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The possibility of a fast and precise Abrikosov vortex manipulation by a focused laser beam opens the way
to create laser-driven Josephson junctions. We theoretically demonstrate that a vortex pinned in the vicinity of
the Josephson junction generates an arbitrary ground state phase which can be equal not only to 0 or π but
to any desired ϕ0 value in between. Such ϕ0 junctions have many peculiar properties and may be effectively
controlled by the optically driven Abrikosov vortex. Also we theoretically show that the Josephson junction with
the embedded vortex can serve as an ultrafast memory cell operating at sub THz frequencies.

I. INTRODUCTION

Josephson junctions (JJs) with nonzero spontaneous phase
difference between the superconducting electrodes in the
ground state (the so-called π , ϕ0, and ϕ JJs) have become
the subject of intensive theoretical and experimental study
during the past decade [1,2]. The most striking feature of such
junctions is their ability to generate a current in the supercon-
ducting circuit, thus acting as a phase battery [3–6]. In addition,
relatively small variation of the system parameters may
provoke dramatic changes in the ground state phase difference,
which is believed to provide new effective tools for controlling
the currents in microelectronic devices (see, e.g., Refs. [7,8]).

There are several generic mechanisms leading to the
spontaneous appearance of nonzero Josephson phase. The
basic one reveals when the superconducting (S) electrodes are
separated by a ferromagnetic (F) layer. The exchange field
inside the ferromagnet produces the spatial oscillations of
the Cooper pair wave function, and depending on the ratio
between the oscillation period and the F-layer thickness the
ground state phase is equal to 0 or π (these cases are referred
as 0 or π JJs, respectively) [9–11]. A peculiar situation is
realized when the thickness d of the ferromagnet varies along
the junction in a way that in some parts of the ferromagnet
the value of d corresponds to the 0 state while in other
parts to the π state (see Ref. [12] and references therein).
If there is only a slight difference between the areas of the
“0“ and “π” regions the phase frustration can result in the
appearance of a state with the spontaneous phase difference
φ = ±ϕ �= 0,π which is degenerate (ϕ JJ) (see Ref. [13] and
references therein). A similar effect takes place in Josephson
junctions with the current injectors acting as an effective source
of the phase jumps along the junction (see Refs. [14–16] and
references therein). One can also obtain a ϕ0 JJ, where the
ground state phase φ = ϕ0 is not degenerate, e.g., using the JJs
with broken inversion symmetry [17]. In this case the su-
perconducting current I through the junction should not be
necessarily an odd function of the phase difference φ and
can take the form I = Ic sin(φ + ϕ0) [17]. Such situation is

realized in the S|F|S junctions with strong spin-orbit coupling
(see Refs. [17–20] and references therein) or complicated
noncollinear distribution of the magnetization (see Refs. [21–
23] and references therein).

However, despite the variety of opportunities for the
engineering of the JJs with any desired ground state phase, it is
extremely hard to tune this phase after the system is fabricated.
There are just a few suggestions concerning the realization of
such tuning. For example, in S|F|S junctions the transition
between 0 and π states can occur by changing the temper-
ature [10,24–26], but this transition requires the presence of
magnetic impurities and very precise choice of the F-layer
thickness. A more realistic situation is realized in the Joseph-
son systems containing ballistic Bi nanowires or InSb quantum
dots where the interplay between strong spin-orbit and Zeeman
interactions enables the formation of π and ϕ0 states, which
can be tuned by an external magnetic field [18,20,27].

An alternative approach for the creation of the tunable
π , ±ϕ, and ϕ0 JJs is based on the embedding of some
intrinsic source of the current into one of the superconducting
electrodes. Such current induces the nonuniform Josephson
phase difference along the junction and thus modifies its
ground state. The straightforward way to realize this scenario
is to implant a pair of tiny current injectors serving as a source
and drain [14,15,28,29]. In this case the Josephson phase along
the junction reveals a jump with the amplitude determined by
the value of the injected current. Recently it was demonstrated
that this jump causes the appearance of the spontaneous ground
state Josephson phase like in ϕ0 or ±ϕ JJs depending on the
parameters [16]. However, the resulting ground state appears
to be very sensitive to the position of the current injectors, and
thus the creation of the junction with the desired current-phase
relation requires extremely precise positioning of the injectors
during the fabrication process.

Interestingly, a very similar situation is realized in Joseph-
son junctions where one of the superconducting electrodes
contains Abrikosov vortices. The superconducting current
circulating around the vortex core perturbs the profile of the
Josephson phase and thus affects the junction ground state.
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FIG. 1. Sketch of the Josephson junction with the trapped
Abrikosov vortex.

The specific details of this phenomenon strongly depend on
the system geometry and the orientation of the vortex.

In the simplest case of the planar JJ with the vortex trapped
in one of the superconducting electrodes near the Josephson
barrier, the vortex currents cross this barrier and induce the
nonuniform phase profiles along the junction [30–33]. This
results in the transition from the 0 to π ground state with the
variation of the distance between the vortex and the Josephson
barrier. Also the JJs with the embedded Abrikosov vortex
are promising for the design of the cryogenic random access
memory cells [34].

In the Josephson junctions of the “overlap” geometry
that are formed by two thin superconducting films with the
quasi-two-dimensional insulating layer in between, the cores
of Abrikosov vortices tend to become oriented perpendicular to
the plane of the junction. In this case the vortex currents flow-
ing parallel to the plane of the junction induce two-dimensional
phase profiles which can modify the Fraunhofer oscillations of
the critical current and current-voltage characteristics, create
nonquantized Josephson vortices, or even induce the nonzero
ground state Josephson phase [35–41]. A similar situations is
realized when such JJ is affected by the magnetic field of a
small magnetic particle [42].

Recently it was experimentally demonstrated that the
position of a single Abrikosov vortex can be controlled by
the tip of the magnetic force microscope [43,44], the electron
beam [41], the probe of the scanning tunneling microscope
[45], or the focused laser beam [46]. The latter technique
allows the ultrafast optically controlled positioning of an
individual Abrikosov vortex which opens a new avenue for
the design of novel optoelectronic superconducting devices. In
particular, it becomes possible to realize the optical tuning of
the current-phase relation of the Josephson junction provided
the vortex is trapped in one of its superconducting leads.

In this paper we propose the concept of the optically
controlled Josephson device and show that the Abrikosov
vortex pinned near the JJ is a promising tool for the ultrafast
tuning of the ground state phase. We consider a planar
Josephson junction, see Fig. 1, with different thicknesses t

of the superconducting electrodes as compared to the London
penetration depth λ. We start from the limit t � λ. In this case
depending on the vortex position the ground state phase can
be equal either to 0, to π , or to any desired value in between.
By moving the Abrikosov vortex, one can cause the switching
between different ground states, which occurs as the type-I or
type-II phase transition depending on the moving direction.
Namely, by changing the distance between the vortex and the
Josephson barrier one goes through the type-I transition with
the jumplike changing of the ground state phase between 0

FIG. 2. The geometry of the Josephson junction under
consideration.

and π . At the same time, the motion of the Abrikosov vortex
parallel to the junction barrier causes the type-II transition with
the continuous change of the ground state phase. However, for
practical applications it is more favorable to use the JJ with
t � λ which allows an easy and energy-efficient control of the
vortex position due to the low vortex energy. In this case we
suggest the optimal geometry for the optically driven JJ and
calculate its typical working characteristics. The shifting of
the vortex causes the transitions between the 0 and π states
[33,47]. In this case one can use the laser to write information
and realize the readout using the critical current measurements.

