a coordinate change. This invariance does not apply to mixed tensors.

The electric (E x , E y , E z ) and magnetic (B x , B y , B z ) fields are defined from the derivatives of the 4-potential covector components :

E x /c = - ∂A x c∂t - ∂ϕ/c ∂x , E y /c = - ∂A y c∂t - ∂ϕ/c ∂y , E z /c = - ∂A z c∂t - ∂ϕ/c ∂z . ( 10 
)
and :

B x = ∂A z ∂y - ∂A y ∂z , B y = ∂A x ∂z - ∂A z ∂x , B z = ∂A y ∂x - ∂A x ∂y . ( 11 
)
The identity : ∂f lm /∂x k + ∂f mk /∂x l + ∂f kl /∂x m = 0 , when developed, leads to the first set of Maxwell equations.

The symmetric part of [a ij ] is :

[s ij ] = 0.5     2ϕ ,t ϕ ,x -A x,t ϕ ,y -A y,t ϕ ,z -A z,t -A x,t + ϕ ,x -2A x,x -A x,y -A y,x -A x,z -A z,x -A y,t + ϕ ,y -A y,x -A x,y -2A y,y -A y,z -A z,y -A z,t + ϕ ,z -A z,x -A z,x -A z,y -A y,z 2A z,z     . ( 12 
)
We will name [s ij ] the "particle tensor" to balance [f ij ] which is the field tensor.

As a conclusion of this introductory section, we note that in traditionnal [START_REF] Jackson | Classical Electrodynamics[END_REF] or modern textbooks [START_REF] Griffiths | Introduction to Electrodynamics[END_REF] the study of electromagnetism generally begins by a definition of fields. The electromagnetic potential is defined later. However, in ref. [START_REF] Eddington | The Mathematical Theory of Relativity[END_REF], the potentials were first defined. This is also the strategy in ref. [START_REF] Landau | Théorie des champs, Mir-Ellipses[END_REF] where the field is introduced from the expression of the force this potential exerts on a charged particle. Both ways are equivalent as long as we are interested in F ij (or f ij ) only. Starting the theory from [a ij ] is clearly more general and agrees with the Aharonov-Bohm effect [START_REF] Aharonov | The eponym effect is the phase shift a wave function suffers when passing through a region without any electric or magnetic field but with an EM potential[END_REF] which shows that potentials are more fundamental than fields. The tensor [s ij ] is absent from standard electromagnetism. It is replaced by phenomenological quantities like the electric charge Q. An objective of our work was to discover if there is a relation between them and the components of [s ij ].

4 The fundamental equation of electromagnetic particles.

The particle frame.

In this section we we will be interested in [s ij ] and we will show that its properties lead to the fundamental equation which will allow the description of the electromagnetic particles. This symmetric tensor can be diagonalized 5 which means that the 10 components of s ij are reduced to 4 in its eigenbasis : these are the components of a 4-pseudo-vector which will characterize the particle. The diagonalization process generally brings an element A ij into Āij -Γ m ij Ām in the new system of coordinates where only diagonal elements with i = j survive. Using operators of the Poincaré group, it can be done in few essential steps 6 which are based on the fact that the geometrical subspace appears in s ij as a bottom right 3X3 block while the time and scalar potential appear in the first column and the first line. A diagonalization of this 3X3 block followed by a Lorentz boost along x allows to find the relative speed (observer-tensor) v x which cancels the term s 12 . This double operation is repeated along the y and then the z axis. The final result is that it exists a set of three values v x , v y , v z for which elements s 12 , s 13 , s 14 = 0. If an observer changes its speed with these values, he finds the tensor at rest with respect to himself. Details are described in the appendix. This analysis could have been skipped by using the theorem cited above that a symmetric tensor can be diagonalized : A first necessary condition for s ij to be diagonal is that a system of coordinates exists in which the elements s 12 , s 13 , s 14 of the first line vanish. In this system, this condition is realized if

ϕ ,x = A x,t , ϕ ,y = A y,t , ϕ ,z = A z,t (13) 
or :

--→ gradϕ = ∂ Ã ∂t . ( 14 
)
5. provided its determinant is not zero. 6. Operations of the Poincaré group are : continuous translation in space or time , continuous rotations of coordinates in space, Lorentz transformations connecting two uniformly moving frames of coordinates (boosts), parity and time-reversal transformations.

An equivalent relation can be written with the vector ⃗ A :

--→ gradϕ = - ∂ ⃗ A ∂t (15)
This is one fundamental condition which will be used later. This particular frame where the observer and the particle have the same velocity will be named the "P-frame", the particle frame. Static phenomena are studied in this frame ; conversely, a Lorentz transform would allow to obtain the tensors in a moving frame (with respect to the observer) for instance to describe a current.

4.2

The tensor in the spherical system of coordinates.

We will now write [a ij ] in the spherical system of coordinates where the symmetries of the solutions will clearly appear. For this purpose, we will use the standard relations between the coordinates (x, y, z) of a point M in the cartesian system and its spherical coordinates v = (r, θ, ϕ) in the geometrical space :

x = r sin θ cos φ , y = r sin θ sin φ , z = r cos θ , ( 16 
)
The local spherical coordinates system at M is built from the tangent vectors : ∂ --→ OM /∂v. In this basis, the components of a vector ⃗ V can be written V 1 , V 2 , V 3 . The spatial metric tensor is :

[g ij ] =   1 0 0 0 r 2 0 0 0 r 2 sin 2 θ   and [g ij ] =   1 0 0 0 1/r 2 0 0 0 1/(r 2 sin 2 θ)   (17) 
However, it is more comfortable to work in the physical basis where the basis vectors are normalized because here, the components have the same dimension and the metric tensor contains only 1 in the diagonal.

Relations between the components are :

V r = V 1 , V θ = r V 2 , V ϕ = r sin θ V 3 . ( 18 
)
In this basis the fundamental tensor writes :

[a ij ] =     ϕ ,t ϕ ,r ϕ ,θ /r ϕ,φ r sin θ -A r,t -A r,r -1 r (A r,θ -A θ ) -1 r sin θ (A r,φ -sin θA φ ) -A θ,t -A θ,r -1 r (A θ,θ + A r ) -1 r sin θ (A θ,φ -cos θA φ ) -A φ,t -A φ,r -1 r A φ,θ -1 r sin θ A φ,φ -1 r A r -1 r cos θ sin θ A θ     (19) 
where ϕ ,t , ϕ ,r , ϕ ,θ and ϕ ,φ are the derivatives of the scalar potential with respect to the coordinates t, r, θ and φ. The same symbols stand for the derivatives of the components A r , A θ and A φ . This representation of the tensor will clearly show a spherical symmetry when elements are independent of angles. Cylindrical symmetries will be described below, for instance when elements are independent of φ. A mean particle in a current flow for instance can also be represented statistically with a spherical symmetry. The antisymmetric part is :

[f ij ] = 1/2     0 -E r /c -E θ /c -E φ /c E r /c 0 B φ -B θ E θ /c -B φ 0 B r E φ /c B θ -B r 0     (20) 
with :

E r /c = -A r,t -ϕ ,r , E θ /c = -A θ,t -ϕ ,θ /r , E φ /c = -A φ,t - ϕ ,φ r sin θ B φ = - 1 r (A r,θ -A θ ) + A θ,r B θ = -A φ,r + 1 r sin θ (A r,φ -sin θA φ ) B r = - 1 r sin θ (A θ,φ -cos θA φ ) + 1 r A φ,θ (21) 
These are the components of the electromagnetic field expressed in the spherical system of coordinates. The symmetric part is :

