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Asymptotic stabilization of stationnary shock waves using a boundary feedback law

In this paper we consider scalar conservation laws with a convex flux. Given a stationnary shock, we provide a feedback law acting at one boundary point such that this solution is now asymptotically stable in L 1 -norm in the class of entropy solution.

1 Generalities and previous results.

Scalar conservation laws in one dimension are equations of the form

u t + (f (u)) x = 0, (1) 
where u : R → R and f : R → R. They are used, for instance, to model traffic flow or gas networks, but their importance also lies in being a first step in the understanding of systems of conservation laws u : R → R d . Those systems of equations model a huge number of physical phenomena: gas dynamics, electromagnetism, magneto-hydrodynamics, shallow water theory, combustion theory. . . see [START_REF] Dafermos | ume 325 of Grundlehren der Mathematischen Wissenschaften[END_REF]Chapter2].

For equations such as [START_REF] Adimurthi | Exact controllability of scalar conservation laws with strict convex flux[END_REF], the Cauchy problem on the whole line is well posed in small time in the framework of classical solutions and with a C 1 initial value. However those solutions generally blow up in finite time: shock waves appear. Hence to get global in time results, a weaker notion of solution is called for.

In [START_REF] Oleȋ Nik | On discontinuous solutions of non-linear differential equations[END_REF] Oleinik proved that given a flux f ∈ C 2 such that f ′′ > 0 and any u 0 ∈ L ∞ (R) there exists a unique weak solution to:

u t + (f (u)) x = 0, x ∈ R and t > 0, (2) 
u(0, .) = u 0 ,

satisfying the additional condition:

u(t, x + a) -u(t, x) a ≤ E t
for x ∈ R, t > 0, and a > 0.

Here E depends only on the quantities inf(f ′′ ) and sup(f ′ ) taken on [-||u 0 || L ∞ , ||u 0 || L ∞ ] and not on u 0 .

Later in [START_REF] Kruˇzkov | First order quasilinear equations with several independent variables[END_REF], Kruzkov extended this global result to the multidimensional problem, with a C 1 flux f : R → R n not necessarily convex: u t + div(f (t, x, u)) = g(t, x, u), for t > 0 and x ∈ R n .

This time the weak entropy solution is defined as satisfying the following integral inequality: for all real numbers k and all non-negative functions φ ∈ C 1 (R 2 ) R 2

|u -k|φ t + sgn(uk)(f (u)f (k))∇φ + sgn(uk)g(t, x, u)φdtdx

+ R u 0 (x)φ(0, x)dx ≥ 0. ( 6 
)
The initial boundary value problem for equation ( 1) is also well posed as shown by Leroux in [START_REF] Yves Le Roux | étude du problème mixte pour une équation quasi-linéaire du premier ordre[END_REF] for the one dimensional case with BV data, by Bardos, Leroux and Nédélec in [START_REF] Bardos | First order quasilinear equations with boundary conditions[END_REF] for the multidimensional case with C 2 data and later by Otto in [START_REF] Otto | Initial-boundary value problem for a scalar conservation law[END_REF] (see also [START_REF] Málek | Weak and measure-valued solutions to evolutionary PDEs[END_REF]) for L ∞ data. However the meaning of the boundary condition is quite intricate and the Dirichlet condition may not be fulfilled pointwise a.e. in time. We will go into further details later.

Before describing in detail our particular problem, let us recall a few general facts on general control systems. Consider such a system : Ẋ = F (X, U ),

X(t 0 ) = X 0 , (7) 
(X being the state of the system belongs to the space X and U the so called control belongs to the space U ), we can consider two classical problems (among others) in control theory.

1. First the exact controllability problem which consists, given two states X 0 and X 1 in X and a positive time T , in finding a certain function t ∈ [0, T ] → U (t) ∈ U such that the solution to [START_REF] Andreianov | On the attainable set for a scalar nonconvex conservation law[END_REF] satisfies X(T ) = X 1 .

2. If F (0, 0) = 0, the problem of asymptotic stabilization by a stationary feedback law asks to find a function of the state X ∈ X → U (X) ∈ U , such that for any state X 0 a maximal solution X(t) of the closed loop system: Ẋ(t) = F (X(t), U (X(t))),

X(t 0 ) = X 0 , (8) 
is global in time and satisfies additionally:

∀R > 0, ∃r > 0 such that ||X 0 || ≤ r ⇒ ∀t ∈ R, ||X(t)|| ≤ R, (9) 
X(t) → t→+∞ 0. ( 10 
)
The asymptotic stabilization property might seem weaker than exact controllability : for any initial state X 0 , we can find T and U (t) such that the solution to [START_REF] Andreianov | On the attainable set for a scalar nonconvex conservation law[END_REF] satisfies X(T ) = 0 in this way we stabilize 0 in finite time. However this method suffers from a lack of robustness with respect to perturbation: with any error on the model, or on the initial state, the control may not act properly anymore since at most we reach a close neighbourhood of the state 0. But if that stationnary state is unstable we then deviate significantly. This motivates the problem of asymptotic stabilization by a stationary feedback law which is more robust. Indeed in the case of perturbations, once we deviate enough from 0, the control acts up again and drive us toward 0. An additionnal property garanteeing a good robustness with respect to perturbations is the existence of a Lyapunov functionnal. In finite dimension it is often the case that if we can find a feedback function U stabilizing the stationnary state, we can find another one for which we additionnally have a Lyapunov function. We are interested in the controllability properties of (1) when we use the boundary data as controls. In the framework of entropy solutions, some results exist for the exact controllability problem problem, see [START_REF] Andreianov | On the attainable set for a class of triangular systems of conservation laws[END_REF], [START_REF] Andreianov | On the attainable set for a scalar nonconvex conservation law[END_REF], [START_REF] Adimurthi | Exact controllability of scalar conservation laws with strict convex flux[END_REF] [4], [START_REF] Ancona | Asymptotic stabilization of systems of conservation laws by controls acting at a single boundary point[END_REF], [START_REF] Ancona | On the attainable set for Temple class systems with boundary controls[END_REF], [START_REF] Bressan | On the boundary control of systems of conservation laws[END_REF], [START_REF] Glass | On the controllability of the 1-D isentropic Euler equation[END_REF], [START_REF] Glass | On the controllability of the non-isentropic 1-d euler equation[END_REF], [START_REF] Glass | On the uniform controllability of the Burgers equation[END_REF], [START_REF] Horsin | On the controllability of the Burgers equation[END_REF], [START_REF] Léautaud | Uniform controllability of scalar conservation laws in the vanishing viscosity limit[END_REF], [START_REF] Li | One-sided exact boundary null controllability of entropy solutions to a class of hyperbolic systems of conservation laws[END_REF], [START_REF] Perrollaz | Exact controllability of scalar conservation laws with an additional control in the context of entropy solutions[END_REF]. See also [START_REF] Gosse | Filtered gradient algorithms for inverse design problems of one-dimensional Burgers equation[END_REF] for a related problem.

Once we look at the problem of asymptotic stabilization in a classical framework the litterature is huge see the book [START_REF] Bastin | Stability and boundary stabilization of 1-D hyperbolic systems[END_REF] for an up to date bibliography. In the framework of entropy solution however the only existing articles (known to the author) are [START_REF] Coron | Dissipative boundary conditions for 2 × 2 hyperbolic systems of conservation laws for entropy solutions in BV[END_REF], [START_REF] Blandin | Regularity and Lyapunov stabilization of weak entropy solutions to scalar conservation laws[END_REF] and [START_REF] Perrollaz | Asymptotic stabilization of entropy solutions to scalar conservation laws through a stationary feedback law[END_REF]. Furthermore in those articles the goal is to stabilize a stationnary state which is actually regular. The entropy framework is only used to garantee more stability. In this paper we aim to stabilize results particular to the entropy framework : stationnary shock waves.

Discussion on the problem and on the proofs

Let us present rather informally and in the simpler case of Burgers' equation the problems we are interested in, the kind of result we want to obtain and the idea behind the proofs. Burgers' equation is the simplest equation of type [START_REF] Adimurthi | Exact controllability of scalar conservation laws with strict convex flux[END_REF], it reads

∂ t u + ∂ x u 2 2 = 0. ( 11 
)
If we look at the regular stationnary states it is clear that we have the constant states indexed by R. For any real number k ∈ R the function u k defined by

∀x ∈ R, u k (x) := k, (12) 
is obviously a solutions of [START_REF] Bressan | On the boundary control of systems of conservation laws[END_REF].

If we consider a stationnary entropy solution u, it is clear, since it is a weak solution that u 2 is a constant. Futhermore using Oleinik's estimate (4) which is valid for any time t since u is stationnary that u is actually decreasing. In the end we see that the family of such solutions is described by a positive real number k and a real number p through

∀x ∈ R, u k,p (x) := k if x < p, -k if x > p. ( 13 
)
Of course we see that at the discontinuity x = p, the Rankine-Hugoniot condition holds

0 = k 2 2 -(-k) 2 2 k -(-k) = f (k) -f (-k) k -(-k) .
Now let us look at the stability of those stationnary solutions.

• For the family u k defined by [START_REF] Colombo | Rigorous estimates on balance laws in bounded domains[END_REF], using the results of [START_REF] Dafermos | ume 325 of Grundlehren der Mathematischen Wissenschaften[END_REF] Chapter 11 section 8, if we consider an initial data u 0 and a number ǫ > 0 such that

∀x ∈ R, |u k (0, x) -u 0 (x)| ≤ ǫ,
then we have for the solution u of (11

) corresponding to u 0 ∀x ∈ R, |u k (t, x) -u ( t, x)| ≤ ǫ.
So we have stability (though not asymptotic stabilization) of u k in the L ∞ setting.