The paper is organized as follows. In Sec. II we analyze
the influence of the vortex position on the ground state of the
thick planar Josephson junction and demonstrate the transition
to the π and ϕ0 states. In Sec. III we review the influence of the
Pearl vortex on the ground state of the thin junction. In Sec. IV
considering a thin junction we propose the concept of the
memory cell based on the optically controlled positioning of
the vortex near the JJ. In Sec. V we summarize our results.

II. TUNABLE PLANAR JOSEPHSON JUNCTION OF
LARGE THICKNESS

A. Model

The system under consideration is shown in Fig. 2. The
Josephson junction consists of two superconducting slabs (S1

and S2) of width 2w separated by a thin insulating (I) barrier
of thickness d. We choose the origin of the Cartesian axes at
the center of the insulator so that the superconductor/insulator
interfaces are parallel to the xz plane and correspond to
y = ±d/2 while the outer boundaries of the superconductors
are parallel to the yz plane and correspond to x = ±w. An
Abrikosov vortex is pinned inside the S2 superconductor at the
position (x0,y0) and its core is parallel to the z axis. Also we
introduce the external magnetic field H0 parallel to the z axis.
In contrast with Refs. [33,47] we assume that the thickness h of
the slabs in the z direction well exceeds the London penetration
depth λ so that the boundary effects at z = ±h/2 can
be neglected (for simplicity we will consider an infinite
sample in the z direction). We also assume that the width 2w

of the junction satisfies the condition λ � 2w � λJ , where
λJ is the Josephson length. Finally, we assume that d � λ

and neglect the variation of the magnetic field across the
Josephson barrier.
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If the distance y0 between the Abrikosov vortex and the
insulating layer is on the order of λ the vortex strongly modifies
the properties of the Josephson junction. Indeed, in this case
the superconducting current flowing around the vortex core
induces a nonuniform profile of the superconducting phase
along the boundary of the S2 electrode. In Sec. II C we show
that this phase can result in the appearance of the spontaneous
Josephson phase across the JJ. For simplicity we assume that
the vortex is situated several λ away from all outer boundaries
of the superconductor. That is, its currents do not interact with
them, i.e., |x0 ± w| � λ.

First we derive the analog of the Ferrell-Prange equation
[48] which defines the spatial profiles of the Josephson phase
φ(x) along the junction. In the S2 superconductor the current
density j is the sum of the current density j sc, which screens
the external magnetic field penetrating into the superconduct-
ing electrodes, and the vortex-induced current jv:

j = 1

μ0λ2

(
�0

2π
∇θ − A

)
= j sc + jv, (1)

where θ (x,y) is the local phase of the superconducting gap
function, A is the vector potential, and �0 ≈ 2.07 fWb is
the magnetic flux quantum. In the vortex-free S1 electrode,
jv = 0 and the current is determined only by the external
magnetic field. Note that the expression (1) contains the
terms with different length scales: the vortex current is
localized at the distance ∼λ around the vortex core while the
screening currents flowing along the insulating barrier and
the corresponding vector potential have a typical scale on the
order of the Josephson length min(λJ ,2w) � λ. This allows
us to realize the scale separation.

Let us consider two points 1 and 2 with the same coordinate
x at the opposite superconductor/insulator interfaces with y =
±d/2 (physically this means that the distance between the
chosen points and the corresponding S|I interface is much
smaller than λ). First, let us assume that these points lie outside
the vortex neighborhood, i.e., |x − x0| > δ, where the length δ

satisfies the condition λ � δ � w (see Fig. 2). Rewriting the
projection of Eq. (1) to the x axis at y = ±d/2 we find two
equations

1

μ0λ2

(
�0

2π

∂θ±

∂x
− A±

x

)
= j±

sc,x, (2)

where the signs “±” correspond to y = ±d/2. Subtracting
one of these equations from another and taking into account
the approximate relation A+

x − A−
x ≈ Hz0d (here Hz0 is the

magnetic field inside the insulating layer) we obtain

1

μ0λ2

(
�0

2π

∂φ

∂x
+ Hz0d

)
= j+

sc,x − j−
sc,x, (3)

where φ(x) = θ (x, + d/2) − θ (x, − d/2) is the Josephson
phase. Note that according to the Maxwell equations j±

sc,x =
(1/μ0)(∂Hz/∂y)|y=±d/2, where Hz(x,y) is the magnetic field
inside the S leads [of course, Hz(x, ± d/2) = Hz0(x)]. In the
vortex-free region the magnetic field component Hz(x,y) satis-
fies the standard London equation [49] −∇2Hz + λ−2Hz = 0.
Here −∇2 ≡ ∂xx + ∂yy . The term ∂xxHz ∼ (λ/λJ )2 and can be
neglected. Hereinafter we assume that the external magnetic
field H0 is weak so that μ0H0 � �0/(λJ λ). In the opposite

limit the variation of the magnetic field Hz along the junction
scales by the length �0/(2μ0H0λ) instead of λJ .

The solution of the London equation inside the S1

and S2 electrodes allows us to calculate ∂Hz/∂y|y=±d/2 =
−Hz0 sgn(y)/λ and then Eq. (3) transforms into

�0

2π

∂φ

∂x
= −Hz0(d + 2λ). (4)

Finally, taking the derivative of Eq. (4) over x and taking
into account that ∂Hz/∂x = −μ0jy with the Josephson current
density through the junction jy = jc sin φ (jc is the critical
current density) we obtain the Ferrell-Prange equation in the
usual form:

∂2φ

∂x2
= 1

λ2
J

sin φ, (5)

where

λJ =
√

�0

2πμ0jcd̃
(6)

is the Josephson length and d̃ = (d + 2λ) is the thickness of
the insulating layer renormalized by the screening currents in
the superconductors.

Equation (5) should be supplemented by the appropriate
boundary conditions at x = ±w. Using Eq. (4) we find

∂φ

∂x

∣∣∣∣
x=±w

= −2πd̃

�0
Hz(±w). (7)

It is important to note that the magnetic field Hz(±w) is the
sum of the external field H0 and the field HJ induced by
the Josephson current jy flowing through the junction. It is
easy to demonstrate that this self-induced field HJ has the
same value and the opposite direction at the different sides of
the junction. Indeed, far from the insulating layer the current
flowing in the y direction is localized in the thin layers of
the thickness λ near the planes x = ±w while near y = 0
it spreads over the whole weak link being transformed into
the Josephson current. To calculate HJ it is convenient to
reproduce the current distribution in the sample as the sum
of the uniform current layers near x = ±w and the closed
current loops localized near the insulating layer. The latter
current does not contribute to HJ . Thus, the field HJ is
effectively induced by two uniform current layers carrying the
total current per unit length Iy = ∫ +w

−w
jy(x)dx: HJ (±w) =

∓μ0Iy/2. Of course, the derivation of this condition is based
on the assumption that the system is infinite in the z direction.
For the junction of a finite thickness t the coefficient in the
relation HJ (±w) ∝ Iy should be calculated from the solution
of the full electrodynamic problem.