[s ij ] = 1/2      2ϕ ,t E † r /c E † θ /c E † φ /c E † r /c -2A r,r B † φ B † θ E † θ /c B † φ -2 r (A θ,θ + A r ) B † r E † φ /c B † θ B † r -2 r sin θ A φ,φ -2 r A r -2 r cos θ sin θ A θ      (22) 
with :

E † r /c = ϕ ,r -A r,t , E † θ /c = ϕ ,θ /r -A θ,t , E † φ /c = ϕ ,φ r sin θ -A φ,t B † φ = - 1 r (A r,θ -A θ ) -A θ,r B † θ = -A φ,r - 1 r sin θ (A r,φ -sin θA φ ) B † r = - 1 r sin θ (A θ,φ -cos θA φ ) - 1 r A φ,θ (23) 
Elements E † and B † are "dagged" to show that they originate from the same terms as the components of the fields ⃗ E and ⃗ B. As we saw before, being symmetric, [ŝ ij ] can be diagonalized provided its determinant is not zero and a proper Lorentz transformation is used to bring [ŝ ij ] in its eigensystem of coordinates where :

E † r /c = E † θ /c = E † φ /c = 0 (24) 
This is another way to express relation ( 14).

The fundamental equation.

We are interested now in the invariants associated to a coordinate transformation. Tensors s ij and f ij keep their symmetries in a coordinate transformation but the invariants which are associated to them are obtained from the mixed tensors s i j and f i j . These are obtained with the use of the rising operator η km : s i j = η im s mj . These tensors are characterized by four invariants which are the coefficients of their associated characteristic polynomials. Among them the most known are the trace and the determinant which remain the same in a coordinate change. The trace of [ŝ i j ] is :

T = ϕ ,t + A r ,r + 1 r ( A θ ,θ + A r ) + 1 r sin θ A φ ,φ + 1 r A r + 1 r cos θ sin θ A θ = 4 div[A] (25) 
This 4-divergence of A i , is a scalar density 7 . Expression "T = 4 div[A] = Invariant" can also be obtained in the cartesian frame, this is a tensor equation which equally applies to any system of coordinates where Christoffel coefficients generally occur.

When the expression T is fully developed, one sees that it is the Lorenz gauge when T = 0. In a cartesian frame of reference :

T = ∂A i ∂x i = ∂ϕ c 2 ∂t + ∂A x ∂x + ∂A y ∂y + ∂A z ∂z = ∂(ϕ/c) c∂t + div ⃗ A , ( 26 
)
Anticipating on the following results, we will see that one has effectively T ∼ 0 in the far field, i.e., far from the origin of coordinates around which the particle is centered. The trace of [a i j ] being the same as that of [s i j ], one concludes that the Lorenz gauge expresses the invariance of the trace of the covariant derivative of the 4-potential in a Poincaré transformation. The electromagnetic particles and the associated fields can be described by the invariants of [a i j ]. As symmetric (particle) and antisymmetric (field) parts of [a ij ] do not mix in a coordinate change, [s i j ] , [â i j ] and 7. When T will be multiplied by a scalar capacity such as a 4-volume, the product will be a true scalar. One should also note that 4 div[A] is a Lorentz invariant of the form ∂µA µ .

[f i j ] have also their own invariants. We will now use the invariance of T under an elementary time translation to write :

∂T c∂t = 0 = ∂ 2 ϕ/c c 2 ∂t 2 + div ∂ ⃗ A c∂t , (27) 
If we use eq.( 15), one obtains :

∂ 2 ϕ/c c 2 ∂t 2 -div ( --→ grad(ϕ/c) ) = ∂ 2 ϕ/c c 2 ∂t 2 -△ϕ/c = 0 , ( 28 
)
This is the fundamental equation of the electromagnetic particles whose solutions give the scalar potential from which the components of the vector potential can be deduced thanks to eq.( 15) in its eigensystem of coordinates. Such an equation is well known in standard electromagnetism where it applies to empty space with no charge. The new result here is that it applies equally well to the description of the structure of the charge itself, as we will see in the following sections. Now, let us take as an hypothesis that a permanent regime exists in which ϕ varies sinusoidally in time with an angular frequency ω [29]. Its amplitude Φ obeys an Helmholtz equation :

ω 2 c 2 Φ + ∆Φ = 0 , ( 29 
)
Solutions Φ i are well known and are used in the following section. A general solution will thus be a linear combination of them. The sign of Φ i and its amplitude are undetermined yet.

The goal of these calculations was to explore some properties of the symmetric part of the fundamental tensor. Up to now, we have reached several important consequences : -A particular basis t, x, y, z exists in which the particle tensor [s ij ] can be diagonalized. The diagonalization process brings the observer in the same coordinate frame as the tensor. This basis can be named the eigenbasis of the particle in which [s ij ] can be represented only by 4 quantities along the diagonal which define a 4-pseudo-vector.

-The invariance of the trace of a i j (or s i j ) leads (without any calculation) to the Lorenz gauge (divergence of this 4-pseudo-vector). -Application of invariance under time translation leads to a wave-type equation for the scalar potential. Solutions of this equation will describe the structure of the particles.

-The fundamental tensor in the eigenbasis is the basic tool which will permit to study later the dynamics of different systems in stationary or moving frames. 5 Electromagnetic particles.

Expressions of the potentials.

Solutions Φ i of eq.( 29) are well known, they are proportional to the products of spherical Bessel functions J n (x) with spherical harmonics Y m ℓ (θ, ϕ), where x = ωr/c , r being the radial coordinate (note the different typography between this x and the coordinate x) and θ, ϕ are the angles used in spherical coordinates. These solutions offer a way to classify electromagnetic particles when convergence conditions for the Legendre (m = 0) or associated Legendre polynomials are used : (ℓ ≤ n , m ≤ ℓ) The first solutions correspond to the quantum numbers :

(n = ℓ = m = 0), (n = 1, ℓ = m = 0), (n = 1, ℓ = 1, m = 0), (n = 1, ℓ = 1, m = ±1), ..

.).

A general solution can be split into even or odd parts. Solutions Φ i should be invariant in time reversal. The characteristic function of a particle is basically described by the formula :

Φ n,ℓ,m (x, θ, ϕ) = A n J n (x) Y m ℓ (θ, φ) cos ωt .
We have introduced the proportionality factors A n,ℓ,m (A n for brevity) in order to have explicit expressions for a future use. These factors represent two physical quantities : the absolute value of the potential difference and a fundamental dimension which is

[A n ] = M L 2 T -2 Q -1
in the standard nomenclature. Expression [START_REF] Jackson | Classical Electrodynamics[END_REF] and eq. ( 15) allow the computation of the components of the potential vector in the Pframe and the following formulas give explicitly these components for the even solutions (n, ℓ, m) (J ′ n is the derivative of J n with respect to x, Y m ℓ,θ and Y m ℓ,φ those of Y m ℓ with respect to θ or φ.) :

ϕ/c = A n c J n Y m ℓ cos ωt A r = - A n c J ′ n Y m ℓ sin ωt , A r = -A r A θ = - A n c J n x Y m ℓ,θ sin ωt , A θ = -A θ A φ = - A n c J n x sin θ Y m ℓ,φ sin ωt , A φ = -A φ . ( 30 
)
Odd solutions are :

ϕ/c = A n c J n Y m ℓ sin ωt A r = A n c J ′ n Y m ℓ cos ωt , A r = -A r A θ = A n c J n x Y m ℓ,θ cos ωt , A θ = -A θ A φ = A n c J n x sin θ Y m ℓ,φ cos ωt , A φ = -A φ . ( 31 
)

Asymptotic behavior of the potentials.