• Let us now consider [START_REF] Bressan | On the boundary control of systems of conservation laws[END_REF] on the interval (0, L) with additionnal boundary conditions

u(t, 0) = α, u(t, L) = β, (14) 
once again let us mention that we cannot expect those boundary conditions to hold for a.e. time t. This is related to the presence of boundary layers at the borders, we will make a precise statement on the sense of the boundary conditions in the next part.

It can be shown using generalized characteristics (see [START_REF] Perrollaz | Asymptotic stabilization of entropy solutions to scalar conservation laws through a stationary feedback law[END_REF]) that if k = 0, α = β = k there exists a time T such that for u 0 ∈ L ∞ (0, L) then the entropy solution u satisfy

∀t ≥ T, ∀x ∈ (0, L), u(t, x) = k.
This is enough to show the asymptotic stabilization in L ∞ (0, L) (and of course also in L 1 ) toward u k .

As for robustness result, let us suppose that α, β > 0 then we have a time T > 0 such that for any initial data u 0 the entropy solution u satisfies ∀t ≥ T, ∀x ∈ (0, L), u(t, x) = α, so as long as α is close to k we still have some reasonnable asymptotics.

• On the other hand for k > 0 if we look at the family (u k,p ) p∈(0,L) it is clear that all those solutions satisfy ( 14) with α = k and β = -k. Since

||u k,p -u k,p ′ || L 1 (0,L) = 2|p -p ′ | • k,
we already see that we cannot expect asymptotic stabilization for this family in L 1 . In the L ∞ setting we have the following result from [START_REF] Mascia | Large-time behavior for conservation laws with source in a bounded domain[END_REF], if α = k and β = -k there exists a time T > 0 such that for any initial data u 0 ∈ L ∞ there exists p ∈ (0, L) such that the entropy solution to [START_REF] Bressan | On the boundary control of systems of conservation laws[END_REF], [START_REF] Dafermos | Generalized characteristics and the structure of solutions of hyperbolic conservation laws[END_REF] satisfies

∀t ≥ T, ∀x ∈ (0, L), u(t, x) = u k,p (x),
but the position p of the singularity does depend on u 0 , so we basically cannot expect asymptotic stabilization in L ∞ , though simple stability may still hold.

As far as robustness is concerned, it can be shown (using the results on generalized characteristics of [START_REF] Perrollaz | Asymptotic stabilization of entropy solutions to scalar conservation laws through a stationary feedback law[END_REF]) for instance that if α > k and β = -k then we have a time T > 0 such that for any initial data u 0 the entropy solution u satisfies ∀t ≥ T, ∀x ∈ (0, L), u(t, x) = β, and even starting from u k,p we go far from it in L ∞ and in L 1 .

For a more precise discussion of the above see [START_REF] Mascia | Large-time behavior for conservation laws with source in a bounded domain[END_REF]. Following the previous results, the goal is now, given a stationnary state u k,p to provide a feedback law for the boundary conditions such that u k,p is asymptotically stable for the semigroup.

To that end the idea is (very roughly) the following. According to the results of [START_REF] Mascia | Large-time behavior for conservation laws with source in a bounded domain[END_REF] we can expect that if we inject α = k and β = -k in the system after some time we get a stationnary shock wave u k,p ′ , now we want to move the singularity from p ′ to p, to that end we oserve the value of u(t, .) at p if it is k then p ′ < p and so the singularity needs to move to the right, so we modify α to be a bit more than k, after some time the trace to the left of the singularity will be this state so using the rankine Hugoniot condition the singularity will move with positive speed. Of course with p ′ > p we set α a bit less than k so after some time the singularity will move to the left.

In practice there are multiple difficulties when we want to implement the above strategy.

1. Since we are in feedback form with no access to t, we cannot wait for the profile to be a u k,p ′ before using the second strategy which basically reduces the dynamic to a 1d phenomenon.

2. The time it takes for the inbound α to get to the singularity depends on the position of the singularity and of the state α. So basically we expect than rather than some scalar ODE on the position of the singularity we end up with a delayed differential equation with a delay depending on the solution itself.

3. We will get some kind of oscillatory phenomenon of the singularity around the goal p, we need to make sure that there is some kind of "damping".

4. The regularity will be

L ∞ t BV x ∩ Lip t L 1
x so we need some kind of filtered value of u(t, .) near p.

Let us discuss now the content of the following sections. In Section 3 we will provide the main result and some definitions necessary for it. In Section 4 we provide the remaining definitions necessary for the proof. In 5, we will show that the closed loop system does have a unique solution which depends continuously of the initial data. In Section 6 we will provide results on generalized characteristics in particular their interactions with the boundary. They will be our main tool to study the solutions. In Section 7 we will prove the main result using a Lemma on delayed differential equations which itself is proved in A.

Main Result

Definition 1. In the whole paper we will suppose the following fixed.

• The flux f : R → R will be a C 2 uniformly convex function, so in particular lim u→±∞ f (u) = +∞.

We will additionnally suppose that min f = f (0) = 0, but this is not restrictive since given a and b the flux change f (u) := f (a + u)b, sends entropy solution on entropy solution.

• Given a positive number m we can now define the numbers u l (m) and u r (m) satisfying

u l (m) < u r (m), f (u l (m)) = f (u r (m)) = m.
• We can now define another family of stationnary solutions. Let us consider m > 0 and α ∈ (0, L) we define

∀(t, x) ∈ R × (0, L), ūα,m (t, x) := u l (m) if x < α, u r (m) if x ≥ α. (15) 
Proof. Since f (u l (m))-f (ur (m))

u l (m)-ur(m) = 0 the Rankine-Hugoniot condition is satisfied and thus ūα,m is indeed a weak solution.

Since u l (m) < u r (m) and f is convex the following entropy condition is also satisfied. For any k ∈ (u l (m), u r (m)),

f (u l (m)) -f (k) u l (m) -k ≥ f (u l (m)) -f (u r (m)) u l (m) -u r (m) ≥ f (k) -f (u r (m)) k -u r (m) .
To describe the feedback law we will need the following functions. We suppose that we are given an interval [0, L] and a position α ∈ (0, L). Definition 2. Let us consider three positive numbers ǫ, δ, ν. (Those will be parameters to be tuned later on) We will suppose that [αδ, α + δ] ⊂ (0, L) and define the functions.

∀z ∈ R, A ǫ,ν (z) :=      -ǫ if z ≤ -ν, ǫ z ν if -ν ≤ z ≤ ν ǫ if ν ≤ z . ( 16 
) ∀u ∈ L 1 (0, L), O α,δ (u) := 1 2δ α+δ α-δ (u(x) -ūα,m )dx. (17) 
We will now be interested in the solutions the following closed loop system

           ∂ t u + ∂ x f (u) = 0, u(t, 0)" = "u l (m) -A ǫ,ν (O α,δ (u(t, .))), u(t, L)" = "u r (m), u(0, x) = u 0 (x) (18) 
Theorem 1. Given L, α, m and δ we can find ǫ and ν small enough such that given u 0 ∈ BV(0, L) the system (18) has a unique entropy solution u. Furthermore there are constants

C, M > 0 such that ∀t ≥ 0, ||u(t, .) -ūα,m || L 1 (0,L) ≤ M e -Ct ||u 0 -ūα,m || L 1 (0,L) . (19) 
Remark 1.

• In the proofs we will precise the way ǫ and ν must be chosen.

• Note that we have chosen to act at the left boundary but the same result would hold with an action at the right boundary.

• The convexity of f is however crucial to the analysis.

Entropy solution and Boundary conditions

We need to precise the sense in which we consider the solutions since we have both regularity problems and overdetermined boundary conditions (see [START_REF] Dafermos | ume 325 of Grundlehren der Mathematischen Wissenschaften[END_REF] for a general exposition). We will follow [START_REF] Yves Le Roux | On the convergence of the Godounov's scheme for first order quasi linear equations[END_REF] and [START_REF] Bardos | First order quasilinear equations with boundary conditions[END_REF]. (one can also look at [START_REF] Ammar | Scalar conservation laws with general boundary condition and continuous flux function[END_REF] and [START_REF] Colombo | Rigorous estimates on balance laws in bounded domains[END_REF] for more general and up to date results) We will need the notations

∀(a, b) ∈ R 2 , I(a, b) := [min(a, b), max(a, b)]. ∀z ∈ R, sgn(z) :=      1 if z > 0 -1 if z < 0 0 otherwise Definition 3. We say that a function u ∈ L ∞ ([0, +∞); BV(0, L)
) is an entropy solution of (18) when for any number k ∈ R and any positive function

φ ∈ C 1 c (R 2 ) we have +∞ 0 L 0 |u(t, x) -k|∂ t φ(t, x) + sgn(u(t, x) -k)(f (u(t, x)) -f (k))∂ x φ(t, x)dxdt +∞ 0 sgn(u r (m) -k)(f (k) -f (u(t, L -)))φ(t, L)dt - +∞ 0 sgn(u l (m) -A ǫ,ν (O α,δ (u(t, .))) -k)(f (k) -f (u(t, 0 + )))φ(t, 0)dt + L 0 |u 0 (x) -k|φ(0, x)dx ≥ 0 (20)
Let us be more explicit on the sense in which the boundary conditions hold.