Now let us analyze the behavior of the Josephson phase
in the region x0 − δ < x < x0 + δ near the position x0 of the
vortex. Rewriting Eq. (1) for the two points 3 and 4 inside the
δ interval near the vortex (see Fig. 2) and solving the London
equation for the superconducting currents we obtain the analog
of Eq. (4) but with the additional vortex contribution on the
right-hand side:

�0

2π

∂φ

∂x
= −Hz0d̃ + μ0λ

2jv,x . (8)
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Our goal is to match the solutions of Eq. (5) at different
sides of this region with the boundary conditions for φ. First,
since δ � λ the vortex current jv,x and the corresponding
magnetic field at x = x0 ± δ are negligibly small. Then at
x = x0 ± δ the magnetic field in Eq. (8) does not contain the
vortex contribution and, thus, varies over distances much larger
than λ so that Hz0(x0 − δ) ≈ Hz0(x0 + δ). Then one gets the
boundary condition matching the derivatives of the Josephson
phase:

∂φ

∂x

∣∣∣∣
x0+δ

= ∂φ

∂x

∣∣∣∣
x0−δ

. (9)

Second, integrating Eq. (8) over the interval x0 − δ < x <

x0 + δ and neglecting the term Hz0d̃δ since δ � w we
find

φ(x0 + δ) − φ(x0 − δ) = κ, (10)

where

κ = 2πμ0λ
2

�0

∫ x0+δ

x0−δ

j+
v,xdx. (11)

Note that in Eq. (11) we may put δ → ∞ since δ is much
larger than the scale of the vortex current λ. Then one sees that
the phase jump κ does not depend on x0 and is determined
only by the distance y0 between the vortex and the insulating-
layer center. To calculate this phase jump let us in the first
approximation neglect the small electron transparency of the
insulating barrier which allows us to discard the S1 electrode.
Then the profile of the superconducting currents in S2 can
be calculated using the image technique. Note that the vortex
does not create the stray magnetic field in the S1 electrode
and thus does not induce the current there. To account for
the S2 boundary, where the currents flow only in x direction,
we consider a superconducting film without this boundary
containing not only a vortex at (x0,y0) but also an antivortex
at (x0, − y0). Then we find that the supercurrent flowing at
y = +d/2 (along the edge of the S2 in original problem) is

jv,x(x) = 2
�0

2πμ0λ2

y0

r

1

λ
K1

( r

λ

)
, (12)

where r =
√

y2
0 + (x − x0)2 is the distance between the point

(x,0) at the S2|I interface and the vortex center. Substituting
Eq. (12) into Eq. (11) we find

κ(y0) = 2y0

λ

∫ +∞

−∞

1√
1 + t2

K1

(
y0

√
1 + t2

λ

)
dt. (13)

The resulting dependence κ(y0) is shown in Fig. 3. If the
vortex is far from the junction (y0 � 4λ), then the phase jump
κ → 0. If the vortex is near the S2|I interface (y0 → 0), then
κ → 2π . Note that in our case the phase jump of π occurs at
y0 ≈ 0.8λ, while in the case of the Pearls vortex in the ultrathin
film the corresponding distance is [47] 2w × 0.175 = 0.35w.
Note that the finite electron transparency of the insulation
barrier should result in a small correction to κ on the
order of (λ/λJ )2 and does not qualitatively influence further
results.

Thus, the spatial profile of the Josephson phase φ(x) is
determined by Eq. (5) with the boundary conditions (7)–(10).
Substituting this phase profile into the expression for the

0 1 2 3 4 5
0

0.5

1

1.5

2

y
0
 / λ

κ 
/ π

FIG. 3. The dependence of the Josephson phase jump κ on the
distance y0 between the Abrikosov vortex and the insulating layer.

Josephson current and integrating over the junction length 2w

one obtains the current-phase relation:

Iy =
∫ +w

−w

jc sin [φ(x)]dx. (14)

In the ground state the superconducting current Iy is zero.
Among the profiles φ(x) satisfying this condition the ground
state corresponds to the one with the minimal free energy

F = εJ

∫ +w

−w

[
λ2

J

2

(
∂φ

∂x

)2

+ (1 − cos φ)

]
dx, (15)

where εJ = jct�0/(2π ) is the Josephson energy per unit of
length.

B. Asymmetric magnetic oscillations of the critical current

In this section we demonstrate that for the JJ with thick
superconducting electrodes (t � λ) an Abrikosov vortex
strongly affects the dependence of the Josephson critical
current Ic on the external magnetic field H0 producing the
asymmetry of the Ic(H0) pattern with respect to H0 → −H0.
Note that previously a similar phenomenon was found for the
junctions with t � λ [47].

In the limit w � λJ the expression for the superconducting
phase profile φ(x) along the junction can be expanded over
the small parameter w/λJ . Our strategy is to find φ(x) in the
lowest approximation of the perturbation theory neglecting
the corrections ∼O(w2/λ2

J ) which come from the phase
renormalization due to the Josephson current. The resulting
profile φ(x) then determines the total current Iy flowing
through the junction: Iy = jc

∫ +w

−w
sin φ(x)dx.

The solution of the Ferrell-Prange equation (5) satisfy-
ing the boundary conditions with the accuracy ∼O(w/λJ )
reads

φ(x) =
{
φ0 − κ/2 − h(x − x0)/w for x < x0,

φ0 + κ/2 − h(x − x0)/w for x > x0,
(16)

where φ0 is the average phase in the vicinity of the point
x = x0 and h = 2πμ0wd̃H0/�0 is the dimensionless external
magnetic field. Integrating the resulting Josephson current
density over the width of the junction we obtain the averaged
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FIG. 4. Asymmetry in the Fraunhofer oscillations of the critical
current in the case when the Abrikosov vortex is pinned along the
line x0 = 0 but at different distances y0. The Josephson phase jump
κ corresponding to y0 is indicated in each panel.

current-phase relation Iy(φ0):

Iy = Ic0

h
sin φ0

[
sin

(κ

2

)
− cos(hX) sin

(κ

2
− h

)]

− Ic0

h
cos φ0 sin(hX) sin

(κ

2
− h

)
, (17)

where X0 = x0/w and Ic0 = 2jcw. The corresponding critical
current reads

Ic(h,κ,X0) = Ic0

|h| {1 − cos(hX0) cos(h)

+ cos(κ − h)[cos(hX0) − cos(h)]}1/2. (18)

The expression (18) clearly shows that the critical current satis-
fies the symmetry relations Ic(−h,κ,X0) = Ic(h, − κ,X0) and
Ic(h,κ, − X0) = Ic(h,κ,X0). Thus, for κ �= 0,π the Fraun-
hofer dependencies Ic(h) are asymmetric with respect to
h → −h. In particular, if the vortex is pinned at the central
line of the junction (X0 = 0) the critical current reads

I sym
c (h,κ,0) = Ic0

∣∣∣∣ 2

h
sin

(
h

2

)
cos

(
κ − h

2

)∣∣∣∣. (19)

The corresponding dependencies for different κ are shown in
Fig. 4.

Note that at h = 0 the expression for the critical current
reduces to I

sym
c (0,κ,0) = Ic0| cos(κ/2)|.

Comparing our results with the ones in Ref. [47] one sees
that the asymmetry of the dependencies Ic(H0) is a generic
phenomenon revealing itself for arbitrary ratios between the
thickness of the superconducting electrodes t and the London
penetration depth λ.

C. Phase transitions due to the shifting of the vortex

In this section we demonstrate that shifting of the Abrikosov
vortex can cause phase transitions between the states with
different spontaneous Josephson phase profiles. To find the
profile φ(x) corresponding to the minimum of the free energy

(15) we solve the Ferrell-Prange equation (5) demanding the
absence of the total Josephson current (14) across the junction.
For simplicity we assume that there is no external magnetic
field.