The behavior of these solutions when x→ 0 and when x→ ∞ deserve special attention. The limiting expression of J n (x) in the vicinity of x = 0 is :

J n (x) -→ x→0 x n 1.3.5..(2n + 1) , ( 32 
)
J n (x) remains finite when x → 0. Only the scalar potential with J 0 (x) ("fundamental solution") is maximum at x = 0 where the others functions vanish (one can say that they are "hollow"). The derivative of J n with respect to (x) in this region is :

J ′ n = ∂J n ∂x -→ x→0 n x n-1 1.3.5..(2n + 1) . ( 33 
)
J ′ n nullifies when x = 0 with the notable exception J ′ 1 = 1/3 for n = 1. This fact will be of paramount importance later.

The asymptotic behavior of even spherical Bessel functions J 0 (x) , J 2 (x) , J 4 (x)..., when x is large is J ∞ n ∼ ± sin x/x . For odd functions it is J ∞ n ∼ ± cos x/x. The sign of successive functions is alternated. While Φ n,ℓ,m and A r are functions in 1/x, A θ and A φ behave like 1/x 2 . If we keep the 1/x terms only, our fundamental tensor becomes :

[a ij ] ∞ =     ϕ ,t ϕ ,r 0 0 -A r,t -A r,r 0 0 0 0 0 0 0 0 0 0     (34) 
We will use this expression later. Asymptotic values of the potentials in the far field are :

Φ n,ℓ,m ∼ A n sin x x Y m ℓ (θ, φ) cos ωt = A n c 1 2x Y m ℓ (sin(ωt + kr) + sin(ωt -kr))) . A r ∼ - A n c cos x x Y m ℓ sin ωt = A n c 1 2x Y m ℓ (sin(ωt + kr) -sin(ωt -kr))) , ( 35 
)
A θ ∼ 0 , ( 36 
)
A φ ∼ 0 . ( 37 
)
It follows that the electric field far from the particle is purely radial (it is related to the "electrostatic" field associated to a charged particle). The field becomes a superposition of an incoming and an outcoming spherical waves spatially modulated by Y m ℓ . It follows also that the symmetric part of [a ij ] ∞ is a wave : the particles are not only simple point-like localized energy packets (as we'll see in the next section) but also extended waves behaving like 1/x. One of these waves is scalar (ϕ ,t ), the other one (-A r,r ) is radial. One can conjecture that the outgoing wave exports energy from the particle while the incoming wave brings energy from the surrounding medium (noise). It results that a particle is stable if both energies are balanced. In this view, life and death of a particle are submitted to its environment. It follows that all stable solutions have an amplitude which is related to that of the noise. In the case of a white noise, all these solutions have the same amplitude. A flicker noise in 1/ω would lead to a frequency-dependent amplitude. The trace [START_REF] Denisov | The non-linear electrodynamics bending of the X-rays and Gamma-ray in the magnetic field of pulsars and magnetars[END_REF] can be written in the far field :

T | x large ∼ - A n ω n c 2 sin ωt ( J n Y m ℓ + J" n Y m ℓ + 2 J ′ n x + J n x 2 ( Y m ℓ,θ,θ + cos θ Y m ℓ,θ / sin θ + Y m ℓ,φ / sin θ ) ) ∼ - A n ω n c 2 sin ωt Y m ℓ ( J ∞ n + J "∞ n ) = 0 (38)
This is the Lorenz gauge formula in free space.

Description of some solutions.

Invariants can be used to describe the particles : we will see later that I s 4 is proportional to the density of energy of a particle. In this section we will give graphs of functions which represent this density as well as the repartition of energy in space around the origin of coordinates. These quantities describe a "shape" for the particles associated to the solutions. One should note that I s 4 is a local invariant. It allows to find a global invariant when integrated over space and a period of time. This invariant intervenes in the expression of the particle energy, or rest mass. From now we will use the expression of [a ij ] in which the even solutions have been included :

[a ij ] = A n ω n c 2       -sin ω n t J n Y m ℓ cos ω n t J ′ n Y m ℓ -cos ω n t J ′ n Y m ℓ -sin ω n t J" n Y m ℓ -cos ω n t Jn x Y m ℓ,θ -sin ω n t ( J ′ n x -Jn x 2 ) Y m ℓ,θ -cos ω n t Jn x Y m ℓ,φ sin θ -sin ω n t ( J ′ n x -Jn x 2 ) Y m ℓ,φ sin θ cos ω n t Jn x Y m ℓ,θ cos ω n t Jn x Y m ℓ,φ sin θ -sin ω n t Y m ℓ,θ ( J ′ n x -Jn x 2 ) -sin ω n t Y m ℓ,φ sin θ ( J ′ n x -Jn x 2 ) -sin ω n t ( Y m ℓ,θ,θ Jn x 2 + Y m ℓ J ′ n x ) -sin ω n t Jn x 2 ( Y m ℓ,θ,φ sin θ -cos θ sin 2 θ Y m ℓ,φ ) -sin ω n t Jn x 2 ( Y m ℓ,φ,θ sin θ -Y m ℓ,φ cos θ sin 2 θ ) -sin ω n t ( Y m ℓ,φ,φ sin 2 θ Jn x 2 + Y m ℓ J ′ n x + cos θ Y m ℓ,θ sin θ Jn x 2 )        (39) 
Under this form, it is easy to see that a 23 = a 32 , a 24 = a 42 , a 34 = a 43 and a 12 = -a 21 , a 13 = -a 31 , a 14 = -a 41 which will allow an immediate splitting of [a ij ] into its symmetric and antisymmetric parts. This expression shows clearly that there is no magnetic field in the proper reference frame.

Spherically symmetric solutions.

We have seen that a solution for the potential is characterized by 3 quantum numbers (n in J n and ℓ and m in Y m ℓ ) with the conditions ℓ ≤ n and m ≤ ℓ. The spherically symmetric solutions are obtained for ℓ = 0. In this case, Y 0 0 = 1/ √ 4π, the potential is independent of angles and [s i j ] writes in the particle frame :

[ s i j ] = 1 √ 4π A n ω n c 2 sin ω n t     -J n 0 0 0 0 J" n 0 0 0 0 J ′ n x 0 0 0 0 J ′ n x     (40) 
Invariant I s 4 writes :

I s 4 = - ( 1 √ 4π A n ω n c 2 ) 4 sin 4 ω n t J n J ′ 2 n x 2 J" n (41)
Its value during a period of time is noted Īs 4 and is obtained from ∫ T 0 sin 4 ωt dt = 3π/(4ω). The spatial density of energy will be represented by the function :

F n = -J n J ′ 2 n x 2 J" n (42)
The repartition of energy in space is given by this density inside a volume element :

dv = r 2 sin θ dθ dφ dr = ( c ω n ) 3 x 2 sin θ dθ dφ dx (43)
It is :

- 3π 4 1 (4π) 2 A 4 n c 5 J n J ′ 2 n J" n sin θ dθ dφ dx (44)
When integrated over angles, it gives the energy inside the spherical volume of thickness dx and radius x :

∫ π 0 sin θ dθ ∫ 2π 0 dφ r 2 dr Īs 4 = - 3π 4 1 4π A 4 n c 5 J n J ′ 2 n J" n dx (45)
The function

G n (x) = -J n J ′ 2
n J" n is representative of the repartition of energy along the radial coordinate. The total energy is proportional to :