Definition 4. For u ∈ R we define Adm l (u) and Adm r (u)to be

Adm l (u) := {z ∈ R : f ′ (z) ≤ 0} if f ′ (u) ≤ 0 {z ∈ R : f ′ (z) < 0 and f (z) ≥ f (u)} ∪ {u} if f ′ (u) > 0 Adm r (u) := {z ∈ R : f ′ (z) ≥ 0} if f ′ (u) ≥ 0 {z ∈ R : f ′ (z) > 0 and f (z) ≥ f (u)} ∪ {u} if f ′ (u) < 0
At the right boundary we ask that for almost all time t ≥ 0

u(t, L -) ∈ Adm r (u r (t)), which means ∀k ∈ I(u(t, L -), u r (m)), sgn(u(t, L -) -u r (m))(f (u(t, L -)) -f (k)) ≥ 0, (21) 
At the left boundary we ask that for almost all time t ≥ 0

u(t, 0 + ) ∈ Adm l (u l (t)), ∀k ∈ I u(t, 0 + ), u l (m) -A ǫ,ν (O α,δ (u(t, .))) , sgn u(t, 0 + ) -(u l (m) -A ǫ,ν (O α,δ (u(t, .)))) (f (u(t, 0 + )) -f (k)) ≤ 0, ( 22 
)
Remark 2. The formulation in term of admissibility set depends on the convexity of f while (21) and ( 22) are more general.

Existence and Uniqueness

In this part we consider a fixed u 0 ∈ BV(0, L) and we want to show the existence and uniqueness of a solution to the closed loop system [START_REF] Glass | On the controllability of the 1-D isentropic Euler equation[END_REF]. Let us first recall the following result from [START_REF] Yves Le Roux | On the convergence of the Godounov's scheme for first order quasi linear equations[END_REF], [START_REF] Bardos | First order quasilinear equations with boundary conditions[END_REF].

Theorem 2. Given any time T > 0 and functions u 0 ∈ BV(0, L), v l ∈ BV loc (0, +∞) and v r ∈ BV loc (0, +∞) there exists a unique entropy solution v ∈ L ∞ loc ((0, +∞); BV(0, L))

∩ Lip loc (R + ; L 1 (0, L)) to            ∂ t v + ∂ x f (v) = 0, v(t, 0) = v l (t), v(t, L) = v r (t), v(0, x) = v 0 (x). ( 23 
)
Once again we interpret a solution of ( 23) to mean

+∞ 0 L 0 |v(t, x) -k|∂ t φ(t, x) + sgn(v(t, x) -k)(f (v(t, x)) -f (k))∂ x φ(t, x)dxdt +∞ 0 sgn(v r (t) -k)(f (k) -f (v(t, L -)))φ(t, L)dt - +∞ 0 sgn(v l (t) -k)(f (k) -f (v(t, 0 + )))φ(t, 0)dt + L 0 |v 0 (x) -k|φ(0, x)dx ≥ 0,
for any number k and any positive function

φ ∈ C 1 (R 2 ). Definition 5. Given a function z ∈ L ∞ (R + ) ∩ Lip(R + ) we use the previous result to get u ∈ L ∞ loc (R + ; BV(0, L)) ∩ Lip loc (R + ; L 1 (0, L)) the solution to            ∂ t u + ∂ x f (u) = 0, u(t, 0) = u l (m) -A ǫ,ν (z(t)), u(t, L) = u r (m), u(0, x) = u 0 (x). ( 24 
)
We will now define the operator F by

∀t ≥ 0, F(z)(t) := O α,δ (u(t, .)). (25) 
We now recall another result from [START_REF] Mascia | Large-time behavior for conservation laws with source in a bounded domain[END_REF].

Proposition 1. If we consider initial data v 0 , w 0 in BV(0, L) and boundary data v l , v r , w l and w r in Lip([0, T ]), the solutions v and w of

           ∂ t v + ∂ x f (v) = 0, v(t, 0) = v l (t), v(t, L) = v r (t), v(0, x) = v 0 (x),            ∂ t w + ∂ x f (w) = 0, w(t, 0) = w l (t), w(t, L) = w r (t), w(0, x) = w 0 (x), (26) 
satisfy

∀T > 0, L 0 (v(T, x) -w(T, x)) + dx ≤ L 0 (v 0 (x) -w 0 (x)) + dx + T 0 (v l (t) -w l (t)) + + (v r (t) -w r (t)) + dt. ( 27 
)
Where we used ∀r ∈ R, r + := max(0, r).

Proof. This is just a particular case of Theorem 2.4 in [START_REF] Mascia | Large-time behavior for conservation laws with source in a bounded domain[END_REF].

Proposition 2. The space L ∞ (R + )∩Lip(R + ) is stable under F. Furthermore F has a unique fixed point on this space.

Proof.

• We note that using the definition of A ǫ,ν we get

∀t ≥ 0, A ǫ,ν (z(t)) ∈ [-ǫ, ǫ],
therefore with

C := max ||u 0 || L ∞ (0,L) , |u l (m)| + ǫ, |u r (m)| ,
we see that the constant function C (resp. -C) is solution of the system which is greater (resp. smaller) than u on the boundary so using Proposition 1 we see that we have

∀(t, x) ∈ R + × [0, L], -C ≤ u(t, x) ≤ C.
• For the next part of the result we use k = ±C in the definition of an entropy solution with a test function φ which has a support in (0, +∞) × (0, L) to get

+∞ 0 L 0 u(t, x)∂ t φ(t, x) + f (u(t, x))∂ x φ(t, x)dxdt = 0. ( 28 
)
A classical density argument shows that the equation above is still admissible if φ is just Lipschitz. Now given a time T positive numbers h and θ we define

φ θ (t, x) := ψ θ (t)κ θ (x), with ψ θ (t) :=                0 if t ≤ T -θ t-T -θ θ if T -θ ≤ t ≤ T 1 if T ≤ t ≤ T + h T +h+θ-t θ if T + h ≤ t ≤ T + h + θ 0 otherwise, κ θ (x) :=                0 if x ≤ α -δ -θ x-α+δ θ if α -δ -θ ≤ x ≤ α -δ 1 if α -δ ≤ x ≤ α + δ α+δ+θ-x θ if α + δ ≤ x ≤ α + δ + µ 0 otherwise, .
Taking θ → 0 in [START_REF] Mascia | Large-time behavior for conservation laws with source in a bounded domain[END_REF] we obtain

α+δ α-δ u(T, x)dx - α+δ α-δ u(T + h, x)dx + T +h T f (u(t, α -δ)) -f (u(t, α + δ))dt = 0.
Using the definition of O α,δ [START_REF] Glass | On the uniform controllability of the Burgers equation[END_REF], the L ∞ bound and the convexity of f we now get

|F(z)(T + h) -F(z)(T )| ≤ h max(f (C), f (-C)) 2δ .
• Consider y and z two Lipschitz bounded functions. Let us call u and v the entropy solution involved in the definitions of F(y) and F(z). Using Proposition 1 we get

|F(y)(T ) -F(z)(T )| ≤ 1 2δ L 0 |u(T, x) -v(T, x)|dx ≤ 1 2δ T 0 |A ǫ,ν (y(t)) -A ǫ,ν (z(t))|dt ≤ 1 2δ T 0 ǫ ν |y(t) -z(t)|dt ≤ ǫ 2δν T ||y -z|| L ∞ (0,T ) .
This is enough to show that F is continuous with respect to the uniform convergence on any compact. But F takes value on a set which is uniformly bounded with equilipschitz functions, and is therefore a compact set for this precise topology. We can apply Schauder fixed point Theorem. (see [START_REF] Rudin | Functional analysis[END_REF])

• Let us now consider two such fixed points y and z. The previous calculation but gives

∀T ≥ 0, |y(T ) -z(T )| ≤ ǫT 2δν ||y -z|| L ∞ (0,T ) .
For continuous functions t → ||.|| L ∞ (0,t) is continuous and nondecreasing so if we define

T * := sup{T ≥ 0 : ||y -z|| L ∞ (0,T ) = 0},
we see that if ǫT 2δν < 1 we have T ≤ T * , therefore

T * ≥ 2δν ǫ .
If we suppose that T * < +∞, since y is equal to z on [0, T * ] so are u and v but then applying Proposition 1 with u(T, .) as initial data we have with the same calculation as before

∀T ≥ T * , |y(T ) -z(T )| ≤ ǫ(T -T * ) 2δν ||y -z|| L ∞ (T * ,T ) . but if (T -T * )ǫ 2δν
< 1 we see that ||y -z|| L ∞ (0,T ) = 0 so T ≤ T * which is absurd therefore T * = +∞ and the fixed point of F is unique.

Generalized Characteristics and the boundary

We describe in this section a technical tool that will be used extensively in the following to study the local properties of the solution of the closed loop system. We begin by recalling a few definitions and results from [START_REF] Dafermos | Generalized characteristics and the structure of solutions of hyperbolic conservation laws[END_REF]. We will refer in this section to the system

           ∂ t u + ∂ x (f (u)) = 0 on (0, +∞) × (0, L), u(0, .) = u 0 on (0, L), sgn(u(t, L -) -u r (t))(f (u(t, L -)) -f (k)) ≥ 0 ∀k ∈ I(u r (t), u(t, L -)), dt a.e., sgn(u(t, 0 + ) -u l (t))(f (u(t, 0 + )) -f (k)) ≤ 0 ∀k ∈ I(u l (t), u(t, 0 + )), dt a.e., (29) 
where only for this section u l and u r are two regulated functions of time thus defined on R + , u 0 ∈ BV(0, L) and u is the unique entropy solution.