To describe such phase transitions we expand the phase
profile φ(x) along the junction up to the terms ∼O(w2/λ2

J )
accounting for the effect of the Josephson current [the higher
order terms result only in small corrections to φ(x) which do
not qualitatively change the picture of the phase transitions]:

φ(x) =
{∑2

n=0 C−
n

(
x−x0
λJ

)n
for x < x0,∑2

n=0 C+
n

(
x−x0
λJ

)n
for x > x0,

(20)

where the coefficients C±
0 = φ0 ± κ/2 can be written right

away, while the other C±
n should be determined from boundary

conditions. Substituting (20) into the Ferrell-Prange equation
(5), expanding the sine on the right-hand side up to O(w2/λ2

J ),
and collecting the terms in each order of the perturbation theory
separately, we find

C±
2 = 1

2
sin

(
φ0 ± κ

2

)
. (21)

The boundary conditions (7)–(9) give the other two equations:

C−
1 = C+

1 , (22)

C−
1 − 2C−

2

w + x0

λJ

= −C+
1 − 2C+

2

w − x0

λJ

. (23)

Writing Eq. (23) we take into account that in the absence of
the external magnetic field Hz(+w) = −Hz(−w). Obviously
in the ground state both Hz(±w) = 0 due to the absence of the
current through the junction. Thus,

C±
1 = x0

λJ

sin φ0 cos
(κ

2

)
− w

λJ

cos φ0 sin
(κ

2

)
. (24)

The expressions (21) and (24) define the Josephson phase
profile φ(x) which now depends only on φ0. To find φ0 we
take into account that in the ground state the total Josephson
current Iy = 0. Substituting φ(x) into Eq. (14) with Iy = 0 we
obtain the following equation:

cos
(κ

2

)
sin φ0 − X0 sin

(κ

2

)
cos φ0

+ w2

12λ2
J

{[(
1 − 3X2

0

) + (
1 + 3X2

0

)
sin2

(κ

2

)]
sin(2φ0)

+X0 sin κ
[(

3 + X2
0

)
cos2 φ0 − 2X2

0

]} = 0, (25)

where again we have introduced the dimensionless parameter
X0 = x0/w.

The free energy is

F (φ0) = F0 + 2wεJ f (φ0), (26)

where F0 does not depend on the phase φ0, and the dimension-
less function f (φ0) is

f (φ0) = − cos φ0 cos
(κ

2

)
− X sin φ0 sin

(κ

2

)
+ w2

24λ2
J

× [2X3 sin(2φ0) sin κ − 3(1 − X2) cos (2φ0)

− (1 − 3X2) cos (2φ0) cos κ]. (27)
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FIG. 5. The dependence of the equilibrium Josephson phase φ0

on the vortex position X0 near the phase transition. The distance
between the vortex and the junction is chosen in a way that the phase
jump κ = π . The junction width is w = 0.1λJ .

Before proceeding with the general analysis of Eqs. (25)
and (26) let us consider two limiting cases (i) X0 = 0 and (ii)
κ = π illustrating the general features of the Josephson phase
behavior.

1. Phase jump equal to π

When the Abrikosov vortex produces the phase jump κ = π

(i.e., y0 ≈ 0.8λ) the situation formally coincides with the one
for the S|F|S junction with the steplike thickness of the F layer
[12]. In this case Eq. (25) for the phase φ0 transforms into

−X0 cos φ0 + w2

6λ2
J

sin(2φ0) = 0. (28)

For |X0| > w2/3λ2
J this equation has the series of solu-

tions φ0 = ±π/2 + 2πn (n is an integer number) while
in the narrow region |X0| < w2/3λ2

J the additional solu-
tions exist: φ0 = α + 2πn and φ0 = π − α + 2πn with α =
arcsin(3X0λ

2
J /w2).

The function f (φ0) which defines the free energy (26) takes
the form

f (φ0) = −X0 sin φ0 − w2

12λ2
J

cos (2φ0). (29)

One can check that f (±π/2) = ∓X0 + w2/12λ2
J and

f (α) = f (π − α) = −3X2
0λ

2
J /2w2 − w2/12λ2

J . Thus, in the
region |X0| > w2/3λ2

J the equilibrium phase is φ0 =
(π/2)sgn(X0) + 2πn while for |X0| < w2/3λ2

J the minimum
of the free energy corresponds to the degenerated states φ0 =
α + 2πn and φ0 = π − α + 2πn. The dependencies φ0(X0)
near the transition point are shown in Fig. 5. For convenience
for each phase we choose n in a way that 0 < φ0 < 2π .

Clearly, the vortex motion along the junction results in the
series of two type-II phase transitions at X0 = ±w2/3λ2

J with
continuously changing φ0 and the jump in the second derivative
of the free energy over X0. This situation is very similar to
the formation of the φ JJ in the stacked S|F|S systems [13].
However, in contrast with the S|F|S JJs, the Abrikosov vortex
enables the real-time tuning of the equilibrium phase.

2. Vortex at the central line of the junction

Now let us turn to the limiting case when the Abrikosov
vortex is placed at the central line of the junction where X0 =
0. In this case Eq. (25) takes the form

cos
(κ

2

)
sin φ0 + w2

24λ2
J

(3 − cos κ) sin(2φ0) = 0. (30)

The number of the solutions depends on the phase jump
κ . For |κ − π | > 2w2/3λ2

J there are only two series of
the solutions φ0 = 0 + 2πn and φ0 = π + 2πn while for
|κ − π | < 2w2/3λ2

J two additional series φ0 = ±β + 2πn

appear, where

β = arccos

[
−12λ2

J

w2

cos
(

κ
2

)
(3 − cos κ)

]
. (31)

To simplify this expression it is convenient to introduce the
deviation δκ of the phase jump from π : κ = π + δκ . Since
|δκ| � 1 one obtains β ≈ arccos [(3λ2

J /2w2)δκ].
The function f (φ0) which defines the system free energy

[see Eq. (27)] is

f (φ0) = cos φ0 sin

(
δκ

2

)
− w2

24λ2
J

(3 − cos δκ) cos (2φ0).

(32)

Expanding Eq. (32) over δκ up to O(δκ2) and at the same time
neglecting the terms ∼O(w/λJ )4 we find

f (0) = δκ

2
− w2

12λ2
J

, f (π ) = −δκ

2
− w2

12λ2
J

, (33)

f (±β) = 3λ2
J

8w2
δκ2 + w2

12λ2
J

. (34)

Thus, the ground state phase is φ0 = 0 + 2πn for κ < π and
φ0 = π + 2πn for κ > π while the states with φ0 = ±β +
2πn are not favorable at any phase jumps κ . As a result,
the vortex motion along the central line of the junction (with
X = 0) causes the type-I phase transition accompanied by the
discontinuous changing of the φ(x) profile and the jump in the
first derivative of the free energy over δκ [see Eq. (33)].

3. Arbitrary position of the vortex

In Secs. II C 2 and II C 3 it is shown that the type of
the phase transition provoked by the vortex motion strongly
depends on the direction of this motion. Here we analyze the
general case of the arbitrary position of the vortex. To do this
we numerically find all solutions of Eq. (25) and then choose
the one which corresponds to the minimal energy (26). The
results are presented in Figs. 6 and 7. Interestingly, the behavior
of the value of φ0 in the ground state for different parameters
X0 and κ is well reproduced by the simple estimate presented
below.