W n = - 3 16 
A 4 n c 5 ∫ ∞ 0 J n J ′ 2 n J" n dx (46)
The following graphs show the density function F n and the repartition function G n along x for the three spherical solutions ℓ = m = 0 corresponding to n = 0, 1, 2. One observes that only the densities with n = 0 or 1 have their maximum at x=0. However, the repartition of energy is hollow, with an extension along x (which is a normalized coordinates) which becomes larger and larger when n increases. The final graph in this series (Fig.( 7)) displays the shape of these solutions given by the function -J n J ′ 2 n J" n sin θ appearing in eq.( 44). This shape should not be confused with that given by the scalar A i A i (2). In the eigensystem, the energy is purely potential, the integral of I s 4 appearing in eq.( 46) is a quantity proportional to the particle rest-mass. It can be numerically evaluated using the standard expressions for the spherical Bessel functions :

J 0 = sin x x J 1 = sin(x) x 2 - cos(x) x J 2 = ( 3 -x 2 ) sin(x) x 3 - 3 cos(x) x 2 J 3 = ( x 2 -15 ) cos(x) x 3 - 3 ( 2x 2 -5 ) sin(x) x 4
(47) The following table shows the numerical value of the integrals 8 -

∫ ∞ 0 J n J ′ 2
n J" n dx for spherical solutions corresponding to n = 0, 1, 2, 3 . The decrease of this quantity when n increases is very fast, showing that particles become lighter and lighter when n increases for the same value of amplitudes A n .

Table 1 -Integrals - ∫ ∞ 0 J n J ′ 2 n J" n dx. Solution n = 0 n = 1 n = 2 n = 3 Integrals 2π/315 ∼ 0.02 17π/10395 ∼ 0.005 842π/3378375 ∼ 0.0007 838π/8729721 ∼ 0.0003
The essential conclusion of this section is that the concept of particle is demonstrated by the concentration of energy around the origin.

Solutions J 1 .

There are 4 solutions corresponding to n = 1 : -n = 1, ℓ = 0, m = 0 studied above.

-n = 1, ℓ = 1, m = 0 named below solution "q 0 ".

-n = 1, ℓ = 1, m = ±1 named below solutions "q ±1 ".

solution "q 0 " The normalized spherical harmonic corresponding to this solution is :

Y 0 1 = √ 3 4π cos θ . ( 48 
)
8. The calculations and the graphics are done using a mathematical software (here Mathematica T M , no ads). and the symmetric part of its tensor, (always written in frame P) is :

[ s i j ] = √ 3 4π A n ω n c 2 sin ω n t        -J 1 cos θ 0 0 0 0 J" 1 cos θ - ( J ′ 1 x -J1 x 2
) sin θ 0 0 -

( J ′ 1 x -J1 x 2
) sin θ cos θ

( J ′ 1 x -J1 x 2 ) 0 0 0 0 cos θ ( J ′ 1 x -J1 x 2 )        (49) 
Invariant I s 4 is :

I s 4 = - ( A ω c 2 √ 3 4π sin ωt ) 4 J 1 cos 2 θ ( J ′ 1 x - J 1 x 2 ) 2 ( J" 1 cos 2 θ -sin 2 θ ( J ′ 1 x - J 1 x 2 )) . ( 50 
)
The energy included in a period of oscillation inside a volume element dv = r 2 sin θdθ dφ dr = (c/ω) 3 x 2 dx sin θdθ dφ is :

dW = - 3π 4 
A 4 c 5 ( 3 4π 
) 2 dx dθ dφ cos 2 θ sin θ x 2 J 1 ( J ′ 1 x - J 1 x 2 ) 2 ( J" 1 cos 2 θ -sin 2 θ ( J ′ 1 x - J 1 x 2 
))

This expression can be integrated over angles to give the energy in a sphere of thickness dx and radius x :

< dW > angles = - 27 8 A 4 c 5 dx x 2 J 1 ( J ′ 1 x - J 1 x 2 ) 2 ( 2 5 J" 1 - 4 15 
( J ′ 1 x - J 1 x 2 
)) .

(52) Fig. [START_REF] Eisenberg | Understanding Heisenberg 'magical paper' of july 1925, a new look at the calculational details[END_REF] shows the evolution of the function of x which appears in < dW > angles along the radial coordinate x. One sees that the repatition of energy is hollow and concentrated in a small volume around the origin.

If we replace J 1 , J ′ 1 and J" 1 by their expressions in x, an integration over x gives the total energy :

W q0 = 27 8 A 4 c 5 X ∫ ∞ 0 dx ( π 2 (x cos x -sin x) (( 24 -11x 2 ) sin x + 3x ( x 2 -8 ) cos x ) (( x 2 -3 ) sin x + 3x cos x ) 2 5x 12 ) = 27 8 
A 4 c 5 2π 3 1925 (53)
The number 27/8 2π 3 /1925 ∼ 0.109 is a characteristic of this solution. Equation (50), when multiplied by the volume element sin θ dθ dφ r 2 dr = (c/ω) 3 sin θ dθ dφ x 2 dx, gives the energy enclosed in this volume, which gives an idea of the "shape" of solution "q 0 ". This shape is described by the function :

q 0 (x, θ) = 3π 2 sin θ cos 2 θ(x cos x -sin x) X (( x 2 -3 ) sin x + 3x cos x ) 2 ( cos 2 θ ( x ( x 2 -6 ) cos x -3 ( x 2 -2 ) sin x ) -sin 2 (t) (( x 2 -3 ) sin x + 3x cos x ))
2x 12 .

(54) Fig.( 9) displays a spherical plot of q 0 in space θ, φ for x = 2.5. One observes that this solution nullifies at the origin and that the shape looks like a "diabolo" oriented along the z axis (which is the reference axis of the spherical system of coordinates). for solution "q 0 " (arbitrary units).

solutions "q ±1 " When ℓ = 1, m = ±1, normalized real spherical harmonics are :

Y 1 1 = - √ 3 4π sin θ cos φ , Y -1 1 = √ 3 4π sin θ sin φ (55)
It follows that formulas which are obtained for m = 1 can be transposed to the case m = -1 by changing

φ into φ -π/2.
The symmetric part of the tensor corresponding to solution "q 1 " is :

[s i j ] = √ 3 4π A n ω n c 2 sin ωt        J 1 sin θ cos φ 0 0 0 0 -J" 1 sin θ cos φ -cos θ cos φ ( J ′ n x Jn x 2 ) sin φ ( J ′ n x -Jn x 2 ) 0 -cos θ cos φ ( J ′ n x -Jn x 2 ) -sin θ cos φ ( J ′ n x -Jn x 2 ) 0 0 sin φ ( J ′ n x -Jn x 2 ) 0 -sin θ cos φ ( J ′ n x -Jn x 2 )        (56) 
One follows the same procedure as before which leads to the same distribution of energy as in Fig. [START_REF] Eisenberg | Understanding Heisenberg 'magical paper' of july 1925, a new look at the calculational details[END_REF]. The shape associated to solution "q 1 " is given by the function :

dW q1 = 3π 4x 12 cos 2 φ sin 3 θ(x cos x -sin x) ( ( 3x cos x + ( x 2 -3 ) sin x ) 2 (-sin 2 φ(3x cos x + ( x 2 -3 ) sin x) + cos 2 φ ( -cos 2 θ(3x cos x + ( x 2 -3 ) sin x) + sin 2 θ(x(x 2 -6) cos x -3(x 2 -2) sin x) )) . ( 57 
)
It is represented in Fig. [START_REF] Pauli | Prinzipien der Quantentheorie[END_REF].