Remark 3. If the boundary condition at x = 0 in ( 29) is satisfied at time t it means that

• either u(t, 0 + ) = u l (t)
• or for any state k ∈ I(u l (t), u(t, 0 + )) we have

f (u(t, 0 + ) -f (k) u(t, 0 + ) -k ≤ 0,
which means that any wave generated by the Riemann problem between u l (t) and u(t, 0 + ) leaves the domain.

the same kind of interpretation holds for the boundary condition at x = L.

Following [START_REF] Dafermos | Generalized characteristics and the structure of solutions of hyperbolic conservation laws[END_REF] we introduce the notion of generalized characteristic.

Definition 6.

• If γ is an absolutely continuous function defined on an interval (a, b) ⊂ R + and with values in (0, L), we say that γ is a generalized characteristic of (29) if:

γ(t) ∈ I(f ′ (u(t, γ(t) -)), f ′ (u(t, γ(t) + )))
dt a.e.. This is the classical characteristic ODE taken in the weak sense of Filippov [START_REF] Filippov | Differential equations with discontinuous right-hand side[END_REF].

• A generalized characteristic γ is said to be genuine on (a, b) if:

u(t, γ(t) + ) = u(t, γ(t) -) dt a.e..
We recall the following results from [START_REF] Dafermos | Generalized characteristics and the structure of solutions of hyperbolic conservation laws[END_REF].

Theorem 3.

• For any (t, x) in (0, +∞) × (0, L) there exists at least one generalized characteristic γ defined on (a, b) such that a < t < b and γ(t) = x.

• If γ is a generalized characteristics defined on (a, b) then for almost all t in (a, b):

γ(t) = f ′ (u(t, γ(t)) if u(t, γ(t) + ) = u(t, γ(t) -), f (u(t,γ(t) + ))-f (u(t,γ(t) -)) u(t,γ(t) + )-u(t,γ(t) -) if u(t, γ(t) + ) = u(t, γ(t) -).
• If γ is a genuine generalized characteristics on (a, b) (with γ(a), γ(b) ∈ (0, L)), then there exists a C 1 function v defined on (a, b) such that:

u(b, γ(b) + ) ≤ v(b) ≤ u(b, γ(b) -), u(t, γ(t) + ) = v(t) = u(t, γ(t) -) ∀t ∈ (a, b), (30) 
u(a, γ(a) -) ≤ v(a) ≤ u(a, γ(a) + ).

Furthermore (γ, v) satisfy the classical ODE equation:

γ(t) = f ′ (v(t)), v(t) = 0, ∀t ∈ (a, b). (31) 
• Two genuine characteristics may intersect only at their endpoints.

• If γ 1 and γ 2 are two generalized characteristics defined on (a, b), then we have:

∀t ∈ (a, b), (γ 1 (t) = γ 2 (t) ⇒ ∀s ≥ t, γ 1 (s) = γ 2 (s)) .
• For any (t, x) in R + × (0, L) there exist two generalized characteristics χ + and χ - called maximal and minimal and associated to v + and v -by [START_REF] Perrollaz | Exact controllability of scalar conservation laws with an additional control in the context of entropy solutions[END_REF], such that if γ is a generalized characteristic going through (t, x) then

∀s ≤ t, χ -(s) ≤ γ(s) ≤ χ + (s),
χ + and χ -are genuine on {s < t} ,

v + (t) = u(t, x + ) and v -(t) = u(t, x -).
Note that in the previous theorem, every property dealt only with the interior of R + ×[0, L]. The following result describe the influence of the boundary conditions on the generalized characteristics.

Proposition 3. Let u be the unique entropy solution of (29) and consider χ a genuine characteristic on an interval [a, b] such that ∀t ∈ (a, b], χ(t) ∈ (0, L), then we know from the Theorem above that there is

a constant v ∈ R such that ∀t ∈ [a, b], χ(t) = f ′ (v) and ∀t ∈ (a, b), u(t, γ(t)) = v.
But then we have

χ(a) = 0 ⇒ u l (a + ) ≤ v ≤ u l (a -), (32) 
χ(a) = L ⇒ u r (a -) ≤ v ≤ u r (a + ). ( 33 
)
(Where the existence of the limits is an hypothesis)

The main difficulty in the proof comes from the fact that the boundary conditions in (29) are satisfied only for almost all times. Before the proof let us begin with a lemma.

Lemma 1. Consider 0 ≤ t 0 < t 1 , 0 ≤ x A < x B ≤ L and 0 ≤ x C < x D ≤ L. We introduce s l := x C -x A t 1 -t 0 , s r = x D -x B t 1 -t 0 .
We then have

x B x A u(t 0 , x)dx - x D x C u(t 1 , x)dx + t 1 t 0 |f (u(t, (x A + s l (t -t 0 )) + )) -s l u(t, (x A + s l (t -t 0 )) + )] -[f (u(t, (x B + s r (t -t 0 )) -)) -s r u(t, (x B + s r (t -t 0 )) -)]dt = 0.
Note that by letting x A tend to x B we have the following equality wih x A = x B .

-

x D x C u(t 1 , x)dx + t 1 t 0 [f (u(t, (x A + s l (t -t 0 )) + )) -s l u(t, (x A + s l (t -t 0 )) + )] -[f (u(t, (x A + s r (t -t 0 )) + )) -s r u(t, (x A + s r (t -t 0 )) + )]dt = 0.
Proof. We define

χ l (t) := x A + (t -t 0 )s l , χ r (t) := x B + s r (t -t 0 ).
We can see that ∀t ∈ [t 0 , t 1 ], 0 ≤ χ l (t) < χ r (t) ≤ L.

Of course we also have

χ l (t 1 ) = x C , χ r (t) = x D .
We will now define for ǫ > 0 small enough

ρ ǫ (t) :=                0 if t ≤ t 0 t-t 0 ǫ if t 0 ≤ t ≤ t 0 + ǫ 1 if t 0 + ǫ ≤ t ≤ t 1 -ǫ t 1 -t ǫ if t 1 -ǫ ≤ t ≤ t 1 0 if t 1 ≤ t
it is clear that ρ ǫ is Lipshitz continuous and has support [t 0 , t 1 ]. We also need

φ ǫ (t, x) :=                0 if x ≤ χ l (t) + ǫ x-(χ l (t)+ǫ) ǫ if χ l (t) + ǫ ≤ x ≤ χ l (t) + 2ǫ 1 if χ l (t) + 2ǫ ≤ x ≤ χ r (t) -2ǫ χr(t)-ǫ-x ǫ if χ r (t) -2ǫ ≤ x ≤ χ r (t) -ǫ 0 if χ r (t) -ǫ ≤ x
Now one can see that the function defined by

∀(t, x) ∈ R 2 , φ ǫ (t, x) := ρ ǫ (t)φ ǫ (t, x)
is Lipschitz and has compact support in (0, +∞) × (0, L) so one can use it has a test function in the weak formulation of the equation that is

R 2 u(t, x)∂ t ψ(t, x) + f (u(t, x))∂ x ψ(t, x)dtdx = 0.
But then letting ǫ → 0 + and remembering that u is Lipshitz in time with value in L 1 we get the result.

Proof of Proposition 3. We will prove the two inequalities of (32) independently, ( 33) is a simple adaptation and so left to the reader.

• Since f ′ (v) > 0 the estimate is obvious if f ′ (u l (a + )) ≤ 0 so we can suppose f ′ (u l (a + )) > 0 but then it implies that for δ small enough ∀t ∈ [a, a + δ], f ′ (u l (t)) > 0 and using the definition of Adm l in this case we see that for almost all t ∈ [a, a + δ] we have f (u(t, 0 + )) ≥ f (u l (t)).

For ǫ > 0 small enough we apply Lemma 1 to

t 0 = a, t 1 = a + ǫ f ′ (v) , x A = x B = 0, x C = 0 and x D = ǫ to obtain - ǫ 0 u(a + ǫ f ′ (v) , x)dx + a+ ǫ f ′ (v) a f (u(t, 0 + )) -[f (v) -vf ′ (v)]dt = 0.
Using the previous inequality we get that for ǫ < f ′ (v)δ

- ǫ 0 u(a + ǫ f ′ (v) , x)dx + a+ ǫ f ′ (v) a f (u l (t)) -[f (v) -vf ′ (v)]dt ≤ 0, but now f is convex for f (u l (t)) -f (v) + vf ′ (v) ≥ f ′ (v)u l (t),
so we actually have

- ǫ 0 u(a + ǫ f ′ (v) , x)dx + a+ ǫ f ′ (v) a f ′ (v)u l (t)dt ≤ 0. ( 34 
)
If we apply Lemma 1 to

t 0 = a + ǫ f ′ (v) , t 1 = b, x A = 0, x B = ǫ, x C = f ′ (v)(b -a) -ǫ and x D = f ′ (v)(b -a) we get ǫ 0 u(a + ǫ f ′ (v) , x)dx - f ′ (v)(b-a) f ′ (v)(b-a)-ǫ u(b, x)dx + b a+ ǫ f ′ (v) [f (u(t, (f ′ (v)(t -a) -ǫ) + ) -f ′ (v)u(t, (f ′ (v)(t -a) -ǫ) + )] -[f (v) -f ′ (v)v]dt = 0.
And the convexity of f implies

[f (u(t, (f ′ (v)(t -a) -ǫ) + ) -f ′ (v)u(t, (f ′ (v)(t -a) -ǫ) + )] -[f (v) -f ′ (v)v] ≥ 0, so we actually have ǫ 0 u(a + ǫ f ′ (v) , x)dx - f ′ (v)(b-a) f ′ (v)(b-a)-ǫ u(b, x)dx ≤ 0. ( 35 
)
But now adding (34) and (35) we end up with

f ′ (v)(b-a) f ′ (v)(b-a)-ǫ u(b, x)dx ≥ f ′ (v) a+ ǫ f ′ (v) a u l (t)dt,
and finally dividing by ǫ and taking ǫ → 0 + we obtain the left inequality of (32).