One can check that since |X0| � 1 the expression inside the
braces in Eq. (25) clearly satisfies the inequality |{. . .}| � 12.
Thus, outside the narrow parameter region defined by the two
simultaneous conditions |X0| < w2/λ2

J and |κ − π | < w2/λ2
J

the terms ∝ w2/λ2
J in Eq. (25) are not sufficient and can be

neglected. Then in the ground state the phase φ0 takes the value
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FIG. 6. The dependencies of the ground state phase φ0 on the dimensionless vortex position X0 along the junction for different values of
the phase jump κ . The value δκ/π = (κ − π )/π is equal to (a) −0.02; (b) −0.01; (c) −0.0015; (d) −0.0001; (e) 0; (f) 0.0001; (g) 0.0015; (h)
0.01; (i) 0.02. The blue solid lines correspond to the stable branches realizing the minima of the free energy while the red dashed curves show
the metastable solutions for φ0.

φ0 = φ̃0, where sin φ̃0 = ρ−1X0 sin ( κ
2 ), cos φ̃0 = ρ−1 cos ( κ

2 ),

ρ =
√

cos2 ( κ
2 ) + X2

0 sin2 ( κ
2 ).

In contrast, for |X0| < w2/λ2
J and |κ − π | < w2/λ2

J the
situation is more rich. In this parameter region we can expand
Eq. (25) up to the terms ∼O(w2/λ2

J ). Then one obtains the
equation

−δκ

2
sin φ0 − X0 cos φ0 + w2

6λ2
J

sin(2φ0) = 0, (35)

where δκ = κ − π .
First let us analyze the dependencies of the value of φ0

in the ground state as a function of X0 for different δκ �= 0.
Depending on X0, Eq. (35) has two or four solutions for φ0. To
classify these solutions it is convenient to consider the function
X0(φ0) = w2

3λ2
J

sin φ0 − δκ
2 tan φ0 which is uniquely defined.

The numerical analysis shows that the minimum of the free
energy for the fixed X0 corresponds to the monotonic branch
X0(φ0) at the interval π/2 < φ0 < 3π/2 for δκ > 0 or at the
union of the intervals 3π/2 < φ0 < 2π and 0 < φ0 < π/2.
Also for each sign of δκ there is another branch of the function
X0(φ0) which determines one metastable φ0 for the fixed X0

in the case |δκ| > 2w2/3λ2
J and three metastable solutions in

the case |δκ| < 2w2/3λ2
J (see Fig. 6). Note that in the ground

state the dependencies of φ0 and the free energy on X0 are
continuous which indicates the absence of the phase transitions
for δκ �= 0.

In contrast, the dependencies φ0(δκ) for the fixed X0

demonstrate the type-I phase transition in the case when
|X0| < w2/2λ2

J . Indeed, Eq. (35) can be rewritten in the form
δκ = 2w2

3λ2
J

cos φ0 − 2X0 cot φ0. The values φ0 corresponding

to the energy minimum belong to the interval 0 < φ0 < π
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0 1 2

φ
0 / 

π

0

1

2
(a)

κ / π
0.98 1 1.02

φ
0 / 

π

0

1

2
(b)

κ / π
0.98 1 1.02

φ
0 / 

π

0

1

2
(c)

κ / π
0.98 1 1.02

φ
0 / 

π

0

1

2
(d)

κ / π
0.98 1 1.02

φ
0

/
π

0

1

2
(e)

κ / π
0.98 1 1.02

φ
0 / 

π

0

1

2
(f)

κ / π
0.98 1 1.02

φ
0 / 

π

0

1

2
(g)

κ / π
0 1 2

φ
0 / 

π

0

1

2
(h)

FIG. 7. The dependencies of the ground state phase φ0 on the phase jump κ for different values of the vortex position X0. The value X0

is equal to (a) −10−1; (b) −10−2; (c) −10−3; (d) −10−4; (e) 10−4; (f) 10−3; (g) 10−2; (h) 10−1. The blue solid lines correspond to the stable
branches realizing the minima of the free energy while the red dashed curves show the metastable solutions for φ0.
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FIG. 8. The X0-κ diagram showing the line of the type-I phase
transition ending with two critical points (red straight curve). The
blue dashed curves show the possible trajectories of the Abrikosov
vortices corresponding to different type of the phase transitions (PT).

for X0 > 0 and π < φ0 < 2π for X0 < 0. For |X0| > w2/2λ2
J

the stable branch of the function δκ(φ0) is monotonic, and thus
the inverse dependence of the ground state phase φ0 vs δκ is
uniquely defined. However for |X0| < w2/2λ2

J the function
δκ(φ0) becomes nonmonotonic and the ground state phase
reveals a jump at δκ = 0 indicating the type-I phase transition
(see Fig. 7).

Thus, on the parameter plane X0-κ there is the segment
|X0| < w2/2λ2

J at the line κ = π separating the phases with
different φ0 in the ground state corresponding to the points
of the type-I phase transition (see Fig. 8). The ends of this
segment are the critical points. Thus, the vortex motion along
the plane of the Josephson junction can cause either the jump
of the ground state phase φ0 or the continuous changing
of φ0 depending on whether the vortex crosses the segment
corresponding to the phase transition or not.

Note that the requirement t � λ which was assumed
throughout this section permits us to obtain the full analytical
solution. However, qualitatively the formation of φ0 junctions
should remain possible also in the intermediate regime t ∼ λ

which is realized in typical experiments on the optical
manipulation of vortices [46].

III. THIN PLANAR JOSEPHSON JUNCTION

The rich variety of possible phase transitions discussed in
Sec. II opens a way for the optical sculpturing of the ground
state of the JJ by performing controllable jumps of the vortex
between several points. However, in such experiments the
absorbed laser power needed for one jump can be substantially
decreased by making the thickness of the superconducting
electrodes on the order of λ or even less. In this case the
description of the nonlinear phenomena responsible for the
emergence of the ϕ0 state requires sophisticated numerical
calculations which are on the way and will be published
elsewhere. In Sec. IV we will focus on the linear phenomena
which allow the realization of promising devices for the
superconducting electronics based on the JJ with t � λ. To
simplify the calculations we will restrict ourselves for the

limit t � λ keeping in mind that the obtained results should
qualitatively remain valid also in the intermediate regime
t � λ. If the thickness t � λ, then the effective vortex size
is λP = λ2/t—the so-called Pearl length. The extreme case
when λP > 2w was studied in several works [33,47,50,51]
and allows for the analytical solution. Therefore we do not
rederive these case here, but rather review the key results in
this section.

The phase distribution induced by a single vortex was
derived in Refs. [33,47,50]. The phase induced by the vortex
along the JJ length is given by [50] (in our notations)

φ(x) = −2 arctan
− sin

(πx

2w

)
+ cosh

(πy0

2w

)
sin

(πx0

2w

)
sinh

(πy0

2w

)
cos

(πx0

2w

) .

(36)

It turns out that the vortex close to the JJ induces almost
a steplike phase profile, with the step height (discontinuity of
the Josephson phase) approaching 2π when y0 → 0. As y0

increases, the steplike profile of the induced phase smears. At
the distances y0 � 2w the vortex induces just a constant (x
independent) phase at the junction, which, however, depends
on x0, namely [50] φ = πx0/w. By changing the vortex
coordinates (x0,y0), one can provoke the transitions between
different junction ground states.