The shape associated to to solution "q -1 " is obtained from the preceding formula (57) by a rotation of φ by -π/2 The result is represented in Fig. [START_REF] Dirac | The fundamental equations in Quantum Mechanics[END_REF]. The calculation shows that the distribution of energy is again the same as that of q 0 (Fig. [START_REF] Eisenberg | Understanding Heisenberg 'magical paper' of july 1925, a new look at the calculational details[END_REF]. It follows that the total energy associated to the three solutions corresponding to ℓ = 1 is the same. Figures [START_REF] Pauli | Prinzipien der Quantentheorie[END_REF] and [START_REF] Dirac | The fundamental equations in Quantum Mechanics[END_REF] show the shapes for x = 2 corresponding to solutions "q 1 " and "q -1 ". One sees that they are different from the diabolo shape of "q 0 " and that they differ only by their orientation in space. One has to stress the fact that the preceding figures are obtained from the invariant Īs 4 which means that an observer outside the P-frame could "see" the same things9 ! 6 Electric charge.

The nature of the electrostatic field.

Standard electromagnetism begins by a study of the laws of electrostatics where fields and potentials are independent of time. This is in contrast with the above expressions where they depend upon time and space through the sine or cosine rapidly varying functions. We have noted before that a typical frequency should be about 10 20 Hz, a typical wavelength being a picometer. It is clear that an ordinary experiment has no access to these quantities. We thus define the electrostatic potential to be the root mean square of ϕ/c. In the far field :

ϕ n /c = A n c 1 x Y m ℓ { cos x sin x cos ωt (58)
Observable effects are interpreted with the electrostatic potential el ϕ n /c such that :

el ϕ n /c = A n 2c 1 x Y m ℓ ( 59 
)
The rapidly varying longitudinal field is defined by ∂(ϕ/c)/∂r and the observable effects in ordinary experiments arise from the rms value of this field :

el E r = - A n ω n 2c 1 x 2 Y m ℓ (60)
6.2 The Lagrangian.

The standard Lagrangian of electromagnetism.

Standard electromagnetism is based on the use of the field tensor F ij and the principle of least action applies to the Lagrangian 1/4µ 0 F ij F ij . One is led to consider a similar Lagrangian which takes the particle part into account :

L = 1 4µ 0 a ij a ij , (61) 
One sees that the contracted product a ij a ij can be split into two parts, one of them being the standard tensor of energy of the electromagnetic field :

a ij a ij = ( s ij + f ij ) (s ij + f ij ) = s ij s ij + f ij f ij , ( 62 
)
It follows that L is simply the sum of the Lagrangian of the field and of the particle at each point ct, x, y, z.

If we use the general expression (4) for [a ij ], this Lagrangian writes10 :

L = 1 4µ 0 ( ϕ 2 ,t + A 2 x,x + A 2 y,y + A 2 z,z -A 2 x,t -A 2 y,t -A 2 z,t +A 2 x,y + A 2 y,x + A 2 x,z + A 2 z,x + A 2 y,z + A 2 z,y -ϕ 2 ,x -ϕ 2 ,y -ϕ 2 ,z ) , (63) 
-The part which characterizes the "particle" is :

L p = 1 4µ 0 ( ϕ 2 ,t + A 2 x,x + A 2 y,y + A 2 z,z + 0.5(A x,y + A y,x ) + 0.5(A x,z + A z,x ) 2 +0.5(A y,z + A z,y ) 2 -0.5(A x,t -ϕ ,x ) 2 -0.5(A y,t -ϕ ,y ) 2 -0.5(A z,t -ϕ ,z ) 2 ) , (64) 
-The part which characterizes the field is :

L f = 1 2µ 0 ( (A x,y -A y,x ) 2 + (A x,z -A z,x ) 2 + (A y,z -A z,y ) 2 -(A x,t + ϕ ,x ) 2 -(A y,t + ϕ ,y ) 2 -(A z,t + ϕ ,z ) 2 ) = 1 2µ 0 ( B 2 -(E/c) 2 ) , ( 65 
)
The associated tensor of moments is :

[M ij ] = ∂L ∂a ij = 2     ϕ ,t -ϕ ,x -ϕ ,y -ϕ ,z -A x,t A x,x A x,y A x,z -A y,t A y,x A y,y A y,z -A z,t A z,x A z,y A z,z     . ( 66 
)
Application of the operator ∇ k to M ij gives the first Lagrange's equation :

∂ϕ ,t c∂t - ∂A x,t ∂x - ∂A y,t ∂y - ∂A z,t ∂z = 0 . ( 67 
)
Permuting the order of integration gives :

∂ c∂t (ϕ ,t -∂Ax ,x -∂A y,y -∂A z,z ) = 0 . ( 68 
)
One finds an equation which expresses that the Lorentz gauge is a constant. The second equation is :

- ∂A x,t c∂t + ∂A x,x ∂x - ∂A y,y ∂y - ∂A z,z ∂z = 0 . ( 69 
)
This is the d'Alembert's equation for the component A x . The last 2 equations give the same result for the other components. These results are deceptively simple and do not bring the expected results, i.e., Maxwell's equations which implies that one has to find another Lagrangian.

6.2.2

The Lagrangian I 4 .

The dynamics of a physical system is essentially fixed by two fundamental principles : 1-The principle of least action which leads to Euler-Lagrange equations :

∂ ∂x i ( ∂L ∂A m ,i
)

- ∂L ∂A m = 0 (70)
2-the symmetry principle which leads to conservation laws :

∂ ∂x i ( ∂L ∂A m ,i A m ,i ) = 0 (71)
The last equation is Noether's divergence theorem 11 . It expresses that the 4-divergence of the 4-vector with components ∂L/∂A m ,i A m ,i (i = 1, 2, 3, 4) vanishes, or that the flux of this vector across a closed 4-surface vanishes. Such a vector is a conserved quantity. There are 4 such vectors which correspond to the four values of m. Now let us suppose that the Lagrangian we are looking for is I 4 , the determinant of

[ a i j ]
. It can be developed with respect to the first line :

I 4 = A 1 ,k M k 1 ( 72 
)
where M k 1 is the minor relative to A 1 ,k . The derivative of I 4 with respect to A 1 ,k is M k 1 . One thus has :

I 4 = A 1 ,k ∂I 4 ∂A 1 ,k (73) 
Setting L = I 4 , one sees that Noether's theorem and the invariance of I 4 result in the same equations. We are thus led to use L ∝ I 4 as a density of energy 12 . The proportionality constant between L and I 4 does not intervene in Lagrange equations and we have not included it in the expressions. The integral of I s 4 over spacetime converges (see Table 1) ; for a given amplitude A n , it represents the energy, or the rest-mass, associated to the particle aspect of

[ a i j ] .

The first Lagrange's equation.

We are now in position to use L = I 4 in Euler-Lagrange equations (eqs(70)). We will be interested in recovering the first Maxwell equation with source :

div ⃗ D = ρ ( 74 
)
11. Einstein's summation convention does not apply to m in eq. (71). 12. In this case, the Hamiltonian is simply 3L.

The idea is that the source term ρ is phenomenological in standard electromagnetism where it is mandatory because it replaces s ij , the symmetric part of a ij , forgotten from the beginning. It is thus natural to expect that the local density of charge can be obtained from s ij and that the elementary charge can be obtained from an integration over space of a function generated by s ij .

Lagrange's equation is written with the scalar potential A 0 = ϕ/c (one has ∂L/∂ϕ = 0).