• For the right inequality of (32). We will proceed in three steps.

-Step 1, using Lemma 1 we get for c ∈ (a, b)

c a f (u(t, χ(t))) -χ(t)u(t, χ(t)) -f (u(t, χ(t) + ǫ)) + χ(t)u(t, χ(t) + ǫ)dt ǫ 0 u(a, x)dx - χ(c)+ǫ χ(c)
u(c, x)dx = 0, using the properties of χ we get -Step 2, since f ′ (v) > 0 and f ′ is increasing we have f ′ (u(a, 0 + )) > 0 so for some point x ∈ (0, L) arbitrarily close to 0 we have f ′ (u(a, x 0 )) > 0 and considering the minimal backward characteristic γ through (t, x) we have γ(t) = f ′ (v) > 0 for some v, therefore if x is close enough to 0 we have a time c ∈ (0, a) such that γ(c) = 0. If we consider now a time t ∈ (c, a) should we have f ′ (u(t, 0 + )) < 0 then for x close enough to 0 we have both f ′ (u(t, x)) < 0 and x < γ(t), but then the maximal backward characteristic through (t, x) will necessarily cross γ in (c, t) which is not possible thanks to Theorem 3. We can thus conclude that for any time t ∈ (c, a) f ′ (u(t, 0 + )) ≥ 0.

c a f (v) -f ′ (v)v -f (u(t, χ(t) + ǫ)) + f ′ (v)u(t, χ(t) + ǫ)dt
But then using since the boundary condition at 0 in [START_REF] Oleȋ Nik | On discontinuous solutions of non-linear differential equations[END_REF] holds for almost all time t we see that u(t, 0 + ) = u l (t), dt a.e. in (c, a).

And also f ′ (u l (a -)) ≥ 0.

-Step 3, let us consider u i > u l (a -). Using Step 2 we can see that f ′ (u i ) > 0. Furthermore for a small δ > 0 we get

∀t ∈ (a -δ, a), f ′ (u i ) > f ′ (u l (t)).
For ǫ > 0, denote by a ǫ and χ ǫ the time and curve defined by

a ǫ := a - ǫ f ′ (u i ) , ∀t ∈ (a ǫ , a), χ ǫ (t) := ǫ -f ′ (u i )(a -t).
We have χ ǫ (a ǫ ) = 0 so using Lemma 1 on the triangle of vertices (a, 0), (a, ǫ) and (a ǫ , 0) we get

- ǫ 0 u(a, x)dx + a aǫ f (u(t, 0 + )) -f (u(t, χ ǫ (t) -) + f ′ (u i )u(t, χ ǫ (t) -)dt = 0.
Using the result of the previous step we have then

- ǫ 0 u(a, x)dx + a aǫ f (u l (t)) -f (u(t, χ ǫ (t) -) + f ′ (u i )u(t, χ ǫ (t) -)dt = 0.
but since for ǫ small enough a ǫ ≥ aδ we have f ′ (u l (t)) > 0 and u l (t) < u i . This means that f (u l (t)) ≤ f (u i ) so we have

- ǫ 0 u(a, x)dx + a aǫ f (u i ) -f (u(t, χ ǫ (t) -) + f ′ (u i )u(t, χ ǫ (t) -)dt ≥ 0. But f is convex therefore f (u i ) -f (u(t, χ ǫ (t) -) + f ′ (u i )u(t, χ ǫ (t) -) ≤ f ′ (u i )u i ,
and so

- ǫ 0 u(a, x)dx + (a -a ǫ )f ′ (u i )u i ≥ 0,
dividing by ǫ and taking ǫ → 0 + we end up with -u(a, 0 + ) + u i ≥ 0, so using the result of Step 1 we can conclude

u i ≥ u(a, 0 + ) ≥ v,
But u i was arbitrarily close to u l (a -) so as announced v ≤ u l (a -).

Asymptotic Stabilization

In this section u will be a given solution to the closed loop system [START_REF] Glass | On the controllability of the 1-D isentropic Euler equation[END_REF]. We will show estimates [START_REF] Glass | On the controllability of the non-isentropic 1-d euler equation[END_REF].

Lemma 2. Consider T 1 given by the following definition

A m,ǫ := f (u l (m) -ǫ) 2 , T 1 := max L f ′ (u l (A m,ǫ )) , L -f ′ (u r (A m,ǫ ))
.

there exist two Lipschitz functions β 1 , β 2 : (T 1 , +∞) → (0, L) such that if we consider ( t, x) ∈ (T 1 , +∞) × (0, L), then we have the alternatives

0 < x < β 1 ( t) ⇒ u( t, x± ) ∈ [u l (m) -ǫ, u l (m) + ǫ], (36) 
β 1 ( t) < x < β 2 ( t) ⇒ - L t ≤ f ′ (u( t, x± )) ≤ L t ( 37 
)
β 2 ( t) < x < L ⇒ u( t, x± ) = u r (m). ( 38 
)
Proof. We will proceed in mutliple steps.

• We consider ( t, x) ∈ (0, +∞) × (0, L). Using Theorem 3 we get the minimal backward characteristics γ. We call -In the first case, using Theorem 2, we have u ∈ Lip([0, t]; L 1 (0, L)) therefore the boundary data at x = 0

t → u l (m) -A ǫ,ν (O α,δ (u(t, .))),
is Lipschitz. Using Proposition 3 we have then

u( t, x-) = u l (m) -A ǫ,ν (O α,δ (u(a, .))) ∈ [u l (m) -ǫ, u l (m) + ǫ],
given the definition of A ǫ,ν .

-In the second case, Proposition 3 gives directly

u( t, x-) = u r (m).
-Finally in the last case we have a = 0 and

∀t ∈ [0, b], γ(t) = f ′ (u( t, x-)), thus γ( t) -γ(0) = f ′ (u( t, x-)) t,
which means (since x = γ( t))

f ′ (u( t, x)) = x -γ(0) t . Using 0 ≤ γ(0) ≤ L we get x -L t ≤ f ′ (u( t, x-)) ≤ x t . ( 39 
)
which implies

- L t ≤ f ′ (u( t, x-)) ≤ L t .
Now using Theorem 3 we know that genuine characteristics do not cross. Therefore given t the set of x for which we are in first case, second case or third case are connected therefore intervals, they form a partition of [0, L]. And from a geometrical viewpoint it is obvious that from the left to the right we have points from the first case, points from the last case and points from the second case.

• At this point we have indeed constructed two functions β 1 and β 2 such that (36), ( 37) and ( 38) hold for x-.

Since if 0 < c < x < d < 1 we have u( t, x+ ) = lim ǫ→0 + u( t, (x + ǫ) -), (36) 
, ( 37), ( 38) and (39) also hold for x+ .

Note that using (39) we get for any t > 0

β 1 (t) = 0 ⇒ - L t ≤ f ′ (u(t, 0 + )) ≤ 0.
We have on one hand

u(t, 0 + ) ≤ 0 < u l (m) -A ǫ,ν (O α,δ (u(t, .))),
and using Remark 3 we can deduce

f (u(t, 0 + )) ≥ f (u l (m) -A ǫ,ν (O α,δ (u(t, .)))), which implies f (u(t, 0 + )) ≥ f (u l (m) -ǫ).
On the other hand, if t ≥ T 1 , we have using the definition of T 1

f ′ (u r (A m,ǫ )) ≤ - L T 1 ≤ f ′ (u(t, 0 + )) ≤ 0, which implies that u r (A m,ǫ ) ≤ u(t, 0 + ) ≤ 0,
and therefore

f (u(t, 0 + )) ≤ f (u r (A m,ǫ )) = A m,ǫ = f (u l (m) -ǫ) 2 < f (u l (m) -ǫ).
which is contradictory. And we can deduce that

∀t ≥ T 1 , β 1 (t) > 0.
In the same way, using (39) we get for any t > 0

β 2 (t) = L ⇒ 0 ≤ f ′ (u(t, L -)) ≤ L t .
On one hand we get u(t, L -) ≥ 0 > u r (m), and using Remark 3 we have in particular

f (u(t, L -)) ≥ f (u r (m)) = m,
On the other hand, if t ≥ T 1 we have using the definition of T 1

f ′ (u l (A m,ǫ )) ≥ L T 1 ≥ L t ≥ f ′ (u(t, L -)) ≥ 0,
and therefore

u l (A m,ǫ ) ≥ u(t, L -) ≥ 0.
We can then obtain

f (u(t, L -)) ≤ f (u l (A m,ǫ )) = A m,ǫ = f (u l (m) -ǫ) 2 < f (u l (m) -ǫ) < f (u l (m)) = m,
which is contradictory. So we can conclude that

∀t ≥ T 1 , β 2 (t) < 0.
• It remains to prove that β 1 and β 2 are Lipschitz functions. To this end let us first remark that those functions are uniquely defined through our previous requirements. Now consider t ∈ (T 1 , +∞). Then x := β 1 ( t) ∈ (0, L), so we have a unique forward characteristic through ( t, x) let us call it γ 1 , defined on a certain interval [ t, c] with c > t.