Further, the effect of the vortex (induced phase) on the
critical current pattern Ic(H ) was calculated [47]. It was found
that the vortex situated along the symmetry line x0 = 0 may
result in vanishing Ic(0) if y0 ≈ 0.350w. This effect is similar
to zero Ic(0) in the 0-π JJ; however the phase profile is different
from steplike. It is important to mention that y0 corresponding
to Ic(0) = 0 is on the order of w in the case of a thin film, and
y0 ∼ λ in the case of a thick film. Thus, it is much easier to
control the JJ by moving the vortex in the thin film.

IV. OPTICALLY CONTROLLED 0-π TRANSITIONS IN
THIN PLANAR JOSEPHSON JUNCTIONS

In this section we propose the concept of an optoelectronic
superconducting device which exploits the possibility to
realize the ultrafast switching of the critical current of the
Josephson junction by the controllable displacement of the
vortex. We consider the system shown in Fig. 9. The planar
Josephson junction of the thickness t � λ is embedded into
a superconducting strip. The length 2w of the junction is
assumed to be smaller or on the order of the effective Pearl
length λP = λ2/t [52,53]. Previously, it was shown that in
this case the vortex trapped inside the superconducting lead
strongly influences the critical Josephson current Ic [32,33].
Specifically, the shifting of the vortex along the central line of
the strip (the y axis) at the distances of the order of w away
from the junction results in the 0-π transition which is revealed
through the vanishing of Ic.

The strong sensitivity of Ic to the vortex position allows
us to use an optically controlled Josephson junction as an
ultrafast optoelectronic superconducting memory cell where
the information is stored by the vortex position. Specifically,
the switching between the states “0” and “1” can be realized
as the vortex displacement between two artificial pinning
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FIG. 9. The sketch of the Josephson junction which enables
optical switching of the critical current by the controllable vortex
displacement. The S2 lead has the form of the square of the size
2w × 2w and contains two artificial defects A and B which can
efficiently trap the vortex. The laser beam focused at the nonoccupied
pinning center creates an attractive thermal force acting on the vortex
and provokes the jump of the vortex from one pinning center to
another.

centers A and B created at the central line (y axis) of the
junction. Keeping in mind the technique demonstrated in
Ref. [46] we may suggest realizing the writing operation by
applying the focused laser beam to the point which corresponds
to the desired vortex position. At the same time, the readout
can be performed by measuring the voltage on the junction
at the fixed current. Indeed, the critical current Ic depends on
whether the vortex is pinning at the center A or B so that
IA
c �= IB

c (for distinctness we suppose that IB
c > IA

c ). So if the
JJ is a part of the electrical circuit maintaining the constant
current with IA

c < I < IB
c then the vortex skip from the point

B to the point A will produce the transition from the zero
voltage state (I < IB

c and the JJ has zero resistance) to the
finite voltage state (I > IA

c and the resistance is finite).
In what follows we estimate the optimal characteristics of

the described memory cell and highlight the main physical
factors which have a strong influence on its working regimes.
The position and strength of the pinning centers and the
geometry of the superconducting leads should be chosen in
a way which allows us to perform guaranteed laser-controlled
switching between the states with the maximal frequency.

The most important factor affecting the properties of the
suggested device is the pinning force Fp trapping the vortex
near the pinning center. In order to stabilize the vortex position
the vortex pinning should be large enough but not too strong to
permit an easy vortex manipulation by a laser beam. The lower
threshold for the pinning force is determined by the vortex
attraction to the sample boundaries. If the pinning centers are
placed at the central line of the junction the attraction forces
to the opposite slab boundaries are nearly compensated in
contrast with the attraction to the insulating layer. The best
way to minimize this attraction seems to be to choose the S2

electrode in the form of the square with the side w ∼ λP and
fabricate the pinning cites near its center.

Let us calculate the force Fatt(y) attracting the vortex to the
square boundaries as a function of the vortex displacement yv

from the insulating layer assuming zero displacement from the
junction central line in the direction perpendicular to the y axis
(in this case the force Fatt is also directed along the y axis). To
do this we need to solve the London equation for the magnetic
field Hz induced by the vortex currents with the boundary
conditions requiring the absence of the normal component of
the current at the S2-electrode edges. Then the projection of

2w

2w

y

x

0 yv

FIG. 10. The illustration of the image method which we use to
calculate the magnetic field induced by the trapped vortex in the finite-
size superconducting square. The blue circles correspond to the real
vortex (when inside the square sample) and the image vortices, while
the red circles show the image vortices with the opposite vorticity
(antivortices). The filling of the circle indicates whether it makes a
nonzero contribution into the attraction force Fatt (filled circles) or
not (nonfilled circles).

the attraction force on the y axis reads [53]

Fatt = −t�0
∂Hz

∂y

∣∣∣∣
x=0,y=yv

. (37)

In the limit t � λ the problem can be substantially
simplified by neglecting the self-magnetic-fields generated by
the vortex and the screening currents [54,55]. In this case the
field Hz satisfies the Poisson equation which can be solved
with the help of the electrostatic analogy [56,57]. According
to this analogy, the field Hz plays the role of the electrostatic
potential induced by the electrically charged wire with the
linear charge density Q = ε0�0/(μ0λ

2) and the boundary
conditions at the sample edges can be fulfilled by introducing
the set of the wire images which make the potential along
the boundaries constant (in a full analogy with the well-
known image method in electrostatics). Then the “potential”
(magnetic field) at the point corresponding to the vortex
center is the sum of the potentials created by all the “wire”
images (see Fig. 10). At the same time, only the images whose
distance from the real vortex changes with the variation of
yv make nonzero contribution into the attraction force (they
are filled in Fig. 10), while the relative position of all other
images with respect to the vortex does not depend on yv

and, thus, they can be excluded from further calculations. The
coordinates of the contributing images have the form (xn; ym)
where ym = 2(2m + 1)w − (yv − w) and xn = 2(2n + 1)w
for the images with the charge Q and xn = 4nw for the ones
with the opposite charge −Q; n and m are arbitrary integers
(−∞ < n,m < +∞).
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FIG. 11. The function f (z) which defines the attractive force
between the vortex and the boundaries of the square superconductor.

Solving the Poisson equation we find that the magnetic field
and the y projection of the resulting attracting force in the point
corresponding to the vortex position read

Hz = C − 1

4πε0

∑
j

2Qj ln |rj − rv|, (38)

F
y
att(yv) = −t

�0

4πε0

∑
j

2Qj (yj − yv)

(yj − yv)2 + x2
j

, (39)

where rv = (0; yv) is the vector of the vortex coordinates, rj =
(xj ; yj ) stays for the j th image, the summation is performed
over all images which gives a nonzero contribution to the
attracting force, and C is a certain constant which does not
affect the attracting force.

Taking the sum in Eq. (39) we finally obtain

F
y
att(yv) = 1

4πμ0

t

2w

(
�0

λ

)2

f
(yv

w
− 1

)
. (40)

The function f (z) is defined as

f (z) =
∞∑

n,m=−∞

2(4m + 1)pn(z)[
p2

n(z) + (2m)2
][

p2
n(z) + (2m + 1)2

] , (41)

where pn(z) = 2n + 1 − z. The plot of this function is shown
in Fig. 11. For z � 1 the Taylor expansion gives f (z) ≈ 3.44z

so that F
y
att ≈ (1.72/4πμ0)(�0/λ)2[(yv − w)t/w2].