∂ ∂x k ∂L ∂A 0 ,k = 0 , . ( 75 
)
Electromagnetic induction is the tensor whose components are given by the derivatives of L with respect to the field. These are :

D r = ∂L ∂E r = ∂L 2c∂A r ,t = - ∂L 2c∂ϕ ,r D θ = ∂L ∂E θ = ∂L 2c∂A θ , t = - ∂L 2c∂(ϕ ,θ )/r D φ = ∂L ∂E φ = ∂L 2c∂A φ , t = - ∂L 2c∂(ϕ ,φ )/(r sin θ) (76)
In terms of the potential, the dimension of

L is [D] = [A] 4 L -4 , that of the induction is [D] = [A] 3 L -3 while that of the field is [E] = [A]T -1 .
Inside the particle, induction and field are very different. We will see that in the long range, they are both longitudinal and proportional to each other : D = CE where the proportionality constant C is dimensioned 13 . Now we use the Lagrangian density L ∝ a i j in eq.( 75) to obtain :

div ⃗ D = ∂ c∂t A r ,r 1 r ( A r ,θ -A θ ) 1 r sin θ ( A r ,φ -sin θA φ ) A θ ,r 1 r ( A θ ,θ + A r ) 1 r sin θ ( A θ ,φ -cos θA φ ) A φ ,r 1 r A φ ,θ 1 r sin θ A φ,φ + 1 r A r + 1 r cos θ sin θ A θ = A 3 n ω 4 n c 7 sin 2 ω n t cos ω n t -J" n Y m ℓ Y m ℓ,θ ( Jn x 2 - J ′ n x ) Y m ℓ,φ sin θ ( Jn x 2 - J ′ n x ) - ( J ′ n x -Jn x 2 ) Y m ℓ,θ - ( Y m ℓ,θ,θ Jn x 2 + Y m ℓ J ′ n x ) Jn x 2 ( - Y m ℓ,θ,φ sin θ + cos θ sin 2 θ Y m ℓ,φ ) - ( J ′ n x -Jn x 2 ) Y m ℓ,φ sin θ -Jn x 2 ( Y m ℓ,φ,θ sin θ -Y m ℓ,φ cos θ sin 2 θ
) -

( Y m ℓ,φ,φ sin 2 θ Jn x 2 -Y m ℓ J ′ n x -Y m ℓ,θ Jn x 2 ) = A 3 n ω 4 n c 7 sin 2 ω n t cos ω n t Det n,ℓ,m (77) 
The symbol Det n,ℓ,m will stands for the determinant 3X3 for brevity. The right hand side is the source term.

It is this term which will give the expression of the electric charge as a function of the potential. We have replaced the a i j by their expressions in order to compute the charge associated to each solution. Finding these expressions is easy but lengthy. One notes that this determinant is symmetric : once again we stress that the neglect of the symmetric part of [a ij ] condemns us to use a phenomenological charge to replace it. Integrating eq.( 77) over a spherical volume of radius R large as compared to the size of the particle, we obtain :

D r = Q 4πR 2 (78)
Where Q is the oscillating charge associated to the particle :

Q = A 3 n ω 4 n c 7 sin 2 ω n t cos ω n t ∫ vol dv Det n,ℓ,m (79) 
13. The standard dimension of the field is [E] = M LT -2 Q -1 which allows to find the relation between the dimensions of ϵ 0 and the constant to which L is proportional

Electrical charges of spherical solutions.

In this section we will compute the integral of Det n,ℓ,m for the spherical solutions corresponding to ℓ = m = 0. The fundamental result is that a spherically charged particle must contain a solution with n = 1. In the case of spherically symmetric solutions one has Y 0 0 = 1/ √ 4π and the function to integrate writes :

Det n,0,0 = ( 1 √ 4π ) 3 -J" n 0 0 0 - J ′ n x 0 0 0 - J ′ n x = - ( 1 √ 4π ) 3 J" n ( J ′ n x ) 2 (80) 
The integration over angles give 4π, the integration over x is :

∫ ∞ 0 J" n J ′ 2 n dx = 1 3 [ J ′ 3 n ] ∞ 0 = - 1 3 [ J ′ 3 n ] 0 (81) 
The last equality is obtained because J that the electric charge associated to a spherically symmetric solution is a property belonging only to the value n = 1. For instance, the fundamental solution corresponding to J 0 describes a noncharged particle. We thus have :

∫ ∞ 0 J" 1 J ′ 2 1 dx = - ( 1 3 
) 4

and the corresponding charge is :

Q1,0,0 = - ( 1 √ 4π ) 3 ( 1 3 
) 4 A 3 n ω n c 4 sin 2 ω n t cos ω n t (83)
This is the result which led us to name "e", like electron, the solution associated to n = 1, ℓ = m = 0. The calculations above were detailed with the even solutions eqs [START_REF] Jackson | Classical Electrodynamics[END_REF]. If odd solutions eqs [START_REF] Griffiths | Introduction to Electrodynamics[END_REF] are used, the sign of the components of the potential are changed with respect to the sign of ϕ/c (see formulas [START_REF] Jackson | Classical Electrodynamics[END_REF] and [START_REF] Griffiths | Introduction to Electrodynamics[END_REF]). The sign of the determinant Det n,ℓ,m in eq. ( 83) is changed which leads to a charge with an opposite sign. Both types of solutions lead to particles having the same mass but opposite charges which is conform to the definition of a particle and its antiparticle. We have also tried to apply eq.( 77) to describe the electric charge associated to non-spherical solutions. In these cases, one sees that the functions are spatially modulated by Y m ℓ . As we are looking for a scalar quantity , it is necessary to project eq.( 77) on Y m ℓ . However, the projection of (77) and the following integration over angles brings zero except for Y m ℓ = Y 0 0 which means that the electric charge is a property belonging only to a spherical solution.

Field and induction.

We would like now to obtain the relation between the field and the induction far from the particle. We have already obtained [a ij ] → [a ij ] ∞ (eq.( 34)) in the far field where terms containing 1/r 2 are negligible. However, considering only the far field of a single particle at a given point (far from the center of the particle) cannot correspond to a real, physical situation where this field has an amplitude much smaller than the surrounding noise created by the multitude of other particles of the universe. One difference between this noisy floor (or ceiling !) and the particle field is the incoherence of the former and the coherence of the latter. The classical description of noise belongs to stochastic electromagnetism where it is considered to be a superposition of random fields. This superposition is homogeneous, isotropic and stationary (independant of coordinates ct, x, y, z) with a random phase. Far from a particle, the modulus of the scalar and vectorial potentials are equal (|A n /(cx)|). Adding all these characteristics together, one arrives at the representation of the noise by the diagonal tensor a 0 [η i j ], showing its invariance under an arbitrary unitary transformation. a 0 is a random function. The tensor which represents the particle in the far field is the sum :

[â i j ] = [a i j ] ∞ + a 0 [η i j ] =     a 0 + ϕ ,t ϕ ,r 0 0 A r ,t a 0 + A r ,r 0 0 0 0 a 0 0 0 0 0 a 0     . ( 84 
)
The local Lagrangian density at a large distance R → ∞ from the center is :

L(R) = a 2 0 ( (a 0 + ϕ ,t )(a 0 + A r ,r ) -ϕ ,r A r ,t ) (85) 
If we use the relation E r /2c = A r ,t = -ϕ ,r , one finds :

D r = ∂L ∂E r = 2 a 2 0 (2c) 2 E r (86)
where E r is the long-range longitudinal field. One arrives at the result that the field and the electric induction are proportional to each other in the far field with the proportionality constant 2(a 0 /2c) 2 , the squared modulus of the floor noise. The constitutive equation of "empty" space14 is eq.( 86). If we use the asymptotic expression (35), one finds the far field induction :

D r = 2 a 2 0 (2c) 2 E r = - 4a 2 0 √ 4π A ω c 3 cos x x cos ω n t (87)
One sees that D r is modulated by cos ω n t, as Q in eq.( 83) . Finally, taking the mean value over time of the modulus of Q , one obtain the "static" expression of the charge :

Q 1,0,0 = - 1 2 ( 1 √ 4π ) 3 ( 1 3 
) 4 A 3 1 ω n c 4 (88) 
We have thus shown in this section that the electric charge is related to the electromagnetic potential : it is no longer a phenomenological quantity, it belongs to the properties of the potential. The following up of this study is evidently the calculus of the charge and mass of particles made of several solutions. A comparison between these combinations and real particles, as well as interactions between particles and fields, go over the objectives of the present study.