Let us fix t ∈ ( t, c).

If we choose x ∈ (0, γ 1 (t)) if we consider γ 2 the minimal backward characteristic through (t, x), it is defined maximally on an interval [b, t]. By uniqueness of forward characteristic we have ∀s ∈ [max( t, b), t], γ 2 (s) < γ 1 (s).

We have two alternatives.

-But then if b > t we have γ 2 (b) = 0 and b > 0 therefore x < β 1 (t).

-If on the other hand we have b ≤ t then γ 2 ( t) < γ 1 ( t) = x = β 1 (t). But then γ 2 is also the minimal backward characteristic through ( t, γ 2 ( t)) and thus b > 0 and γ 2 (b) = 0 therefore x < β 1 (t).

In the end we have proved

∀x ∈ (0, γ 1 (t)), x < β 1 (t), therefore we have γ 1 (t) ≤ β 1 (t).
If we choose x ∈ (γ 1 (t), L) and consider γ 3 the minimal backward characteristic through (t, x) defined maximally on [b, t]. Using the uniqueness of forward characteristic we have ∀x ∈ [max(b, t), t], γ 3 (s) > γ 1 (s).

We have two alternatives.

-

If b > t we have γ 3 (b) = L and b > 0 therefore x > β 2 (t) ≥ β 1 (t).
-If on the other hand b ≤ t we have γ 3 ( t) > γ 1 ( t) = β 1 ( t), but then γ 3 is also the minimal backward characteristic through ( t, γ 3 ( t)) and by construction of β 1 and β 2 we have can conclude x > β 1 (t).

So we have proved ∀x ∈ (γ 1 (t), L), x > β 1 (t), which implies γ 1 (t) ≥ β 1 (t). Since we already had the other inequality β 1 = γ 1 . But this means that β 1 being a generalized characteristic is Lipschitz.

The same argument works for β 2 .

Lemma 3. There exists a time T 2 independent of the initial data u 0 (see (40) for an exact formula) and a Lipschitz function

β : [T 2 , +∞[→ (0, L) satisfying ∀t ≥ T 2 , ∀x ∈ (0, L), x < β(t) ⇒ u l (m) -ǫ ≤ u(t, x + ) ≤ u l (m) + ǫ x > β(t) ⇒ u(t, x -) = u r (m)
Proof. We just need to show the existence of

T 2 > 0 independant of u 0 such that ∀t ≥ T 2 , β 1 (t) = β 2 (t). Let us suppose β 1 (t) < β 2 (t) for t ∈ [T 1 , T ].
• Using the definition of β 1 and looking at the minimal backward characteristics through (t, β 1 (t)) we get

u l (m) -ǫ ≤ u(t, β 1 (t) -) ≤ u l (m) + ǫ,
and considering the maximal one

f ′ (u r (A m,ǫ )) ≤ - L T 1 ≤ - L t ≤ f ′ (u(t, β 1 (t) + )) ≤ L t ≤ L T 1 ≤ f ′ (u l (A m,ǫ )). But then u r (A m,ǫ ) ≤ u(t, β 1 (t) + ) ≤ u l (A m,ǫ ) < u l (m) -ǫ.
Furthermore Theorem 3 grants for almost all t ∈ (T 1 , T )

β1 (t) = f (u(t, β 1 (t) -)) -f (u(t, β 1 (t) + )) u(t, β 1 (t) -) -u(t, β 1 (t) + ) .
Now remark that for w, z the formula

f (z) -f (w) z -w = 1 0 f ′ (θw + (1 -θ)z)dθ,
show that this function is increasing in both variables therefore

β1 (t) ≥ f (u l (m) -ǫ) -f (u r (A m,ǫ )) u l (m) -ǫ -u r (A m,ǫ ) =: c 1 > 0.
• Using the definition of β 2 and looking at the maximal backward characteristics through (t, β 2 (t)) we get u r (m) = u(t, β 2 (t) + ),

and considering the minimal one

f ′ (u r (A m,ǫ )) ≤ - L T 1 ≤ - L t ≤ f ′ (u(t, β 2 (t) -)) ≤ L t ≤ L T 1 ≤ f ′ (u l (A m,ǫ )). But then u r (m) < u r (A m,ǫ ) ≤ u(t, β 2 (t) -) ≤ u l (A m,ǫ ).
Furthermore Theorem 3 grants for almost all t ∈ (T 1 , T )

β2 (t) = f (u(t, β 2 (t) -)) -f (u(t, β 2 (t) + )) u(t, β 2 (t) -) -u(t, β 2 (t) + ) . and as before β2 (t) ≤ f (u l (A m,ǫ )) -f (u r (m)) u l (A m,ǫ ) -u r (m) =: -c 2 < 0. • We have then β 1 (T 1 ) ≥ 0 for almost all t ∈ (T 1 , T ), β1 (t) ≤ c 1 , so β 1 (T ) ≥ c 1 (T -T 1 ).
In the same way we obtain

β 2 (t) ≤ L -c 2 (T -T 1 ).
But we had supposed β 1 (T ) ≤ β 2 (T ) so

T ≤ T 1 + L c 1 + c 2 =: T 2 . (40) 
We have thus shown that

∀t ≥ T 2 , β 1 (t) = β 2 (t).
From this result, we get multiple properties.

Remark 4. We have the following

∀t ≥ T 2 , ∀x ∈ (0, β(t)), u l (m) -ǫ ≤ u(t, x) ≤ u l (m) + ǫ
and combined with Definition 4 this implies

u(t, 0 + ) = u l (m) -A ǫ,ν (O α,δ (u(t, .
)) dt a.e.

We also have ∀t ≥ T 2 , ∀x ∈ (β(t), L), u(t, x) = u r (m),

• we also have

O α,δ (u(t, .)) ≤ β(t) -(α -δ) δ u l (m) + ǫ 2 + α + δ -β(t) δ u r (m) 2 - u l (m) + u r (m) 2 = β(t) -α δ u l (m) -u r (m) + ǫ 2 + δ(u l (m) + ǫ + u r (m) 2δ - u l (m) + u r (m) 2 = z u l (m) -u r (m) + ǫ 2 + ǫ 2 .
But it is clear that this last term is increasing and equals ur(m)

2
for z equal to

θ 2 := - ǫ -u r (m) u l (m) + ǫ -u r (m)
∈ (-1, 0).

• So we have

β(t) ≥ α + θ 1 δ ⇒ O α,δ (u(t, .)) ≥ u l (m) -ǫ 2 , β(t) ≤ α + θ 2 δ ⇒ O α,δ (u(t, .)) ≤ u r (m) 2 ,
And also by a simple calculation

-1 < θ 2 ≤ θ 1 < 1.
So taking θ := max(|θ 1 |, |θ 2 |), we have indeed θ ∈ (0, 1) and

α -θδ ≤ α + θ 2 δ < α + θ 1 δ ≤ α + θδ.
• Finally the cases β(t) < αδ and β(t) > α + δ are obvious consequences of the previous calculations.

Lemma 5. There exists ǫ 0 such that given ν 0 := u l (m)-ur (m)

2

, for any ν > ν 0 and any ǫ ∈ (0, min(ǫ 0 , ν -u l (m)-ur(m)

2

)) there exists T 3 independant of u 0 (see (48) for the exact formula) satisfying ∀t ≥ T 3 , αδ < β(t) < α + δ.

Proof. Let us consider ǫ 1 := ν -u l (m)-ur (m) 2

. Then using (41), ( 42) and (43), we know that

cǫ,m (1 -θ)f ′ (u l (m) -ǫ) → ǫ→0 0, and cǫ,m (1 -θ)f ′ (u r (m)) → ǫ→0 0.
So there exists ǫ 0 < ǫ 1 such that ∀ǫ ∈ (0, ǫ 0 ),

cǫ,m (1-θ)f ′ (u l (m)-ǫ) < δ L cǫ,m (1-θ)f ′ (ur(m)) < δ L . (44) 
With such a choice of parameters let us show the result. We will proceed in multiple steps. But thanks to ν > ν 0 and ǫ < ǫ 1 we deduce

∀t ∈ [a, b], A ǫ,ν (O α,δ (u(t, .))) ≥ ǫ ν u l (m) -ǫ 2 > 0.
But then using Remark 4 we have for almost any t ∈ [a, b]

0 < u l (m) -ǫ ≤ u(t, 0 + ) ≤ u l (m) - ǫ ν u l (m) -ǫ 2 < u l (m). ( 45 
)
Now let us suppose that [a + L f ′ (u l (m)-ǫ) , b] non empty and consider a time t in the interval. Looking at the minimal backward characteristic through ( t, β( t)) and using Lemmas 3 and 2 we have

u( t, β( t) -) = u( t - β( t) f ′ (u( t, β( t) -))
, 0 + ).