To make the estimate we consider a Nb film with the
critical temperature Tc = 8 K and the London penetration
depth at zero temperature λ(0) ∼ 100 nm [58]. For the sample
of thickness t = 5 nm at temperature T = 4.6 K we find
λP ∼ 4 μm and then the appropriate choice for the size of
the square superconducting lead may be 2w ∼ 3 μm. The
pinning force fp per unit length of the vortex can be estimated
from the experimentally measured critical current density
Jc of the isolated superconducting film due to the vortex
depinning as fp = Jc�0 [59]. Taking Jc = 0.7 × 106 A/cm2

which is relevant to the samples in Ref. [46] we find that
fp ∼ 10 pN/μm. Thus, to neglect the vortex attraction to the
sample boundaries one needs Fatt � fpt , which is realized for
|yv − w| � 0.2w ∼ 300 nm.

The insulating film of the Josephson junction should be
chosen in a way that the Josephson energy εJ × 2w exceeds
the system temperature T . This requirement is satisfied

0 0.4 0.8 1.2 1.6 2
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0.4

0.6
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 /  w

I c / 
 I

c0

FIG. 12. The dependence of the critical current on the distance yv

between the vortex and the insulating layer (adopted from Ref. [33]).
We take xv = 0 assuming that the vortex is placed at the central line of
the junction. The red points indicate the position of the pinning centers
A and B. The critical current is normalized at the value Ic0 = 2jcwt .

provided the critical current density of the junction is jc �
2πT/(2wt�0) ≈ 1.2 kA/cm2 which is an achievable value
for the Josephson systems.

The distance �y between the artificial pinning centers A
and B should be chosen large enough to guarantee the reliable
displacement of the vortex when applying the laser beam and,
at the same time, small enough to optimize the switching time
and avoid the vortex interaction with the sample boundaries
(we need �y < 2|yv − w|). In experiment the vortex has been
successfully moved at the distances ∼1 μm comparable to
the laser beam radius r0 ∼ 0.4 μm [46], so it is reasonable
to choose the position of the pinning centers yA = 0.8w and
yB = 1.2w so that the distance between them is �y ∼ 600 nm.

The pinning force estimated above allows us to determine
the optimal parameters for the focused laser beam controlling
the vortex position. The thermal force acting on the vortex
from the beam is proportional to the temperature gradient
(∇T )v at the point of the vortex, and the depinning occurs
when

�0
∂Hc1

∂T
(∇T )v � fp. (42)

For fp ∼ 10 pN/μm one finds that the condition (42) is
satisfied for (∇T )v ∼ 2 K/μm. Modeling the temperature
profile in the superconductor under the influence of the laser
beam in the spirit of Ref. [46] we obtain that to provoke the
vortex motion at a distance �y ∼ 600 nm from the initial
position one needs a beam of the power W ∼ 500 μW (we
took the absorbtion coefficient equal to 50%).

The optically controlled vortex motion between the points
y = (1 ± 0.2)w should produce the variation of the Josephson
critical current which exceeds 15%, namely, from 0.9Ic to
0.73Ic (see Fig. 12). This change may be easily detected on
transport experiments allowing us to realize the effective read-
out procedure in the described memory cell. The numerical
analysis of the heat transport equation with the parameters
relevant to Nb and the substrates used in Ref. [46] shows that
the characteristic switching time between the different vortex
positions in the memory cell is on the order of τ ∼ 10 ps which
gives the energy per operation E ∼ 3 × 10−15 J.
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Thus, the Josephson junction with the embedded vortex is
a promising system which can serve as a basic optically con-
trolled memory cell working at the subterahertz frequencies.

V. CONCLUSION

To sum up, we demonstrate that an Abrikosov vortex pinned
near the Josephson junction produces the anomalous Joseph-
son effect revealing itself through the emergence of the arbi-
trary Josephson phase in the ground state. Changing the vor-
tex position along the specific trajectories, e.g., with the help
of the focused laser beam, one can produce controllable phase
transitions between the states with different Josephson phase
values. In particular, for planar junctions of the thickness
t � λ depending on the vortex trajectory such phase transitions
can be of the first or second type which corresponds to
the steplike switching between the zero and π states or the
continuous phase changing through the ϕ0-junction formation,
respectively. For the thin junctions with t � λ the vortex-
induced 0-π transitions seem to be a promising tool for the
design of the ultrafast optically controlled memory cells for

the cryogenic electronics where the information is encoded in
the position of the vortex, the writing is performed by the laser,
and the readout is realized on the basis of the Josephson current
measurement. Note that in spite of the assumptions about the
ratio t/λ which allow us to simplify the analytical analysis
in different limiting cases all discovered phenomena should
be generic and remain qualitatively the same for arbitrary
relations between t and λ. Thus, we hope that our results can
be directly verified in existing experimental setups [46] and
will stimulate future progress in the domain of optofluxonics.

ACKNOWLEDGMENTS

This work was partially supported by the French ANR
projects “SUPERTRONICS” and “Optofluxonics,” the Rus-
sian Foundation for Basic Research and EU COST Action
CA16218. E.G. and S.M. thank the University of Bordeaux
for financial support and hospitality. A.B. wish to thank
the Leverhulme Trust for supporting his stay in Cambridge
University. E.G. acknowledges support by the Deutsche
Forschungsgemeinschaft (DFG) via Project No. GO-1106/5.

[1] A. I. Buzdin, Rev. Mod. Phys. 77, 935 (2005).
[2] M. Eschrig, Rep. Prog. Phys. 78, 104501 (2015).
[3] A. Bauer, J. Bentner, M. Aprili, M. L. Della-Rocca, M.

Reinwald, W. Wegscheider, and C. Strunk, Phys. Rev. Lett. 92,
217001 (2004).

[4] A. I. Buzdin, Phys. Rev. B 72, 100501 (2005).
[5] A. K. Feofanov, V. A. Oboznov, V. V. Bol’ginov, J. Lisenfeld,

S. Poletto, V. V. Ryazanov, A. N. Rossolenko, M. Khabipov,
D. Balashov, A. B. Zorin, P. N. Dmitriev, V. P. Koshelets, and
A. V. Ustinov, Nat. Phys. 6, 593 (2010).

[6] T. Ortlepp, Ariando, O. Mielke, C. J. M. Verwijs, K. F. K. Foo,
H. Rogalla, F. H. Uhlmann, and H. Hilgenkamp, Science 312,
1495 (2006).

[7] I. I. Soloviev, N. V. Klenov, S. V. Bakurskiy, V. V. Bol’ginov,
V. V. Ryazanov, M. Yu. Kupriyanov, and A. A. Golubov, Appl.
Phys. Lett. 105, 242601 (2014).

[8] A. Mukhanov, IEEE Trans. Appl. Supercond. 21, 760 (2011).
[9] A. I. Buzdin, L. Bulaevskii, and S. V. Panyukov, Sov. Phys.

JETP 35, 178 (1982).
[10] V. V. Ryazanov, V. A. Oboznov, A. Y. Rusanov, A. V.

Veretennikov, A. A. Golubov, and J. Aarts, Phys. Rev. Lett.
86, 2427 (2001).

[11] V. A. Oboznov, V. V. Bol’ginov, A. K. Feofanov, V. V. Ryazanov,
and A. I. Buzdin, Phys. Rev. Lett. 96, 197003 (2006).