Eigenvectors.

We have seen above that a series of geometrical transformations followed by proper Lorentz boosts can bring the particle tensor in its eigenframe of coordinates where it can be described only by its geometrical properties in the 3-dimensional space. Following the quantum numbers, this geometry can be spherical (m = 0), cylindrical (m = 1) or more complicated, just like the wave functions of the Hydrogen atom. However, the particle tensor [s ij ] does not describe the complete entity [a i j ]. In this section, we will study the eigenvectors of the complete tensor [a i j ] in the simple case n = 1, ℓ = 0. In this case, the mixed tensor which represents the field-particle system is :

[a i j ] = √ 1 4π Aω c 2     -J 1 sin ωt J ′ 1 cos ωt 0 0 J ′ 1 cos ωt J 1 " sin ωt 0 0 0 0 J ′ 1
x sin ωt 0 0 0 0

J ′ 1 x sin ωt    
with :

J 1 = - cos x x + sin x x 2 , J ′ 1 = 2x cos x + (-2 + x 2 ) sin x x 3 J" 1 = x(-6 + x 2 ) cos x -3(-2 + x 2 ) sin x x 4 (89) 
The determinant |a i j | ̸ = 0 nd [a i j ] can be diagonalised. The characteristic polynomial is :

P (λ) = ( J ′ 1 x sin ωt -λ ) 2 ( (-J 1 sin ωt -λ) (J 1 " sin ωt -λ) -J ′ 2 1 cos 2 ωt ) = λ 4 -λ 3 sin ωt ( J 1 " -J 1 + 2 J ′ 1 x ) +λ 2 ( 2 J ′ 1 x (J 1 " -J 1 ) sin 2 ωt + J ′ 2 1 x 2 sin 2 ωt -J ′ 2 1 cos 2 ωt -J 1 J 1 " sin 2 ωt ) +λ sin ωt ( 2 J ′ 1 x (J 1 "J 1 sin 2 ωt + J ′ 2 1 cos 2 ωt) -sin 2 ωt(J 1 " -J 1 ) J ′ 2 1 x 2 ) - J ′ 2 1
x 2 sin 2 ωt

( J 1 "J 1 sin 2 ωt -J ′ 2 1 cos 2 ωt) ) (90) 
Invariants are :

I 1 = -sin ωt ( J 1 " -J 1 + 2 J ′ 1 x ) I 2 = 2 J ′ 1 x (J 1 " -J 1 ) sin 2 ωt + J ′ 2 1 x 2 sin 2 ωt -J ′ 2 1 cos 2 ωt -J 1 J 1 " sin 2 ωt I 3 = sin ωt ( 2 J ′ 1 x (J 1 "J 1 sin 2 ωt + J ′ 2 1 cos 2 ωt) -sin 2 ωt(J 1 " -J 1 ) J ′ 2 1
x 2

)

I 4 = J ′ 2 1 x 2 sin 2 ωt ( J 1 "J 1 sin 2 ωt -J ′ 2 1 cos 2 ωt) ) (91) 
The integration of I 4 over a cell of time and over space leads to a null total, which shows that the energy included in the field is equal and opposite to that included in the particle, both energies being distributed very differently in space. Resolution of (91) a i j give the eigenvalues :

λ 1 = J ′ 1 x sin ωt λ 2 = λ 1 λ 3 = 1 2 (-J 1 + J" 1 ) sin ωt - 1 2 √ 2(J ′ 2 1 + J 1 J" 1 + (J ′ 2 1 -J 1 J" 1 ) cos 2ωt) + (J 1 -J" 1 ) 2 sin 2 ωt λ 4 = 1 2 (-J 1 + J" 1 ) sin ωt + 1 2 √ 2(J ′ 2 1 + J 1 J" 1 + (J ′ 2 1 -J 1 J" 1 ) cos 2ωt) + (J 1 -J" 1 ) 2 sin 2 ωt
Eigenvectors are :

W 1 = (-T , X , 0 , 0) W 2 = (T , X , 0 , 0) W 3 = (0 , 0 , 1 , 0) W 4 = (0 , 0 , 0 , 1) (92) 
We have written :

T = √ 2 ( cos 2ωt ( J ′ 2 1 -J 1 J" 1 ) + J 1 J" 1 + J ′ 2 1 ) + (J 1 -J" 1 ) 2 sin 2 ωt -(J 1 + J" 1 ) sin ωt X = 2 J ′ 1 cos ωt
The first remark is that [a i j ] and [s i j ] have different eigenvectors. The second remark is that W 1 and W 2 describe a closed curve in the plane (ct, r) which is representative of angular momentum of the particle. However, as x is a radial coordinate, no preferential direction of rotation is privileged. Such a direction will be provided by an external field (this study is over the objectives of the present article). Figure [START_REF] Schweber | QED and the men who made it[END_REF] shows the parametric plots of T vs X for different values of x, the radial coordinate. For small x, the curve looks like a boomerang which evolves toward a circle when x increases. Figure [START_REF] Aad | Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC[END_REF] displays the same plot when x varies continuously from 0 to 20. From these results one can compute the angular momentum of the particle : at a point M its components are given by the antisymmetric part of the tensor X i P j where X i and P j are the position and the momentum associated to the mass (or energy) element around M . However, this tensor is symmetric and the angular momentum can be computed only if an external field breaks this symmetry. This is a subject which will be studied in the context of a particle embedded in an applied field.

Conclusion.

This article has presented an introduction to the study of electromagnetic particles based on an extension of Born and Infeld's idea that electromagnetism should be non-linear. The theory is completely classical : We have considered that the electromagnetic field is only a part of the tensor built from the derivatives of the potential in spacetime. Its 16 partial derivatives are the components of its gradient tensor which is the fundamental entity at each point. This tensor describes an "electromagnetic landscape". Its antisymmetric part is the usual field tensor whose components are the basic fields of standard classical electromagnetism. The symmetric part is the particle tensor. Both parts are intrinsically mingled together but their symmetric or antisymmetric character makes them to remain separated in a coordinate change which explains why this symmetric part has been ignored and replaced by phenomenological quantities (charge and mass in CED). They unify the concept of wave-matter duality. These tensors are characterized by invariants under transformations belonging to the Poincaré group. The symmetric part can be diagonalized which leads to an equation whose solutions are the components of the 4-potential in its proper frame of coordinates. We have given here the repartition of energy around the origin which describe the particle aspect of some solutions. Non-linear Maxwell equations can be recovered from an application of the principle of least action to a Lagrangian corresponding to an invariant for a particle embedded in noise. This Lagrangian is not the standard Lagrangian of usual electromagnetism and resembles more to that used in [START_REF] Born | Proc. R. Soc[END_REF]. One of this equation shows that among the spherically symmetric solutions there is only one which can describe the elementary charge Q. Our study has been limited to the static aspect of a particle in its own reference frame,i.e, at zero Kelvin. However several new results have been obtained : -The duality wave-particle finds a simple explanation, -The Lorenz gauge is a trivial consequence of the invariance of the trace of the tensor, -A particle is characterized by a set of three quantum numbers.

-The concentration of energy around the origin of coordinates allows the description of the particles, -The mass and the electrical charge are related to the potential, -The sign of the electrical charge is different following the parity of a solution, which corresponds to the particle and its anti-particle.