But clearly using Lemma 3 and 2 we have u( t,

β( t) -) ≥ u l (m) -ǫ so 0 ≤ β( t) f ′ (u( t, β( t) -)) ≤ L f ′ (u l (m) -ǫ) ,
so we have

a ≤ t - β( t) f ′ (u( t, β( t) -)) ≤ b.
From this and Proposition 3 we deduce

u( t, β( t) -) ≤ u l (m) - ǫ ν u l (m) -ǫ 2 .
But looking at the maximal backward characteristic trhough (bt, β( t) and using Lemmas 3 and 2 we get u( t, β( t) + ) = u r (m).

Using Theorem 3 we have shown that if 

b -a ≥ L f ′ (u l (m) -ǫ) ,
β(t) ≤ f (u l (m) -ǫ ν u l (m)-ǫ 2 ) -f (u r (m)) u l (m) -ǫ ν u l (m)-ǫ 2 -u r (m) := dǫ,m < 0. But since β is confined inside (α + θδ, L) on [a, b] we require dǫ,m (b -a - L f ′ (u l (m) -ǫ) + L ≥ α + θδ, which is in fact b -a ≤ L f ′ (u l (m) -ǫ) + α + θδ -L dǫ,m . (46) 
• The same method show that if

∀t ∈ [a, b], β(t) ≤ α -θδ,
then for almost any t ∈ [a, b], we have

u(t, 0 + ) ≥ u l (m) - ǫ ν u r (m) 2 > u l (m).
Then should we have

a + α -θδ f ′ (u l (m) -ǫ) ≤ t ≤ b,
we have

u( t, β( t-)) ≥ u l (m) - ǫ ν u r (m) 2 ,
and then

β(t) ≥ dǫ,m := f (u l (m) -ǫ ν ur(m) 2 ) -f (u r (m)) u l (m) -ǫ ν ur(m) 2 -u r (m) > 0.
And in the end because β is supposed to be confined to [0, αθδ] for t ∈ [a, b] we have the restriction

b -a ≤ α -θδ f ′ (u l (m) -ǫ) + α -θδ dǫ,m , (47) 
• To conclude this part, we have showed that if we define

T 3 = T 2 + max - L -α -θδ dǫ,m - L f ′ (u l (m) -ǫ) , α -θδ f ′ (u l (m) -ǫ) + α -θδ dǫ,m . (48) 
(see ( 46) and ( 47 But thanks to Remark 4 we also know

∀t ∈ [a, b], β(t) ≤ cǫ,m , therefore α + δ -α -θδ ≤ β(b) -β(a) ≤ cǫ,m (b -a). Therefore b -a ≥ (1 -θ)δ cǫ,m . 
And thanks to (44) we get

b -a > L f ′ (u l (m) -ǫ) .
But then for a time t in the (non empty) interval (a

+ L f ′ (u l (m)-ǫ) , b) we have considering the minimal backward characteristic u(t, β(t) -) = u l (m) -A ǫ,ν (O α,δ (u(s, .))), for s such that β(t) t -s = f ′ (u(t, β(t) -),
and thus

f ′ (u l (m) -ǫ) ≤ L t -s , but then s ≥ t - L f ′ (u l (m) -ǫ) ≥ b - L f ′ (u l (m) -ǫ) > a.
Since β(s) ≥ α + θδ we also have thanks to Lemma 4 and ǫ < ǫ 1

u(t, β(t) -) ≤ u l (m) - ǫ ν u l (m) -ǫ 2 < 0.
Now thanks to Theorem 3 we can conclude that for almost any t ∈ (a

+ L f ′ (u l (m)-ǫ) , b) we have β(t) = f (u(t, β(t) -)) -f (u r (m)) u(t, β(t) -) -u r (m) < 0. But then β(a + L f ′ (u l (m) -ǫ) > β(b) ≥ α + δ,
and once again

β(a + L f ′ (u l (m) -ǫ) -β(a) ≤ cǫ,m L f ′ (u l (m) -ǫ) ,
but we also have

β(a + L f ′ (u l (m) -ǫ) -β(a) ≥ α + δ -α -θδ = (1 -θ)δ,
so we end up with the inequality

(1 -θ)δ ≤ cǫ,m L f ′ (u l (m) -ǫ) , which rewritten cǫ,m (1 -θ)f ′ (u l (m) -ǫ) ≥ δ L
is incompatible with (44).

In the end we have shown that

∀b ≥ T 3 , β(b) < α + δ.
• The same method grants ∀b ≥ T 3 , β(b) > αδ. 

[T 3 , +∞) → [ α-δ f ′ (u l (m)+ǫ) , α-δ f ′ (u l (m)-ǫ) ] such that for any time t ≥ T 3 Ṡ(t) = f (u l (m) -ǫ ν S(t -τ (t))) -f (u r (m)) 2δ . 
Proof.

• We have seen in Remark 3 that

∀t ≥ T 3 , - u l (m) -u r (m) 2 ≤ S(t) ≤ u l (m) -u r (m) 2 + ǫ. (49) 
So thanks to our choices of ǫ < ν -u l (m)-ur (m) 2 we have

A ǫ,ν (S(t)) = ǫ ν S(t).
It is classical that S is Lipschitz and satisfies for almost all t

Ṡ(t) = f (u(t, α -δ)) -f (u(t, α + δ)) 2δ .
Now using the previous Lemmas we have

∀t ≥ T 3 , u(t, α + δ) = u r (m), and 
u(t, α -δ) = u(s, 0 + ), with α -δ t -s = f ′ (u(t, α -δ)).
Lemma 8. With the previous choices of parameters, we have for T 4 given by

T 4 = T 3 + L f ′ (u l (m) -ǫ) , two constants M 2 and M 3 such that ∀t ≥ T 4 , |β(t) -α| ≤ M 2 e -Ct sup s∈[0,T 4 ] |S(s)|, (52) 
and ∀t ≥ T 4 , ∀x < β(t), |u(t, x) -u l (m)| ≤ M 3 e -Ct sup s∈[0,T 4 ] |S(s)|. (53) 
Proof. We will proceed in multiple steps.

• Using the previous Lemma and the boundary conditions we have

∀t ≥ T 3 , |u(t, 0 + ) -u l (m)| ≤ min ǫ, ǫM 1 ν e -Ct sup s∈[0,T 3 ] |S(s)| . For t ≥ T 3 + L f ′ (u l ( 
m)-ǫ) and x < β(t) looking at the minimal backward characteristic and using Theorem 3 and Proposition 3 we get

|u(t, x) -u l (m)| ≤ M 2 e -Ct sup s∈[0,T 3 ] |S(s)| with M 2 := ǫM 1 e C α-δ f ′ (u l (m)-ǫ) ν .
And since T 4 > T 3 , (52) is now obvious.

• Now consider t ≥ T 4 . Let us suppose that β(t) ≥ α, we have

S(t) ≥ α + δ -β(t) 2δ u r (m) - u l (m) + u r (m) 2 + β(t) -α + δ 2δ u l (m) -min ǫ, M 2 e -Ct sup s∈[0,T 4 ] |S(s)| = (β(t) -α) u l (m) -u r (m) -ǫ 2δ - M 2 e -Ct sup s∈[0,T 4 ] |S(s)| 2 .
And so 0

≤ β(t) -α ≤ M 3 e -Ct sup s∈[0,T 4 ] |S(s)|, with K 2 := M 2 2 + M 1 u l (m) -u r (m) -ǫ .
The case of α ≥ β(t) can be treated in the same way. 

|S(s)| + |β(t) -α|2 max(-u r (m), u l (m) + ǫ) + 0 ≤ (LM 2 + 2 max(-u r (m), u l (m) + ǫ)M 3 )e -Ct sup s∈[0,T 4 ] |S(s)|.
The conclusion then comes from the independance of all the constants from the initial data. And

sup s∈[0,T 4 ] |S(s)| ≤ C L 0 |u 0 (x) -ūα,m (x)|dx, since the semigroup is continuous in L 1 .
A A result on delayed differential equations Proposition 4. Let us consider a function θ ∈ C 1 (R + ), a constant T > 0 and a function g such that ∀t ≥ T > 0, θ(t) = g(θ(tτ (t))).

We will suppose the following

• There exists a positive real number M such that

∀t ≥ 0, -M ≤ θ(t) ≤ M. (54) 
• We have two positive real numbers τ m and τ M such that ∀t ≥ 0,

τ m ≤ τ (t) ≤ τ M . (55) 
• The function τ is continuous. • If the following condition holds

ǫ(τ m + τ M ) ≤ 1, ( 59 
)
then M is non decreasing. • We will now prove (61). We consider a positive time t which will be fixed. Let us consider α a positive number. We will consider once again three alternatives.

- • To get (62) we consider t > t 0 and denote N the integer satisfying

t -3(N + 1)τ M ≤ t 0 ≤ t -3N τ M ⇔ N ≤ t -t 0 3τ M ≤ N + 1.
We then have

B(t) ≤ KB(t -3τ M ) ≤ K 2 B(t -2(3τ M )) ≤ K N B(t -N (3τ M ))
≤ e ln(K)N B(t 0 ) ≤ e ln(K) 3τ M (t-t 0 ) B(t 0 ).

the convexity of f we get ǫ 0 u

 0 (a, x)dx ≥ χ(c) χ(c) + ǫu(c, x)dx,dividing by ǫ and letting ǫ → 0 we get u(a, 0 + ) ≥ u(c, χ(c) + ) = v.