[12] C. Gürlich, S. Scharinger, M. Weides, H. Kohlstedt, R. G. Mints,
E. Goldobin, D. Koelle, and R. Kleiner, Phys. Rev. B 81, 094502
(2010).

[13] H. Sickinger, A. Lipman, M. Weides, R. G. Mints, H. Kohlstedt,
D. Koelle, R. Kleiner, and E. Goldobin, Phys. Rev. Lett. 109,
107002 (2012).

[14] T. Gaber, E. Goldobin, A. Sterck, R. Kleiner, D. Koelle, M.
Siegel, and M. Neuhaus, Phys. Rev. B 72, 054522 (2005).

[15] A. V. Ustinov, Appl. Phys. Lett. 80, 3153 (2002).
[16] E. Goldobin, S. Mironov, A. Buzdin, R. G. Mints, D. Koelle,

and R. Kleiner, Phys. Rev. B 93, 134514 (2016).
[17] A. Buzdin, Phys. Rev. Lett. 101, 107005 (2008).

[18] S. V. Mironov, A. S. Mel’nikov, and A. I. Buzdin, Phys. Rev.
Lett. 114, 227001 (2015).

[19] F. Dolcini, M. Houzet, and J. S. Meyer, Phys. Rev. B 92, 035428
(2015).

[20] D. B. Szombati, S. Nadj-Perge, D. Car, S. R. Plissard, E. P.
A. M. Bakkers, and L. P. Kouwenhoven, Nat. Phys. 12, 568
(2016).

[21] M. Eschrig, A. Cottet, W. Belzig, and J. Linder, New J. Phys.
17, 083037 (2015).

[22] S. Mironov and A. Buzdin, Phys. Rev. B 92, 184506
(2015).

[23] A. Moor, A. F. Volkov, and K. B. Efetov, Phys. Rev. B 92,
180506(R) (2015).

[24] A. V. Veretennikov, V. V. Ryazanov, V. A. Oboznov, A. Y.
Rusanov, V. A. Larkin, and J. Aarts, Phys. B (Amsterdam, Neth.)
284-288, 495 (2000).

[25] V. V. Ryazanov, V. A. Oboznov, A. S. Prokofiev, V. V. Bolginov,
and A. K. Feofanov, J. Low Temp. Phys. 136, 385 (2004).

[26] Y. Blum, A. Tsukernik, M. Karpovski, and A. Palevski, Phys.
Rev. Lett. 89, 187004 (2002).

[27] C. Li, A. Kasumov, A. Murani, S. Sengupta, F. Fortuna, K.
Napolskii, D. Koshkodaev, G. Tsirlina, Y. Kasumov, I. Khodos,
R. Deblock, M. Ferrier, S. Guéron, and H. Bouchiat, Phys. Rev.
B 90, 245427 (2014).

[28] K. Buckenmaier, T. Gaber, M. Siegel, D. Koelle, R. Kleiner, and
E. Goldobin, Phys. Rev. Lett. 98, 117006 (2007).

[29] A. Dewes, T. Gaber, D. Koelle, R. Kleiner, and E. Goldobin,
Phys. Rev. Lett. 101, 247001 (2008).

[30] L. G. Aslamazov and E. V. Gurovich, Pis’ma Zh. Eksp. Teor.
Fiz. 40, 22 (1984).

[31] M. V. Fistul and G. F. Giuliani, Phys. Rev. B 58, 9343 (1998).
[32] T. Golod, A. Rydh, and V. M. Krasnov, Phys. Rev. Lett. 104,

227003 (2010).
[33] J. R. Clem, Phys. Rev. B 84, 134502 (2011).
[34] T. Golod, A. Iovan, and V. M. Krasnov, Nat. Commun. 6, 8628

(2015).

11



[35] N. Uchida, K. Enpuku, Y. Matsugaki, S. Tomita, and
F. Irie, J. Appl. Phys. 54, 5287 (1983).

[36] S. L. Miller, K. R. Biagi, J. R. Clem, and D. K. Finnemore, Phys.
Rev. B 31, 2684 (1985).

[37] A. A. Golubov and M. Yu. Kupriyanov, Zh. Eksp. Teor. Fiz. 92,
1512 (1987).

[38] A. A. Golubov and M. Yu. Kupriyanov, J. Low Temp. Phys. 70,
83 (1988).

[39] V. N. Gubankov, M. P. Lisitskii, I. L. Serpuchenko, F. N. Sklokin,
and M. V. Fistul’, Supercond. Sci. Technol. 5, 168 (1992).

[40] A. A. Golubov and A. V. Ustinov, Phys. Lett. A 162, 409
(1992).

[41] A. V. Ustinov, T. Doderer, B. Mayer, R. P. Huebener,
A. A. Golubov, and V. A. Oboznov, Phys. Rev. B 47, 944
(1993).

[42] A. V. Samokhvalov, Phys. Rev. B 80, 134513 (2009).
[43] E. W. J. Straver, J. E. Hoffman, O. M. Auslaender, D. Rugar,

and K. A. Moler, Appl. Phys. Lett. 93, 172514 (2008).
[44] O. M. Auslaender, L. Luan, E. W. J. Straver, J. E. Hoffman,

N. C. Koshnick, E. Zeldov, D. A. Bonn, R. Liang, W. N. Hardy,
and K. A. Moler, Nat. Phys. 5, 35 (2009).

[45] J.-Y. Ge, V. N. Gladilin, J. Tempere, C. Xue, J. T. Devreese, J.
Van de Vondel, Y. Zhou, and V. V. Moshchalkov, Nat. Commun.
7, 13880 (2016).

[46] I. S. Veshchunov, W. Magrini, S. V. Mironov, A. G. Godin,
J.-B. Trebbia, A. I. Buzdin, Ph. Tamarat, and B. Lounis,
Nat. Commun. 7, 12801 (2016).

[47] V. G. Kogan and R. G. Mints, Phys. C (Amsterdam, Neth.) 502,
58 (2014).

[48] R. A. Ferrell and R. E. Prange, Phys. Rev. Lett. 10, 479 (1963).
[49] F. London and H. London, Proc. R. Soc. A 149, 71 (1935).
[50] V. G. Kogan and R. G. Mints, Phys. Rev. B 89, 014516 (2014).
[51] G. R. Berdiyorov, M. V. Milosevic, L. Covaci, and F. M. Peeters,

Phys. Rev. Lett. 107, 177008 (2011).
[52] J. Pearl, Appl. Phys. Lett. 5, 65 (1964).
[53] P. G. de Gennes, Superconductivity of Metals and Alloys

(Westview Press, 1999).
[54] M. Moshe, V. G. Kogan, and R. G. Mints, Phys. Rev. B 78,

020510(R) (2008).
[55] J. R. Clem, Phys. Rev. B 81, 144515 (2010).
[56] A. Buzdin and D. Feinberg, Phys. C (Amsterdam, Neth.) 235-

240, 2755 (1994).
[57] A. Buzdin and D. Feinberg, Phys. C (Amsterdam, Neth.) 256,

303 (1996).
[58] T. R. Lemberger, I. Hetel, J. W. Knepper, and F. Y. Yang, Phys.

Rev. B 76, 094515 (2007).
[59] D. Saint-James, G. Sarma, and E. J. Thomas, Type II Supercon-

ductivity (Pergamon Press, Oxford, 1969).

12