-An interpretation of the standard "electrostatic" field has been obtained, -Non-charged particles are good candidates to explain "black matter". Other results can be foreseen which are classical explanations of quantum results : The non-linear periodic behavior of eigenvectors introduces the spin effect ; the existence of a particle tensor, even if there is no electric or magnetic field, can explain the dephasing property of a potential in the Aharonov-Bohm experiment. The dynamical properties of one or several solutions put in interaction (the chemistry of elementary particles) have to be studied now, a first goal (or hope !) being the identification with stable or unstable particles. Several developments can thus be foreseen among which the study of the stability under the influence of the fundamental noise, together with the study of birth and death of particles themselves. No new assumption have been made in this work which is based on the application of well known physical quantities (space, potential) and principles (symmetry and conservation laws together with the least action principle). However, we have associated a high frequency to a permanent oscillating field-particle : implications of this hypothesis are also interesting to develop. Our concluding remark is that the complete field-particle tensor together with the Poincaré's group of transformation make a powerful tool to study two-body or many-body problems.

[33] V. F. Weisskopf, Recent Developments in the Theory of the Electron, Rev. Mod. Phys., 21, N 0 3, pp. 305-315 (1949) [34] The Lagrangian which was used by Eddington and then by Born and Infeld is L = √ -|a ij | where a ij is the sum of the metric and the field tensors. 9 Appendix : The proper particle frame.

One starts with the symmetric tensor [s ij ] in a cartesian frame with s 12 , s 13 , s 14 ̸ = 0 : 

[s ij ] =    
L x =     γ x v x γ x 0 0 v x γ x γ x 0 0 0 0 1 0 0 0 0 1    
The relative speed of the tensor with respect to the observer along the x axis is noted v x in units of c and

γ x = 1/ √ 1 -v 2
x . The transformed tensor is : One notes also that this manipulation ( block diagonalization followed by a Lorentz transformation along x) result in the multiplication of the original s 13 and s 14 by γ x . It is clear now that the same manipulation done on the y and then on the z axis will allow to cancel terms 13 and 14 in the same way. 

[ ŝij ] = L x .[ŝ ij ].L x =   
Choosing v y to be a solution of ŝ11 v y + s33 v y + s 13 ( v 2 y + 1

) γ x = 0 (97) leads to s13 = 0. A final double manipulation -diagonalization of the 3X3 block followed by a Lorentz transformation characterized by v z along z-gives the value of v z which cancel the element 14 of the last tensor. These operations show that the tensor can be set in a coordinate frame where it is at rest with respect to the observer. The theorem which says that a symmetric tensor can be diagonalized if its determinant is not zero brings the condition [START_REF] Aad | Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC[END_REF] for the desired result -the cancellation of the terms s 12 , s 13 , s 14 -but without any insight on the fact that the speed of the tensor (or the observer) should be adjusted for this purpose.

Figure 1 -

 1 Figure 1 -Density function F 0 for solution J0(n = ℓ = m = 0) vs. x, distance to the center (arbitrary units).
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 2 Figure 2repartition function G 0 for solution J0 vs. x (arbitrary units).
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 3 Figure 3 -Density function F 1 for solution J1(n = 1, ℓ = m = 0) vs. x, distance to the center (arbitrary units).
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 4 Figure 4repartition function G 1 for solution J1 vs. x (arbitrary units).
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 5 Figure 5 -Density function F 2 for solution J2(n = 2, ℓ = m = 0) vs. x, distance to the center (arbitrary units).
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 6 Figure 6repartition function G 2 for solution J2 vs. x (arbitrary units).
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 7 Figure 7 -Spherical plot of the repartition of energy corresponding to solution J1(n = 1, ℓ = m = 0) for x =1.2 (arbitrary units).
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 8 Figure 8 -Evolution of < dW > angles vs. x for solution "q 0 " : n = 1, ℓ = 1, m = 0 (arbitrary units).
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 9 Figure 9 -Spherical plot of the local energy dW for x = 2.5
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 10 Figure 10 -Spherical plot of the spatial distribution of energy for x = 2.5 for solution "q 1 " : n = 1, ℓ = 1, m = 1 (arbitrary units).
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 11 Figure 11 -Spherical plot of Īs 4 for x = 2 for solution "q -1 " : : n = 1, ℓ = 1, m = -1 (arbitrary units).
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 3101312 Figure 12 -Radial evolution of the charge function J ′ 3 1 vs.x, distance to the center (arbitrary units).

Figure 13 -Figure 14 -

 1314 Figure 13 -Time component T of the eigenvector W 2 as a function of the radial component X for x = 2.5, 1.5, 1 and 0.5. (arbitrary units).

  One wants to describe the series of transformations which will lead to a tensor with s 12 , s 13 , s 14 = 0 . The first operation is a diagonalization of the lower bottom-right 3X3 block in the geometrical space. Only the spatial derivatives of the potential vector are concerned by this transformation which gives :[ŝ ij ] =    s 11 s 12 s 13 s 14 s Now let us consider a Lorentz transformation of this tensor with the operator :

( s 11 -

 11 The procedure continues with a diagonalization of the lower right 3X3 block of [ ŝij ] in the geometrical space in order to have a tensor (noted [s ij ]) which looks like (93) but this time with the terms s 12 = s 21 = 02s 12 v x + s 22 v 2 x )and a breve hat for the new diagonal elements. The next operation is a Lorentz transformation along y :One obtains the transformed tensor :[ sij ] = L y .[s ij ].L y =       ( ŝ11 + v y (v y s33 + 2s 13 γ x ))γ
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  s 11 s 12 s 13 s 14 s 12 s 22 s 23 s 24 s 13 s 23 s 33 s 34 s 13 s 24 s 34 s 44



  (s 11 + v x (ŝ 22 v x + 2s 12 ))γ 2 (ŝ 22 + v x (s 11 v x + 2s 12 ))γ 2 x +s 13 v x γ x +s 14 v x γ x s 13 γ x +s 13 v x γ x ŝ33 0 s 14 γ x +s 14 v x γ x Now we choose v x to be a solution of the equation : With this value of v x , elements of the first line of [ ŝij ] are : ŝ11 = (s 11 + v x (ŝ 22 v x + 2s 12 ))γ 2

	(	s 12	(	v 2 x + 1	)	x + (s 11 + ŝ22 )v x )	γ 2 x	(	s 12	(	v 2 x + 1	)	+ (s 11 + ŝ22 )v x	)	γ 2 x	s 13 γ x	s 14 γ x	   
																			0	ŝ44
						s 12	(	v 2 x + 1	)	+ (s 11 + ŝ22 )v x = 0	(93)
	i.e. ,			v x = -	s 11 + ŝ22 2s 12	±	√	(s 11 + ŝ22 ) 2 -4s 2 12 2s 12	(94)
																		x
					ŝ12 = 0									
					ŝ13 = s 13 γ x							
					ŝ14 = s 14 γ x								(95)

  33 + v y ( ŝ11 v y + 2s 13 γ x ))γ 2 y s 14 v y γ x γ y s 14 γ x γ y 0 s 14 v y γ x γ y s44

	(	0 ŝ11 v y + s33 v y + s 13	(	v 2 y + 1	)	2 y γ x )	γ 2 y	0 s22 0	(	ŝ11 v y + s33 v y + s 13 0 (s  ( v 2 y + 1 ) γ x ) γ 2 y s 14 γ x γ y 0     

This observer, a (little) 10 dwarf, would "see" a Doppler-shifted frequency but the shape would be the same

Here the distinction between A i and A i does not matter.

In regions far from a particle.