  [a, b] its maximal domain of definition. Following Theorem 3 and the maximality of [a, b] we see that we have (γ(a) = 0 and a > 0) or (γ(a) = L and a > 0) or a = 0.

  then for almost any time t of the interval [a + L f ′ (u l (m)-ǫ) , b]

•

  )) then β cannot be continuously in (0, αθδ)or (α + θδ) on [T 2 , T 3 ]. Since β is Lipschitz we have a time t ∈ [T 2 , T 3 ] such that β( t) ∈ (αθδ, α + θδ).Let us now consider an hypothetical time b ≥ T 3 such that β(b) ≥ α + δ. Using the previous result we can define a := sup{t ∈ [T 2 , b] : β(a) = α + θδ}. We have then β(a) = α + θδ, and ∀t ∈ [a, b], β(t) ≥ α + θδ.

Lemma 6 .

 6 If we call S the function ∀t > 0, t, x) -ūα,m (x))dx, then for ν sufficiently large (see formula (50)) one can find a C 0 function τ :

••

  We have two positive numbers c and ǫ such that∀u ∈ [-M, M ], -ǫ ≤ g ′ (u) ≤ -c < 0. The following condition holds ǫ(τ m + τ M ) ≤ 1. (58)Then if we define∀t ≥ T, B(t) := max s∈[t-3τ M ,t] |θ(t)|,we have the following conclusions.

•

  Let us suppose that for an interval [a, b] ⊂ [T 2 , +∞[ we have ∀t ∈ [a, b], β(t) ≥ α + θδ.

	Using Lemma 4 we have			
	∀t ∈ [a, b],	O α,δ (u(t, .)) ≥	u l (m) -ǫ 2	> 0.

  Proof. of Theorem 1.We just need to write for t ≥ T 4

	L	min(α,β(t))
	|u(t, x) -ūα,m (x)|dx =	|u(t, x) -ūα,m (x)|dx
	0	0
		max(α,β(t))
		+	|u(t, x) -ūα,m (x)|dx
		min(α,β(t))
		L
		+	|u(t, x) -ūα,m (x)|dx
		max(α,β(t))
	≤ min(α, β(t))M 2 e -Ct sup
			s∈[0,T 3 ]

  Proof. Let us begin by pointing out that using the definition of B, properties (57) and (56) of g and properties (55) of τ we have that for any time t, the functionθ is ǫB(t)-Lipschitz on [t -2τ M , t + τ m ]. or θ(s) < 0 in which case we have s 0 ∈ [t, s] such that θ(s 0 ) but then |θ(s)| = |θ(s)θ(s 0 )| ≤ ǫB(t)|ss 0 | ≤ ǫτ m B(t) ≤ B(t).Finally if we have s 0 ∈ [tτ M , t] such that θ(s 0 ) = 0 then we have |θ(s)| = |θ(s)θ(s 0 )| ≤ ǫB(t)|ss 0 | ≤ ǫ(τ M + τ m )B(t) ≤ B(t).

	and therefore using (59)				
	∀s ∈ [t, t + τ m ],	B(s) ≤ B(t).
	• If the following holds				
		ǫ(2τ M + τ m ) < 1	(60)
	then M satisfies				
	∀t ≥ T,	B(t + 3τ M ) ≤ KB(t),	(61)
	for K given by				
	K =	1 + ǫ(2τ M + τ m )cτ M 1 + cτ M	< 1.
	• And from those properties we get				
	∀t ≥ t 0		|θ(t)| ≤ e	ln(K) 3τ M	(t-t 0 ) B(t 0 ).	(62)
	In both case we got (thanks to (59))			
	∀s ∈ [t, t + τ m ],	|θ(s)| ≤ B(t),
	and therefore				
	∀s ∈ [t, t + τ m ],	B(s) ≤ B(t).

• We will now show that B is non increasing. Consider a fixed positive time t. We have three alternatives.

If ∀s ∈ [tτ M , t], θ

(

s) > 0, then we have θ(t) > 0, and ∀s ∈ [t, t + τ m ], θ ′ (s) < 0, but then θ is decreasing on [t, t + τ m ] so for s ∈ [t, t + τ m ] either 0 ≤ θ(s) ≤ θ(t) ≤ B(t), If ∀s ∈ [tτ M , t], θ(s) > 0, the symmetrical argument show that ∀s ∈ [t, t + τ m ], B(s) ≤ B(t).

  We suppose here that ∀s ∈ [t -2τ M , t], θ(s) ≥ α.We use the Lipschitz constant for θ to get∀s ∈ [t, t + τ m ], θ(s) ≤ θ(t) + ǫB(t)(st) ≤ -α + ǫB(t)τ m ,The last case is now obviously∃s 0 ∈ [t -2τ M , t], -α ≤ θ(s 0 ) ≤ α.But then we have using the Lipschitz constant of θ∀s ∈ [t, t + τ m ], |θ(s)| ≤ |θ(s 0 )| + ǫB(t)|ss 0 | ≤ α + ǫB(t)(2τ M + τ m ).We can sum up the previous estimates by∀s ∈ [t, t + τ m ], |θ(s)| ≤ max(α + ǫB(t)(2τ M + τ m ), ǫB(t)τ mα, B(t)cατ M ).But it is clear that∀α ≥ 0, ǫB(t)τ mα ≤ α + ǫB(t)(2τ M + τ m ), thus we have in fact ∀s ∈ [t, t + τ m ], |θ(s)| ≤ max(α + ǫB(t)(2τ M + τ m ), B(t)cατ M ).And we can now minimize the righthandside with respect to α. Since the functions are affine (one increasing the other decreasing) the corresponding α satisfies

	Combining the previous estimates we get

Using (56) we thus have

∀s ∈ [tτ M , t + τ m ],

θ(s) ≤ -cα, but then we can deduce using θ(t

τ M ) ≤ B(t) that ∀s ∈ [t, t + τ m ], θ(s) ≤ B(t)cατ M .

We now use the Lipschitz constant of θ to get

∀s ∈ [t, t + τ m ], θ(s) ≥ θ(t) -ǫB(t)(st) ≥ α -ǫB(t)τ m ,

Combining the previous estimates we get

∀s ∈ [t, t + τ m ], |θ(s)| ≤ max(ǫB(t)τ mα, B(t)cατ M ).

-We suppose here that

∀s ∈ [t -2τ M , t], θ(s) ≤ -α.

Using (56) we thus have

∀s ∈ [tτ M , t + τ m ], θ(s) ≥ cα, but then we can deduce using θ(tτ M ) ≥ -B(t) that ∀s ∈ [t, t + τ m ], θ(s) ≥ -B(t) + cατ M . ∀s ∈ [t, t + τ m ], |θ(s)| ≤ max(ǫB(t)τ mα, B(t)cατ M ). α + ǫB(t)(2τ M + τ m ) = B(t)cατ M , which is α = 1ǫ(2τ M + τ m ) 1 + cτ m .

and so we end up with

∀s ∈ [t, t + τ m ], |θ(s)| ≤ 1 + cτ M ǫ(2τ M + τ m ) 1 + cτ M B(t).

Finally by bootstrapping the result and using the fact that B is non increasing we have

∀s ∈ [t, t + 3τ M ], |θ(s)| ≤ 1 + cτ M ǫ(2τ M + τ m ) 1 + cτ M B(t),

which is as announced ∀t ≥ T, B(t + 3τ M ) ≤ KB(t).

We can then deduce using [START_REF] Glass | On the uniform controllability of the Burgers equation[END_REF] 

And finally using Theorem 3

where we have defined

And note that cǫ,m and cǫ,m tend to 0 when ǫ → 0, independantly of ν, α, δ.

Lemma 4. Consider θ given by

(Note that as ǫ tends to 0, θ tends to a limit strictly less than 1.) Then for t ≥ T 2 ,

Proof. Let us first recall that u r (m) < 0 < u l (m)ǫ.

Note that if αδ < β(t) < α + δ and we introduce

• we have using the definition of O α,δ

but it is clear that this last term is increasing and equals u l (m)-ǫ 2 for z equal to

But we also have thanks to Proposition 3

We end up with

.

And we already see that

thanks to the previous Lemmas.

• All that remains is to prove the regularity of the delay τ . Since at this point it is not even clear that τ is continuous. Thanks to the finite propagation speed, a point of discontinuity in time of τ (thus of u(t, αδ)) is also a point of discontinuity in space.

Let us consider t such that

Considering the extremal backward characteristics using Theorem 3, Proposition 3 and Remark 3 we get two times t -

We have therefore

Now thanks to (49), ( 16) and the choices ǫ < ν -u l (m)-ur(m) 2 , we have in fact

).

Now we introduce the function

It is clearly Lipschitz and since f ′ is C 1 we can use the chain rule to get almost everywhere

Let us call M m,ǫ,δ the righthand side, which is independant of ν then if

we actually have G ′ (r) < 0 and then G(t 1 ) = G(t 2 ) which is contradictory. Thus τ is actually continuous.

Lemma 7. For ν sufficiently large (see (51)) and ǫ satisfying the previous conditions, we have constants C, M 1 > 0 independant of u 0 such that

Proof. We just show that we can apply Proposition 4 proved in the Appendix for t ∈ [T 3 , +∞). Thanks to the previous Lemmas, we have indeed S is C 1 and satisfying

with τ continuous and

Now thanks to Remark 3 we have

The delay satisfies

Finally the function satifies g(0) = 0 and its derivatives is given by

So using the uniform convexity of f we get f ′′ (z).

We conclude by observing that condition (60) of the Appendix becomes in our case 3(αδ)M ǫ 2δf ′ (u l (m)ǫ) < ν.

(51)